TW201033248A - Process for preparing block copolymers - Google Patents

Process for preparing block copolymers Download PDF

Info

Publication number
TW201033248A
TW201033248A TW98144594A TW98144594A TW201033248A TW 201033248 A TW201033248 A TW 201033248A TW 98144594 A TW98144594 A TW 98144594A TW 98144594 A TW98144594 A TW 98144594A TW 201033248 A TW201033248 A TW 201033248A
Authority
TW
Taiwan
Prior art keywords
group
polyoxyalkylene
polyol
iii
starting material
Prior art date
Application number
TW98144594A
Other languages
Chinese (zh)
Inventor
Ulrich Steinbrenner
Sophia Ebert
Tobias Habeck
Paul Klingelhoefer
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of TW201033248A publication Critical patent/TW201033248A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/58Ethylene oxide or propylene oxide copolymers, e.g. pluronics

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention relates to a process for preparing a polyoxyalkylene block copolymer consisting of a hydrophobic polyoxyalkylene base skeleton and terminal hydroxy(polyoxyethylene) groups.

Description

201033248 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種製備由疏水性聚氧伸烷基基本骨架及 終端羥基(聚氧伸乙基)組成之聚氧伸烷基嵌段共聚物之方 法。 【先前技術】 聚醚多元醇已被知悉許久且係以工業化規模製備並使 用。其等係作為表面活性聚合物而使用於眾多應用,例如 作為分散劑、作為清潔劑之添加劑、作為去乳化劑、作為 黏度調節劑、作為增稠劑或作為潤滑劑。此外,其為製造 各種塗層材料之重要起始材料,例如用於汽車工業之塗料 系統。其亦可作為經與聚異氰酸酯反應製備聚胺基甲酸酯 之一種起始化合物。 WO 92/16484描述具有低聚合度分散性之高分子量 EO/PO/EO嵌段共聚物,其中該聚氧伸丙基嵌段具有900至 15000 g/mol之分子量及其中該聚氧伸乙基嵌段之比例為總 分子量之5至90%。PO嵌段及EO嵌段係在鹼存在下,尤其 在氫氧化鈉存在下製備。此外,描述藉由凝膠滲透層析法 使該嵌段共聚物純化之方法。 WO 96/04932描述高分子量EO/PO/EO嵌段共聚物,其中 該聚氧伸丙基嵌段具有至少7000 g/mol之分子量及其中該 聚氧伸乙基嵌段之比例為1至40重量%。PO嵌段及EO嵌段 係在鹼存在下,尤其在氫氧化鉋存在下製備。所提及之應 用領域係作為疫苗之佐劑。 145075.doc 201033248 EP 1 181 937描述高分子量E〇/p〇/E〇嵌段共聚物,其中 該聚氧伸丙基嵌段具有至少15〇〇〇 g/m〇1之分子量及該聚氧 伸乙基嵌段之比例為1至4〇重量%。PC)嵌段及£讀段係在 驗存在下’尤其在氫氧化绝存在下製備。所提及之應用領 域係作為疫苗之佐劑。 最近,用以製備聚醚多元醇所採用之觸媒通常為多金屬 氰化物之化合物,其亦稱為DMC觸媒。採用DMC觸媒可 使不飽和副產物之含量降至最低,且與慣用之㈣㈣比 較,反應一般亦以明顯較高之時空產率進行。DMC觸媒之 另一優點為其所謂差異催化性之能力,其意指在反應過程 中將環氧烧優先加成至低分子質量之分子上。 WO 97/29146描述一種製備用於製備聚胺基甲酸酯之聚 氧伸烷基多元醇之方法,其中該多元醇起始物係在 (a)DMC觸媒、(b)連續添加之起始物及經連續添加之環 氧化物存在下進行反應。此舉提供聚氧伸烷基多元醇,與 藉由慣用方法製備之聚氧伸烷基多元醇比較,其包括較低 比例之高分子量多元醇。 針對聚醚多元醇之不同應用領域而言,需要將聚醚鏈, 尤其是在鏈末端加以修飾。例如,製備可撓性聚胺基甲酸 酯發泡體所採用之聚醚醇典型地具有含環氧乙烷及環氧丙 炫之混合物之聚醚鏈。就可撓性片狀發泡體之用途而言, 為了在生產發泡體時調節聚醚醇之反應性,較佳係在鏈末 端加成環氧丙烷。該等聚醚醇述於例如WO 01/16209。 W〇 2006/002807描述一種連續製備聚醚醇之方法,其採 145075.doc 201033248 用DMC觸媒經將環氧烧加成祕官能基之起始物物質上, 該方法係在另-連續反應器中,使自連續反應器抽取之前 驅物與另-環氧院或至少兩種環氧烧之混合物反應,該兩 個反應1¾段中所採用之環氧院或至少兩種環氧烧之混合物 彼此不同。 仍需要可j得具有特定結構,例如具有親水性/疏水性 嵌段,或軟/硬嵌段結構之聚氧伸烷基共聚物之方法,以 ❼ 用於特定應用。 現今已意外地發5見,具有高分子量之疏水性基基本骨架 之,氧伸烧基嵌段共聚物可藉由以下方法以尤其有益的方 式』傷,其中’第一步,視需要使多元醇起始物先帶電荷 及在至少一種DMC觸媒存在下及在至少一種多元醇或多元 醇募聚物存在下,使至少一種環氧化物反應,且在聚合期 間々連續添加環氧化物及多元醇或多元醇募聚物,然後, 在第二步中,使由此提供之聚氧伸烷基多元醇與環氧乙烷 ❹ 反應。 【發明内容】 本發明因此提供一種製備由疏水性聚氧伸烷基基本骨架 • 及終端羥基(聚氧伸乙基)組成之聚氧伸烷基嵌段共聚物之 方法,其中基於聚氧伸烷基嵌段共聚物之總重量,其中該 疏水性聚氧伸烷基基本骨架之至少3〇重量%程度由C3_C6_ 氧基伸烷基單元所構成及其中該羥基(聚氧伸乙基)之比例 為1至90重量%,該方法包括 a)在下列存在下,使至少一種C2-C6環氧化物反應以提 145075.doc 201033248 供聚氧伸烷基多元醇 (1) 至少一種多金屬氰化物觸媒, (2) 至少一種經連續添加之起始物Sk ’其係選自 多元醇及/或(:2-C6多元醇寡聚物,及 (3) 視需要之至少一種最初帶電荷之多元醇起始物 Sv, 在步驟a)反應期間,連續添加C2_C6環氧化物及 起始物Sk,及 起始物Sk係以基於步驟a)中之起始化合物之使用 量之至少1重量%之含量添加;及 b)使在步驟a)中所獲得之聚氧伸烷基多元醇之自由羥 基與伸乙基氧化物反應。 【實施方式】 在本申請案之上下文中’術語「多金屬氰化物觸媒」、 「雙金屬氰化物觸媒」及「DMC觸媒」係同義地使用。 步驟b)中之反應尤其係在無多金屬氰化物觸媒下進行。 術語「嵌段絲物」係指具有傲段結構之絲物,各後 段包括複數個相同結構單元且具有至少一個結構或組態特 徵’:在不以緊鄰嵌段出現。在本發明之上下文中,術語 嵌^共聚物」尤其指具有聚合物基基本骨架(内部嵌段) 之共聚物,其另外帶有至少兩個不同終端聚合物之嵌段, 2佳為2至8個,更佳為2至3個及特別佳為2個。本發明之 肷段共聚物尤其為其分子係由線性連接之嵌段所構成之聚 。物*而’亦包括具有分枝狀結構且可稱為接枝共聚物 145075.doc -6 - 201033248 或梳狀共聚物之嵌段共聚物。 在本發明之上下文中,術語「C2_q環氧化物」係指含 有2至6個及較佳含有2至4個碳原子之線性或分枝狀飽和烴 化合物’其在化合物之碳骨架上,帶有至少一個環氧基, 較佳為一個或兩個環氧基及更佳為一個環氧基。實例為環 氧基乙烷(=環氧乙烧)、環氧基丙统(=環氧丙烷)、I,。環氧 基丁烷環氧丁烷)、2,3_環氧基丁烷(=卜環氧丁烷)、 1,2-環氧基-2-节基丙烷(=環氧異丁烷)、it環氧基戊烷、 2,3-環氧基戊炫、1’2_環氧基_2_甲基丁燒、2,3_環氧基 甲基丁烷、1,2-環氧基己烷、2,3-環氧基己烷及3,4_環氧基 己烷。 土201033248 VI. Description of the Invention: [Technical Field] The present invention relates to a polyoxyalkylene alkyl block copolymer prepared by a hydrophobic polyoxyalkylene basic skeleton and a terminal hydroxyl group (polyoxyethylene) The method. [Prior Art] Polyether polyols have been known for a long time and are prepared and used on an industrial scale. They are used as surface-active polymers for a variety of applications, for example as dispersants, as additives to detergents, as deemulsifiers, as viscosity modifiers, as thickeners or as lubricants. In addition, it is an important starting material for the manufacture of various coating materials, such as coating systems for the automotive industry. It can also be used as a starting compound for the preparation of polyurethanes by reaction with polyisocyanates. WO 92/16484 describes a high molecular weight EO/PO/EO block copolymer having a low degree of polymerization dispersibility, wherein the polyoxypropylene block has a molecular weight of from 900 to 15000 g/mol and the polyoxyethylene group The ratio of the blocks is from 5 to 90% of the total molecular weight. The PO block and the EO block are prepared in the presence of a base, especially in the presence of sodium hydroxide. Further, a method of purifying the block copolymer by gel permeation chromatography is described. WO 96/04932 describes high molecular weight EO/PO/EO block copolymers wherein the polyoxypropylene block has a molecular weight of at least 7000 g/mol and wherein the ratio of the polyoxyethylene block is from 1 to 40 weight%. The PO block and the EO block are prepared in the presence of a base, especially in the presence of a hydrazine. The areas of application mentioned are adjuvants for vaccines. 145075.doc 201033248 EP 1 181 937 describes high molecular weight E〇/p〇/E〇 block copolymers wherein the polyoxypropylene block has a molecular weight of at least 15 μg/m〇1 and the polyoxygen The ratio of the extended ethyl block is from 1 to 4% by weight. The PC) block and the readout are prepared in the presence of the tester, especially in the presence of hydrogen peroxide. The application areas mentioned are used as adjuvants for vaccines. More recently, the catalyst used to prepare the polyether polyols is typically a polymetallic cyanide compound, also known as a DMC catalyst. The use of DMC catalyst minimizes the amount of unsaturated by-products, and the reaction is generally carried out at significantly higher space-time yields than conventional (4) (iv). Another advantage of the DMC catalyst is its so-called differential catalytic ability, which means that the epoxy burn is preferentially added to the molecule of low molecular mass during the reaction. WO 97/29146 describes a process for the preparation of polyoxoalkyl polyols for the preparation of polyurethanes, wherein the polyol starting materials are in (a) DMC catalyst, (b) continuous addition The reaction is carried out in the presence of the starting material and in the presence of continuously added epoxide. This provides a polyoxyalkylene polyol which includes a lower proportion of high molecular weight polyol as compared to a polyoxyalkylene polyol prepared by conventional methods. For different fields of application of polyether polyols, it is necessary to modify the polyether chains, especially at the end of the chain. For example, polyether alcohols used in the preparation of flexible polyurethane foams typically have a polyether chain containing a mixture of ethylene oxide and epoxigen. In the use of the flexible sheet-like foam, in order to adjust the reactivity of the polyether alcohol in the production of the foam, it is preferred to add propylene oxide at the end of the chain. Such polyether alcohols are described, for example, in WO 01/16209. W〇2006/002807 describes a process for the continuous preparation of polyether alcohols, which employs DMC catalyst to add an epoxy to a starting material of a secret functional group, which is in a further-continuous reaction. In the apparatus, the precursor is extracted from the continuous reactor and reacted with another epoxy-based or at least two epoxy-fired mixtures, and the epoxy chamber or at least two epoxy resins used in the two reactions The mixtures are different from each other. There is still a need for a process having a specific structure, such as a polyoxyalkylene copolymer having a hydrophilic/hydrophobic block, or a soft/hard block structure, for use in a particular application. Nowadays, it has been unexpectedly found that the basic skeleton of the hydrophobic group having a high molecular weight, the oxygen-expandable block copolymer can be injured in a particularly beneficial manner by the following method, wherein 'the first step is to diversify as needed The alcohol starting material is charged first and at least one epoxide is reacted in the presence of at least one DMC catalyst and in the presence of at least one polyol or polyol merging polymer, and epoxide is continuously added during the polymerization. The polyol or polyol is polymerized, and then, in the second step, the polyoxyalkylene polyol thus supplied is reacted with ethylene oxide oxime. SUMMARY OF THE INVENTION The present invention therefore provides a method for preparing a polyoxyalkylene alkyl block copolymer composed of a hydrophobic polyoxyalkylene basic skeleton and a terminal hydroxyl group (polyoxyethylidene), wherein the polyoxyalkylene extension is based on The total weight of the alkyl block copolymer, wherein the hydrophobic polyoxyalkylene group has at least 3% by weight of the basic skeleton, and is composed of a C3_C6_oxyalkylene unit and a ratio of the hydroxyl group (polyoxyethylidene) From 1 to 90% by weight, the process comprises a) reacting at least one C2-C6 epoxide in the presence of 145075.doc 201033248 for polyoxyalkylene polyol (1) at least one multimetal cyanide Catalyst, (2) at least one continuously added starting material Sk' is selected from the group consisting of a polyol and/or (: 2-C6 polyol oligomer, and (3) at least one initially charged as needed The polyol starting material Sv, during the reaction of the step a), continuously adding the C2_C6 epoxide and the starting material Sk, and the starting material Sk is based on at least 1% by weight of the starting compound used in the step a) Addition of the content; and b) the obtained in step a) Alkylene oxide consisting of a hydroxyl group of the polyhydric alcohol ethoxylates extension reaction. [Embodiment] In the context of the present application, the terms "multimetal cyanide catalyst", "double metal cyanide catalyst" and "DMC catalyst" are used synonymously. The reaction in step b) is carried out in particular without a multimetal cyanide catalyst. The term "block filament" refers to a filament having a proud segment structure, each trailing segment comprising a plurality of identical structural units and having at least one structural or configuration characteristic ': not present in the immediate vicinity of the block. In the context of the present invention, the term "copolymer" especially refers to a copolymer having a polymer-based basic skeleton (internal block) which additionally has a block of at least two different terminal polymers, preferably 2 to 2 8 pieces, more preferably 2 to 3 pieces and particularly preferably 2 pieces. The oxime copolymer of the present invention is especially a polymer whose molecular system consists of linearly linked blocks. The material * and 'also includes a block copolymer having a branched structure and may be referred to as a graft copolymer 145075.doc -6 - 201033248 or a comb copolymer. In the context of the present invention, the term "C2_q epoxide" means a linear or branched saturated hydrocarbon compound containing from 2 to 6 and preferably from 2 to 4 carbon atoms, which is on the carbon skeleton of the compound. There is at least one epoxy group, preferably one or two epoxy groups and more preferably one epoxy group. Examples are epoxyethane (=ethylene bromide), epoxy propylene (= propylene oxide), I. Epoxybutane butylene oxide), 2,3_epoxybutane (=butylene oxide), 1,2-epoxy-2-debenzylpropane (=epoxy isobutane) , it's epoxy pentane, 2,3-epoxy pentane, 1'2-epoxy-2-methylbutyring, 2,3-epoxymethylbutane, 1,2-ring Oxy hexane, 2,3-epoxy hexane and 3,4-epoxy hexane. earth

