TW201100593A - Electrolytic deposition of metal-based composite coatings comprising nano-particles - Google Patents

Electrolytic deposition of metal-based composite coatings comprising nano-particles Download PDF

Info

Publication number
TW201100593A
TW201100593A TW98120259A TW98120259A TW201100593A TW 201100593 A TW201100593 A TW 201100593A TW 98120259 A TW98120259 A TW 98120259A TW 98120259 A TW98120259 A TW 98120259A TW 201100593 A TW201100593 A TW 201100593A
Authority
TW
Taiwan
Prior art keywords
particles
metallic
particle size
metal
surfactant
Prior art date
Application number
TW98120259A
Other languages
Chinese (zh)
Other versions
TWI467065B (en
Inventor
Joseph A Abys
Edward J Kudrak
Jing-Ye Li
Chen Xu
Chonglun Fan
Original Assignee
Enthone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enthone filed Critical Enthone
Priority to TW98120259A priority Critical patent/TWI467065B/en
Publication of TW201100593A publication Critical patent/TW201100593A/en
Application granted granted Critical
Publication of TWI467065B publication Critical patent/TWI467065B/en

Links

Abstract

A method is provided for imparting corrosion resistance onto a surface of a substrate. The method comprises contacting the surface of the substrate with an electrolytic plating solution comprising (a) a source of deposition metal ions of a deposition metal selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chrome, and alloys thereof, (b) a pre-mixed dispersion of non-metallic nano-particles, wherein the non-metallic particles have a pre-mix coating of surfactant molecules thereon; and applying an external source of electrons to the electrolytic plating solution to thereby electrolytically deposit a metal-based composite coating comprising the deposition metal and non-metallic nano-particles onto the surface.

Description

201100593 六、發明說明: 【發明所屬之技術領域】 本發明一般涉及金屬和金屬合金的電解沉積。更具體 地說,本發明涉及包括非金屬奈米粒子的金屬基複合材料 塗層之電解沉積以提高表面的功能特性。 【先前技術】 〇 金屬的腐蝕從金屬表面吸附到少量水開始。浸濕提供 輸送環境酸、鹵化物和其他腐蝕物質的方式。抗水的疏水 表面能抑制吸附環境濕氣並顯著地減少電鍍金屬沉積物和 下面的層或基材的腐蝕。 氟化聚合物如聚四氟乙烯(在商標名TEFLON®下市 售)已知用於賦予表面疏水性,並因此賦予抗水性。氟化 聚合物通常以粒子的形態應用於金屬表面,其藉由高溫下 烘烤而燒結在一起。 〇 最近,已經發展了將氟化聚合物粒子直接沉積到金屬 基複合材料塗層內的方法,其避免了氟化聚合物粒子的高 溫燒結。例如,Henry等人(美國專利N〇.4,830,889 )和 Feldstein (美國專利Ν〇·5,721,05 5 )描述了由無電鍍鎳浴 共沉積氟化聚乙烯和鎳。亦參見Kobayashi等人的美國專 利 6,878,461 。 不同於無電電鎪程序,Abys等人(美國6,274,254 ) 公開了一種用於藉由電解電鍍而共沉積Pd、Co和PTFE 來增加電連接器的耐磨性之方法。 201100593 一種包括具有相當於可見光波長(即’也 至約780 nm)的直徑之PTFE粒子的電解電鍍 合材料塗層產生黑灰色無光澤表面。例如,這 裝飾和電子應用,例如裝飾性汽車部件和電連 基於美觀的理由而要求表面外觀,或者表面外 耐磨性的性能)的最後精修較差。另外,包括 PTFE粒子的複合材料塗層基於粒子尺寸分佈 濃度和所結合的粒子的表面積與體積比而不同 。而且,大尺寸粒子可能不均勻地分佈在金屬 塗層中。 因此’對於能產生具有光滑、光亮、光面 抗水性和抗腐蝕性以及能改進耐磨性的潤滑表 複合材料塗層而不會影響沉積物的外觀之電鍍 有所需求。 【發明內容】 因此’可注意到’在本發明的各種方面之 一種能產生具有高程度的抗水性、抗腐蝕性、 屬基複合材料塗層,並且還能降低摩擦係數 insertion f〇rce)之電解的金屬沉積方法。 因此’簡單地說’本發明涉及一種用於賦 抗腐蝕性的方法。該方法包括:使該基材表面 溶液接觸’上述電解電鍍溶液包括(a)選自 銀、鎳、銅、金、鉛、铑、釕、鉻及其合金組 約 3 80 nm 的金屬基複 樣的合金在 接器(此處 觀需要例如 相對較大的 、夾雜粒子 的抗水程度 基複合材料 、高程度的 面之金屬基 方法仍持續 中,提供了 耐磨性的金 和***力( 予基材表面 與電解電鍍 由鋅、鈀、 成群組之沉 -6- 201100593 積金屬的沉積金屬離子源,(b)具有約10 run和約500 nm之間的平均粒子尺寸之非金屬奈米粒子的預混合分散 體,其中該非金屬奈米粒子之上具有表面活性劑分子的預 混合塗層;以及將外部電子源應用到該電解電鍍溶液,從 而將包括沉積金屬和非金屬奈米粒子的金屬基複合材料塗 層電解沉積到該表面上。 本發明進一步涉及一種賦予基材表面抗腐蝕性的方法 〇 。該方法包括:使該金屬表面與電解電鍍組成物接觸,上 述電解電鍍組成物包括(a)選自由鋅、鈀、銀、鎳、銅 、金、鉛、鍺、釕、鉻及其合金組成的群組之沉積金屬的 沉積金屬離子源,以及(b)具有表面活性劑塗層的非金 屬粒子,其中該表面活性劑塗層之每個表面活性劑分子的 平均電荷在+〇· 1和+1之間;以及將外部電子源應用到該 電解電鍍組成物,從而將複合材料塗層電解沉積到該金屬 表面上,其中該複合材料塗層包括沉積金屬和非金屬粒子 〇 本發明還涉及一種賦予基材表面抗腐蝕性的方法。該 方法包括:使該金屬表面與電解電鍍組成物接觸,上述電 解電鑛組成物包括(a)選自由鋅、鈀、銀、鎳、銅、金 、鉑、铑、釕、鉻及其合金組成的群組之沉積金屬的沉積 金屬離子源,以及(b)具有約10 nm和約500 nm之間的 平均粒子尺寸之非金屬奈米粒子的預混合分散體,其中該 非金屬奈米粒子之上具有表面活性劑分子的預混合塗層; 以及將外部電子源應用到該電解電鍍組成物,從而將複合 -7- 201100593 材料塗層電解沉積到該金屬表面上,其中該複合材料塗層 包括沉積金屬和在約1 wt · %和約5 wt · %之間的非金屬奈米 粒子。 本發明還涉及一種賦予基材表面抗腐鈾性的方法。該 方法包括:使該金屬表面與電解電鍍組成物接觸,上述電 解電鍍組成物包括(a)選自由鋅、鈀、銀、鎳、銅、金 、鉑、铑、釕、鉻及其合金組成的群組之沉積金屬的沉積 金屬離子源,以及(b)非金屬奈米粒子,其中該非金屬 奈米粒子的特徵在於粒子尺寸分佈,其中至少約30體積 百分比的粒子具有小於1 〇〇 nm的粒子尺寸;以及將外部 電子源應用到該電解電鍍組成物,從而將複合材料塗層電 解沉積到該金屬表面上,其中該複合材料塗層包括沉積金 屬和非金屬奈米粒子。 本發明的其他目的和觀點將在下文部分地指出且部分 地明顯的。 【實施方式】 根據本發明,具有提高的表面性能的金屬基複合材料 塗層被電解沉積到基材表面上。提高的表面性能包括高程 度的抗水性、抗腐鈾性、硬度、耐磨性和潤滑性。此外, 表面塗層的特徵還在於減小的摩擦係數。金屬基複合材料 塗層對於塗布連接器表面特別具有吸引力,因爲塗有金屬 基複合材料塗層的連接器只需要減小的***力,而這能降 低磨損。 -8 - 201100593 本發明的金屬基複合材料塗層可應用於各種基材並對 各種基材進行保護。可用於塗覆本發明的金屬基複合材料 塗層之基材包括連接器和其他電子部件、汽車部件、金屬 化塑膠和用於注射模具之不黏的部件。 用於金屬基複合材料塗層之電解沉積的示範性金屬包 括鋅、鈀、銀、鎳、銅、金、鈾、鍺、釕、鉻(裝飾性且 硬的)及包含這些金屬中任意一個的合金。錫和錫合金亦 〇 是合適的選擇。在一種實施方式中,金屬基複合材料塗層 是銅合金。示範性的銅合金包括Cu-Sn-Zn青銅和Cu-Sn 青銅。 金屬基複合材料塗層的表面性能提高是由於金屬與非 金屬奈米粒子的共沉積而形成的。藉由將具有小於可見光 波長的平均粒子尺寸之非金屬奈米粒子倂入本發明的金屬 基複合材料塗層中,獲得了提高的抗水性、抗腐蝕性、硬 度、耐磨性和潤滑性的優點,而對塗層外觀沒有任何影響 〇 。換句話說,不使用非金屬奈米粒子而產生明亮的光潔塗 層之電解沉積方法利用非金屬奈米粒子而產生明亮的光潔 塗層。同樣,不使用非金屬奈米粒子而產生半明亮塗層之 電解沉積方法利用非金屬奈米粒子而產生半明亮塗層。 可包含在本發明的金屬基複合材料塗層內的一類非金 屬奈米粒子是由含氟聚合物組成的非金屬奈米粒子。含氟 聚合物可選自聚四氟乙烯(PTFE)、氟化乙烯-丙稀共聚 物(FEP)、全氟烷氧基樹脂(PFE,四氟乙烯和全氟乙 烯醚的共聚物)、乙烯·四氟乙烯共聚物(ETFE)、聚氯 201100593 三氟乙烯(PCTFE)、乙烯-氯三氟乙烯共聚物(ECTFE) 、聚偏氟乙烯(PVDF)以及聚氟乙烯(PVF),其中聚四 氟乙烯是目前較佳的。在較佳實施方式中,奈米粒子是 PTFE粒子。 由例如含氟聚合物粒子組成的非金屬奈米粒子的平均 粒子尺寸較佳爲或實質上小於可見光波長的等級’即小於 380 nm(0.38 μιη)至 780 nm(0.780 μιη)。平均粒子尺 寸典型地小於約0.50 μιη( 500 nm),典型地小於約0.25 μιη ( 25 0 nm),更典型地小於約 0.20 μιη(200 nm),且 甚至更典型地小於約0.15 μιη( 150 nm)。平均粒子尺寸 典型地大於約0.005 μιη(5 nm) ’典型地大於約〇_〇1 (10 nm),更典型地大於約〇_〇5 μιη(50 nm)。因此, 平均粒子尺寸可在約〇.〇5 μιη ( 500 nm)和約0.005 μιη ( 5 nm )之間,較佳地在約0_20 μηι ( 200 nm )和約0.01 μιη (10 nm )之間,例如在約 0.1 50 μιη ( 1 50 nm )和約 0.05 μιη(50 nm)之間。在一種實施方式中,非金屬奈米粒子 具有在約 〇·〇5μιη(50ηιη)和約 〇·1 μπι(ΙΟΟηιη)之間的 平均粒子尺寸。在一種實施方式中’非金屬奈米粒子具有 在約 0.01 μιη(ΙΟηιη)和約 0.05 μιη(50ηιη)之間的平均 粒子尺寸。在較佳的實施方式中’非金屬奈米粒子具有在 約 0·08μιη(80ηπι)和約 0.05 μιη(50ηπι)之間的平均 子尺寸。 上述平均粒子尺寸指在一組非金屬奈米粒子內粒子直 徑的算術平均値。一組非金屬奈米粒子,例如含氟聚合物 -10- 201100593 粒子,包含廣泛變化的各種直徑。因此,粒子尺寸可另外 從粒子尺寸分佈方面來描述,例如具有低於某一界限的直 徑之粒子的最小體積百分比。因此,在一種實施方式中, 至少約50體積百分比的粒子具有小於200 nm的粒子尺寸 ,較佳地,至少約70體積百分比的粒子具有小於200 nm 的粒子尺寸,更較佳地,至少約80體積百分比的粒子具 有小於200 nm的粒子尺寸,且甚至更較佳地,至少約90 〇 體積百分比的粒子具有小於200 rim的粒子尺寸。 在另一實施方式中,至少約30體積百分比的粒子具 有小於100 nm的粒子尺寸,較佳地,至少約40體積百分 比的粒子具有小於100 nm的粒子尺寸,更較佳地,至少 約50體積百分比的粒子具有小於100 nm的粒子尺寸,且 甚至更較佳地,至少約60體積百分比的粒子具有小於100 nm的粒子尺寸。 在進一步的實施方式中,至少約25體積百分比的粒 〇 子具有小於90 nm的粒子尺寸,較佳地,至少約35體積 百分比的粒子具有小於90 nm的粒子尺寸,更較佳地’至 少約45體積百分比的粒子具有小於90 nm的粒子尺寸’ 且甚至更佳地,至少約5 5體積百分比的粒子具有小於90 nm的粒子尺寸。 在另一實施方式中,至少約20體積百分比的粒子具 有小於80 nm的粒子尺寸,較佳地,至少約30體積百分 比的粒子具有小於80 nm的粒子尺寸’更佳地,至少約4〇 體積百分比的粒子具有小於80 nm的粒子尺寸,且甚至更 -11 - 201100593 佳地,至少約50體積百分比的粒子具有小於80 nm的粒 子尺寸。 在另一實施方式中,至少約10體積百分比的粒子具 有小於70 nm的粒子尺寸,較佳地,至少約20體積百分 比的粒子具有小於7〇 nm的粒子尺寸,更佳地,至少約3 0 體積百分比的粒子具有小於70 nm的粒子尺寸,且甚至更 佳地,至少約35體積百分比的粒子具有小於70 nm的粒 子尺寸。 本發明使用的非金屬奈米粒子,例如含氟聚合物粒子 ,具有所謂的“比表面積”,意指一克粒子的總表面積。隨 著粒子尺寸的減小,給定質量的粒子之比表面積增加。因 此,一般認爲,較小的粒子提供較高的比表面積。粒子實 現特定功能的相對活性部分地隨粒子表面積而變化,即與 具有大量暴露的表面積的海綿比具有平滑外部的物體具有 較高的吸收度。本發明利用具有有利於實現特定防腐蝕功 能的表面積特性的粒子以平衡其他各種因素。尤其,在某 些實施方式中,這些粒子具有允許在電解電鍍組成物中使 用較低濃度的奈米粒子之表面積特性,這能促進溶液穩定 性,以及甚至沉積物中粒子分佈和均勻的粒子尺寸。儘管 設想較高的非金屬奈米粒子濃度可能藉由改良的電鍍方法 來解決,但是本較佳實施方式之特定的表面特性需要實質 上較低程度地解決穩定性和均勻性問題。此外,初步顯示 ,可能較高濃度的非金屬奈米粒子例如含氟聚合物粒子, 如PTFE,可能對硬度或延展性具有有害影響;且如果這 -12- 201100593 證明是真的,那麼較佳的表面積特性有助於避免這點。 在一實施方式中,本發明的電鍍方法利用非金屬奈米 粒子,例如含氟聚合物粒子,其中至少約50 wt·%,較佳 爲至少約90 wt.%,更佳地,全部這樣的粒子之特徵在於 比表面積爲至少約1 5 m2 / g (例如,在1 5 m2 / g和3 5 m2 / g 之間)。含氟聚合物粒子的比表面積可高達約50 m2/g, 例如從約1 5 m2/g到約3 5 m2/g。在另一方面,在本發明的 〇 較佳實施方式中利用的各個粒子具有相對較高的表面積對 體積比。這些奈米尺寸的粒子之每個粒子中之表面原子/ 原子數的百分比相對較高。例如,具有僅13個原子的較 小粒子在表面上具有其原子的約92%。相反,具有1 4 1 5 個總原子的較大粒子在表面上僅具有其原子的約35%。粒 子之高表面原子百分比涉及高的粒子表面能,且大幅地影 響性能和反應性。具有較高比表面積和高表面積對體積比 的奈米粒子是有利的,因爲與需要更多的粒子來實現相同 〇 的表面積的較大粒子相比,相對較小比例的含氟聚合物粒 子可倂入複合材料塗層中,且仍能獲得增加的抗腐蝕性效 果。另一方面,較高的表面活性能避免某些實質的挑戰, 例如均勻分散。因此,複合材料塗層中低至10 wt.%的含 氟聚合物粒子實現了期望的效果,使得包括金屬粒子和非 金屬奈米粒子的複合材料塗層中之非金屬奈米粒子的濃度 可包含約〇 . 1 Wt. %和約1 0 wt. %之間的非金屬奈米粒子, 且在某些實施方式中,非金屬奈米粒子組份,例如含氟聚 合物粒子組份,濃度低至5 wt. %,例如在約1 wt.%和約 •13- 201100593 5 wt.%之間。相對較純的塗層可比包括實質上 合物粒子的塗層更硬且更柔韌;但是,藉由在 層中倂入相對少量的非金屬奈米粒子,並不會 特性。 非金屬奈米粒子分散在能抑制凝聚的溶劑 於電解組成物的溶劑通常是水。因爲許多奈米 性的,所以分散在水中的非金屬奈米粒子傾向 均粒子尺寸比單個奈米粒子的平均粒子尺寸大 從美學的觀點來說是不利的。儘管包括凝聚的 金屬基複合材料塗層具有上述抗水性、抗腐蝕 耐磨性和潤滑性的優點,但是較大凝聚的奈米 影響金屬基複合材料塗層的外觀。換句話說, 沒有奈米粒子的金屬基複合材料塗層包含奈米 團塊的話,則其可能是無光澤的。因此,用於 子的溶劑系統包括抑制奈米粒子在水溶液中凝 性劑。 表面活性劑被添加到電解電鍍組成物中, 進基材表面的潤濕,並將電解電鍍溶液的表面 約20爾格(dyne-cm)至約70爾格之間,例 沉積溫度下在約40爾格和約70爾格之間。關 ,相較於水(其在2 0 °C和2 5 °C之間爲約7 2三 ,降低電解電鍍組成物的表面張力有利於提高 潤濕;提高溶液除掉氣泡的能力;以及防止I 氣孔;增加有機物質(例如晶粒細化劑、光亮 更多含氟聚 複合材料塗 影響所欲的 系統中。用 粒子是疏水 於凝聚成平 的團塊。這 奈米粒子之 性、硬度、 粒子不利地 如果光滑而 粒子的凝聚 分散奈米粒 聚的表面活 以額外地促 張力改變到 如在較佳的 於電鍍方法 乏73爾格) 基材表面的 I面上的坑/ 劑和其他浴 -14- 201100593 添加劑)的溶解度;以及降低各種金屬的沉積電位以利於 均勻沉積和合金。關於非金屬奈米粒子,較低的表面張力 是有利的,因爲這能提高非金屬奈米粒子在電鍍組成物中 的分散能力。 含氟聚合物粒子商業上通常以分散在溶劑中的形式獲 致。分散的含氟聚合物粒子的示範性來源包括Teflon® PTFE 30 (可從DuPont得到),其是可見光波長的等級或 〇 較小的PTFE粒子之分散體。也就是說,PTFE 30包括 PTFE粒子以約60 wt.%的濃度在水中的分散體(每1〇〇 克溶液60克粒子),其中粒子具有在約50 nm和約500 nm之間的粒子尺寸分佈,且平均粒子尺寸爲約220 nm。 分散的含氟聚合物粒子之另一示範性來源包括Teflon® TE-5070AN (可從 DuPont得到),其是 PTFE粒子以約 6 0 wt·%的濃度在水中之分散體,其中粒子的平均粒子尺 寸爲約80 nm。這些粒子通常分散在水/醇溶劑系統中。一 〇 般地,醇是水溶性醇,具有從1到約4個碳原子,例如甲 醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇和叔丁醇。 典型地,水與醇之比(摩爾:摩爾)爲每1摩爾醇約10 摩爾水至約20摩爾水之間,更典型地爲每1摩爾醇約14 摩爾水至約1 8摩爾水之間。 或者,可由乾PTFE粒子源製備溶液,並將該溶液添 加到電解電鍍浴中。乾 PTFE粒子的示範性來源是 Teflon® TE-5069AN,其包括平均粒子尺寸約80 nm的乾 PTFE粒子。PTFE粒子的其他來源包括義大利Solvay -15- 201100593201100593 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to electrolytic deposition of metals and metal alloys. More specifically, the present invention relates to electrolytic deposition of a metal matrix composite coating comprising non-metallic nanoparticles to enhance the functional properties of the surface. [Prior Art] The corrosion of the metal begins with the adsorption of a small amount of water from the metal surface. Wetting provides a means of transporting environmental acids, halides and other corrosive substances. The water-resistant hydrophobic surface inhibits adsorption of ambient moisture and significantly reduces corrosion of the electroplated metal deposits and underlying layers or substrates. Fluorinated polymers such as polytetrafluoroethylene (commercially available under the trade name TEFLON®) are known to impart surface hydrophobicity and thus impart water resistance. Fluorinated polymers are typically applied to the metal surface in the form of particles which are sintered together by baking at elevated temperatures. Recently, a method of directly depositing fluorinated polymer particles into a metal matrix composite coating has been developed which avoids high temperature sintering of fluorinated polymer particles. For example, Henry et al. (U.S. Patent No. 4,830,889) and Feldstein (U.S. Patent No. 5,721,05) describe the co-deposition of fluorinated polyethylene and nickel from an electroless nickel bath. See also U.S. Patent 6,878,461 to Kobayashi et al. Unlike the electroless sputum process, Abys et al. (U.S. Patent No. 6,274,254) discloses a method for co-depositing Pd, Co and PTFE by electrolytic plating to increase the wear resistance of the electrical connector. 201100593 An electrolytic plating coating comprising PTFE particles having a diameter corresponding to the wavelength of visible light (i.e., ' to about 780 nm) produces a black-gray matte surface. For example, the final finishing of this decorative and electronic application, such as decorative automotive parts and electrical connections requiring surface appearance, or surface wear resistance based on aesthetic reasons, is poor. In addition, the composite coating comprising PTFE particles differs based on the particle size distribution concentration and the surface area to volume ratio of the combined particles. Moreover, large size particles may be unevenly distributed in the metal coating. Therefore, there is a need for electroplating which can produce a lubricated surface composite coating having smoothness, gloss, smoothness, water resistance and corrosion resistance as well as improved wear resistance without affecting the appearance of the deposit. SUMMARY OF THE INVENTION It is therefore noted that one of the various aspects of the present invention produces a high degree of water resistance, corrosion resistance, a pedestal composite coating, and also reduces the coefficient of friction (insertion f〇rce). Electrolytic metal deposition method. Thus, the invention relates to a method for imparting corrosion resistance. The method comprises: contacting the surface solution of the substrate with the above electroplating solution comprising (a) a metal-based composite sample selected from the group consisting of silver, nickel, copper, gold, lead, antimony, bismuth, chromium and alloys thereof at about 3 80 nm. The alloy is provided in the joint (here, for example, a relatively large, water-resistant composite material with a mixed particle, and a high degree of surface-based metal-based method is still provided, providing wear resistance of gold and insertion force (to The surface of the substrate is electroplated with zinc, palladium, a group of deposited metal ions deposited in groups of -6-201100593, and (b) non-metallic nanoparticles having an average particle size between about 10 run and about 500 nm. a premixed dispersion of particles having a premixed coating of surfactant molecules thereon; and an external electron source applied to the electrolytic plating solution to include deposited metal and non-metallic nanoparticles A metal matrix composite coating is electrolytically deposited onto the surface. The invention further relates to a method of imparting corrosion resistance to a surface of a substrate. The method comprises: subjecting the metal surface to an electrolytic plating group In contact with the object, the electrolytic plating composition comprises (a) a deposited metal ion source selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, lead, bismuth, antimony, chromium, and alloys thereof. And (b) a non-metallic particle having a surfactant coating, wherein an average charge of each surfactant molecule of the surfactant coating is between +〇·1 and +1; and applying an external electron source to The electrolytic plating composition thereby electrolytically deposits a composite coating onto the metal surface, wherein the composite coating comprises depositing metal and non-metal particles. The invention also relates to a method of imparting corrosion resistance to a surface of a substrate. The method comprises: contacting the metal surface with an electrolytic plating composition comprising: (a) selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chromium, and alloys thereof. a pre-mixed dispersion of deposited metal ions of the deposited metal of the group, and (b) a non-metallic nanoparticle having an average particle size of between about 10 nm and about 500 nm, wherein the non-metallic nanoparticle a pre-mixed coating having a surfactant molecule thereon; and applying an external electron source to the electrolytic plating composition to electrolytically deposit a composite -7-201100593 material coating onto the metal surface, wherein the composite coating The invention comprises depositing a metal and a non-metallic nanoparticle between about 1 wt. % and about 5 wt. %. The invention also relates to a method of imparting uranium resistance to a surface of a substrate, the method comprising: The electrolytic plating composition is contacted, and the electrolytic plating composition comprises (a) a deposited metal ion selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chromium, and alloys thereof. a source, and (b) a non-metallic nanoparticle, wherein the non-metallic nanoparticle is characterized by a particle size distribution wherein at least about 30 volume percent of the particles have a particle size of less than 1 〇〇 nm; and applying an external electron source to Electroplating the composition to electrolytically deposit a composite coating onto the metal surface, wherein the composite coating comprises deposited metal and non-metallic nanoparticles . Other objects and aspects of the invention will be pointed out and in part apparent below. [Embodiment] According to the present invention, a metal-based composite coating having improved surface properties is electrolytically deposited onto a surface of a substrate. Improved surface properties include high levels of water resistance, uranium resistance, hardness, abrasion resistance and lubricity. In addition, the surface coating is also characterized by a reduced coefficient of friction. Metal Matrix Composite Coatings are particularly attractive for coating connector surfaces because connectors coated with a metal matrix composite require only a reduced insertion force, which reduces wear. -8 - 201100593 The metal matrix composite coating of the present invention can be applied to various substrates and protect various substrates. Substrates that can be used to coat the metal matrix composite coatings of the present invention include connectors and other electronic components, automotive parts, metallized plastics, and non-stick components for injection molds. Exemplary metals for electrolytic deposition of metal matrix composite coatings include zinc, palladium, silver, nickel, copper, gold, uranium, lanthanum, cerium, chromium (decorative and hard) and any of these metals alloy. Tin and tin alloys are also suitable choices. In one embodiment, the metal matrix composite coating is a copper alloy. Exemplary copper alloys include Cu-Sn-Zn bronze and Cu-Sn bronze. The surface property improvement of the metal matrix composite coating is due to the co-deposition of metal and non-metallic nanoparticle. By impregnating the non-metallic nanoparticle having an average particle size smaller than the wavelength of visible light into the metal matrix composite coating of the present invention, improved water resistance, corrosion resistance, hardness, abrasion resistance and lubricity are obtained. Advantages, without any effect on the appearance of the coating. In other words, an electrodeposition process that produces a bright, smooth coating without the use of non-metallic nanoparticles produces a bright, smooth coating using non-metallic nanoparticles. Similarly, an electrolytic deposition process that produces a semi-bright coating without the use of non-metallic nanoparticles produces a semi-bright coating using non-metallic nanoparticles. One type of non-metallic nanoparticle that can be included in the metal matrix composite coating of the present invention is a non-metallic nanoparticle composed of a fluoropolymer. The fluoropolymer may be selected from the group consisting of polytetrafluoroethylene (PTFE), fluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy resin (PFE, copolymer of tetrafluoroethylene and perfluorovinyl ether), and ethylene. ·Tetrafluoroethylene copolymer (ETFE), polychlorinated 201100593 trifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF), of which polytetra Vinyl fluoride is currently preferred. In a preferred embodiment, the nanoparticles are PTFE particles. The average particle size of the non-metallic nanoparticles composed of, for example, fluoropolymer particles is preferably or substantially smaller than the level of visible light wavelengths, i.e., less than 380 nm (0.38 μm) to 780 nm (0.780 μm). The average particle size is typically less than about 0.50 μm (500 nm), typically less than about 0.25 μm (250 nm), more typically less than about 0.20 μm (200 nm), and even more typically less than about 0.15 μm (150 nm). ). The average particle size is typically greater than about 0.005 μηη (5 nm)' typically greater than about 〇_〇1 (10 nm), and more typically greater than about 〇_〇5 μιη (50 nm). Therefore, the average particle size may be between about 〇.5 μm (500 nm) and about 0.005 μm (5 nm), preferably between about 0-20 μm (200 nm) and about 0.01 μm (10 nm). For example, between about 0.150 μm (1 50 nm) and about 0.05 μm (50 nm). In one embodiment, the non-metallic nanoparticle has an average particle size between about 〇·5 μm (50 ηηη) and about 〇·1 μπι (ΙΟΟηιη). In one embodiment, the 'non-metallic nanoparticles have an average particle size between about 0.01 μm (ΙΟηιη) and about 0.05 μm (50ηηη). In a preferred embodiment the 'non-metallic nanoparticles have an average sub-size between about 0.08 μm (80 ηπι) and about 0.05 μm (50 ηπι). The above average particle size refers to the arithmetic mean enthalpy of the particle diameter within a group of non-metallic nanoparticles. A group of non-metallic nanoparticles, such as fluoropolymers -10- 201100593 particles, containing a wide variety of diameters. Thus, the particle size can be additionally described in terms of particle size distribution, such as the smallest volume percentage of particles having a diameter below a certain limit. Thus, in one embodiment, at least about 50 volume percent of the particles have a particle size of less than 200 nm, preferably, at least about 70 volume percent of the particles have a particle size of less than 200 nm, more preferably at least about 80 The volume percent of particles have a particle size of less than 200 nm, and even more preferably, at least about 90 volume percent of the particles have a particle size of less than 200 rim. In another embodiment, at least about 30 volume percent of the particles have a particle size of less than 100 nm, preferably, at least about 40 volume percent of the particles have a particle size of less than 100 nm, more preferably at least about 50 volumes. The percentage of particles has a particle size of less than 100 nm, and even more preferably, at least about 60 volume percent of the particles have a particle size of less than 100 nm. In a further embodiment, at least about 25 volume percent of the granules have a particle size of less than 90 nm, preferably at least about 35 volume percent of the particles have a particle size of less than 90 nm, more preferably 'at least about 45 volume percent of the particles have a particle size of less than 90 nm' and even more preferably, at least about 5 5 volume percent of the particles have a particle size of less than 90 nm. In another embodiment, at least about 20 volume percent of the particles have a particle size of less than 80 nm, preferably, at least about 30 volume percent of the particles have a particle size of less than 80 nm. More preferably, at least about 4 Å. The percentage of particles has a particle size of less than 80 nm, and even more -11 - 201100593 Preferably, at least about 50 volume percent of the particles have a particle size of less than 80 nm. In another embodiment, at least about 10 volume percent of the particles have a particle size of less than 70 nm, preferably, at least about 20 volume percent of the particles have a particle size of less than 7 〇 nm, and more preferably, at least about 30 The volume percent of particles have a particle size of less than 70 nm, and even more preferably, at least about 35 volume percent of the particles have a particle size of less than 70 nm. The non-metallic nanoparticles used in the present invention, such as fluoropolymer particles, have a so-called "specific surface area", meaning the total surface area of one gram of particles. As the particle size decreases, the specific surface area of a given mass of particles increases. Therefore, it is generally believed that smaller particles provide a higher specific surface area. The relative activity of a particle to achieve a particular function varies in part with the surface area of the particle, i.e., has a higher absorbance than a sponge having a large exposed surface area than a smooth outer surface. The present invention utilizes particles having surface area characteristics that facilitate the achievement of specific corrosion protection functions to balance various other factors. In particular, in certain embodiments, the particles have surface area characteristics that allow the use of lower concentrations of nanoparticles in the electroplated composition, which promotes solution stability, and even particle distribution and uniform particle size in the deposit. . While it is envisaged that higher non-metallic nanoparticle concentrations may be addressed by improved electroplating methods, the particular surface characteristics of the preferred embodiment require a substantially lower degree of stability and uniformity issues. Furthermore, it has been initially shown that it is possible that higher concentrations of non-metallic nanoparticles such as fluoropolymer particles, such as PTFE, may have deleterious effects on hardness or ductility; and if this proves to be true from -12 to 201100593, then it is preferred. The surface area characteristics help to avoid this. In one embodiment, the electroplating method of the present invention utilizes non-metallic nanoparticles, such as fluoropolymer particles, wherein at least about 50 wt.%, preferably at least about 90 wt.%, and more preferably all such The particles are characterized by a specific surface area of at least about 15 m2 / g (e.g., between 15 m2 / g and 35 m2 / g). The fluoropolymer particles may have a specific surface area of up to about 50 m2/g, such as from about 15 m2/g to about 35 m2/g. In another aspect, the individual particles utilized in the preferred embodiment of the invention have a relatively high surface area to volume ratio. The percentage of surface atoms/atoms in each of these nano-sized particles is relatively high. For example, a smaller particle having only 13 atoms has about 92% of its atoms on the surface. In contrast, larger particles having a total of 1 4 15 5 atoms have only about 35% of their atoms on the surface. The high surface atomic percentage of the particles involves high surface energy of the particles and greatly affects performance and reactivity. Nanoparticles having a higher specific surface area and a high surface area to volume ratio are advantageous because a relatively small proportion of fluoropolymer particles can be compared to larger particles that require more particles to achieve the same 表面积 surface area. Intrusion into the composite coating and still achieve increased corrosion resistance. On the other hand, higher surface activity avoids certain substantial challenges, such as uniform dispersion. Thus, as low as 10 wt.% of the fluoropolymer particles in the composite coating achieves the desired effect, such that the concentration of non-metallic nanoparticles in the composite coating comprising metal particles and non-metallic nanoparticles can be A non-metallic nanoparticle comprising between about 1 Wt. % and about 10 wt. %, and in certain embodiments, a non-metallic nanoparticle component, such as a fluoropolymer particle component, concentration As low as 5 wt.%, for example between about 1 wt.% and about •13-201100593 5 wt.%. A relatively pure coating may be harder and more flexible than a coating comprising substantially composite particles; however, it does not characterize by injecting a relatively small amount of non-metallic nanoparticle into the layer. The non-metallic nanoparticle is dispersed in a solvent capable of suppressing aggregation. The solvent of the electrolytic composition is usually water. Because of many nano-particles, the non-metallic nanoparticles dispersed in water tend to have a larger average particle size than the average particle size of a single nanoparticle, which is disadvantageous from an aesthetic point of view. Although the inclusion of agglomerated metal matrix composite coatings has the above advantages of water resistance, corrosion resistance, and lubricity, the larger agglomerated nanometers affect the appearance of the metal matrix composite coating. In other words, if the metal matrix composite coating without nanoparticles contains nanoclumps, it may be matt. Thus, the solvent system for the sub-agent comprises inhibiting the coagulant of the nanoparticles in aqueous solution. A surfactant is added to the electrolytic plating composition to wet the surface of the substrate, and the surface of the electrolytic plating solution is between about 20 ergs (dyne-cm) to about 70 erg, for example, at a deposition temperature of about 40 ergs. And about 70 erg. Off, compared to water (which is about 723 between 20 ° C and 25 ° C, reducing the surface tension of the electrolytic plating composition is beneficial to improve wetting; improving the ability of the solution to remove bubbles; and preventing I pores; increase the organic matter (such as grain refiner, brighter more fluorine-containing polycomposite coating in the desired system. The particles are hydrophobic to agglomerate into a flat mass. The nature of this nanoparticle, hardness, The particles are disadvantageously smooth if the particles are agglomerated and the surface of the particles of the nanoparticles are aggregated to additionally change the tension to the pits/agents and other baths on the I side of the surface of the substrate as preferably in the plating method. 14- 201100593 The solubility of the additive; and the reduction of the deposition potential of various metals to facilitate uniform deposition and alloying. Regarding the non-metallic nanoparticle, a lower surface tension is advantageous because it can improve the dispersibility of the non-metallic nanoparticle in the plating composition. Fluoropolymer particles are typically obtained commercially in the form of dispersion in a solvent. Exemplary sources of dispersed fluoropolymer particles include Teflon® PTFE 30 (available from DuPont) which is a grade of visible light wavelength or a dispersion of smaller PTFE particles. That is, PTFE 30 comprises a dispersion of PTFE particles in water at a concentration of about 60 wt.% (60 grams of particles per 1 gram of solution), wherein the particles have a particle size between about 50 nm and about 500 nm. Distribution, and the average particle size is about 220 nm. Another exemplary source of dispersed fluoropolymer particles includes Teflon® TE-5070AN (available from DuPont), which is a dispersion of PTFE particles in water at a concentration of about 60 wt.%, wherein the average particles of the particles The size is approximately 80 nm. These particles are typically dispersed in a water/alcohol solvent system. Typically, the alcohol is a water soluble alcohol having from 1 to about 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and tert-butanol. Typically, the water to alcohol ratio (molar: mole) is between about 10 moles of water to about 20 moles of water per mole of alcohol, more typically between about 14 moles of water to about 18 moles of water per mole of alcohol. . Alternatively, a solution can be prepared from a source of dry PTFE particles and added to an electrolytic plating bath. An exemplary source of dry PTFE particles is Teflon® TE-5069AN, which includes dry PTFE particles having an average particle size of about 80 nm. Other sources of PTFE particles include Italy Solvay -15- 201100593