在本發明之上下文中,術語「(:2_匕多元醇」係指含有2 至6個及較佳為2至4個碳原子之線性或分枝狀飽和烴化合 物。該Cs-Ce多元醇在化合物之碳骨架上帶有至少2個 基,較佳為2至8個,特別佳為2至6個及更佳為2或3個。實 例為乙二醇、1,2-丙二醇(=丙二醇)、匕^丁二醇、2弘丁 二醇、2-甲基-1,2-丙二醇、1,2_戊二醇、2,3_戊二醇、2_曱 基-1,2-丁二醇、2-甲基-2,3-丁二醇、L2-己二醇、2,3·己 二醇、3,4-己二醇及丙三醇及三羥曱基丙規。 在本發明之上下文中,術語r聚氧伸烷基多元醇」 (「聚醚多兀醇」)係指線性或分枝狀聚氧伸烷基類,在聚 氧伸烧基基本骨架之碳原子上帶有至少2個〇H基,較佳為 2至8個及更佳為2或3個。實例為均聚物及共聚物,在正式 意義上’其可藉由使如上所述之一個或多個多元醇縮合, 145075.doc 201033248 或藉由使如上所述之-個或多個多元醇與一個或多個環氧 化物反應獲得。 係指化學反應,其 在本發明之上下文中,術語「縮 中在兩個對應官能基團之間消去—個小分子(諸如水^而: 成共價鍵。術語「縮合」較佳係指消去水之醚化。因此广 術語「可藉由同質-或異質縮合製備之聚氧伸烷基」,恰類 似術語「c2-c6多元醇寡聚物」,係'指具有終端⑽基之直鍵 或分枝狀聚氧伸烷基分子。可藉由不同多元醇之異質縮合 製備之聚氧伸烷基類,在本發明之上下文中,包括呈嵌严 共聚物形式之聚氧伸烷基及呈無規則共聚物形式之彼等。x 在本發明之上下文中,術語「缓酸酷」係指具有r=h或 烧基之式R-COO·之群。 下文中,待製備之聚氧伸烷基嵌段共聚物成分之分子量 數據或重量%數據’除非明確指ώ,否則係分別基於存在 於待製備之聚氧伸烷基嵌段共聚物中之成分,亦即,基於 呈聚合或縮合形式之成分。 根據本發明,待製備之聚氧伸烷基嵌段共聚物具有「疏 水性聚氧伸烷基基本骨架」0在本發明之上下文中',該2 語係指聚氧伸烷基嵌段,其具有較相同分子量之聚氧伸乙 基嵌段低的水溶解度。根據本發明,該疏水性聚氧伸烷基 基本骨架之至少30重量%程度由^胃匕-氧伸烷基單元所ς 成、亦即多元醇起始物含量之至少3〇重量%,步驟叻中所 採用之cvc:6環氧化物及C2_C6多元醇或C2_C0多元醇寡聚 物基於其之聚合形式,形成Cs-C:6-氧伸烷基單元。較佳 145075.doc 201033248 至少50重量%,更佳至少70重量%及極佳100重量%之疏水 性聚氧伸燒基基本骨架係由C3-C6-氧伸烷基單元所組成。 根據定義’疏水性聚氧伸烷基基本骨架具有終端C3_C6_氧 基伸烧基單元’其終端氡原子帶有根據本發明製備之聚氡 伸烷基嵌段共聚物之終端羥基(聚氧伸乙基)。 步驟a) 依據本發明之方法包括在至少一種DMC觸媒及至少一種In the context of the present invention, the term "(:2_匕polyol) means a linear or branched saturated hydrocarbon compound having 2 to 6 and preferably 2 to 4 carbon atoms. The Cs-Ce polyol The carbon skeleton of the compound has at least 2 groups, preferably 2 to 8, more preferably 2 to 6 and more preferably 2 or 3. Examples are ethylene glycol and 1,2-propanediol (= Propylene glycol), 匕^ butanediol, 2 rhodamine, 2-methyl-1,2-propanediol, 1,2-pentanediol, 2,3-pentanediol, 2_mercapto-1,2 -butanediol, 2-methyl-2,3-butanediol, L2-hexanediol, 2,3·hexanediol, 3,4-hexanediol, glycerol and trishydroxypropyl In the context of the present invention, the term "polyoxyalkylene polyol" ("polyether polyol") refers to a linear or branched polyoxyalkylene group, which is a basic skeleton of a polyoxyalkylene. The carbon atom carries at least 2 〇H groups, preferably 2 to 8 and more preferably 2 or 3. Examples are homopolymers and copolymers, in the formal sense 'which can be made as described above Condensation of one or more polyols, 145075.doc 201033248 or by making one or more of the above The reaction of a primary alcohol with one or more epoxides refers to a chemical reaction, which in the context of the present invention, the term "shrinking between two corresponding functional groups - a small molecule (such as water): Covalent bond. The term "condensation" preferably means the etherification of water. Therefore, the term "polyoxyalkylene group which can be prepared by homo- or heterogeneous condensation" is similar to the term "c2-c6 polyol oligomer". "polymer" means a direct bond or a branched polyoxyalkylene group having a terminal (10) group. A polyoxyalkylene group which can be prepared by heterogeneous condensation of different polyols, in the context of the present invention, Included are polyoxyalkylene groups in the form of inlaid copolymers and in the form of random copolymers. x In the context of the present invention, the term "slow acidity" means R having r = h or alkyl groups. In the following, the molecular weight data or the % by weight data of the polyoxyalkylene block copolymer component to be prepared is not based on the polyoxyalkylene group present in the polyoxyalkylene group to be prepared, respectively. a component in a segment copolymer, that is, based on a polymerized or condensed form According to the present invention, the polyoxyalkylene alkyl block copolymer to be prepared has a "hydrophobic polyoxyalkylene basic skeleton" 0 in the context of the present invention, which refers to polyoxyalkylene a base block having a lower water solubility than a polyoxyalkylene block of the same molecular weight. According to the present invention, at least 30% by weight of the hydrophobic polyoxyalkylene base skeleton is composed of a gastric oxime-oxyalkylene The base unit is formed, that is, at least 3% by weight of the polyol starting material content, and the cvc:6 epoxide and the C2_C6 polyol or the C2_C0 polyol oligomer used in the step are based on the polymerization form thereof. Forming a Cs-C: 6-oxyalkylene unit. Preferably 145075.doc 201033248 at least 50% by weight, more preferably at least 70% by weight and an excellent 100% by weight of the hydrophobic polyoxyalkylene radical basic skeleton is derived from C3- It consists of a C6-oxyalkylene unit. By definition, the 'hydrophobic polyoxyalkylene basic skeleton has a terminal C3_C6_oxyalkylene group', the terminal oxime atom having the terminal hydroxyl group of the polyalkylene alkyl block copolymer prepared according to the invention (polyoxygen base). Step a) The method according to the invention comprises at least one DMC catalyst and at least one

具有活性氫原子之起始物之存在下,使至少一種匸厂匕環 氧化物聚合而製備聚氧伸烷基多元醇。在該製備中,在步 驟a)之該聚合過程中’連續添加至少一部分該起始物。該 部分起始物稱為起始物心及係選自C2_c6多元醇、c2_c6多 兀醇寡聚物及其混合物。此外,在聚合期間,連續添加用 於聚合之0^6環氧化物或用於聚合之c2_C6環氧化物類。 在較佳之實施例中,就步叫中之聚合而言,進而使具 有活性氫原子之至少一種起始物先帶電荷。該部分之起始 物稱為起始物多元醇s v。 在本發明之方法中, 此相同或不同地加以定 定義為與起始物sk不同 s玄多70醇起始物sv及起始物sk可彼 義。較佳而言’多元醇起始物sv係 典型地,多元醇起始物有等於或小於待製備聚氧伸 燒基多元酵之數量平均分子量之數量平均分子量。該多元 醇起始物Sv之分子量較佳小於待萝 1備之聚氧伸烷基多元醇 之分子量。 諸如乙二醇、 多元醇起始物sv可為低分子量之多元醇 145075.doc 201033248 丙二醇、1,2-丁二醇、2,3_丁二醇、2_甲基-ls2_丙二醇、丙 三醇、三羥甲基丙烷,其中,在此情況下,所採用之多元 醇起始物Sv之含量必需小於使dmC觸媒鈍化所需之含量。 然而’該多元醇起始物sv較佳為高分子量多元醇,其具 有約300至30000 g/mo卜及更佳為1000至20000 g/m〇1之數 量平均分子量。特定而言,該等多元醇起始物心係選自聚 氧伸娱<基多元醇。 典型地’作為多元醇起始物Sv使用之化合物具有對應於 待製備之聚氧伸烷基多元醇及待製備之聚氧伸烷基嵌段共 聚物之羥基數的羥基數。每分子之羥基平均數一般為2至8 個’較佳為2至3個,及特別佳為2個。 合適之多元酵起始物Sv之實例為乙二醇、丙二醇、l52_ 丁二酵、2,3-丁二醇、2-曱基-1,2-丙二醇、丙三醇、三羥 曱基丙烷及可藉由該等多元醇尤其是丙二醇及/或聚丙二 醇經同質-或異質縮合而製備之聚氧伸烷基類。 較佳之多元醇起始物Sv係由以下之同質-或異質縮合而 製備:乙二醇、丙二醇、1,2 -丁二醇、2,3 -丁二醇、2-甲 基-1,2-丙二醇、丙三醇及/或三羥甲基丙炫,尤其是聚丙 二醇。 所採用之多元醇起始物Sv之含量取決於許多因素,例如 所採用之多元醇起始物之種類、多元醇起始物之分子量及 待製備之聚氧伸燒基多元醇及批ϊ大小。一般,基於步驟 a)中之起始化合物之使用量,亦即,基於多元醇起始物 sv、起始物sk(C2-C6多元醇及/或C2_C6多元醇寡聚物)及c2_c6 145075.doc -10 - 201033248 環氧化物之總含量,該多元醇起始物sv之使用量為i至98 重量%,較佳為1 〇至50重量%。 例如,所採用之較高分子量之多元醇起始物心可藉由習 知的用以製備聚氧伸烷基多元醇之鹼_催化法藉由使低分 子量多元醇烷氧基化及隨後移去作為觸媒使用之鹼而製 得。 或者’所用之較高分子量之多元醇起始物Sv可在經活化 ❼ iDMC觸媒之存在下,以例如WO 97/29146中描述之藉連 續添加CrC6環氧化物及C2_C6多元醇或C2_C0多元醇寡聚物 而自少量該等多元醇起始物進行而製得。 原貝丨上,在DMC觸媒存在下可聚合之任一 C2_c6環氧化 物咸適於如本發明方法之步驟幻中之反應。 然而,一般在如本發明之方法之步驟a)中,將採用選自 環氧基乙烷(環氧乙烷)、環氧基丙烷(環氧丙烷)、丨,2-環氧 基丁垸(1,2-環氧丁院)、2,3_環氧基丁炫(2,3_環氧丁虎)及 • 1,2_環氧基甲基丙烷(環氧異伸丁烷)及其混合物之c2-c6 環氧化物。C2-C0環氧化物較佳為環氧丙烷。 6 典型地,C2_C6環氧化物之使用量為基於步驟a)中之起始 化合物之使用量之丨至98重量%,較佳為1〇至9〇重量%。 右合適,該CrC6環氧化物可藉由至多99 9%之惰性氣體 (例如稀有氣體,氮氣或C02)稀釋。 典型地’在如本發明之方法之步驟a)巾,作為起始物心 使用之c2-cj元醇或C2_Cj元醇寡聚物為低分子量多元 酵。該等多元醇典型地具有小於約300 g/mol之分子量。 145075.doc 201033248 例如’較佳之低分子量多元醇係選自乙二醇、丙二醇、 丁二醇、2,3-丁二醇、2_甲基丙二醇、丙三醇、三 經甲基丙燒及其混合物之單_、二及三聚物。該㈣多元 醇或C2 C6多元醇寡聚物更好係選自丙二醇之單_、二-及三 聚物’亦即選自丙二醇、二丙二醇及三丙二醇及選自其混 合物。 典型地,起始*Sk之使用量為基於步驟a)中之起始化合 物之使用量之1至98重量。/。,較佳為丨〇至5〇重量%。 在如本發明之方法之步驟a)中,C2_C0多元醇及/或The polyoxyalkylene polyol is prepared by polymerizing at least one ruthenium ring oxide in the presence of a starting material having an active hydrogen atom. In this preparation, at least a portion of the starting material is continuously added during the polymerization of step a). The starting material is referred to as the starting core and is selected from the group consisting of C2_c6 polyols, c2_c6 polyterpene oligomers, and mixtures thereof. Further, during the polymerization, a 0-6 epoxide for polymerization or a c2_C6 epoxide for polymerization is continuously added. In a preferred embodiment, at least one of the starting materials having active hydrogen atoms is first charged in the polymerization of the step. The starting material for this fraction is referred to as the starting polyol s v . In the process of the present invention, this is the same or differently defined as being different from the starting material sk. The sinopoly 70 alcohol starting material sv and the starting material sk are distinguishable. Preferably, the polyol starting material sv is typically a polyol starting material having a number average molecular weight equal to or less than the number average molecular weight of the polyoxyalkylene-based multi-ferment to be prepared. The molecular weight of the polyol starting material Sv is preferably smaller than the molecular weight of the polyoxyalkylene polyol to be prepared. For example, ethylene glycol, polyol starting material sv can be a low molecular weight polyol 145075.doc 201033248 propylene glycol, 1,2-butanediol, 2,3-butanediol, 2-methyl-ls2_propylene glycol, C Triol, trimethylolpropane, wherein, in this case, the amount of polyol starting material Sv used must be less than the amount required to passivate the dmC catalyst. However, the polyol starting material sv is preferably a high molecular weight polyol having a number average molecular weight of from about 300 to 30,000 g/mo b and more preferably from 1,000 to 20,000 g/m 〇1. In particular, the polyol starting materials are selected from the group consisting of polyoxyl extensions and polyhydric alcohols. The compound which is typically used as the polyol starting material Sv has a hydroxyl number corresponding to the number of hydroxyl groups of the polyoxyalkylene polyol to be prepared and the polyoxyalkylene block copolymer to be prepared. The average number of hydroxyl groups per molecule is generally from 2 to 8 'preferably from 2 to 3, and particularly preferably two. Examples of suitable multi-fermentation starting materials Sv are ethylene glycol, propylene glycol, l52_butyl difer, 2,3-butanediol, 2-mercapto-1,2-propanediol, glycerol, trishydroxypropane propane And polyoxyalkylenes which can be prepared by homogeneous or heterogeneous condensation of such polyols, especially propylene glycol and/or polypropylene glycol. Preferred polyol starting materials Sv are prepared by the homogenous or heterogeneous condensation of ethylene glycol, propylene glycol, 1,2-butanediol, 2,3-butanediol, 2-methyl-1,2 - Propylene glycol, glycerol and/or trimethylol propyl, especially polypropylene glycol. The amount of polyol starting material Sv used depends on a number of factors, such as the type of polyol starting material employed, the molecular weight of the polyol starting material, and the polyoxyalkylene-based polyol to be prepared and the size of the batch. . Generally, based on the amount of the starting compound used in step a), that is, based on the polyol starting material sv, the starting material sk (C2-C6 polyol and/or C2_C6 polyol oligomer) and c2_c6 145075. Doc -10 - 201033248 The total content of epoxide, the polyol starting material sv is used in an amount of from i to 98% by weight, preferably from 1 Torr to 50% by weight. For example, the higher molecular weight polyol starting materials employed can be alkoxylated and subsequently removed by conventional base-catalyzed processes for preparing polyoxyalkylene polyols. It is prepared as a base for use as a catalyst. Or 'the higher molecular weight polyol starter Sv used may be continuously added with CrC6 epoxide and C2_C6 polyol or C2_C0 polyol in the presence of activated ❼ iDMC catalyst as described, for example, in WO 97/29146 Oligomers are prepared from a small amount of such polyol starting materials. Any of the C2_c6 epoxides which are polymerizable in the presence of DMC catalyst on the original shellfish are suitable for the reaction of the steps of the method of the present invention. However, generally in step a) of the process of the invention, it will be selected from the group consisting of epoxy ethane (ethylene oxide), epoxy propane (propylene oxide), hydrazine, 2-epoxy butyl hydrazine. (1,2-epoxybutylene), 2,3_epoxybutadiene (2,3_epoxybutyl) and • 1,2-epoxymethylpropane (epoxy-isobutane) And its mixture of c2-c6 epoxides. The C2-C0 epoxide is preferably propylene oxide. 6 Typically, the C2_C6 epoxide is used in an amount of from 98% by weight, preferably from 1% to 9% by weight, based on the amount of the starting compound used in the step a). Suitably, the CrC6 epoxide can be diluted by up to 99% inert gas (e.g., noble gas, nitrogen or CO 2 ). Typically, in the step a) as in the method of the present invention, the c2-cj or C2_Cj alcohol oligomer used as the starting material is a low molecular weight multi-ferment. The polyols typically have a molecular weight of less than about 300 g/mol. 145075.doc 201033248 For example, a preferred low molecular weight polyol is selected from the group consisting of ethylene glycol, propylene glycol, butanediol, 2,3-butanediol, 2-methylpropanediol, glycerol, trimethyl ketone and Mono-, di- and terpolymers of the mixture. The (iv) polyol or C2 C6 polyol oligomer is more preferably selected from the group consisting of propylene glycol mono-, di- and trimer', i.e., propylene glycol, dipropylene glycol and tripropylene glycol, and a mixture thereof. Typically, the starting amount of *Sk is from 1 to 98% by weight based on the amount of starting compound used in step a). /. Preferably, it is 丨〇 to 5% by weight. In step a) of the process according to the invention, C2_C0 polyol and/or