Solexis之以商標名Solvay Solexis出售者,以及St. ,Minnesota (美國)的3M之以商標名Dyneon出售考 較佳地,將具有預混合塗層的含氟聚合物粒子( 塗布的粒子的形態)添加到電解沉積組成物中’其中 層是在將非金屬奈米粒子與電解沉積組成物的其他組 即,沉積金屬離子、酸、水、抗氧化劑等)混合之前 加的表面活性劑塗層。還可將用於塗布非金屬奈米粒 表面活性劑添加到電解組成物中以增加組成物的表面 。含氟聚合物粒子可藉由超音波攪拌及/或高壓流在 散體中經表面活性劑塗布。之後,可將包括其上具有 活性劑塗層的含氟聚合物粒子之分散體添加到電解電 成物中。表面活性劑塗層抑制粒子凝聚,並提高含氟 物粒子和空心微球體在溶液中的溶解度/分散能力。 表面活性劑可以是陽離子的、陰離子的、非離子 兩性離子的。特定的表面活性劑可獨自使用或與其他 活性劑結合使用。較佳地,非金屬奈米粒子係經塗覆 面活性劑的混合物,使表面活性劑塗層的化學組成和 (例如其他方法和組成參數中之溫度、電流密度、溶 統的表面張力和粒子電荷量)明確符合電解電鑛方法 定。 一類表面活性劑包括親水前端基和疏水尾端基。 離子表面活性劑相關的親水前端基包括羧酸根、磺酸 硫酸根、磷酸根和膦酸根。與陽離子表面活性劑相關 水前端基包括四級銨、鏑和鐵。四級銨包括季銨、吡The Solexis brand is sold under the trade name Solvay Solexis, and sold under the trade name Dyneon by St., Minnesota (USA) 3M. The fluoropolymer particles (formed particle morphology) with pre-mixed coatings are preferred. Addition to the electrodeposition composition 'where the layer is a surfactant coating applied prior to mixing the non-metallic nanoparticle with other groups of electrolytically deposited compositions, ie, depositing metal ions, acids, water, antioxidants, etc.). A non-metallic nanoparticle surfactant may also be added to the electrolytic composition to increase the surface of the composition. The fluoropolymer particles can be coated with a surfactant in a dispersion by ultrasonic agitation and/or high pressure flow. Thereafter, a dispersion comprising fluoropolymer particles having an active agent coating thereon may be added to the electrolytic composition. The surfactant coating inhibits particle agglomeration and enhances the solubility/dispersibility of the fluorine-containing particles and hollow microspheres in solution. The surfactant can be cationic, anionic, nonionic zwitterionic. Particular surfactants can be used alone or in combination with other active agents. Preferably, the non-metallic nanoparticles are a mixture of surfactants applied to the chemical composition of the surfactant coating and (eg, temperature, current density, surface tension of the solute, and particle charge in other methods and composition parameters) The amount is clearly consistent with the electrolytic electricity method. One class of surfactants includes a hydrophilic front end group and a hydrophobic tail end group. The ionic surfactant-related hydrophilic front end groups include carboxylate, sulfonate sulfate, phosphate and phosphonate. Related to cationic surfactants The water front end groups include quaternary ammonium, bismuth and iron. Quaternary ammonium includes quaternary ammonium, pyridyl