多元醇募聚物之連續添加可藉由添加㈣環氧化物及CA =元醇或CVC6多;醇寡聚物之混合物,或藉由添加分離 流得以實現。c2_c6環氧化物及C2_C6多元醇或C2_C6多元醇 寡聚物之添加在時間上可以平行或者錯開之形式進行。 在如本發明之方法之步驟幻中,至少一種多金屬氰化物 化合物係使用作為觸媒(DMC觸媒)。根據一個實施例,其 包括可溶於水之金屬鹽及可溶於水之金屬氰化物鹽之反應 產物。此外,就觸媒之活化而言,該DMC觸媒包括有機錯 合劑,其係例如選自可與DMC化合物形成錯合物之可溶於 水之含雜原子之有機化合物。該等錯合劑之實例為可溶於 水之脂族醇,諸如第三丁醇。此外,該DMC觸媒可包括有 機添加劑。 原則上,自先前文獻所知之所有DMC觸媒咸適用於如本 發明之方法。合適之DMC觸媒及其製備係述於例如w〇 97/29146 ' WO 99/16775、DE-A-101 17 273、WO 00/74845、 145075.doc 201033248 WO 01/64772 ^ WO 2006/094979 ^ WO 2006/117364 (DE 10 2005 020 347 Al)、WO 2007/082596及其中提及之泉考文 獻’其等係以引用的方式明確併入本文。 用於如本發明之方法之步驟a)之合適之觸媒為如下通式 (A)之雙金屬氰化物之化合物: M1a[M2(CN)b(A)c]d * eCM'fXg) * h(H20) * i(L) * k(P) 其中·‘ ® M1為選自如下之至少一種金屬離子:Zn2+、Fe2+、The continuous addition of the polyol condensate can be achieved by adding (iv) an epoxide and a CA = diol or CVC6; a mixture of alcohol oligomers, or by adding a separation stream. The addition of the c2_c6 epoxide and the C2_C6 polyol or the C2_C6 polyol oligomer can be carried out in parallel or in a staggered manner in time. In the step of the method of the present invention, at least one multimetal cyanide compound is used as a catalyst (DMC catalyst). According to one embodiment, it comprises the reaction product of a water-soluble metal salt and a water-soluble metal cyanide salt. Further, in terms of activation of the catalyst, the DMC catalyst includes an organic binder selected, for example, from a water-soluble hetero atom-containing organic compound which forms a complex with a DMC compound. Examples of such a binder are water-soluble aliphatic alcohols such as third butanol. Additionally, the DMC catalyst can include organic additives. In principle, all DMC catalysts known from the prior literature are suitable for use in the method of the invention. Suitable DMC catalysts and their preparation are described, for example, in WO 97/29146 'WO 99/16775, DE-A-101 17 273, WO 00/74845, 145075.doc 201033248 WO 01/64772 ^ WO 2006/094979 ^ WO 2006/117364 (DE 10 2005 020 347 A1), WO 2007/082596, the disclosure of which is hereby incorporated by reference in its entirety in its entirety herein in Suitable catalysts for step a) of the process according to the invention are compounds of the double metal cyanide of the general formula (A): M1a[M2(CN)b(A)c]d*eCM'fXg) * h(H20) * i(L) * k(P) where ·' ® M1 is at least one metal ion selected from the group consisting of Zn2+, Fe2+,

Fe3+、Co3+、Ni2+、Mn2+、Co2+、Sn2+、Pb2+、Mo4+、 Mo6+、Al3+、V4+、V5+、Sr2+、W4+、W6+、Cr2+、Cr3+、 Cd2+、Hg2+、Pd2+、Pt2+、V2+、Mg2+、Ca2+、Ba2+、Cu2+、Fe3+, Co3+, Ni2+, Mn2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, Al3+, V4+, V5+, Sr2+, W4+, W6+, Cr2+, Cr3+, Cd2+, Hg2+, Pd2+, Pt2+, V2+, Mg2+, Ca2+, Ba2+, Cu2+,

La3+、Ce3+、Ce4+、Eu3+、Ti3+、Ti4+、Ag+、Rh2+、Rh3+、La3+, Ce3+, Ce4+, Eu3+, Ti3+, Ti4+, Ag+, Rh2+, Rh3+,

Ru2+及 Ru3+, M2為選自如下之至少一種金屬離子:Fe2+、Fe3+、 A Co2+、Co3+、Mn2+、Mn3+、V4+、V5+、Cr2+、Cr3+、Rh3+、 9Ru2+ and Ru3+, M2 is at least one metal ion selected from the group consisting of Fe2+, Fe3+, A Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, Cr3+, Rh3+, 9

Ru2+及 Ir3+, A為陰離子,其選自鹵化物、氫氧根、琉酸根、碳酸 根、氰化物、硫氰酸根、異氰酸根、氰酸根、羧酸根、草 酸根、硝酸根、亞硝醯基、硫酸氫根、磷酸根、磷I一氫 根、磷酸氫根及碳酸氫根, X為陰離子,其選自鹵化物、氫氧根、碰酸根炭§欠 根、氰化物、硫氰酸根、異氰酸根、氰酸根羧.草 酸根、硝酸根、亞硝醢基、硫酸氫根、構酸根、鱗酸一氣 145075.doc •13- 201033248 根、磷酸氫根及碳酸氫根, L為可混溶於水之配位體,其選自醇類、醛類、酮類、 醚類、聚醚類、酯類、聚酯類、聚碳酸酯、脲類、醯胺 類、一級、一級及三級胺類、含吡啶氮之配位體、腈類、 硫化物類、磷化物類、亞磷酸鹽、膦類、膦酸鹽及磷酸 鹽, a、b、c、d、f及g係選擇使得確保dmc化合物之電中 性,其中c可為〇, e、h、i及k分別各自為大於或等於零之數值,及 P為有機添加劑。 合適之有機添加劑p為,例如,聚醚類、聚酯類、聚碳 酸S曰類、聚烧一醇山梨糖醇酐醋類、聚烧二醇縮水甘油謎 類、聚丙烯醯胺、聚(丙烯醯胺-共-丙烯酸)、聚丙稀酸、 聚(丙烯醯胺-共-馬來酸)、聚丙烯腈、聚丙烯酸烷酯類、 聚甲基丙烯酸烷酯類、聚乙烯甲醚、聚乙烯***、聚乙酸 乙烯酯、聚乙烯醇、聚-N-乙烯吡咯啶酮、聚(N_乙烯吡咯 淀酮·共-丙烯酸)、聚聚乙烯基甲基酮、聚(4_乙烯基苯 盼)、聚(丙稀酸-共-苯乙稀)、嗔嗅琳聚合物類、聚伸烧基 亞胺類、馬來酸及馬來酸軒共聚物類、經乙基纖維素、聚 乙酸酯、離子表面-及界面-活性化合物、膽汁酸或其鹽、 其趟類或酿胺類、多元醇之缓酸酯類及配糖普。 M1與M2可相同或不同。A與X可相同或不同。 針對在如本發明之方法之步驟a)中之用途而言,較佳為 式A之雙金屬氣化物之化合物’其中μ〗係選自Zn2+、 145075.doc •14- 201033248Ru2+ and Ir3+, A is an anion selected from the group consisting of halides, hydroxides, citrates, carbonates, cyanides, thiocyanates, isocyanates, cyanates, carboxylates, oxalates, nitrates, nitrosonides Base, hydrogen sulfate, phosphate, phosphorus I monohydrogen, hydrogen phosphate and hydrogencarbonate, X is an anion selected from the group consisting of halides, hydroxides, acid touches, carbon, cyanide, thiocyanate , isocyanate, cyanate carboxylate, oxalate, nitrate, nitrosonium, hydrogen sulfate, acidate, sulphuric acid 145075.doc •13- 201033248 root, hydrogen phosphate and bicarbonate, L is a ligand soluble in water selected from the group consisting of alcohols, aldehydes, ketones, ethers, polyethers, esters, polyesters, polycarbonates, ureas, guanamines, primary, primary and Tertiary amines, ligands containing pyridinium, nitriles, sulfides, phosphides, phosphites, phosphines, phosphonates and phosphates, a, b, c, d, f and g The selection is such that the electrical neutrality of the dmc compound is ensured, wherein c can be 〇, e, h, i and k are each a value greater than or equal to zero, and P is Organic additives. Suitable organic additives p are, for example, polyethers, polyesters, polysodium quinones, polyanisol sorbitan vinegars, polyalkylene glycol glycidol mysteries, polyacrylamides, poly( Acrylamide-co-acrylic acid), polyacrylic acid, poly(acrylamide-co-maleic acid), polyacrylonitrile, polyalkyl acrylates, polyalkyl methacrylates, polyvinyl methyl ether, poly Ethylene ether, polyvinyl acetate, polyvinyl alcohol, poly-N-vinylpyrrolidone, poly(N_vinylpyrrolidone·co-acrylic acid), polyglycolmethyl ketone, poly(4-vinylbenzene) Hope), poly(acrylic acid-co-styrene), oxime lining polymer, poly(alkylene), maleic acid and maleic acid copolymer, ethyl cellulose, poly Acetate, ionic surface- and interfacial-active compounds, bile acids or salts thereof, terpenoids or amines of polyamines, buffers of polyhydric alcohols, and glycosides. M1 and M2 may be the same or different. A and X may be the same or different. For the use in step a) of the process according to the invention, a compound of the bimetal hydride of the formula A is preferred, wherein the μ is selected from the group consisting of Zn2+, 145075.doc • 14- 201033248

Fe2 、Co2及Νι2+ ,尤其為Zn2+。同樣,較好為其中M2係 選自 Co2+、Co3+ ' Fe2+、Fe3+、Cr3+及 Rh3+(尤其為 c〇3+)之 式A之雙金屬氰化物之化合物。同樣,較好為其中a為氰 化物之式A之雙金屬氰化物之化合物。同樣,較好為其中 X為缓根,尤其為甲酸根、乙酸根或丙酸根之式A之雙 金屬氰化物之化合物。 式A之合適之DMC觸媒可例如按w〇 99/16775、WO 01/16209或WO 2006/094979中所述加以製備。 ❹ DMC觸媒,尤其如WO 99/16775及DE-A-101 17 273中所 述者’可為結晶或非晶形。在k為零之情況下,較好為結 晶雙金屬氰化物之化合物。在k大於零之情況下,較好為 結晶、部分結晶及實質上非晶形之觸媒。各種較佳實施例 為經修飾之觸媒。一個較佳實施例為其中k大於零之式(A) 之觸媒。因此較佳之觸媒包括至少一種雙金屬氰化物之化 合物、至少一種有機配位體及至少一種有機添加劑P。 在另一個實施例中,k為零,視需要i亦為零及X僅為羧 Φ 酸根’較佳為甲酸根、乙酸根及丙酸根。該等觸媒述於 WO 99/16775。在該實施例中,較好為結晶雙金屬氰化物 觸媒。其他較佳者為述於如WO 00/74845中所述之結晶及 . 板狀之雙金屬氰化物觸媒。 觸媒係藉由使金屬鹽溶液與金屬氰基酸鹽溶液組合製 備’其視需要可包括有機配位體L及有機添加劑P。隨後, 添加有機配位體及視需要之有機添加劑。在製備觸媒之一 個較佳實施例中’首先製備不活化雙金屬氰化物相且此可 依據W〇 〇i/64772(PCT/EP01/〇1893)中所描述,接著藉由 再結晶而轉化為活性雙金屬氰化物相。 145075.doc 201033248 在觸媒之另一個較佳實施例中,e、i及k不等於零。如 WO 99/19063(PCT/EP1998/06312)中所述,此等為包括可 與水混溶之有機配位體(一般含量為0.5至30重量%)及有機 添加劑(一般含量為5至80重量%)之雙金屬氰化物觸媒。如 US 5,158,922中描述,可藉由劇烈攪拌(24000 rpm,例如 利用Ultra-Turrax)或藉由授拌製備觸媒。 特定而言,用於炫氧基化之適宜DMC觸媒為包括辞、鈷 或鐵或該等金屬之兩種之彼等。 較好採用結DMC化合物。在一個較佳實施例中’係使用 包括乙酸鋅作為金屬鹽組分形式之Zn-Co型結晶DMC化合 物作為觸媒。使該等化合物以單斜構造結晶且具有板狀之 常態。該等化合物述於例如WO 〇〇/74845或WO 01/64772 。 適宜者亦為WO 2007/082596中所述之多金屬氰化物觸 媒。特定而言,步驟a)中所採用之多金屬氰化物觸媒係選 自下述式之觸媒: M,a[M2(CN)b]d:,!eM1uXvYni*h(H2〇)s,ti(L)!,!K(P) (B) 及 M1a[M2(CN)b]d*eM1uXv5ltoM3qYw*h(H2〇)*i(L)*k(P) (C) 其中: Y 為陰離子,其不同於X且選自包括如下之群:齒 化物、硫酸根、硫酸氫根、焦硫酸根、亞硫酸 145075.doc -16· 201033248 M3 根、磺酸根、(=RS〇3·,其中烷基、芳 基、C^Czo-烷基芳基)、碳酸根、碳酸氫根、氰化 物、硫氰酸根、異氰酸根、異硫氰酸根、氰酸 根、羧酸根、草酸根、硝酸根、亞硝酸根、磷酸 根、鱗酸氫根、碟酸二氫根、二麟酸根、蝴酸 根、四硼酸根、高氣酸根、四氟硼酸根、六氟鱗 酸根、四苯基硼酸根; 為鹼金屬離子或銨離子(NH4+)或烷基銨離子 (R4N+ ' R3NH+ ' R2NH2+、RNH3+,其中 烷基); U、V、m、q&w為大於零整數或分數且可選擇以使化合 物為電中性; 0 大於零;及 其他係數及指數係如式A之定義。 此外’使用於本發明方法之步驟a)之較佳者為如w〇 φ 2006/1 17364所述之多金屬氰化物觸媒。步驟a)中所採用之 多金屬氰化物觸媒特定而言係選自包括如下通式之至 少一種二金屬氰化物化合物之觸媒: 其中: Μ1 為金屬離子,其係選自包括以下之群:Ζη(π)、 Fe(II)、Co(III)、Ni(II)、Mn(II)、Co(II)、 Sn(II)、Pb(II)、Fe(III)、Mo(IV)、Mo(VI)、 145075.doc -17- 201033248Fe2, Co2 and Νι2+, especially Zn2+. Also, a compound of the double metal cyanide of the formula A wherein M2 is selected from the group consisting of Co2+, Co3+'Fe2+, Fe3+, Cr3+ and Rh3+ (especially c〇3+) is preferred. Also, a compound of the double metal cyanide of the formula A in which a is a cyanide is preferred. Also, a compound of the double metal cyanide of the formula A wherein X is a slow root, especially formate, acetate or propionate is preferred. Suitable DMC catalysts of formula A can be prepared, for example, as described in WO 99/16775, WO 01/16209 or WO 2006/094979. The ❹ DMC catalyst, especially as described in WO 99/16775 and DE-A-101 17 273, may be crystalline or amorphous. In the case where k is zero, a compound which crystallizes double metal cyanide is preferred. In the case where k is greater than zero, it is preferably a crystalline, partially crystalline, and substantially amorphous catalyst. Various preferred embodiments are modified catalysts. A preferred embodiment is a catalyst of formula (A) wherein k is greater than zero. Preferred catalysts therefore comprise at least one double metal cyanide compound, at least one organic ligand and at least one organic additive P. In another embodiment, k is zero, i is also zero if desired, and X is only carboxy Φ acidate, preferably formate, acetate, and propionate. Such catalysts are described in WO 99/16775. In this embodiment, a crystalline double metal cyanide catalyst is preferred. Other preferred are the crystalline and plate-shaped double metal cyanide catalysts as described in WO 00/74845. The catalyst is prepared by combining a metal salt solution with a metal cyanoacid salt solution. The organic ligand L and the organic additive P may be included as needed. Subsequently, an organic ligand and, if desired, an organic additive are added. In a preferred embodiment of the preparation of the catalyst, 'the first inactive double metal cyanide phase is prepared and this can be converted by recrystallization as described in W〇〇i/64772 (PCT/EP01/〇1893). It is an active double metal cyanide phase. 145075.doc 201033248 In another preferred embodiment of the catalyst, e, i, and k are not equal to zero. As described in WO 99/19063 (PCT/EP1998/06312), these are organic miscible organic ligands (generally 0.5 to 30% by weight) and organic additives (generally 5 to 80). % by weight of double metal cyanide catalyst. The catalyst can be prepared by vigorous stirring (24000 rpm, for example using Ultra-Turrax) or by mixing, as described in US 5,158,922. In particular, suitable DMC catalysts for ethoxylation are those comprising rhodium, cobalt or iron or two of such metals. It is preferred to use a knotted DMC compound. In a preferred embodiment, a Zn-Co type crystalline DMC compound comprising zinc acetate as a metal salt component is used as a catalyst. These compounds are crystallized in a monoclinic structure and have a plate-like normal state. Such compounds are described, for example, in WO 〇〇/74845 or WO 01/64772. Suitable multi-metal cyanide catalysts as described in WO 2007/082596. In particular, the multimetal cyanide catalyst used in step a) is selected from the group consisting of: M, a[M2(CN)b]d:, !eM1uXvYni*h(H2〇)s, Ti(L)!,!K(P) (B) and M1a[M2(CN)b]d*eM1uXv5ltoM3qYw*h(H2〇)*i(L)*k(P) (C) where: Y is an anion , which is different from X and is selected from the group consisting of: dentate, sulfate, hydrogen sulfate, pyrosulfate, sulfurous acid 145075.doc -16· 201033248 M3 root, sulfonate, (=RS〇3·, wherein Alkyl, aryl, C^Czo-alkylaryl), carbonate, hydrogencarbonate, cyanide, thiocyanate, isocyanate, isothiocyanate, cyanate, carboxylate, oxalate, nitrate , nitrite, phosphate, hydrogen hydride, dihydrogenate, bisulphate, oleate, tetraborate, high oleate, tetrafluoroborate, hexafluoronate, tetraphenylborate; Is an alkali metal ion or ammonium ion (NH4+) or an alkylammonium ion (R4N+ 'R3NH+ 'R2NH2+, RNH3+, wherein alkyl); U, V, m, q&w is greater than zero integer or fraction and can be selected to make the compound Is electrically neutral; 0 is greater than zero; and other coefficients and A number of lines as defined in formula. Further preferred of the step a) used in the process of the invention is a multimetal cyanide catalyst as described in WO φ 2006/1 17364. The polymetallic cyanide catalyst used in step a) is specifically selected from a catalyst comprising at least one dimetal cyanide compound of the formula: wherein: Μ1 is a metal ion selected from the group consisting of :Ζη(π), Fe(II), Co(III), Ni(II), Mn(II), Co(II), Sn(II), Pb(II), Fe(III), Mo(IV) , Mo(VI), 145075.doc -17- 201033248