Paul • 〇 即以 該塗 份( 被施 子的 張力 水分 表面 鑛組 聚合 的或 表面 以表 性能 劑系 的規 與陰 根、 的親 陡鑰 -16- 201100593 、聯吡啶鑰和咪唑鑰。與非離子表面活性劑相關的親水前 端基包括醇和醯胺。與兩性離子表面活性劑相關的親水前 端基包括甜菜鹼(betaine )。疏水尾端基典型地包括烴鏈 。烴鏈典型地包括在約6和約24個之間的碳原子,更典 型地在約8和約1 6個之間的碳原子。 示範性的陰離子表面活性劑包括烷基膦酸鹽、烷基醚 磷酸鹽、烷基硫酸鹽、烷基醚硫酸鹽、烷基磺酸鹽、烷基 0 醚磺酸鹽、羧酸醚、羧酸酯、烷基芳基磺酸鹽和磺基琥珀 酸鹽。陰離子表面活性劑包括任何硫酸鹽酯,例如以商標 名ULTRAFAX市售者,包括硫酸月桂酯鈉、月桂醇聚醚 (laureth)硫酸鈉(2 EO)、月桂醇聚醚硫酸鈉、月桂醇 聚醚硫酸鈉(3 EO)、硫酸月桂酯銨、月桂醇聚醚硫酸銨 、TEA-硫酸月桂酯鹽、TEA-月桂醇聚醚硫酸鹽、MEA-硫 酸月桂酯鹽、ME A-月桂醇聚醚硫酸鹽、硫酸月桂酯鉀、 月桂醇聚醚硫酸鉀、硫酸癸酯鈉、硫酸辛酯/癸酯鈉、硫 〇 酸異辛酯鈉、硫酸辛酯鈉、壬基酚聚醚(nonoxynol ) -4 硫酸酯鈉、壬基酚聚醚-6硫酸酯鈉、硫酸異丙基苯酯鈉, 以及壬基酚聚醚-6硫酸銨;磺酸鹽酯,例如α-烯基磺酸 鈉、二甲苯磺酸銨、二甲苯磺酸鈉、甲苯磺酸鈉、十二烷 基苯磺酸鹽,以及木素磺酸鹽;磺基琥珀酸酯鹽表面活性 劑,例如磺基琥珀酸月桂酯二鈉、月桂醇聚醚磺基琥珀酸 酯二鈉;以及其他,包括椰油醯基羥乙磺酸鈉、磷酸月桂 酯、可從Cytec工業公司得到的ULTRAPHOS系列的磷酸 鹽酯、Cyastat® 609 (N,N-雙(2-羥乙基)-N-(3'-十二烷 -17- 201100593 基氧基-2·-羥丙基)甲基銨硫酸甲酯和Cyastat® LS( (3-月桂醯胺丙基)三甲基銨硫酸甲酯)中的任何一個。 示範性的陽離子表面活性劑包括季銨鹽,例如氯化十 二烷基三甲基銨、溴化和氯化十六烷基三甲基銨鹽、溴化 和氯化十六基三甲基銨鹽、氯化和溴化烷基二甲基苄基銨 鹽,以及類似物。在這點上,表面活性劑例如Lodyne® Ξ-ΐ 06A (氯化 氟烷基 銨陽離 子表面 活性劑 28-30% , 可從 Ciba Specialty Chemicals Corporation 得到)以及 Ammonyx® 4 0 0 2 (氯化十八烷基二甲基苄基銨陽離子表面 活性劑,可從 Stepan Company, Northfield, Illinois 得到 )是特別較佳的。 一類非離子表面活性劑包括含有基於例如環氧乙烷( E0)重複單元及/或環氧丙烷(PO)重複單元之聚醚基者 。這些表面活性劑通常是非離子的。具有聚醚鏈的表面活 性劑可包括在約1和約3 6個之間的EO重複單元,在約i 和約36個之間的PO重複單元,或者在約1和約36個之 間的EO重複單元以及PO重複單元之組合。更典型地, 聚醚鏈包括在約2和約24個之間的EO重複單元,在約2 和約24個之間的PO重複單元,或者在約2和約24個之 間的E0重複單元以及PO重複單元之組合。甚至更典型 地,聚醚鏈包括在約6和約15個之間的EO重複單元,在 約6和約15個之間的P〇重複單元’或者在約6和約15 個之間的EO重複單元以及P〇重複單元之組合。這些表 面活性劑可包括E0重複單元和PO重複單元之嵌段,例 -18- 201100593 如,一個EO重複單元的嵌段由兩個PO重複單元的嵌段 所包圍,或者一個P0重複單元的嵌段由兩個E0重複單 元的嵌段所包圍。另一類聚醚表面活性劑包括交替的P0 重複單元和E0重複單元。此類表面活性劑是聚乙二醇、 聚丙二醇和聚丙二醇/聚乙二醇。 又一類非離子表面活性劑包括建立在醇或酚基群上的 EO、P0或者Ε0/Ρ0重複單元,例如丙三醇醚、丁醇醚、 〇 戊醇醚、己醇醚、庚醇醚、辛醇醚、壬醇醚、癸醇醚、十 二烷醇醚、十四醇醚、苯酚醚、烷基取代的苯酚醚、(X-萘 酚醚以及β-萘酚醚。關於烷基取代的苯酚醚,苯酚基團係 經具有在約1和約1 〇個之間的碳原子,例如約8個(辛 基酚)或約9個碳原子(壬基酚)的烴鏈取代。聚醚鏈可 包括在約1和約24個之間的ΕΟ重複單元,在約1和約 24個之間的ΡΟ重複單元,或者在約1和約24個之間的 ΕΟ重複單元以及Ρ〇重複單元之組合。更典型地,聚醚鏈 〇 可包括在約8和約16個之間的ΕΟ重複單元,在約8和約 16個之間的Ρ〇重複單元’或者在約8和約16個之間的 ΕΟ重複單元以及Ρ〇重複單元之組合。甚至更典型地’聚 醚鏈可包括約9、約1〇、約11或約12個Ε0重複單元; 約9、約1〇、約11或約12個Ρ〇重複單元;或者約9、 約10、約11或約12個Ε0重複單元以及Ρ0重複單元之 組合。 示範性的β-萘酚衍生物非離子表面活性劑是Lugalvan BN0 12,其是具有與萘酚羥基基團鍵結的12個氧化乙烯 -19- 201100593 單體單元之β-萘酚乙氧基化物(β-naphtholethoxylate)。 類似的表面活性劑是Polymax ΝΡΑ-15,其是聚乙氧基化 的壬基酚。另一表面活性劑是Triton®-X100非離子表面 活性劑,其是辛基酚乙氧基化物,通常具有約9或1〇個 EO重複單元。另外的商業可獲致的非離子表面活性劑包 括可從 BASF 得到的 Pluronic®系列表面活性劑。 Pluronic®表面活性劑包括可從BASF得到的P系列EO/PO 嵌段共聚物,包括 P65、P84、P85、P103、P104、P105 和 P123 ;可從BASF得到的F系列EO/PO嵌段共聚物,包括 F108、F127 ' F38、F68、F77、F87、F88、F98 ;以及可 從BASF得到的L系列EO/PO嵌段共聚物,包括L10、 L101、L121、L31、L35、L44、L61、L62、L64、L81 和 L92。 另外的商業可購得的非離子表面活性劑包括可從 DuPont得到並在Zonyl®商標名下出售的水溶性乙氧基化 的非離子含氟表面活性劑,包括Zonyl® FSN ( Telomar B 單醚與聚乙二醇之非離子表面活性劑)、Zonyl® FSN-1 00 、Zonyl® FS-300 、 Zonyl® FS-500 、 Zonyl® FS-510 、 Zonyl® FS-610、 Zonyl® FSP 和 Zonyl® UR 0 Zonyl® FSN (Telomar B單醚與聚乙二醇之非離子表面活性劑)是特 別較佳的。其他非離子表面活性劑包括胺縮合物,例如在 商標名 ULTRAFAX下出售的椰子油酸二乙醇醯胺( cocoamide DEA )和椰子油酸單乙醇醯胺(cocoamide MEA )。其他類非離子表面活性劑包括酸乙氧基化的脂肪 -20- 201100593 酸(聚乙氧基醚),包括經聚醚基酯化的脂肪酸,而該聚 醚基典型地包括在約1和36個之間的EO重複單元。丙三 醇酯包括在丙三醇基上具有1、2或3個脂肪酸基團。 在一種較佳實施方式中,在與其他浴組成物混合之前 ,非金屬奈米粒子與粒子上的非離子塗層係處在預混合分 散體中。之後,將該分散體與其他組成物,包括酸、沉積 金屬離子和陽離子表面活性劑混合。將另一種表面活性劑 〇 塗層沉積到非金屬粒子上,以賦予含氟聚合物粒子總塗層 電荷,在這種情況下爲正電荷。較佳地,表面活性劑塗層 主要由帶正電荷的表面活性劑分子組成。帶正電荷的表面 活性劑塗層在電解沉積過程中傾向於將粒子推向陰極基材 ,從而提高與金屬和任選的合金化金屬的共沉積。表面活 性劑塗層的總電荷可被量化。特定的表面活性劑分子的電 荷典型地爲-1(陰離子的)、〇(非離子的或兩性離子的 )或者+1(陽離子的)。因此,一組表面活性劑分子之每 〇 表面活性劑分子的平均電荷在-1 (整個組包括陰離子表面 活性劑分子)和+1(整個組包括陽離子表面活性劑分子) 之間變化。例如,具有總電荷0的一組表面活性劑分子可 包括50%的陰離子表面活性劑分子和50%的陽離子表面活 性劑分子;或者具有總電荷0的組可包括1 〇〇%的兩性離 子表面活性劑分子或1 00%的非離子表面活性劑分子。 在一種實施方式中,表面活性劑塗層包括單獨使用或 與一種或多種另外的陽離子表面活性劑組合使用之陽離子 表面活性劑,使得每個表面活性劑分子的平均電荷實質上 -21 - 201100593 等於+1,即表面活性劑塗層實質上全部由陽離子表面活性 劑分子組成。 但是,表面活性劑塗層並不是必須全部由陽離子表面 活性劑組成。換句話說,表面活性劑塗層可包括陽離子表 面活性劑分子與陰離子表面活性劑分子、兩性離子表面活 性劑分子和非離子表面活性劑分子的組合。較佳地,塗覆 非金屬奈米粒子的表面活性劑分子組之每個表面活性劑分 子的平均電荷爲大於0,且在尤其較佳的實施方式中,表 面活性劑塗層包括單獨使用或與一種或多種另外的陽離子 表面活性劑以及與一種或多種非離子表面活性劑組合使用 之陽離子表面活性劑。包括一組陽離子表面活性劑分子和 非離子表面活性劑分子的表面活性劑塗層之每表面活性劑 分子的平均電荷較佳地在約0.01 ( 99%非離子表面活性劑 分子和1%陽離子表面活性劑分子)和1 ( 100%陽離子表 面活性劑分子)之間,較佳地在約〇 . 1 ( 9 0 %非離子表面 活性劑分子和1 〇%陽離子表面活性劑分子)和1之間。構 成非金屬奈米粒子上的表面活性劑塗層之表面活性劑分子 組之每個表面活性劑分子的平均電荷可以爲至少約0.2 ( 80%非離子表面活性劑分子和20%陽離子表面活性劑分子 ),例如至少約〇.3 ( 70%非離子表面活性劑分子和30%陽 離子表面活性劑分子)、至少約0.4 (60%非離子表面活 性劑分子和40%陽離子表面活性劑分子)、至少約0.5 ( 50%非離子表面活性劑分子和50%陽離子表面活性劑分子 )、至少約0.6 ( 40%非離子表面活性劑分子和60%陽離子 -22- 201100593 表面活性劑分子)、至少約0.7 ( 3 0 %非離子表面活性劑 分子和7 0 %陽離子表面活性劑分子)、至少約〇 · 8 ( 2 0 %非 離子表面活性劑分子和8 0 %陽離子表面活性劑分子)、或 者甚至至少約0.9 ( 10%非離子表面活性劑分子和90%陽離 子表面活性劑分子)。每個表面活性劑分子的平均電荷爲 不大於1’例如不大於約0.99,不大於約0.95,不大於 0.90,不大於0.85,且在某些實施方式中不大於〇.80。在 0 某些實施方式中,構成非金屬奈米粒子上的表面活性劑塗 層之表面活性劑分子組之每個表面活性劑分子的平均電荷 可以從約0 · 01到約1,從約0.1到約1,從約0.2到約1, 從約0.3到約1,從約0.4到約1,從約〇.5到約1,從約 0.6到約1,從約0.7到約1,從約0.8到約1,或從約0.9 到約1。在某些實施方式中,構成非金屬奈米粒子上的表 面活性劑塗層之表面活性劑分子組之每個表面活性劑分子 的平均電荷可以從約〇.〇1到約0.95,從約0.1到約0.95 〇 ,從約〇·2到約0.95,從約0.3到約0.95,從約0.4到約 0.95,從約0.5到約0.95,從約0.6到約0.95,從約0.7 到約0.95,從約0.8到約0.95,或從約0.9到約0.95。在 某些實施方式中,構成非金屬奈米粒子上的表面活性劑塗 層之表面活性劑分子組之每個表面活性劑分子的平均電荷 可以從約0.0 1到約0.9,從約0.1到約0.9,從約0.2到約 0.9,從約0.3到約0.9,從約0.4到約0.9,從約0.5到約 0.9,從約0.6到約0.9,從約0.7到約0.9,或從約0.8到 約0.9。在某些實施方式中,構成非金屬奈米粒子上的表 -23- 201100593 面活性劑塗層之表面活性劑分子組之每個表面活性劑分子 的平均電荷可以從約〇 . 〇 1到約〇 . 8 5,從約〇 . 1到約0.8 5 ,從約〇 · 2到約0.8 5,從約0.3到約0.8 5,從約〇 . 4到約 0.85,從約0.5到約0.85,從約0.6到約0.85,從約〇·7 到約〇 8 5,或從約0.8到約0 · 8 5。在某些實施方式中,構 成非金屬奈米粒子上的表面活性劑塗層之表面活性劑分子 組之每個表面活性劑分子的平均電荷可以從約0.0 1到約 0.8,從約0.1到約0.8,從約0.2到約0.8,從約0.3到約 0.8,從約0.4到約0.8,從約0.5到約0.8,從約0.6到約 〇 . 8,從約0.7到約0.8。 表面活性劑的濃度由粒子-基體介面總面積決定。對 於給定的粒子重量濃度而言,平均粒子尺寸越小,粒子的 總表面積越高。總表面積係藉由粒子比表面積(m2/g )乘 以溶液中粒子重量(g )計算。計算得到以m2計的總表面 積。具有高的粒子比表面積之給定濃度的非金屬奈米粒子 比具相同重量濃度的微米尺寸粒子具有更大的粒子總數。 結果,平均的粒子間距離減小。粒子間的相互作用,如凡 得瓦吸引力,變得更突出。因此,高濃度的表面活性劑係 用於減小粒子互相絮凝或凝結的趨勢。因此’表面活性劑 濃度是粒子的質量和比表面積之函數。因此,較佳地’組 成物每約100 m2到約200 m2表面積的含氟聚合物粒子包 括約1克表面活性劑’更較佳地’組成物每約1 20 m2到 約150 m2表面積的含氟聚合物粒子包括約I克表面活性 劑。 -24- 201100593 例如,Teflon® ΤΕ-5 070 AN的分散體(總質量750克 )具有約450克的PTFE粒子,具有約23.0 m2/g的比表 面積和約1 0350 m2的總表面積。用於塗覆和分散這個總 表面積的表面活性劑的量較佳地在約50克和約1 1 0克之 間,更較佳地在約65克和約90克之間。例如,用於分散 約450克這些PTFE粒子的組成物可包括在約5克和約25 克之間的 Ammonyx® 4002 (氯化十八院基二甲基节基錢 〇 陽離子表面活性劑)、在約5克和約25克之間的Zonyl® FSN ( Telomar B單醚與聚乙二醇之非離子表面活性劑) 、在約40克和約60克之間的Lodyne® S-106AC氯化氟 烷基銨陽離子表面活性劑28-30%)、在約30克和約50 克之間的異丙醇、以及在約150克和約250克之間的H20 。表面活性劑塗層包括陽離子表面活性劑和非離子表面活 性劑之組合以穩定溶液中的含氟聚合物粒子。於是,例如 ,可以下列組份形成分散體:PTFE粒子(450克)、 ❹ Ammonyx® 4002 ( 1 0.72 g) 、Zonyl® FSN ( 14.37 g )、 Lodyne® S-106A ( 50.3 7 g)、異丙醇(3 8.25 g)、以及 水(1 86.29 g) 〇 在本發明的電解電鍍組成物中,由含氟聚合物組成的 奈米粒子之濃度在約0.1 wt. %和約20 wt. %之間’更較佳 地在約1 wt. %和約1 0 wt. %之間。藉由將非金屬奈米粒子 添加到在這些濃度下的電解電鍍組成物,沉積的金屬基複 合材料塗層可包括沉積金屬和至少約0.1重量%,例如至 少約1重量%的非金屬奈米粒子,至約50重量%的非金屬 -25- 201100593 奈米粒子,例如約1重量%的非金屬奈米粒子至約20重量 %的非金屬奈米粒子,或者約1重量%的非金屬奈米粒子 至約1 〇重量%的非金屬奈米粒子。 如果奈米粒子源是例如Teflon® PTFE 30或Teflon® TE-5 070AN,則可藉由每1 L電解電鍍溶液添加在約1 ·5 g 和約350 g之間的60 wt.% PTFE分散體,更較佳地每1 L 電解電鍍組成物添加在約15 g和約170 g之間的60 wt. % PTFE分散體,來獲得於電解電鍍組成物中之各種濃度的 奈米粒子源。就體積而言,奈米粒子源於電解電鍍組成物 中之各種濃度可藉由將PTFE分散體以下列的體積量添加 到溶液中而獲得:每1 L電解電鍍組成物添加在約〇 · 5 m L 和約160 mL之間的PTFE分散體,更較佳地每1 L電解電 鍍組成物添加在約6 mL和約80 mL之間的PTFE分散體 。如果含氟聚合物粒子源是乾 PTFE粒子源,例如 Teflon® TE-5 069AN,那麼可藉由每1 L電解電鍍組成物 添加在約1 g和約2 00 g之間,更較佳地在約10 g和約 1〇〇 g之間的乾PTFE粒子,來獲得電解電銨組成物中之 各種濃度的含氟聚合物粒子源。 除了非金屬奈米粒子和表面活性劑外,本發明的電解 電鍍組成物亦包括沉積金屬的沉積金屬離子源和其他添加 劑(如有關每種特定的金屬離子的電解電銨的領域中所已 知者)。此類添加劑的一般類別包括導電鹽、光亮劑、複 合劑、pH調節劑和緩衝劑。 可以與奈米粒子共沉積以形成本發明的金屬基複合材 -26- 201100593 料塗層的沉積金屬包括鈀、鋅、鎳、銀、銅、金、鉑、铑 、釕及包含這些金屬中的任一者的合金。可用於沉積這些 沉積金屬的電解沉積化學在下面更詳細地討論。 電解沉積係藉由使基材表面與電解電鍍組成物接觸而 進行。陰極基材和陽極藉由導線且分別電連接到整流器( 外部電子源,即電力供應)。陰極基材具有淨負電荷’使 得溶液中的沉積金屬離子在陰極基材上還原,從而在陰極 Q 表面上沉積金屬基複合材料塗層。陽極處發生氧化反應。 陰極和陽極可水平或垂直佈置在槽內。 在操作電解電鍍系統的過程中,當整流器被賦能時, 沉積金屬離子被還原到陰極基材表面上。可利用脈衝電流 、直流、逆向週期電流或其他合適的電流。可使用加熱器 /冷卻器來維持電解溶液的溫度,由此電解溶液從儲存槽 移出並流過加熱器/冷卻器,並且然後再循環到儲存槽。 沉積機制是奈米粒子和沉積金屬離子的共沉積。奈米 〇 粒子不被還原,而是藉由金屬離子的還原而被捕獲在介面 處,金屬離子被還原並沉積在奈米粒子周圍。表面活性劑 可被選擇成賦予奈米粒子電荷,這有助於將它們推向陰極 ,並暫時且輕微地將它們附到表面上,直到在此被還原的 金屬離子包圍並捕獲。給予的電荷通常是正的。 電解鈀 對於沉積包括奈米粒子的鈀基複合材料塗層,電解電 鍍溶液包括鈀離子源。包括奈米粒子的鈀基複合材料塗層 -27- 201100593 用於各種應用。例如,用於電子部件如連接器和引線框架 的塗層、裝飾性應用例如眼鏡以及鋼筆和鉛筆套的塗層, 在這些應用中,抗腐蝕性是非常重要的;以及用於特殊物 品如噴墨器的塗層,在這種應用中,降低表面張力也是重 要的。 用於沉積鈀基複合材料塗層的電解電鍍組成物可另外 地包括導電性電解質、光亮劑、配體和表面活性劑。用於 沉積包括由含氟聚合物組成的奈米粒子之鈀基複合材料塗 層的示範性電鍍組成物可包括:Paul • 〇 以 该 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Paul Nonionic surfactant-related hydrophilic front-end groups include alcohols and guanamines. Hydrophilic front-end groups associated with zwitterionic surfactants include betaine. Hydrophobic tail groups typically include hydrocarbon chains. Hydrocarbon chains are typically included 6 and between about 24 carbon atoms, more typically between about 8 and about 16 carbon atoms. Exemplary anionic surfactants include alkyl phosphonates, alkyl ether phosphates, alkyl groups Sulfate, alkyl ether sulfate, alkyl sulfonate, alkyl 0 ether sulfonate, carboxylic acid ether, carboxylate, alkyl aryl sulfonate and sulfosuccinate. Anionic surfactants include Any sulphate ester, for example under the trade name ULTRAFAX, including sodium lauryl sulfate, sodium laureth sulfate (2 EO), sodium laureth sulfate, sodium laureth sulfate (3 EO) ), ammonium lauryl sulfate, lauryl alcohol Ammonium ether sulphate, TEA-lauryl sulfate, TEA-lauryl sulfate, MEA-lauryl sulfate, ME A-lauryl sulfate, potassium lauryl sulfate, lauryl sulfate, sulfuric acid Sodium decyl ester, octyl sulphate/sodium decyl sulphate, sodium isooctyl thiocyanate, sodium octyl sulphate, nonoxynol -4 sodium sulphate, sodium nonyl phenol polyether-6 sulfate, Sodium cumene sulfate, and nonylphenol polyether-6 ammonium sulfate; sulfonate esters such as sodium α-alkenyl sulfonate, ammonium xylene sulfonate, sodium xylene sulfonate, sodium toluene sulfonate, Dodecylbenzene sulfonate, and lignosulfonate; sulfosuccinate surfactant, such as disodium lauryl sulfosuccinate, disodium laureth sulfosuccinate; and others Including sodium cocoyl isethionate, lauryl phosphate, ULTRAPHOS series phosphate ester available from Cytec Industries, Cyastat® 609 (N,N-bis(2-hydroxyethyl)-N-( 3'-dodecane-17- 201100593 methyloxy-2·-hydroxypropyl)methylammonium methyl sulfate and Cyastat® LS((3-laurinide)trimethylammonium sulphate Any of the methyl esters. Exemplary cationic surfactants include quaternary ammonium salts such as lauryl trimethyl ammonium chloride, brominated and cetyltrimethyl ammonium chloride, bromination and Cetyltrimethylammonium chloride, chlorinated and alkylenedibenzylammonium bromide, and the like. In this regard, a surfactant such as Lodyne® Ξ-ΐ 06A (chlorofluorocarbon) Alkyl ammonium cationic surfactant 28-30%, available from Ciba Specialty Chemicals Corporation) and Ammonyx® 4 0 0 2 (octadecyldimethylbenzyl ammonium chloride cationic surfactant available from Stepan Company, Northfield , Illinois () is particularly preferred. One class of nonionic surfactants includes those having a polyether base based on, for example, ethylene oxide (EO) repeating units and/or propylene oxide (PO) repeating units. These surfactants are generally nonionic. Surfactants having polyether chains can include between about 1 and about 36 EO repeating units, between about i and about 36 PO repeating units, or between about 1 and about 36 A combination of an EO repeating unit and a PO repeating unit. More typically, the polyether chain comprises between about 2 and about 24 EO repeating units, between about 2 and about 24 PO repeating units, or between about 2 and about 24 E0 repeating units. And a combination of PO repeating units. Even more typically, the polyether chain comprises between about 6 and about 15 EO repeating units, between about 6 and about 15 P〇 repeating units' or between about 6 and about 15 EO A combination of repeating units and P〇 repeating units. These surfactants may include blocks of E0 repeating units and PO repeating units, Example -18-201100593 For example, a block of an EO repeating unit is surrounded by blocks of two PO repeating units, or a P0 repeating unit is embedded. The segment is surrounded by blocks of two E0 repeating units. Another class of polyether surfactants include alternating P0 repeating units and E0 repeating units. Such surfactants are polyethylene glycol, polypropylene glycol and polypropylene glycol/polyethylene glycol. Still another class of nonionic surfactants include EO, P0 or Ε0/Ρ0 repeating units based on an alcohol or phenolic group, such as glycerol ether, butanol ether, decyl alcohol ether, hexanol ether, heptanol ether, Octanol ether, sterol ether, decyl ether, dodecanol ether, tetradecyl ether, phenol ether, alkyl-substituted phenol ether, (X-naphthol ether and β-naphthol ether. The phenol ether, the phenol group is substituted with a hydrocarbon chain having between about 1 and about 1 carbon atoms, for example about 8 (octylphenol) or about 9 carbon atoms (nonylphenol). The ether chain can include between about 1 and about 24 indole repeat units, between about 1 and about 24 indole repeat units, or between about 1 and about 24 indole repeat units and repeats. More typically, the polyether chain can comprise between about 8 and about 16 repeating units, between about 8 and about 16 repeat units - or between about 8 and about 16 a combination of ΕΟ repeating units and Ρ〇 repeating units. Even more typically the 'polyether chain can include about 9, about 1 〇, about 11 or about 12 Ε 0 heavy Unit; about 9, about 1 〇, about 11 or about 12 Ρ〇 repeating units; or about 9, about 10, about 11 or about 12 Ε0 repeating units and a combination of Ρ0 repeating units. Exemplary β-naphthol The derivative nonionic surfactant is Lugalvan BN0 12, which is a β-naphtholethoxylate having 12 ethylene oxide-19-201100593 monomer units bonded to a naphthol hydroxyl group. A similar surfactant is Polymax®-15, which is a polyethoxylated nonylphenol. Another surfactant is Triton®-X100 nonionic surfactant, which is an octylphenol ethoxylate, usually There are about 9 or 1 EO repeating units. Additional commercially available nonionic surfactants include the Pluronic® range of surfactants available from BASF. Pluronic® surfactants include the P series EO available from BASF. PO block copolymers, including P65, P84, P85, P103, P104, P105 and P123; F series EO/PO block copolymers available from BASF, including F108, F127 'F38, F68, F77, F87, F88 , F98; and the L series EO/PO blocks available from BASF Polymers, including L10, L101, L121, L31, L35, L44, L61, L62, L64, L81 and L92. Additional commercially available nonionic surfactants are available from DuPont and under the Zonyl® brand name Water-soluble ethoxylated nonionic fluorosurfactants for sale, including Zonyl® FSN (telomar B monoether and polyethylene glycol nonionic surfactant), Zonyl® FSN-1 00, Zonyl® FS- 300, Zonyl® FS-500, Zonyl® FS-510, Zonyl® FS-610, Zonyl® FSP and Zonyl® UR 0 Zonyl® FSN (Telomar B monoether and polyethylene glycol nonionic surfactants) are special Preferably. Other nonionic surfactants include amine condensates such as cocoamide DEA sold under the trade name ULTRAFAX and cocoamide MEA. Other types of nonionic surfactants include acid ethoxylated fats-20-201100593 acids (polyethoxy ethers), including polyether-based esterified fatty acids, and the polyether groups are typically included at about 1 and EO repeat unit between 36. The glycerol ester comprises 1, 2 or 3 fatty acid groups on the glycerol group. In a preferred embodiment, the non-metallic nanoparticles and the non-ionic coating on the particles are in the pre-mixed dispersion prior to mixing with the other bath compositions. Thereafter, the dispersion is mixed with other compositions, including acids, deposited metal ions, and cationic surfactants. Another surfactant 〇 coating is deposited onto the non-metallic particles to impart a total coating charge to the fluoropolymer particles, in this case a positive charge. Preferably, the surfactant coating consists essentially of positively charged surfactant molecules. Positively charged surfactant coatings tend to push particles toward the cathode substrate during electrolytic deposition, thereby enhancing co-deposition with the metal and optionally alloyed metal. The total charge of the surfactant coating can be quantified. The charge of a particular surfactant molecule is typically -1 (anionic), hydrazine (nonionic or zwitterionic) or +1 (cationic). Thus, the average charge per surfactant molecule of a group of surfactant molecules varies between -1 (the entire group includes anionic surfactant molecules) and +1 (the entire group includes cationic surfactant molecules). For example, a set of surfactant molecules having a total charge of 0 may comprise 50% anionic surfactant molecules and 50% cationic surfactant molecules; or a group having a total charge of 0 may comprise 1% by mole of zwitterionic surface Active agent molecule or 100% nonionic surfactant molecule. In one embodiment, the surfactant coating comprises a cationic surfactant used alone or in combination with one or more additional cationic surfactants such that the average charge per surfactant molecule is substantially - 21 - 201100593 equals +1, that is, the surfactant coating consists essentially of cationic surfactant molecules. However, the surfactant coating does not have to consist entirely of cationic surfactants. In other words, the surfactant coating can include a combination of a cationic surfactant molecule with an anionic surfactant molecule, a zwitterionic surfactant molecule, and a nonionic surfactant molecule. Preferably, the average charge of each surfactant molecule of the non-metallic nanoparticle-coated surfactant molecule group is greater than 0, and in a particularly preferred embodiment, the surfactant coating comprises either alone or A cationic surfactant for use in combination with one or more additional cationic surfactants and with one or more nonionic surfactants. The average charge per surfactant molecule of the surfactant coating comprising a set of cationic surfactant molecules and nonionic surfactant molecules is preferably about 0.01 (99% nonionic surfactant molecules and 1% cationic surface). Between the active agent molecule and 1 (100% cationic surfactant molecule), preferably between about 0.1 (90% nonionic surfactant molecule and 1% cationic surfactant molecule) and 1 . The average charge of each surfactant molecule of the surfactant group constituting the surfactant coating on the non-metallic nanoparticle may be at least about 0.2 (80% nonionic surfactant molecule and 20% cationic surfactant) a molecule, such as at least about 〇.3 (70% nonionic surfactant molecule and 30% cationic surfactant molecule), at least about 0.4 (60% nonionic surfactant molecule and 40% cationic surfactant molecule), At least about 0.5 (50% nonionic surfactant molecule and 50% cationic surfactant molecule), at least about 0.6 (40% nonionic surfactant molecule and 60% cationic-22-201100593 surfactant molecule), at least about 0.7 (30% nonionic surfactant molecule and 70% cationic surfactant molecule), at least about 〇·8 (20% nonionic surfactant molecule and 80% cationic surfactant molecule), or even At least about 0.9 (10% nonionic surfactant molecule and 90% cationic surfactant molecule). The average charge of each surfactant molecule is no greater than 1', such as no greater than about 0.99, no greater than about 0.95, no greater than 0.90, no greater than 0.85, and in certain embodiments no greater than 〇.80. In certain embodiments, the average charge of each surfactant molecule of the surfactant molecule group comprising the surfactant coating on the non-metallic nanoparticle can range from about 0.01 to about 1, from about 0.1. To about 1, from about 0.2 to about 1, from about 0.3 to about 1, from about 0.4 to about 1, from about 〇.5 to about 1, from about 0.6 to about 1, from about 0.7 to about 1, from about 0.8 to about 1, or from about 0.9 to about 1. In certain embodiments, the average charge of each surfactant molecule of the surfactant group comprising the surfactant coating on the non-metallic nanoparticles can range from about 0.1 to about 0.95, from about 0.1. To about 0.95 Torr, from about 〇·2 to about 0.95, from about 0.3 to about 0.95, from about 0.4 to about 0.95, from about 0.5 to about 0.95, from about 0.6 to about 0.95, from about 0.7 to about 0.95, from From about 0.8 to about 0.95, or from about 0.9 to about 0.95. In certain embodiments, the average charge of each surfactant molecule of the surfactant molecule group comprising the surfactant coating on the non-metallic nanoparticles can range from about 0.01 to about 0.9, from about 0.1 to about 0.9, from about 0.2 to about 0.9, from about 0.3 to about 0.9, from about 0.4 to about 0.9, from about 0.5 to about 0.9, from about 0.6 to about 0.9, from about 0.7 to about 0.9, or from about 0.8 to about 0.9. In certain embodiments, the average charge of each surfactant molecule of the surfactant group of Table 23-201100593 surfactant coatings on the non-metallic nanoparticles can range from about 〇.〇1 to about 〇. 8 5, from about 〇. 1 to about 0.8 5 , from about 〇·2 to about 0.8 5, from about 0.3 to about 0.8 5, from about 〇. 4 to about 0.85, from about 0.5 to about 0.85, from From about 0.6 to about 0.85, from about 〇·7 to about 〇8 5, or from about 0.8 to about 0. 8 5 . In certain embodiments, the average charge of each surfactant molecule of the surfactant molecule group comprising the surfactant coating on the non-metallic nanoparticles can range from about 0.01 to about 0.8, from about 0.1 to about 0.8, from about 0.2 to about 0.8, from about 0.3 to about 0.8, from about 0.4 to about 0.8, from about 0.5 to about 0.8, from about 0.6 to about 0.8, from about 0.7 to about 0.8. The concentration of the surfactant is determined by the total area of the particle-matrix interface. For a given particle weight concentration, the smaller the average particle size, the higher the total surface area of the particles. The total surface area is calculated by multiplying the particle specific surface area (m2/g) by the weight (g) of the particles in the solution. Calculate the total surface area in m2. A given concentration of non-metallic nanoparticle having a high specific surface area of particles has a larger total number of particles than micron-sized particles having the same weight concentration. As a result, the average interparticle distance decreases. The interaction between particles, such as Van der Waals attraction, becomes more prominent. Therefore, a high concentration of surfactant is used to reduce the tendency of particles to flocculate or coagulate. Thus the surfactant concentration is a function of the mass and specific surface area of the particles. Accordingly, it is preferred that the fluoropolymer particles of the composition have a surface area of from about 100 m2 to about 200 m2, including about 1 gram of surfactant, more preferably a composition of from about 1 20 m2 to about 150 m2 of surface area. The fluoropolymer particles comprise about 1 gram of surfactant. -24- 201100593 For example, a dispersion of Teflon® ΤΕ-5 070 AN (total mass 750 g) has about 450 grams of PTFE particles having a specific surface area of about 23.0 m2/g and a total surface area of about 10350 m2. The amount of surfactant used to coat and disperse this total surface area is preferably between about 50 grams and about 110 grams, more preferably between about 65 grams and about 90 grams. For example, a composition for dispersing about 450 grams of these PTFE particles can include between about 5 grams and about 25 grams of Ammonyx® 4002 (a 18-yard dimethyl benzyl ruthenium cationic surfactant), About 5 grams and about 25 grams of Zonyl® FSN (telomar B monoether and polyethylene glycol nonionic surfactant), between about 40 grams and about 60 grams of Lodyne® S-106AC chlorofluoroalkyl Ammonium cationic surfactant 28-30%), between about 30 grams and about 50 grams of isopropanol, and between about 150 grams and about 250 grams of H20. The surfactant coating comprises a combination of a cationic surfactant and a nonionic surfactant to stabilize the fluoropolymer particles in solution. Thus, for example, dispersions can be formed from the following components: PTFE particles (450 g), ❹ Ammonyx® 4002 (1 0.72 g), Zonyl® FSN (14.37 g), Lodyne® S-106A (50.3 7 g), isopropyl Alcohol (3 8.25 g), and water (1 86.29 g) 〇 In the electrolytic plating composition of the present invention, the concentration of the nanoparticle composed of the fluoropolymer is about 0.1 wt.% and about 20 wt.%. The interval is more preferably between about 1 wt.% and about 10 wt.%. By adding non-metallic nanoparticle to the electroplated composition at these concentrations, the deposited metal-based composite coating can include a deposited metal and at least about 0.1% by weight, such as at least about 1% by weight of non-metallic nano-particles. Particles, up to about 50% by weight of non-metal-25-201100593 nanoparticle, for example about 1% by weight of non-metallic nanoparticle to about 20% by weight of non-metallic nanoparticle, or about 1% by weight of non-metallic nano The rice particles are up to about 1% by weight of non-metallic nanoparticles. If the source of nanoparticle is, for example, Teflon® PTFE 30 or Teflon® TE-5 070AN, a 60 wt.% PTFE dispersion of between about 1 ·5 g and about 350 g can be added per 1 L of electrolytic plating solution. More preferably, a 60 wt.% PTFE dispersion is added between about 15 g and about 170 g per 1 L of electrolytic plating composition to obtain various concentrations of nanoparticle sources in the electrolytic plating composition. In terms of volume, the various concentrations of the nanoparticles derived from the electrolytic plating composition can be obtained by adding the PTFE dispersion to the solution in the following volume: each 1 L of the electrolytic plating composition is added at about 〇·5. A PTFE dispersion between m L and about 160 mL, more preferably between about 6 mL and about 80 mL per 1 L of electrolytic plating composition. If the source of fluoropolymer particles is a source of dry PTFE particles, such as Teflon® TE-5 069AN, it can be added between about 1 g and about 200 g per 1 L of electrolytic plating composition, more preferably Dry PTFE particles between about 10 g and about 1 〇〇g are used to obtain various concentrations of fluoropolymer particle source in the electrolytic ammonium composition. In addition to the non-metallic nanoparticles and surfactants, the electrolytic plating compositions of the present invention also include a source of deposited metal ions of deposited metals and other additives (as is known in the art of electrolytic ammonium electrolysis for each particular metal ion). By). Typical classes of such additives include conductive salts, brighteners, complexes, pH adjusters, and buffers. Can be co-deposited with nanoparticle to form the metal matrix composite of the present invention. -26- 201100593 The deposited metal of the coating includes palladium, zinc, nickel, silver, copper, gold, platinum, rhodium, ruthenium and the like. An alloy of either. Electrodeposition chemistry that can be used to deposit these deposited metals is discussed in more detail below. Electrodeposition is carried out by bringing the surface of the substrate into contact with the electrolytic plating composition. The cathode substrate and the anode are electrically connected to the rectifier (external electron source, i.e., power supply) by wires. The cathode substrate has a net negative charge' such that the deposited metal ions in the solution are reduced on the cathode substrate to deposit a metal matrix composite coating on the surface of the cathode Q. An oxidation reaction takes place at the anode. The cathode and anode may be arranged horizontally or vertically within the tank. During operation of the electroplating system, when the rectifier is energized, the deposited metal ions are reduced to the surface of the cathode substrate. Pulse current, DC, reverse cycle current or other suitable current can be used. A heater/cooler can be used to maintain the temperature of the electrolytic solution, whereby the electrolytic solution is removed from the storage tank and passed through the heater/cooler and then recycled to the storage tank. The deposition mechanism is the co-deposition of nanoparticles and deposited metal ions. The nano 〇 particles are not reduced, but are captured at the interface by reduction of metal ions, and the metal ions are reduced and deposited around the nanoparticles. Surfactants can be selected to impart a charge to the nanoparticles, which helps push them toward the cathode and temporarily and slightly attach them to the surface until the metal ions that are being reduced are surrounded and captured. The charge given is usually positive. Electrolytic Palladium For deposition of a palladium-based composite coating comprising nanoparticle, the electrolytic plating solution comprises a source of palladium ions. Palladium-based composite coatings including nanoparticles -27- 201100593 for a variety of applications. For example, coatings for electronic components such as connectors and lead frames, decorative applications such as eyeglasses, and coatings for pens and pencil cases, where corrosion resistance is very important; and for special items such as spray The coating of the ink, in this application, it is also important to reduce the surface tension. The electrolytic plating composition for depositing a palladium-based composite coating layer may additionally include a conductive electrolyte, a brightener, a ligand, and a surfactant. An exemplary plating composition for depositing a palladium-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