Al(III)、V(IV)、V(V)、Sr(II)、W(IV)、W(VI)、 Cu(II)及 Cr(III)。 M2 為金屬離子,其係選自包括以下之群:Sr(I)、Al(III), V(IV), V(V), Sr(II), W(IV), W(VI), Cu(II) and Cr(III). M2 is a metal ion selected from the group consisting of: Sr(I),

Mg(II)、Zn(II)、Fe(II)、Fe(III)、Co(III)、 Cr(III)、Mn(II)、Mn(III)、Ir(III)、Rh(III)、 Ru(II)、V(IV)、V(V)、Co(II)、Cr(II)、Ti(IV)。 X 為除氰化物之外之可形成鍵結至M1之配價基之 基,其係選自包括以下之群:羰基、氰酸根、異 氰酸根、亞硝酸根、硫氰酸根及亞硝醯基。 a、b、r、t為選擇使得符合電中性之條件之整數。 r較佳為4至6。 t較佳為0至2。 特別適於本發明方法者為包括鋅、鈷或鐵或該等金屬之 兩種之該等DMC觸媒。最適宜為後者之式(D)之觸媒,其 中 M1 為 Zn(II)及 M2 係選自 Co(III)及 Fe(III)。 上述所有DMC觸媒可為結晶或非晶形。該DMC觸媒可 以粉末、糊狀物或懸浮液之形式加以使用,可成形為成型 體,可導入成型體、發泡體或其類似物中,或可塗佈於成 形體、發泡體或其類似物上。 一般,DCM觸媒於本發明方法中之使用量將小於2000 ppm,較佳小於1 000 ppm,更佳小於500 ppm及最佳小於 100 ppm之DMC觸媒。 在至少一種多金屬氰化物觸媒、至少一種經連續添加之 選自c2-c6多元酵及/或c2-c6多元醇募聚物之起始物sk及視 145075.doc •18- 201033248 需要之至少一種最初帶電荷之多元醇起始物心之存在下, 使至少一種C2_C0環氧化物反應係藉由熟習此項相關技藝 者所知之常用方法及其慣用裝置中,尤其在配置有在壓力 下操作之裝置進行。 步驟a)中之反應一般係在不添加溶劑下進行。然而,該 反應亦使用在反應條件下為惰性之溶劑進行。 適且性溶劑為脂族及芳香族煙類例如曱苯或己烧,及 醚類例如四氫吱喃。 典型地,本發明方法之步驟a)可在9〇至24〇艺及較佳在 110至190°c之溫度下進行。 該CrQ環氧化物一般係以大於或等於C2_C6環氧化物在 所選擇反應溫度下之蒸氣壓下供應至反應混合物中。 本發明方法之步驟a)可獲得具有分子量一般在丨2 〇 〇至 200000 g/mo卜較好在15〇〇至1〇〇〇〇〇 g/m〇卜更好在 3〇〇〇 至約50000 g/mol且最好8〇〇〇至3〇〇〇〇 g/m〇i範圍之聚氧伸 烧基多元醇。 本發明方法之步驟a)中所獲得之聚氧伸烷基多元醇一般 具有2至8個羥基,較佳為2至3個,特別佳為2個羥基。 在進行步驟a)之後且在進行步驟b)之前,可*DMC觸媒 移除、適且方法包括過濾,其可呈深床過濾或膜過濾之形 式,或沈澱,例如以離心之方式。根據本發明之一個較佳 實施例,DMC觸媒係在進行步驟b)之前移除。 步驟b) 步驟a)中所提供之聚氧伸烷基多元醇與環氧乙烷之反應 145075.doc •19· 201033248 係藉由熟習此項相關技藝者所知之方法及其慣用裝置,尤 其在適於在加壓下操作之裝置中進行。 典型地,本發明方法之步驟b)將在適宜鹼存在下進行。 適宜鹼為,例如,鹼金屬氧化物、鹼土金屬氧化物、鹼金 屬氫氧化物、鹼土金屬氫氧化物、鹼金屬碳酸鹽、鹼土金 屬碳酸鹽、鹼金屬碳酸氫鹽、鹼土金屬碳酸氫鹽及其混合 物。較佳之鹼為鹼金屬氫氧化物及鹼土金屬氫氧化物諸 如Na〇H、KOH或Ca(OH)y基於欲乙氧基化之聚氧伸烷基 多元醇之含量,驗一般使用量為〇1至1〇重量%。 典型地,本發明方法之步驟b)係在高溫下,較佳在仂它 至250 C,更佳在80C至200°C及特別佳在之 溫度下進行。 典型地,該環氧乙烧係在大於或等於環氧乙烧於所選擇 反應溫度下之蒸氣壓壓力下,供應至聚氧伸院基多元醇及 鹼之混合物中。 若適宜’該環氧乙烷可藉由至多99 9之含量之惰性氣體 (例如稀有氣體、氮氣或C〇2)加以稀釋。 一般,乙氧基化係在不添加溶劑下進行,亦即,以塊體 進行。然而’烧氧基化亦可在於乙氧基化條件下為惰性之 溶劑存在下進行。適宜惰性溶劑為脂族及芳香族烴類例如 甲苯或己烷、或醚類例如四氫咬淹。 本發明之方法尤其適於製備聚氣伸烧基嵌段共聚物,其 中,基於所製備之聚氧伸烷基嵌段共聚物之總重量,該羥 基(聚氧伸乙基)之比例為5至8 5重量%且尤其是2 〇至8 〇重量 145075.doc -20· 201033248 %。 此外,本發明之方法尤其適於製備聚氧伸烷基嵌段共聚 物,其中所製備之聚氧伸烷基嵌段共聚物之該疏水性聚氧 -伸烷基基本骨架具有至少1500 g/mol之分子量,較佳為至 少3000 g/mol,更佳為至少6000 g/mol及最佳為至少8000 g/mol。分子量上限一般無須規定(uncritical)。一般,該疏 水性聚氧伸烷基基本骨架之分子量不超過100000 g/mol, 較佳不超過50000 g/mol及更佳不超過30000 g/mol。 另外,本發明之方法亦適於製備具有至少6000 g/mol, 較佳至少12000 g/mol及更佳至少15000 g/mol之分子量之 聚氧伸烷基嵌段共聚物。分子量之上限一般無須規定。典 型地,該聚氧伸烷基嵌段共聚物之分子量不超過200000 g/mol,較佳不超過100000 g/mol及更佳不超過50000 g/mol。 本發明之一個具體實施例係關於一種製備如下式(I)之聚 φ 氧伸烷基嵌段共聚物之方法: HO(C2H40),(C3H60)m(C2H4〇)„H (I) - 其中,m及η分別各自為>0的數值。 、 1、m及η之值係選擇使得提高聚氧伸烷基嵌段共聚物之 分子量及羥基(聚氧伸乙基)之比例,其係基於聚氧伸烷基 接枝共聚物之總重量(如根據以上所作的附註),亦即m值 為例如25至2000,較佳為50至1000及更佳為100至500,及 i及η之值總和為例如0.5至10000,較佳為2至10000,特別 145075.doc •21 - 201033248 佳為5至5000,及更佳為10至2000之範圍,其中1及η可相 同或不同。 關於製備式(I)化合物之方法之較佳實施例,較好為如本 發明之方法有關之上述附註。 本發明進一步提供藉由本發明方法獲得之聚氧伸烷基嵌 段共聚物。 下列該等實例係用以說明本發明而不用以限制其範圍。 實例 I、分析方法 分子量係根據DIN 55672,藉由以THF作為溶離液之凝 膠滲透層析法(GPC)測定。校正係以苯乙烯進行。因此, 僅以相對名詞評價所得之結果。 羥基數係根據DIN 53240測定。比預期高之OH數係歸因 於聚乙二醇之存在。 環氧乙對環氧丙之比例(EO/PO比)及一級對二級OH基之 比例可藉由1H NMR測定(依據J. Loccufier等人,聚合物通 報(Polymer Bulletin)1991 年,27,201-204之方法)。為此, 藉由三氣乙醯異氰酸酯(TAI)使待分析之聚合物樣品衍生 化。此舉使羥基官能基轉化成胺基曱酸酯。經酯化之一級 醇之訊號具有約4.4 ppm之位移,經酯化之二級醇為約5.2 ppm。亞甲基及次曱基之質子係在3.0至4.0 ppm之範圍。 來自環氧丙烷之甲基訊號出現在1.2 ppm處。在1H NMR 中,基於4.2 ppm處之訊號(以TAI酯化之全部一級醇),可 計算OH數。OH數較所預期高係歸因於聚乙二醇之存在。 145075.doc -22- 201033248 在1H NMR中測定EO/PO比例及OH數之方法: 取約20 mg待分析之聚合物溶於0_4 ml CDC13中。添加三 曱基矽烷(TMS)作為内標準。此後,將該溶液與0.2 ml TAI 混合,移入5 mm NMR管然後在NMR(400 MHZ)分光儀中 加以分析。對約1 ·2 ppm,3 ·0至4.0 ppm及約4.2 ppm之面積 進行人工積分,接著進行傅裏葉變換(Fourier transformation) 及自動相位及基準線校正。選擇零階積分相以使積分曲綫 之起始端與末端實質上呈水平。以約1.2 ppm之訊號作為 ^ 環氧丙烷含量之參考。環氧乙烷之比例可藉由自3.0至4.0 ppm訊號之積分減去環氧丙烷之次甲基質子及亞甲基質子 之3個質子之訊號之積分而計算。為了藉1H NMR法測定 ΟΗ之數量,採用4.2 ppm處之訊號。若將此放進環氧丙烷 及環氧乙烷之比例中,則可計算OH之數量。 黏度可於23°C下在板-錐式黏度計(ISO 291)中測得。 II、製備實例 ❹ 實例1: a)聚環丙烷(M=8000)之製備 使 3340 g聚丙二醇(平均分子量=4000 g/mol; Lupranol VP - 93 90, BASF)與3 8.3 g之含約5%濃度之以六氰基高鈷酸及乙 酸辞為主之DCM觸媒之聚丙二醇(平均分子量=4000 g/mol; Lupranol VP 9390,BASF)懸浮液混合,然後,於 125°C 下,連續添加單丙二醇(以69 g/h添加130.5 g)及環氧丙烷 (以6000 g/h添加16491.2 g)而進行轉化,得到具有8000 g/mol之平均分子量之聚丙二醇。隨後,於125°C下,將該 145075.doc -23- 201033248 反應混合物再攪拌1 h及在減壓條件下,使易揮發成分釋 放。得到18700 g無色液體。 動態黏度(25°C) : 3135 mPas ;羥基數:14.5 mg KOH/g b)環氧乙烷之注入 在2升的高壓釜中,使200.0 g聚丙二醇(平均分子量為 8000 g/mol,獲自實例la)及4.0 g氫氧化鉀水溶液(50重量 %)先帶電荷然後在80至120°C及約20 mbar下脫水。隨後, 藉由氮氣填充該高壓釜並使溫度增加至120°C。在2小時 内,添加202.0 g環氧乙烷。於120°C下,再攪拌所得之反 © 應混合物3 h及在減壓條件下,使易揮發成分釋放《得到 400 g可溶於水之淺棕色固體。 動態黏度(l〇〇°C) : 4655 mPas ;羥基數:15 mg KOH/g (計算 值:11.7 mg KOH/g) ; GPC : (THF) Mw=12700 ; Mw/Mn=1.03 ; TAI1HNMR(CDC13):無二級OH基;EO/PO比 = 1.4:1.0。 實例2 : a)聚環氧丙烷(Μ = 12000)之製備 如實例1 ’使3340 g聚丙二醇(平均分子量=4〇〇〇 g/m〇i; ❹ Lupranol VP 9390, BASF)與 72.2 g之含如實例 kDCM觸媒 之聚丙二醇(平均分子量=4000 g/moi; Lupranol VP 9390, BASF)之懸浮液混合’然後’於i25〇c下,連續添加單丙 二醇(以69 g/h添加63.8 g)及環氧丙烷(以6〇〇〇 g/h添加 16524.0 g)而進行轉化以得到具有12〇〇〇 g/m〇1之平均分子 量之聚丙二醇。隨後’於125°C下,將該反應混合物再攪 拌1 h及在減壓條件下,使易揮發成分釋放。得到丨88〇〇 g 145075.doc - 24 - 201033248 無色液體。 動態黏度(25°C ) : 8469 mPas ;羥基數:10.3 mg KOH/g b)環氧乙烷之注入 在2升的高壓釜中,使200.0 g聚丙二醇(平均分子量為 12000 g/mol,獲自實例2a)及4.0 g氫氧化鉀水溶液(5〇重量 %)先帶電荷然後在80至120°C及約20 mbar下脫水。隨後, 藉由氮氣填充該高壓釜並使溫度增加至120°C。在4小時 内,添加202.0 g環氧乙烷。於120°C下,再搜拌所得之反 應混合物3 h及在減壓條件下,使易揮發成分釋放得到 399 g可溶於水之淺棕色固體。 動態黏度(l〇〇°C ) : 3829 mPas ;經基數:19 mg KOH/g (計算值:11.7 mg KOH/g) ; GPC(THF) : Mw =13900 ;聚合 度分散性:Mw/Mn=1.04 ; ΤΑΙ NMR(CDC13):無二級OH 基;EO/PO 比:1.30:1.00。 實例3 : 環氧乙烧之注入 在2升的高壓釜中,使200.0 g聚丙二醇(平均分子量為 8 000 g/mol,獲自實例la)及6.7 g氫氧化卸水溶液(5〇重量 %)先帶電荷然後在80至120°C及約20 mbar下脫水。隨後, 藉由氮氣填充該高壓蚤並使溫度增加至12〇t。在8小時 内,添加467.0 g環氧乙烷。於120°C下,再授拌所得之反 應混合物3 h及在減壓條件下,使易揮發成分釋放。得到 650 g可溶於水之淺棕色固體。 動態黏度(l〇〇°C) : 3442 mPas ;羥基數:14 2 mg 145075.doc -25- 201033248 KOH/g(計算值:9.8 mg KOH/g) ; GPC(THF): Mw=22900 ;聚合度分散性:Mw/Mn=1.24 ; TAI ^ NMR(CDC13):無二級 OH 基;EO/PO 比:3.22:1.00。 實例4 : 環氧乙烷之注入 在2升的高壓釜中,使200.0 g聚丙二醇(平均分子量為 12000 g/mol,獲自實例2a)及7.0 g氫氧化鉀水溶液(50重量 %)先帶電荷然後在80至120°C及約20 mbar下脫水。隨後, 藉由氮氣填充該高壓爸並使溫度增加至120°C。在8小時 内,添加493.0 g環氧乙烷。於120°C下,再攪拌所得之反 應混合物3 h及在減壓條件下,使易揮發成分釋放。得到 700 g可溶於水之淺棕色固體。 動態黏度(l〇〇°C ) : 7210 mPas ;羥基數:19.8 mg KOH/g (計算值:11 · 1 mg KOH/g) ; GPC (THF) : Mw=26200 ;聚合 度分散性:Mw/Mn=1.45 ; TAI 4 NMR(CDC13):無二級 OH 基;EO/PO 比:3.87:1.00。 