鈀(硫酸四氨銷的形態) 10g/L 硫酸錢 40g/L 磷酸氫二銨 40g/L 烯丙基苯颯 0.25 g/L 氯化十二烷基三甲基銨 0.6 g/L Teflon® TE-5070AN 30mL/L 其他的鈀電鍍化學已揭示於先前技術’例如美國專利 No. 6,274,254 ;美國專利 N〇. 6,1 3 9,977 ;美國專利 No. 5,976,344;美國專利 No. 5,024,733;美國專利 No. 4,911,799 ;美國專利 No. 4,911,798;美國專利 No. 4,486,274;美國專利 No. 4,468,296;和美國專利>1〇· 4,427,502,這些專利的公開內容的全部特此倂入本文。 用於電鍍包括奈米粒子的記基複合材料之電解電鍍組 成物可用於在基材上電鏟明亮光滑的塗層、半明亮塗層或 無光澤塗層,取決於所用的組成物化學。對於基於美觀的 -28- 201100593 理由而要求表面外觀或者表面外觀需要例如耐磨性的性能 之某些應用而言,明亮光滑塗層是較佳的。在用於電鍍鈀 基複合材料的典型電鍍操作中,電鍍參數可能如下: 電鍍溫度在20°C和60°C之間,例如在25°C和35°C之 間 電流密度在1 amp/dm2和100 amp/dm2之間 電鑛速率在0.05 μιη/min和50 pm/mili之間。 〇 鈀基複合材料塗層可包括在約4 wt.%和約10 wt.%之 間的奈米粒子含量,更典型地在約4.5 wt. %和約8.5 wt. % 之間的奈米粒子含量。較佳地,奈米粒子實質上均勻地分 佈於整個電鍍的沉積層。 電解鋅 對於沉積包括奈米粒子的鋅基複合材料塗層,電解電 鍍浴包括鋅離子源。包括奈米粒子的鋅基複合材料塗層用 〇 於各種應用。例如,鋅和鋅合金可被電鏟作爲汽車部件的 抗腐蝕塗層。 用於沉積包括由含氟聚合物組成的奈米粒子之鋅基複 合材料塗層的示範性電鍍組成物可包括:Palladium (form of tetraammonium sulfate) 10g/L Sulfuric acid money 40g/L Diammonium hydrogen phosphate 40g/L Allyl phenylhydrazine 0.25 g/L Dodecyltrimethylammonium chloride 0.6 g/L Teflon® TE -5070AN 30mL/L Other palladium plating chemistries are disclosed in the prior art ', for example, U.S. Patent No. 6,274,254; U.S. Patent No. 6,1,3,977; U.S. Patent No. 5,976,344; U.S. Patent No. 5,024,733; U.S. Patent No. 4,911,799; U.S. Patent No. 4,486,274; U.S. Patent No. 4,468,296; An electrolytic plating composition for electroplating a matrix composite comprising nanoparticle can be used to shovel a bright smooth coating, a semi-bright coating or a matte coating on a substrate, depending on the composition chemistry used. Bright smooth coatings are preferred for certain applications where surface appearance or surface appearance requires performance such as abrasion resistance for aesthetic reasons -28-201100593. In a typical plating operation for electroplating palladium-based composites, the plating parameters may be as follows: The plating temperature is between 20 ° C and 60 ° C, for example between 25 ° C and 35 ° C, the current density is 1 amp / dm 2 The rate of electric ore between 100 amp/dm2 is between 0.05 μηη/min and 50 pm/mili. The palladium-based composite coating can include nanoparticle content between about 4 wt.% and about 10 wt.%, more typically between about 4.5 wt.% and about 8.5 wt.% of the nanoparticle. content. Preferably, the nanoparticles are substantially evenly distributed throughout the deposited layer of electroplating. Electrolytic Zinc For the deposition of a zinc-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a source of zinc ions. Zinc-based composite coatings comprising nanoparticles are used in a variety of applications. For example, zinc and zinc alloys can be used as corrosion resistant coatings for automotive parts by electric shovel. An exemplary plating composition for depositing a zinc-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