J45075.doc -26-Mg(II), Zn(II), Fe(II), Fe(III), Co(III), Cr(III), Mn(II), Mn(III), Ir(III), Rh(III), Ru(II), V(IV), V(V), Co(II), Cr(II), Ti(IV). X is a group other than cyanide which forms a valence group bonded to M1, and is selected from the group consisting of carbonyl, cyanate, isocyanate, nitrite, thiocyanate and nitrosonium. base. a, b, r, t are integers that are selected such that they meet the conditions of electrical neutrality. r is preferably from 4 to 6. t is preferably from 0 to 2. Particularly suitable for the process of the present invention are those DMC catalysts including zinc, cobalt or iron or two of such metals. Most suitable is the catalyst of the latter formula (D), wherein M1 is Zn(II) and M2 is selected from Co(III) and Fe(III). All of the above DMC catalysts may be crystalline or amorphous. The DMC catalyst may be used in the form of a powder, a paste or a suspension, may be formed into a molded body, may be introduced into a molded body, a foam or the like, or may be applied to a molded body, a foam or Its analogues. Typically, the DCM catalyst will be used in the process of the invention at a level of less than 2000 ppm, preferably less than 1 000 ppm, more preferably less than 500 ppm and most preferably less than 100 ppm of DMC catalyst. In the case of at least one multimetal cyanide catalyst, at least one continuously added starting material selected from the group consisting of c2-c6 polyacrylic acid and/or c2-c6 polyol polymer sk and 145075.doc • 18- 201033248 In the presence of at least one initially charged polyol starting material, at least one C2_CO epoxide reaction is carried out by conventional methods known to those skilled in the art and in conventional devices thereof, especially under pressure The device is operated. The reaction in step a) is generally carried out without adding a solvent. However, the reaction is also carried out using a solvent which is inert under the reaction conditions. Suitable solvents are aliphatic and aromatic tobaccos such as toluene or hexane, and ethers such as tetrahydrofuran. Typically, step a) of the process of the invention can be carried out at a temperature of from 9 to 24 and preferably from 110 to 190 °C. The CrQ epoxide is typically supplied to the reaction mixture at a vapor pressure greater than or equal to that of the C2_C6 epoxide at the selected reaction temperature. Step a) of the process of the invention may be obtained having a molecular weight generally in the range of from 丨2 2000 to 200,000 g/mo, preferably from 15 〇〇 to 1 〇〇〇〇〇g/m, more preferably from 3 〇〇〇 to about A polyoxyalkylene-based polyol having a range of 50,000 g/mol and preferably from 8 Å to 3 〇〇〇〇g/m〇i. The polyoxyalkylene polyol obtained in the step a) of the process of the invention generally has 2 to 8 hydroxyl groups, preferably 2 to 3, particularly preferably 2 hydroxyl groups. After step a) and prior to step b), the *DMC catalyst can be removed, and the method comprises filtration, either in the form of deep bed filtration or membrane filtration, or precipitation, for example by centrifugation. According to a preferred embodiment of the invention, the DMC catalyst is removed prior to performing step b). Step b) Reaction of the polyoxyalkylene polyol provided in step a) with ethylene oxide 145075.doc • 19· 201033248 by methods known to those skilled in the art and their conventional devices, especially It is carried out in a device suitable for operation under pressure. Typically, step b) of the process of the invention will be carried out in the presence of a suitable base. Suitable bases are, for example, alkali metal oxides, alkaline earth metal oxides, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogencarbonates, alkaline earth metal hydrogencarbonates, and Its mixture. The preferred base is an alkali metal hydroxide and an alkaline earth metal hydroxide such as Na〇H, KOH or Ca(OH)y based on the content of the polyoxyalkylene polyol to be ethoxylated, and the general usage amount is 〇 1 to 1% by weight. Typically, step b) of the process of the invention is carried out at elevated temperatures, preferably from 250 ° C to 250 ° C, more preferably from 80 C to 200 ° C and particularly preferably. Typically, the ethylene oxide is supplied to a mixture of polyoxyl extension polyol and base at a vapor pressure greater than or equal to that of the epoxy ethigen at the selected reaction temperature. If appropriate, the ethylene oxide can be diluted with an inert gas (e.g., noble gas, nitrogen or C?2) in an amount of up to 99. Generally, the ethoxylation is carried out without adding a solvent, i.e., in a bulk. However, the alkoxylation can also be carried out in the presence of a solvent which is inert under ethoxylation conditions. Suitable inert solvents are aliphatic and aromatic hydrocarbons such as toluene or hexane, or ethers such as tetrahydrogenate. The process of the present invention is particularly suitable for the preparation of a gas-gas stretchable block copolymer wherein the ratio of the hydroxyl group (polyoxyethylidene) is 5 based on the total weight of the prepared polyoxyalkylene block copolymer. Up to 85 wt% and especially 2 〇 to 8 〇 weight 145075.doc -20· 201033248%. Furthermore, the process of the present invention is particularly suitable for the preparation of polyoxyalkylene alkyl block copolymers wherein the hydrophobic polyoxyalkylene alkyl block copolymer has a hydrophobic polyoxyalkylene base skeleton of at least 1500 g/ The molecular weight of mol is preferably at least 3000 g/mol, more preferably at least 6000 g/mol and most preferably at least 8000 g/mol. The upper molecular weight limit is generally uncritical. Generally, the molecular weight of the hydrophobic polyoxyalkylene basic skeleton does not exceed 100,000 g/mol, preferably does not exceed 50,000 g/mol and more preferably does not exceed 30,000 g/mol. Additionally, the process of the present invention is also suitable for preparing polyoxyalkylene alkyl block copolymers having a molecular weight of at least 6000 g/mol, preferably at least 12,000 g/mol and more preferably at least 15,000 g/mol. The upper limit of the molecular weight is generally not required. Typically, the polyoxyalkylene block copolymer has a molecular weight of no more than 200,000 g/mol, preferably no more than 100,000 g/mol and more preferably no more than 50,000 g/mol. One embodiment of the present invention relates to a process for preparing a polyφ oxygen alkyl block copolymer of the following formula (I): HO(C2H40), (C3H60)m(C2H4〇)„H (I) - wherein , m and η are each a value of > 0. The values of 1, m, and η are selected such that the molecular weight of the polyoxyalkylene block copolymer and the ratio of the hydroxyl group (polyoxyethylidene) are increased. Based on the total weight of the polyoxyalkylene graft copolymer (as noted in the above), that is, the m value is, for example, 25 to 2,000, preferably 50 to 1,000, and more preferably 100 to 500, and i and η. The sum of the values is, for example, from 0.5 to 10,000, preferably from 2 to 10,000, particularly from 145075.doc • 21 to 201033248, preferably from 5 to 5,000, and more preferably from 10 to 2,000, wherein 1 and η may be the same or different. The preferred embodiment of the process for the preparation of the compound of formula (I) is preferably the above-mentioned note relating to the process of the invention. The invention further provides a polyoxyalkylene alkyl block copolymer obtainable by the process of the invention. The examples are intended to illustrate the invention and are not intended to limit the scope thereof. Example I, Analytical Methods Molecular Weight System According to DIN 55672, it is determined by gel permeation chromatography (GPC) with THF as the eluent. The calibration is carried out with styrene. Therefore, the results obtained are evaluated only by relative nouns. The number of hydroxyl groups is determined according to DIN 53240. The expected high OH number is attributed to the presence of polyethylene glycol. The ratio of epoxy b to propylene oxide (EO/PO ratio) and the ratio of primary to secondary OH groups can be determined by 1H NMR (according to J. Loccufier et al., Polymer Bulletin 1991, 27, 201-204). To this end, the polymer sample to be analyzed is derivatized by triethylene ethane isocyanate (TAI). The functional group is converted to an amino decanoate. The signal of the esterified primary alcohol has a displacement of about 4.4 ppm, and the esterified secondary alcohol is about 5.2 ppm. The protons of the methylene and sulfhydryl groups are from 3.0 to The range of 4.0 ppm The methyl signal from propylene oxide appears at 1.2 ppm. In 1H NMR, based on the signal at 4.2 ppm (all primary alcohol esterified with TAI), the OH number can be calculated. The high line is expected to be attributed to the presence of polyethylene glycol. 