NaOH 144 g/L ZnO 21g/L 葡萄糖酸鈉 7.5 g/L 水楊酸 6.9 g/L Fe3+離子 0.555 g/L Teflon® TE-5070AN 30 mL/L -29- 201100593 用於沉積包括由含氟聚合物組成的奈米粒子之鋅基複 合材料塗層的其他示範性電鍍組成物可包括:NaOH 144 g/L ZnO 21g/L sodium gluconate 7.5 g/L salicylic acid 6.9 g/L Fe3+ ion 0.555 g/L Teflon® TE-5070AN 30 mL/L -29- 201100593 For deposition including fluoropolymerization Other exemplary plating compositions of the zinc-based composite coating of nanoparticles of the composition may include:

氧化鋅 7.5 g/L NaOH 105 g/L 葡萄糖酸鈉 25 g/L Co2+離子(來自CoS04) 75 mg/L Fe2+離子(來自FeS04) 50 mg/L MIRAPOL® 1.4 g/L Teflon® TE-5070AN 30 ml/L 其他的鋅電鍍化學已揭示於先前技術,例如美國專利 No. 5,43 5,898和美國專利N 〇 . 6,0 8 0,4 4 7,這些專利的公 開內容的全部特此倂入本文。 電解錫 對於沉積包括奈米粒子的錫基複合材料塗層,電解電 鍍浴包括錫離子源。包括奈米粒子的錫基複合材料塗層用 於各種應用。例如,錫和錫合金可用作焊料或用作引線框 柒和連接器上的塗層。 用於沉積錫基複合材料塗層的電解電鍍組成物可另外 地包括導電鹽、pH調節劑、特強酸、表面活性劑、晶粒 細化劑和抗氧化劑。 用於沉積包括由含氟聚合物組成的奈米粒子之錫基複 合材料塗層的示範性電鍍組成物可包括: -30- 201100593Zinc Oxide 7.5 g/L NaOH 105 g/L Sodium Gluconate 25 g/L Co2+ Ion (from CoS04) 75 mg/L Fe2+ ion (from FeS04) 50 mg/L MIRAPOL® 1.4 g/L Teflon® TE-5070AN 30 Ml/L Other zinc electroplating chemistries are disclosed in the prior art, for example, U.S. Patent No. 5,43 5,898, and U.S. Patent No. 6,0 0 0,4,7, . Electrolytic Tin For the deposition of a tin-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a source of tin ions. Tin-based composite coatings comprising nanoparticles are used in a variety of applications. For example, tin and tin alloys can be used as solder or as a coating on leadframes and connectors. The electrolytic plating composition for depositing a tin-based composite coating layer may additionally include a conductive salt, a pH adjuster, a strong acid, a surfactant, a grain refiner, and an antioxidant. An exemplary plating composition for depositing a tin-based composite coating comprising nanoparticles composed of a fluoropolymer may include: -30- 201100593

甲磺酸亞錫 40-80 g/LStannous methanesulfonate 40-80 g/L

甲磺酸 100-200 g/LMethanesulfonic acid 100-200 g/L

潤濕劑 300 ( Lucent ECS ) 5-15 g/LWetting agent 300 ( Lucent ECS ) 5-15 g/L

抗氧化劑 Cl ( Lucent ECS ) 1-3 g/LAntioxidant Cl ( Lucent ECS ) 1-3 g/L

Teflon® TE-5070AN 30 ml/L 用於沉積包括由含氟聚合物組成的奈米粒子之錫基複 合材料塗層的其他示範性電鍍組成物可包括: 〇Teflon® TE-5070AN 30 ml/L Other exemplary plating compositions for depositing a tin-based composite coating comprising nanoparticles composed of a fluoropolymer may include:

40-80 g/L 100-200 g/L 1-15 g/L 30 ml/L 甲磺酸亞錫 甲磺酸40-80 g/L 100-200 g/L 1-15 g/L 30 ml/L stannous methanesulfonate methanesulfonic acid

Stannostarr 添加劑 Teflon® TE-5070AN 用於沉積包括由含氟聚合物組成的奈米粒子之錫基複 合材料塗層的另一示範性電鍍組成物可包括:Stannostarr Additive Teflon® TE-5070AN Another exemplary plating composition for depositing a tin-based composite coating comprising nanoparticles composed of a fluoropolymer may include:

硫酸亞錫 24 g/L 濃H2S04 9.7% (按體積計)Stannous sulfate 24 g/L Concentrated H2S04 9.7% by volume

Triton X-100 3.75 g/LTriton X-100 3.75 g/L

甲基丙烯酸 0.04 g/LMethacrylic acid 0.04 g/L

亞苄基丙酮 0.04 g/LBenzylidene acetone 0.04 g/L

Teflon® TE-5070AN 30 ml/L 其他的錫電鍍化學已揭示於先前技術,例如美國專利 No. 5,061,351;美國公開案 No. 20030025182;和美國公 開案No. 2005 0249968,這些專利的公開內容的全部特此 倂入本文。 -31 - 201100593 電解鎳 對於沉積包括奈米粒子的鎳基複合材料塗層,電解電 鍍浴包括鎳離子源。包括奈米粒子的鎳基複合材料塗層用 於各種應用。例如,鎳和鎳合金可用作銅基材如銅引線框 架上的保護性塗層。 用於沉積鎳基複合材料塗層的電解電鍍組成物可另外 地包括緩衝劑和潤濕劑,尤其是碘化氟烷基季銨或氟化全 氟十二烷基三甲基銨。 用於沉積包括由含氟聚合物組成的奈米粒子之鎳基複 合材料塗層的示範性電鍍組成物可包括:Teflon® TE-5070AN 30 ml/L Other tin plating chemistries are disclosed in the prior art, for example, U.S. Patent No. 5,061,351; U.S. Publication No. 20030025182; Hereby break into this article. -31 - 201100593 Electrolytic Nickel For the deposition of a nickel-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a source of nickel ions. Nickel-based composite coatings comprising nanoparticles are used in a variety of applications. For example, nickel and nickel alloys can be used as protective coatings on copper substrates such as copper lead frames. The electrolytic plating composition for depositing a nickel-based composite coating layer may additionally include a buffering agent and a wetting agent, especially a fluoroalkyl quaternary ammonium iodide or a perfluorododecyltrimethylammonium fluoride. An exemplary plating composition for depositing a nickel-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

鎳(Ni (NH2S03) 2 的形態) 120 g 鎳鹽(NiCl2.6H20) 5g H3BO3 30 g 碘化氟烷基季銨 10 ppm Teflon® TE-5070AN 30 ml/L 用於沉積包括由含氟聚合物組成的奈米粒子之鎳基複 合材料塗層的另一示範性電鍍組成物可包括:Nickel (form of Ni(NH2S03) 2 ) 120 g nickel salt (NiCl2.6H20) 5g H3BO3 30 g fluoroalkyl quaternary ammonium iodide 10 ppm Teflon® TE-5070AN 30 ml/L for deposition including fluoropolymer Another exemplary plating composition of the nickel-based composite coating of the composed nanoparticles can include:

胺磺酸鎳 319-383 g/L NiCl2*6H20 5-15 g/L H3BO3 20-40 g/L 硫酸月桂酯鈉 0.2-0.4 g/L Teflon® TE-5070AN 30 ml/L -32- 201100593 其他的鎳電鍍化學已揭示於先前技術,例如美國專利 No. 6,399,220;美國專利 No. 6,090,263、美國專利、〇· 5,9 1 6,696、美國公開案No. 20030025 1 82;和美國公開案 No. 20050249968,這些專利的公開內容的全部特此倂入 本文。 電解銀 〇 對於沉積包括奈米粒子的銀基複合材料塗層,電解電 鍍浴包括銀離子源。包括奈米粒子的銀基複合材料塗層用 於各種應用。例如,銀和銀合金可用作銅基材上的保護性 塗層。 用於沉積銀基複合材料塗層的電解電鍍組成物可另外 地包括複合劑、表面活性劑、導電性電解質、晶粒細化劑 和鏽蝕抑制劑。 用於沉積包括由含氟聚合物組成的奈米粒子之銀基複 〇 合材料塗層的示範性電鍍組成物可包括:Nickel sulfonate 319-383 g/L NiCl2*6H20 5-15 g/L H3BO3 20-40 g/L sodium lauryl sulfate 0.2-0.4 g/L Teflon® TE-5070AN 30 ml/L -32- 201100593 Others Nickel electroplating chemistry is disclosed in the prior art, for example, U.S. Patent No. 6,399,220; U.S. Patent No. 6,090,263, U.S. Patent No. 5,919,696, U.S. Publication No. 20030025 1 82; and U.S. Publication No. 20050249968 All of the disclosures of these patents are hereby incorporated by reference. Electrolytic Silver 〇 For deposition of a silver-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a source of silver ions. Silver-based composite coatings comprising nanoparticles are used in a variety of applications. For example, silver and silver alloys can be used as protective coatings on copper substrates. The electrolytic plating composition for depositing a silver-based composite coating layer may additionally include a composite agent, a surfactant, a conductive electrolyte, a grain refiner, and a rust inhibitor. An exemplary plating composition for depositing a silver-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

Ag20 116 g/L 1,3-二胺基丙烷 113 g/L 磷酸氫鉀 173 g/L Teflon® TE-5070AN 30ml/L 用於沉積包括由含氟聚合物組成的奈米粒子之銀基複 合材料塗層的另一示範性電鍍組成物可包括: -33- 201100593Ag20 116 g/L 1,3-diaminopropane 113 g/L Potassium hydrogen phosphate 173 g/L Teflon® TE-5070AN 30ml/L For depositing silver matrix composites comprising nanoparticles composed of fluoropolymers Another exemplary plating composition for the material coating can include: -33- 201100593

AgN〇3 17g/L 1,3-二胺基丙烷 22g/L KN〇3 101 g/L Teflon® TE-5070AN 30 ml/L 用於沉積包括由含氟聚合物組成的奈米粒子之銀基複 合材料塗層的另一示範性電鍍組成物可包括:AgN〇3 17g/L 1,3-diaminopropane 22g/L KN〇3 101 g/L Teflon® TE-5070AN 30 ml/L For depositing silver base including nano particles composed of fluoropolymer Another exemplary plating composition for a composite coating can include:

AgN〇3 0.79 g/L N- (2-經乙基)乙二胺三乙酸 10 g/L 苯並咪唑 lg/L 3,5-二硝基羥基苯甲酸 非離子表面活性劑EO/PO嵌段共聚物 lg/L lg/L 聚乙二醇 〇g/L HN〇3 0.98 g/L Teflon® TE-5070AN 30 ml/L 其他的銀電鍍化學已揭示於先前技術,例如美國專利 No. 4,478,691和美國公開案No. 20060024430,這些專利 的公開內容的全部特此併入本文。 電解金 對於沉積包括奈米粒子的金基複合材料塗層,電解電 鍍浴包括金離子源。包括奈米粒子的金基複合材料塗層用 於各種應用。例如,金和金合金可用作珠寶的裝飾性塗層 以及在電子工業中用作電連接器最後精修(包括硬金)。 用於沉積金基複合材料塗層的電解電鍍組成物可另外 -34- 201100593 地包括防止氧化的氧清除劑或焦磷酸鹼金屬鹽、光亮劑和 複合劑。 用於沉積包括由含氟聚合物組成的奈米粒子之金基複 合材料塗層的示範性電鍍組成物可包括:AgN〇3 0.79 g/L N-(2-ethyl)ethylenediaminetriacetic acid 10 g/L benzimidazole lg/L 3,5-dinitrohydroxybenzoic acid nonionic surfactant EO/PO embedded Segment Copolymer lg/L lg/L Polyethylene glycol 〇g/L HN〇3 0.98 g/L Teflon® TE-5070AN 30 ml/L Other silver plating chemistries have been disclosed in the prior art, for example, U.S. Patent No. 4,478,691 And U.S. Publication No. 20060024430, the entire disclosures of each of which are hereby incorporated herein. Electrolytic Gold For the deposition of a gold-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a source of gold ions. Gold-based composite coatings comprising nanoparticles are used in a variety of applications. For example, gold and gold alloys can be used as decorative coatings for jewelry and as a final refinement of electrical connectors (including hard gold) in the electronics industry. The electrolytic plating composition for depositing a gold-based composite coating may additionally include an oxygen scavenger or an alkali metal pyrophosphate, a brightener, and a complexing agent for preventing oxidation. An exemplary plating composition for depositing a gold-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

金(金屬的形態) 8-15 g/L 亞硫酸金鈉 25-40 g/L 光亮劑 4-12 mL/L 焦磷酸鈉 15-60 g/L Teflon® TE-5070AN 30 ml/L 其他的金電鍍化學已揭示於先前技術,例如美國專利 No,6,126,807和美國專利No. 6,423,202,這些專利的公 開內容的全部特此倂入本文。 電解鉑 對於沉積包括奈米粒子的鉑基複合材料塗層,電解電 鍍浴包括鉑離子源。包括奈米粒子的鈷基複合材料塗層用 於各種應用。例如,鉑和鈾合金廣泛地用於電鍍珠寶。在 電子領域’由鉛製成的保護膜用作電路中的導電路徑以及 在具有電連接器的裝置中用作接觸表面。 用於沉積鉑基複合材料塗層的電解電鍍組成物可另外 包括複合劑和導電鹽。 用於沉積包括由含氟聚合物組成的奈米粒子之鉑基複 合材料塗層的示範性電鍍組成物可包括: -35- 201100593Gold (Form of Metal) 8-15 g/L Gold Sodium Sulfite 25-40 g/L Brightener 4-12 mL/L Sodium Pyrophosphate 15-60 g/L Teflon® TE-5070AN 30 ml/L Others Gold electroplating chemistry is disclosed in the prior art, for example, U.S. Patent No. 6,126,807, and U.S. Patent No. 6,423,202, the disclosure of each of each of each of Electrolytic Platinum For the deposition of a platinum-based composite coating comprising nanoparticle, the electrolytic plating bath comprises a platinum ion source. Cobalt-based composite coatings comprising nanoparticles are used in a variety of applications. For example, platinum and uranium alloys are widely used in electroplating jewellery. In the field of electronics, a protective film made of lead is used as a conductive path in an electrical circuit and as a contact surface in a device having an electrical connector. The electrolytic plating composition for depositing a platinum-based composite coating layer may additionally include a composite agent and a conductive salt. An exemplary plating composition for depositing a platinum-based composite coating comprising nanoparticles composed of a fluoropolymer may include: -35- 201100593

PtCl2 20.0 g/LPtCl2 20.0 g/L

二伸乙基三胺和磷酸鹽緩衝液 15.5 g/LDiethyltriamine and phosphate buffer 15.5 g/L

Teflon® TE-5070AN 30 ml/L 用於沉積包括由含氟聚合物組成的奈米粒子之鈾基複 合材料塗層的另一示範性電鍍組成物可包括:Teflon® TE-5070AN 30 ml/L Another exemplary plating composition for depositing a uranium-based composite coating comprising nanoparticles composed of a fluoropolymer may include:

Pt (N03) 2 0.05 M 二伸乙基三胺 0.1 M KN〇3 0.4 M Teflon® TE-5070AN 30 ml/L 其他的鉛電鍍化學已揭示於先前技術,例如美國專利 No. 4,427,5 02,該專利的公開內容的全部特此倂入本文。 電解铑 對於沉積包括奈米粒子的铑基複合材料塗層,電解電 鍍浴包括銘離子源。包括奈米粒子的錯基複合材料塗層用 於各種應用。例如,鍺和铑合金廣泛地用於珠寶中。此外 ,铑電鍍用於電連接器。 用於沉積包括由含氟聚合物組成的奈米粒子之铑基複 合材料塗層的示範性電鍍組成物可包括:Pt (N03) 2 0.05 M diethyltriamine 0.1 M KN〇3 0.4 M Teflon® TE-5070AN 30 ml/L Other lead plating chemistries have been disclosed in the prior art, for example, U.S. Patent No. 4,427,052. The entire disclosure of this patent is hereby incorporated by reference. Electrolytic ruthenium For the deposition of ruthenium-based composite coatings comprising nanoparticles, the electrolytic plating bath includes an ion source. Mis-base composite coatings comprising nanoparticles are used in a variety of applications. For example, niobium and tantalum alloys are widely used in jewelry. In addition, germanium plating is used for electrical connectors. An exemplary plating composition for depositing a ruthenium-based composite coating comprising nanoparticles composed of a fluoropolymer can include:

铑(來自硫酸三價铑) 2至8g/L铑 (from trivalent cesium sulfate) 2 to 8g / L

硫酸 50 g/LSulfuric acid 50 g/L

Rho Tech 光亮劑 150 mL/LRho Tech Brightener 150 mL/L

Teflon® TE-5070AN 30 ml/L -36- 201100593 铑電鍍化學和電鍍铑的方法已揭示於先前技術,例如 美國專利No. 6,241,870,該專利的公開內容的全部特此倂 入本文。 合金 包括二或多種上述金屬的各種金屬基複合材料塗層可 Q 與奈米粒子共沉積。在一實施方式中,金屬基複合材料塗 層包括與奈米粒子共沉積的銀和錫。在一實施方式中,金 屬基複合材料塗層包括與奈米粒子共沉積的金和錫。 在一實施方式中,金屬基複合材料塗層另外地包括耐 火性金屬離子,如W、Mo或Re,其作用是增加熱穩定性 、抗腐蝕性和擴散阻力。耐火性金屬離子的添加特別適合 於鎳基複合材料塗層。 示範性的W離子源是三氧化鎢、鎢酸、鎢酸銨、鎢 〇 酸四甲銨和鎢酸鹼金屬鹽' 磷鎢酸、矽鎢酸鹽、其他雜多 鎢酸以及其之他種混合物。例如,一較佳的沉積浴包含在 約0.1 g/L和約10 g/L之間的鎢酸。示範性的鉬源包括鉬 酸鹽,例如以 TMAH預溶的 Mo03 ; (NH4)2Mo〇4 ; (NH4)2Mo207 ; (NH4)6Mo7〇24.4H20 ; (NH4 )2 Μ ο 3 Ο ι 〇 · 2H2 〇 ;(ΝΗ4)6Μο8027·4Η20 ;二鉬酸鹽(Me2Mo207.nH20 ):三 鉬酸鹽(Me2Mo301()_nH20 ):四鉬酸鹽(M e 2 Μ ο 4 Ο ! 3 ); 偏鉬酸鹽(Me2H10-m[H2(Mo2O7)6]nH2O;其中 m 小於 10) ; 六鉬酸鹽 (Me2Mo6019.nH20): 八鉬酸鹽 -37- 201100593 (Μβ2Μ〇8〇25·ηΗ20);仲鉬酸鹽(Me2Mo7022.nH20 和 Me10Mo12〇4i nH2〇 );其中上述中Me是選自銨、四甲銨 以及鹼金屬陽離子之抗衡離子,並且其中η是具有對應於 穩定或亞穩定形式的水合氧化物之値的整數;鉬酸;銨、 四甲銨和鹼金屬的鉬酸鹽;鉬的雜多酸以及其之他種混合 物。示範性的Re金屬源包括三氧化銶、過銶酸、過鍊酸 銨、過銶酸四甲銨、過鍊酸鹼金屬鹽、鍊的雜多酸以及其 之他種混合物。 抗腐鈾性和表面潤滑性的參數表示 相較於純錫塗層,可部分地藉由增加本發明的金屬基 複合材料塗層之塗層/空氣/水介面處的介面接觸角來測得 提高的抗腐蝕性。高疏水性且因此抗腐蝕表面之特徵在於 介面接觸角超過約70°。較佳地,包括非金屬奈米粒子的 金屬基複合材料塗層的特徵在於介面接觸角超過40°,較 佳地超過約50°,較佳地超過約70°,較佳地超過約80°, 較佳地超過約 90°,較佳地超過約 1〇〇°,較佳地超過約 1 10°,或甚至超過120°。 例如,純鈀沉積層的接觸角在約38°和約44°之間, 表示其爲相對非疏水的塗層。包括約〇.〇1 wt%至約2.6 wt%之由平均粒子尺寸約0.3 μηι( 300 nm)至約0.5 μιη( 500 nm)的含氟聚合物組成之奈米粒子的鈀基複合材料塗 層具有在約40°和約120。之間的較大介面接觸角,表示其 具有相對較高的疏水性。高疏水性塗層包括含有約4.5 -38- 201100593Teflon® TE-5070AN 30 ml/L -36- 201100593 The method of electroplating chemistry and electroplating of ruthenium has been disclosed in the prior art, for example, U.S. Patent No. 6,241,870, the entire disclosure of which is hereby incorporated herein. Alloys Various metal matrix composite coatings comprising two or more of the above metals may be co-deposited with the nanoparticles. In one embodiment, the metal matrix composite coating comprises silver and tin co-deposited with the nanoparticles. In one embodiment, the metal matrix composite coating comprises gold and tin co-deposited with the nanoparticles. In one embodiment, the metal matrix composite coating additionally includes a fire resistant metal ion, such as W, Mo or Re, which acts to increase thermal stability, corrosion resistance and diffusion resistance. The addition of refractory metal ions is particularly suitable for nickel based composite coatings. Exemplary W ion sources are tungsten trioxide, tungstic acid, ammonium tungstate, tetramethylammonium tungstate, and alkali metal tungstates - phosphotungstic acid, strontium tungstate, other heteropolytungstic acids, and others mixture. For example, a preferred deposition bath contains between about 0.1 g/L and about 10 g/L of tungstic acid. Exemplary molybdenum sources include molybdates such as Mo03 pre-dissolved in TMAH; (NH4)2Mo〇4; (NH4)2Mo207; (NH4)6Mo7〇24.4H20; (NH4)2 Μ ο 3 Ο ι 〇· 2H2 ΝΗ;(ΝΗ4)6Μο8027·4Η20; dimolybdate (Me2Mo207.nH20): trimolybdate (Me2Mo301()_nH20): tetramolybdate (M e 2 Μ ο 4 Ο ! 3 ); metamolybdate (Me2H10-m[H2(Mo2O7)6]nH2O; wherein m is less than 10); hexamolybdate (Me2Mo6019.nH20): octamolybdate-37- 201100593 (Μβ2Μ〇8〇25·ηΗ20); a salt (Me2Mo7022.nH20 and Me10Mo12〇4i nH2〇); wherein the above Me is a counter ion selected from the group consisting of ammonium, tetramethylammonium, and an alkali metal cation, and wherein η is a hydrated oxide corresponding to a stable or metastable form An integer of bismuth; molybdic acid; ammonium, tetramethylammonium and alkali metal molybdate; molybdenum heteropolyacids and other mixtures thereof. Exemplary Re metal sources include antimony trioxide, perrhenic acid, ammonium permeate, tetramethylammonium perruthenate, alkali metal salts of the chain, heteropolyacids of the chain, and other mixtures thereof. The parameters of corrosion resistance uranium and surface lubricity are measured in part by increasing the interface contact angle at the coating/air/water interface of the metal matrix composite coating of the present invention compared to a pure tin coating. Improved corrosion resistance. The highly hydrophobic and therefore corrosion resistant surface is characterized by an interface contact angle of more than about 70°. Preferably, the metal matrix composite coating comprising non-metallic nanoparticles is characterized by an interface contact angle of more than 40°, preferably more than about 50°, preferably more than about 70°, preferably more than about 80°. Preferably, it is more than about 90°, preferably more than about 1°, preferably more than about 10°, or even more than 120°. For example, a pure palladium deposited layer has a contact angle between about 38° and about 44°, indicating that it is a relatively non-hydrophobic coating. A palladium-based composite coating comprising about 〇1〇% to about 2.6 wt% of a nanoparticle composed of a fluoropolymer having an average particle size of from about 0.3 μηιη (300 nm) to about 0.5 μηη (500 nm) It has a temperature of about 40° and about 120. The larger interface contact angle between them indicates that it has a relatively high hydrophobicity. Highly hydrophobic coatings include approximately 4.5 - 38 - 201100593

Wt%至約8.5 wt%之由平均粒子尺寸約〇·〇5 μιη(50 nm) 至約〇·1 μιη ( 100 nm)的含氟聚合物組成之奈米粒子的記 基複合材料塗層,其具有在約80。和約130。之間的明顯較 大的介面接觸角。 用於確定包括奈米粒子的金屬基複合材料塗層之品質 的其他試驗包括以ASTM B799 S02蒸汽試驗測量的孔隙 度試驗,和反射率試驗。 〇 以下實施例進一步詳細說明本發明。 實施例1.包括由含氟聚合物組成的奈米粒子之鈀基複合 材料 準備了三種浴來沉積A)鈀,B)包括由含氟聚合物 組成之相對較大的奈米粒子之鈀基複合材料,以及C) 發明之包括由含氟聚合物組成的奈米粒子之鈀基複合材·_Wt% to about 8.5 wt% of a base composite coating composed of a fluoropolymer composed of a fluoropolymer having an average particle size of about 〇·〇5 μιη (50 nm) to about 〇·1 μιη (100 nm), It has about 80. And about 130. Significantly larger interface contact angles between. Other tests for determining the quality of metal matrix composite coatings including nanoparticles include porosity testing as measured by the ASTM B799 S02 steam test, and reflectivity testing. The following examples illustrate the invention in further detail. Example 1. Palladium-based composite comprising nanoparticles composed of a fluoropolymer Three baths were prepared for deposition of A) palladium, B) palladium groups comprising relatively large nanoparticles of fluoropolymer Composite material, and C) invention of palladium-based composite material comprising nano particles composed of fluoropolymer·_

浴A)鈀Bath A) Palladium

鈀(硫酸四胺鈀的形態) 10g/L 硫酸銨 40g/L 磷酸氫二銨 40g/L 烯丙基苯颯 0.25 g/L 氯化十二烷基三甲基銨 0.6 g/L 其餘爲DI水 到1L -39- 201100593 浴B)包括平均粒子尺寸爲約〇·3 μιη ( 3 00 nm)至約 0.5 μιη ( 500 nm)的含氟聚合物粒子之絕基複合材料Palladium (form of tetraammine palladium sulfate) 10g/L ammonium sulfate 40g/L diammonium hydrogen phosphate 40g/L allyl phenylhydrazine 0.25 g/L dodecyltrimethylammonium chloride 0.6 g/L The rest is DI Water to 1L -39- 201100593 Bath B) Extruded composites containing fluoropolymer particles with an average particle size of from about 3 μm (300 nm) to about 0.5 μm (500 nm)

鈀(硫酸四胺鈀的形態) l〇g/L 硫酸錢 40g/L 磷酸氫二銨 40g/L 烯丙基苯楓 0.25 g/L 氯化十二烷基三甲基銨 0.6 g/L Teflon® PTFE 30 30 ml/L 其餘爲DI水 到1L 浴C)包括平均粒子尺寸爲約〇.〇5 μιη (50 nm)至約 0.07 μιη ( 70 nm ) 的含氟聚合物粒子之鈀基複合材料 鈀(硫酸四胺鈀的形態) 10 g/L 硫酸錶 40 g/L 磷酸氫二銨 40 g/L 烯丙基苯颯 0.25 g/L 氯化十二烷基三甲基銨 0.6 g/L Teflon® TE-5070AN 30 ml/L 其餘爲DI水 到1L 在相似的條件下由每個浴沉積出塗層,並進行ED S測 量、接觸角測量、孔隙度試驗和反射率測量。結果在表I 示出。 表I 合金塗層的物理性質 試驗 浴A的鈀塗層 浴B的鈀基複合材料塗 層 浴C的鈀基複合材料塗 層 EDS測量 0% PTFE 0.0 至 2.6% PTFE 4.5 至 8.5% PTFE 介面 接觸角 38 至 44。 40 至 120。 80 至 130。 -40- 201100593 上面表I中的資料顯不藉由將增加濃度的PTFE粒子 倂入鈀基複合材料塗層可獲得介面接觸角增加。較大的介 面接觸角表示較高程度的抗潤濕性’且因此具有較高程度 的抗腐蝕性。 根據上述,將看到’實現了本發明的目的並獲得了其 他有利的結果。 當介紹本發明的元素或其較佳實施方式時’冠詞“一 q ( a ) ”、“一( an ),,、“the (該),’和“所述”用來指元素中 的一個或多個。術語“包括,,、“包含,’和“具有”用來表示包 含和指可能存在有所列元素以外之其他元素。 儘管可在上述進行各種改變而不偏離本發明的範圍’ 但是預期包含在上述說明和所示圖式中的所有內容應解釋 爲示範性的且沒有限制意義。 -41 -Palladium (form of tetraammine palladium sulfate) l〇g/L sulfuric acid money 40g/L diammonium hydrogen phosphate 40g/L allylbenzene maple 0.25 g/L dodecyltrimethylammonium chloride 0.6 g/L Teflon ® PTFE 30 30 ml/L The rest is DI water to 1L Bath C) Palladium-based composites containing fluoropolymer particles with an average particle size of from about 〇.〇5 μιη (50 nm) to about 0.07 μηη (70 nm) Palladium (form of tetraammine palladium sulfate) 10 g/L Sulfuric acid table 40 g/L Diammonium hydrogen phosphate 40 g/L Allyl phenylhydrazine 0.25 g/L Dodecyltrimethylammonium chloride 0.6 g/L Teflon® TE-5070AN 30 ml/L The rest is DI water to 1 L. The coating is deposited from each bath under similar conditions and subjected to ED S measurement, contact angle measurement, porosity test and reflectance measurement. The results are shown in Table I. Table I Physical properties of alloy coatings Palladium coating bath of bath A. Palladium-based composite coating of bath B. Palladium-based composite coating of bath C EDS measurement 0% PTFE 0.0 to 2.6% PTFE 4.5 to 8.5% PTFE interface contact Angle 38 to 44. 40 to 120. 80 to 130. -40- 201100593 The data in Table I above shows that the interface contact angle increase can be obtained by injecting an increased concentration of PTFE particles into the palladium-based composite coating. A larger interface contact angle indicates a higher degree of wettability' and thus a higher degree of corrosion resistance. In light of the above, it will be seen that the objects of the invention have been achieved and other advantageous results have been obtained. When introducing elements of the present invention or preferred embodiments thereof, the terms "a", "an", "the", "the" and "the" are used to mean one of the elements. Or multiple. The terms "including," "comprising," and "having" are used to mean that they are meant While various changes may be made in the above described without departing from the scope of the invention, it is intended to be construed as illustrative and not limiting. -41 -

Claims (1)

201100593 七、申請專利範圍: 1. 一種用於賦予基材表面抗腐蝕性的方法,其中該 方法包括: 使該基材表面與電解電鑛溶液接觸,該電解電鎪溶液 包括(a )選自由鋅、鈀、銀、鎳、銅、金、鉑、铑、釕 、鉻及其合金組成的群組之沉積金屬的沉積金屬離子源, (b)具有約10 nm和約500 nm之間的平均粒子尺寸之非 金屬奈米粒子的預混合分散體,其中該非金屬奈米粒子之 上具有表面活性劑分子的預混合塗層;以及 將外部電子源應用到該電解電鏟溶液,從而將包括沉 積金屬和非金屬奈米粒子的金屬基複合材料塗層電解沉積 到該表面上。 2. 如申請專利範圍第1項之方法,其中該非金屬奈 米粒子的平均粒子尺寸在約1〇 nm和約200 rim之間。 3. 如申請專利範圍第1項之方法,其中該非金屬奈 米粒子的平均粒子尺寸在約50 nm和約150 nm之間。 4. 如申請專利範圍第1項之方法,其中該非金屬奈 米粒子的平均粒子尺寸在約10 nm和約50 nm之間。 5. 如申請專利範圍第1項之方法,其中該非金屬奈 米粒子爲含氟聚合物粒子。 6. 如申請專利範圍第5項之方法,其中該含氟聚合 物粒子的平均粒子尺寸在約10 nm和約200 nm之間。 7. 如申請專利範圍第5項之方法,其中該含氟聚合 物粒子的平均粒子尺寸在約5〇nm和約l5〇nm之間。 -42- 201100593 8. 如申請專利範圍第5項之方法’其中該含氟聚合 物粒子的平均粒子尺寸在約10 ηιη和約50 nm之間。 9. 如申請專利範圍第1至8項中任一項之方法’其 中該電解電鍍組成物包括濃度爲電解電鍍組成物的約1 wt·%和約10 wt·%之間的非金屬奈米粒子° 10. 如申請專利範圍第1至8項中任一項之方法’其 中該金屬基複合材料塗層包括約1 wt·%和約50 wt.%之間 〇 的非金屬奈米粒子。 11. 如申請專利範圔第1至8項中任一項之方法’其 中該金屬基複合材料塗層包括約1 wt. %和約5 wt. %之間的 非金屬奈米粒子。 12. 如申請專利範圍第1至8項中任一項之方法,其 中該沉積金屬是鈀。 13. 如申請專利範圍第12項之方法,其中該金屬基 複合材料塗層包括約4 wt. %和約1 0 wt. %之間的非金屬奈 〇 米粒子。 14. 一種用於賦予基材表面抗腐蝕性的方法,其中該 方法包括: 使該金屬表面與電解電鍍組成物接觸,該電解電鍍組 成物包括(a)選自由鋅、鈀、銀、鎳、銅、金、鉑、铑 、釕、鉻及其合金組成的群組之沉積金屬的沉積金屬離子 源’以及(b)具有表面活性劑塗層的非金屬粒子,其中 該表面活性劑塗層之每個表面活性劑分子的平均電荷在 + 0.1和+1之間;以及 -43- 201100593 將外部電子源應用到該電解電鍍組成物,從而將複合 材料塗層電解沉積到該金屬表面上,其中該複合材料塗層 包括金屬和非金屬粒子。 15.如申請專利範圍第14項之方法,其中該非金屬 粒子的至少約90 wt. %具有至少約15 m2/g的比表面積。 1 6.如申請專利範圍第1 4項之方法,其中該非金屬 粒子的至少約90 wt·%具有在約15 m2/g和約35 m2/g之間 的比表面積。 1 7 ·如申請專利範圍第1 4項之方法,其中該非金屬 粒子是含氟聚合物粒子。 18.如申請專利範圍第17項之方法,其中該非金屬 粒子的至少約90 wt·%具有至少約1 5 m2/g的比表面積。 1 9 ·如申請專利範圍第1 7項之方法,其中該非金屬 粒子的至少約90 wt.%具有在約15 m2/g和約35 m2/g之間 的比表面積。 2〇·如申請專利範圍第14至19項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.2和+1之間。 21.如申請專利範圍第14至19項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.3和+1之間。 2 2 .如申請專利範圍第1 4至1 9項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.4和+1之間。 -44- 201100593 23.如申請專利範圍第14至19項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.5和+1之間。 24 .如申請專利範圍第1 4至1 9項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0_2和+0.9之間。 2 5.如申請專利範圍第14至19項中任一項之方法, J) 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.3和+0.9之間。 26.如申請專利範圍第14至19項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+〇·4和+0.9之間。 2 7.如申請專利範圍第14至19項中任一項之方法, 其中該表面活性劑塗層之每個表面活性劑分子的平均電荷 在約+0.5和+0.9之間。 Ο 28.如申請專利範圍第14至19項中任一項之方法, 其中該金屬基複合材料塗層包括沉積金屬以及在約1 wt.% 和約5 wt.%之間的非金屬粒子。 29. —種用於賦予基材表面抗腐蝕性的方法,其中該 方法包括: 使該金屬表面與電解電鍍組成物接觸,該電解電鍍組 成物包括:(a)選自由鋅、鈀、銀、鎳、銅、金、鉑、 铑、釕、鉻及其合金組成的群組之沉積金屬的沉積金屬離 子源,以及(Μ具有約10 run和約500 nm之間的平均粒 -45- 201100593 子尺寸的非金屬奈米粒子的預混合分散體,其中該# 奈米粒子之上具有表面活性劑分子的預混合塗層;以及 將外部電子源應用到該電解電鍍組成物,從而將複合 材料塗層電解沉積到該金屬表面上,其中該複合材料塗層 包括沉積金屬和在約1 wt. %和約5 wt. %之間的非金屬奈米 粒子。 30.如申請專利範圍第29項之方法’其中該非金屬 奈米粒子是含氟聚合物粒子。 3 1 .如申請專利範圍第2 9或3 0項之方法’其中該沉 積金屬是鈀。 3 2 .如申請專利範圍第2 9或3 0項之方法’其中該沉 積金屬是辞。 3 3.如申請專利範圍第29或30項之方法’其中該彷1 積金屬是銀。 34. 如申請專利範圍第29或30項之方法’其中該沉 積金屬是鎳。 35. 如申請專利範圍第29或30項之方法’其中該沉 積金屬是銅。 36. 如申請專利範圍第29或30項之方法’其中該沉 積金屬是金。 3 7.如申請專利範圍第29或30項之方法’其中該沉 積金屬是鉑。 3 8 .如申請專利範圍第2 9或3 0項之方法’其中該沉 積金屬是铑 -46- 201100593 39. 如申請專利範圍第29或30項之方法,其中該沉 積金屬是|了。 40. 如申請專利範圍第29或30項之方法,宜中該沉 積金屬是絡。 41. 一種用於賦予基材表面抗腐触性的方法, 方法包括: 使該金屬表面與電解電鍍組成物接觸,該電解電鏟組 f) 成物包括:(a)選自由鋅、鈀、銀、鎳、銅、金、鉑、 錢、釘、鉻及其合金組成的群組之沉積金屬的沉積金屬離 子源,以及(b)非金屬奈米粒子,其中該非金屬奈米粒 子的特徵在於粒子尺寸分佈,其中至少約30體積百分比 的粒子具有小於1 00 nm的粒子尺寸;以及 將外部電子源應用到該電解電鍍組成物’從而將複合 材料塗層電解沉積到該金屬表面上’其中該複合材料塗層 包括沉積金屬和非金屬奈米粒子。 Q 42.如申請專利範圍第41項之方法’其中該金屬基 複合材料塗層包括約1 wt.%和約50 wt.%之間的非金屬奈 米粒子。 43.如申請專利範圍第41項之方法,其中該金屬基 複合材料塗層包括約1 wt. %和約5 wt · %之間的非金屬奈米 粒子。 44 .如申請專利範圍第4 1項之方法’其中該非金屬 奈米粒子包括含氟聚合物粒子。 45.如申請專利範圍第44項之方法,其中該金屬基 -47- 201100593 複合材料塗層包括約1 wt.%和約50 wt.%之間的含氟聚合 物粒子。 46. 如申請專利範圍第44項之方法,其中該金屬基 複口材料塗層包括約1 wt·%和約5 wt.%之間的含氣聚合物 粒子。 47. 如申請專利範圍第4 1至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈,其中至 少約80體積百分比的粒子具有小於200 run的粒子尺寸。 48. 如申請專利範圍第41至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈’其中至 少約25體積百分比的粒子具有小於90 nm的粒子尺寸。 49. 如申請專利範圍第41至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈’其中至 少約45體積百分比的粒子具有小於90 nm的粒子尺寸。 5 0.如申請專利範圍第41至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈’其中至 少約20體積百分比的粒子具有小於80 nm的粒子尺寸。 5 1 .如申請專利範圍第4 1至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈’其中至 少約4〇體積百分比的粒子具有小於80 nm的粒子尺寸。 5 2.如申請專利範圍第41至46項中任一項之方法, 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈’其中至 少約1 0體積百分比的粒子具有小於7〇 nm的粒子尺寸。 5 3 .如申請專利範圍第4 1至46項中任一項之方法, -48 - 201100593 其中該非金屬奈米粒子的特徵在於粒子尺寸分佈,其中至 少約3 0體積百分比的粒子具有小於70 nm的粒子尺寸。201100593 VII. Patent Application Range: 1. A method for imparting corrosion resistance to a surface of a substrate, wherein the method comprises: contacting the surface of the substrate with an electrolytic electric ore solution, the electrolytic electrolysis solution comprising (a) selected from a deposited metal ion source of deposited metal of the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, iridium, chromium, and alloys thereof, (b) having an average between about 10 nm and about 500 nm a pre-mixed dispersion of particle-sized non-metallic nanoparticles, wherein the non-metallic nanoparticle has a pre-mixed coating of surfactant molecules thereon; and an external electron source is applied to the electrolytic shovel solution, thereby including deposition A metal matrix composite coating of metal and non-metallic nanoparticles is electrolytically deposited onto the surface. 2. The method of claim 1, wherein the non-metallic nanoparticles have an average particle size between about 1 〇 nm and about 200 rim. 3. The method of claim 1, wherein the non-metallic nanoparticles have an average particle size between about 50 nm and about 150 nm. 4. The method of claim 1, wherein the non-metallic nanoparticles have an average particle size between about 10 nm and about 50 nm. 5. The method of claim 1, wherein the non-metallic nanoparticles are fluoropolymer particles. 6. The method of claim 5, wherein the fluoropolymer particles have an average particle size between about 10 nm and about 200 nm. 7. The method of claim 5, wherein the fluoropolymer particles have an average particle size between about 5 〇 nm and about 15 〇 nm. The method of claim 5 wherein the fluoropolymer particles have an average particle size of between about 10 ηηη and about 50 nm. 9. The method of any one of clauses 1 to 8 wherein the electrolytic plating composition comprises a non-metallic nanoparticle having a concentration between about 1 wt.% and about 10 wt.% of the electrolytic plating composition. The method of any one of claims 1 to 8 wherein the metal matrix composite coating comprises between about 1 wt.% and about 50 wt.% of non-metallic nanoparticle. 11. The method of any one of claims 1 to 8 wherein the metal matrix composite coating comprises between about 1 wt.% and about 5 wt.% of non-metallic nanoparticle. 12. The method of any one of claims 1 to 8, wherein the deposited metal is palladium. 13. The method of claim 12, wherein the metal matrix composite coating comprises between about 4 wt.% and about 10 wt.% of non-metallic nanoparticle. 14. A method for imparting corrosion resistance to a surface of a substrate, wherein the method comprises: contacting the metal surface with an electrolytic plating composition comprising (a) selected from the group consisting of zinc, palladium, silver, nickel, a deposited metal ion source of a deposited metal of a group consisting of copper, gold, platinum, rhodium, iridium, chromium, and alloys thereof; and (b) a non-metallic particle having a surfactant coating, wherein the surfactant coating The average charge of each surfactant molecule is between +0.1 and +1; and -43-201100593 applies an external electron source to the electrolytic plating composition to electrolytically deposit a composite coating onto the metal surface, wherein The composite coating includes metallic and non-metallic particles. 15. The method of claim 14, wherein at least about 90 wt.% of the non-metallic particles have a specific surface area of at least about 15 m2/g. The method of claim 14, wherein at least about 90 wt.% of the non-metallic particles have a specific surface area between about 15 m2/g and about 35 m2/g. The method of claim 14, wherein the non-metallic particles are fluoropolymer particles. 18. The method of claim 17, wherein at least about 90 wt.% of the non-metallic particles have a specific surface area of at least about 15 m2/g. The method of claim 17, wherein at least about 90 wt.% of the non-metallic particles have a specific surface area between about 15 m2/g and about 35 m2/g. The method of any one of claims 14 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +0.2 and +1. The method of any one of claims 14 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +0.3 and +1. The method of any one of claims 1 to 19 wherein the surfactant of each of the surfactant coatings has an average charge between about +0.4 and +1. The method of any one of claims 14 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +0.5 and +1. The method of any one of claims 1 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +0_2 and +0.9. The method of any one of claims 14 to 19, wherein the surfactant has an average charge of between about +0.3 and +0.9 per surfactant molecule. The method of any one of claims 14 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +〇·4 and +0.9. The method of any one of claims 14 to 19, wherein the average charge of each surfactant molecule of the surfactant coating is between about +0.5 and +0.9. The method of any one of claims 14 to 19, wherein the metal matrix composite coating comprises a deposited metal and between about 1 wt.% and about 5 wt.% of non-metallic particles. 29. A method for imparting corrosion resistance to a surface of a substrate, wherein the method comprises: contacting the metal surface with an electrolytic plating composition comprising: (a) selected from the group consisting of zinc, palladium, silver, a deposited metal ion source of deposited metals of the group consisting of nickel, copper, gold, platinum, rhodium, ruthenium, chromium, and alloys thereof, and (Μ has an average particle between about 10 run and about 500 nm - 45 - 201100593 a premixed dispersion of non-metallic nanoparticles of a size, wherein the # nanoparticle has a pre-mixed coating of surfactant molecules thereon; and an external electron source is applied to the electrolytic plating composition to coat the composite material A layer is electrolytically deposited onto the surface of the metal, wherein the composite coating comprises a deposited metal and non-metallic nanoparticle between about 1 wt.% and about 5 wt.%. 30. The method of the invention wherein the non-metallic nanoparticle is a fluoropolymer particle. The method of claim 29, wherein the deposited metal is palladium. 3 2 as claimed in claim 29 or 30 items ' The method of claim 3, wherein the metal is silver. 34. The method of claim 29 or 30, wherein the deposited metal The method of claim 29, wherein the deposited metal is copper. 36. The method of claim 29 or 30 wherein the deposited metal is gold. The method of claim 29 or 30 wherein the deposited metal is platinum. 3 8. The method of claim 29 or 30, wherein the deposited metal is 铑-46- 201100593 39. The method of item 29 or 30, wherein the deposited metal is. 40. The method of claim 29 or 30, wherein the deposited metal is a complex. 41. A method for imparting corrosion resistance to a surface of a substrate The method comprises the steps of: contacting the metal surface with an electrolytic plating composition, wherein the electrolytic shovel group f) comprises: (a) selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, money, Deposits of groups of nails, chrome and their alloys a source of deposited metal ions, and (b) a non-metallic nanoparticle, wherein the non-metallic nanoparticle is characterized by a particle size distribution wherein at least about 30 volume percent of the particles have a particle size of less than 100 nm; and external electrons A source is applied to the electrolytic plating composition 'to electrolytically deposit a composite coating onto the metal surface' wherein the composite coating comprises deposited metal and non-metallic nanoparticles. Q 42. The method of claim 41 wherein the metal matrix composite coating comprises between about 1 wt.% and about 50 wt.% of non-metallic nanoparticles. The method of claim 41, wherein the metal matrix composite coating comprises between about 1 wt.% and about 5 wt.% of non-metallic nanoparticles. 44. The method of claim 41, wherein the non-metallic nanoparticle comprises fluoropolymer particles. 45. The method of claim 44, wherein the metal based-47-201100593 composite coating comprises between about 1 wt.% and about 50 wt.% of fluoropolymer particles. 46. The method of claim 44, wherein the metal based resurfacing coating comprises between about 1 wt.% and about 5 wt.% of gas-containing polymer particles. The method of any one of claims 4 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution, wherein at least about 80 volume percent of the particles have a particle size of less than 200 run. The method of any one of claims 41 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution' wherein at least about 25 volume percent of the particles have a particle size of less than 90 nm. The method of any one of claims 41 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution' wherein at least about 45 volume percent of the particles have a particle size of less than 90 nm. The method of any one of claims 41 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution' wherein at least about 20 volume percent of the particles have a particle size of less than 80 nm. The method of any one of claims 4 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution wherein at least about 4 volume percent of the particles have a particle size of less than 80 nm. The method of any one of claims 41 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution' wherein at least about 10 volume percent of the particles have a particle size of less than 7 〇 nm. The method of any one of claims 4 to 46, wherein the non-metallic nanoparticle is characterized by a particle size distribution, wherein at least about 30 volume percent of the particles have less than 70 nm Particle size. -49- 201100593 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無-49- 201100593 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: none 〇 201100593 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無〇 201100593 V If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none 4 -4-4 -4-
TW98120259A 2009-06-17 2009-06-17 Electrolytic deposition of metal-based composite coatings comprising nano-particles TWI467065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98120259A TWI467065B (en) 2009-06-17 2009-06-17 Electrolytic deposition of metal-based composite coatings comprising nano-particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98120259A TWI467065B (en) 2009-06-17 2009-06-17 Electrolytic deposition of metal-based composite coatings comprising nano-particles

Publications (2)

Publication Number Publication Date
TW201100593A true TW201100593A (en) 2011-01-01
TWI467065B TWI467065B (en) 2015-01-01

Family

ID=44836630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98120259A TWI467065B (en) 2009-06-17 2009-06-17 Electrolytic deposition of metal-based composite coatings comprising nano-particles

Country Status (1)

Country Link
TW (1) TWI467065B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553658B (en) * 2011-12-21 2016-10-11 Sekisui Chemical Co Ltd Conductive particles, conductive materials and connecting structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667659A (en) * 1996-04-04 1997-09-16 Handy & Harman Low friction solder electrodeposits
JP2001200838A (en) * 1999-11-09 2001-07-27 Seiko Instruments Inc Fluid dynamic pressure bearing, fluid dynamic pressure bearing device, manufacturing method of fluid dynamic pressure bearing, and bearing surface machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553658B (en) * 2011-12-21 2016-10-11 Sekisui Chemical Co Ltd Conductive particles, conductive materials and connecting structures

Also Published As

Publication number Publication date
TWI467065B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP5554718B2 (en) Electrolytic deposits of metal-based composite coatings containing nanoparticles
TWI453307B (en) Composite coatings for whisker reduction
Mafi et al. Comparison of the coating properties and corrosion rates in electroless Ni–P/PTFE composites prepared by different types of surfactants
TWI573497B (en) High temperature resistant silver coated substrates and method of manufacturing the same
JP5586587B2 (en) Pd electrolyte bath and Pd-Ni electrolyte bath
Afroukhteh et al. Corrosion behavior of Ni–P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant
EP2971263A1 (en) Electrodeposition of silver with fluoropolymer nanoparticles
CN102144049B (en) Electrolyte and method for deposition of matte metal layer
Bahramian et al. Cu/Ni/Au multilayers by electrochemistry: A crucial system in electronics-A critical review
KR20210025599A (en) Silver electrolyte for the deposition of a dispersed silver layer and the surface in contact with the dispersed silver layer
TW201100593A (en) Electrolytic deposition of metal-based composite coatings comprising nano-particles
CN107787378A (en) The plating bronze on polymer sheet
CN105420775A (en) Method for preparing La-Ni-Mo-W/GO composite deposit layer on carbon steel substrate
KR20210045310A (en) Acidic aqueous silver-nickel alloy electroplating compositions and methods
JPS6048599B2 (en) Composite plating film
US20090145764A1 (en) Composite coatings for whisker reduction
JP2013189715A (en) Pd ELECTROLYTE BATH AND Pd-Ni ELECTROLYTE BATH
JP2020180326A (en) Eutectoid plating solution
CN116904989A (en) Silver coating for high temperature applications
JP2014145127A (en) Plating solution and plating material
KR20220135179A (en) Silver electroplating compositions and methods for electroplating silver with low coefficients of friction