145075.doc -22- 201033248 Method for determining EO/PO ratio and OH number in 1H NMR: About 20 mg of the polymer to be analyzed is dissolved in 0-4 ml of CDC 13. Trimethyl decane (TMS) is added as an internal standard. Thereafter, the solution is mixed with 0.2 ml. The TAI was mixed, transferred to a 5 mm NMR tube and analyzed in an NMR (400 MHZ) spectrometer. Artificial integration is performed on an area of approximately 1 · 2 ppm, 3 · 0 to 4.0 ppm, and approximately 4.2 ppm, followed by Fourier transformation and automatic phase and baseline correction. The zero-order integral phase is chosen such that the beginning and end of the integration curve are substantially horizontal. A signal of about 1.2 ppm is used as a reference for the propylene oxide content. The ratio of ethylene oxide can be calculated by subtracting the integral of the signal of the methacrylic proton and the three protons of the methylene proton from the integral of the 3.0 to 4.0 ppm signal. In order to determine the amount of hydrazine by 1H NMR, a signal at 4.2 ppm was used. If this is put into the ratio of propylene oxide to ethylene oxide, the amount of OH can be calculated. Viscosity can be measured at 23 ° C in a plate-cone viscometer (ISO 291). II. Preparation Example 实例 Example 1: a) Preparation of polycyclopropane (M=8000) 3340 g of polypropylene glycol (average molecular weight = 4000 g/mol; Lupranol VP-93 90, BASF) and 3 8.3 g of about 5 The % concentration of propylene carbonate and acetic acid-based DCM catalyst polypropylene glycol (average molecular weight = 4000 g / mol; Lupranol VP 9390, BASF) suspension was mixed, and then, at 125 ° C, continuous Conversion was carried out by adding monopropylene glycol (130.5 g added at 69 g/h) and propylene oxide (adding 16491.2 g at 6000 g/h) to obtain a polypropylene glycol having an average molecular weight of 8000 g/mol. Subsequently, the 145075.doc -23-201033248 reaction mixture was further stirred at 125 ° C for 1 h and the volatile component was released under reduced pressure. 18700 g of a colorless liquid were obtained. Dynamic viscosity (25 ° C): 3135 mPas; hydroxyl number: 14.5 mg KOH / gb) injection of ethylene oxide in a 2 liter autoclave, making 200.0 g of polypropylene glycol (average molecular weight of 8000 g / mol, obtained from Example la) and 4.0 g of aqueous potassium hydroxide solution (50% by weight) were first charged and then dehydrated at 80 to 120 ° C and about 20 mbar. Subsequently, the autoclave was filled with nitrogen and the temperature was increased to 120 °C. 202.0 g of ethylene oxide was added over 2 hours. The resulting mixture was stirred at 120 ° C for a further 3 h and under reduced pressure to give a volatile component which gave 400 g of a water-soluble light brown solid. Dynamic viscosity (l〇〇°C): 4655 mPas; hydroxyl number: 15 mg KOH/g (calculated value: 11.7 mg KOH/g); GPC: (THF) Mw=12700; Mw/Mn=1.03; TAI1HNMR (CDC13 ): no secondary OH group; EO/PO ratio = 1.4:1.0. Example 2: a) Preparation of polypropylene oxide (Μ = 12000) as in Example 1 '3340 g of polypropylene glycol (average molecular weight = 4 〇〇〇g/m〇i; ❹Lupranol VP 9390, BASF) and 72.2 g A suspension containing polypropylene glycol (average molecular weight = 4000 g/moi; Lupranol VP 9390, BASF) as in the example kDCM catalyst was mixed 'then' under i25〇c, continuous addition of monopropylene glycol (63.8 g added at 69 g/h) And propylene oxide (adding 16524.0 g at 6 〇〇〇g/h) to carry out conversion to obtain a polypropylene glycol having an average molecular weight of 12 〇〇〇g/m 〇1. The reaction mixture was then stirred at 125 ° C for an additional 1 h and the volatiles were released under reduced pressure. Obtained 丨88〇〇 g 145075.doc - 24 - 201033248 Colorless liquid. Dynamic viscosity (25 ° C): 8469 mPas; hydroxyl number: 10.3 mg KOH / gb) injection of ethylene oxide in a 2 liter autoclave, making 200.0 g of polypropylene glycol (average molecular weight of 12000 g / mol, obtained from Example 2a) and 4.0 g of aqueous potassium hydroxide solution (5% by weight) were charged first and then dehydrated at 80 to 120 ° C and about 20 mbar. Subsequently, the autoclave was filled with nitrogen and the temperature was increased to 120 °C. 202.0 g of ethylene oxide was added over 4 hours. The resulting reaction mixture was further mixed at 120 ° C for 3 h and under reduced pressure, the volatile component was released to give 399 g of a water-soluble light brown solid. Dynamic viscosity (l〇〇°C): 3829 mPas; base number: 19 mg KOH/g (calculated value: 11.7 mg KOH/g); GPC (THF): Mw = 13900; degree of polymerization dispersibility: Mw/Mn= 1.04; ΤΑΙ NMR (CDC13): no secondary OH group; EO/PO ratio: 1.30:1.00. Example 3: Epoxy Ethylene Injection In a 2 liter autoclave, 200.0 g of polypropylene glycol (average molecular weight of 8 000 g/mol, obtained from Example la) and 6.7 g of aqueous hydroxide solution (5% by weight) It is first charged and then dehydrated at 80 to 120 ° C and about 20 mbar. Subsequently, the high pressure crucible was filled with nitrogen and the temperature was increased to 12 Torr. 467.0 g of ethylene oxide was added over 8 hours. The resulting reaction mixture was further mixed at 120 ° C for 3 h and under reduced pressure to release the volatile components. 650 g of a light brown solid which is soluble in water is obtained. Dynamic viscosity (l〇〇°C): 3442 mPas; hydroxyl number: 14 2 mg 145075.doc -25- 201033248 KOH/g (calculated value: 9.8 mg KOH/g); GPC (THF): Mw=22900; Degree dispersion: Mw / Mn = 1.24; TAI ^ NMR (CDC13): no secondary OH group; EO / PO ratio: 3.22: 1.00. Example 4: Injection of ethylene oxide In a 2 liter autoclave, 200.0 g of polypropylene glycol (average molecular weight of 12000 g/mol, obtained from Example 2a) and 7.0 g of aqueous potassium hydroxide solution (50% by weight) were first introduced. The charge is then dehydrated at 80 to 120 ° C and about 20 mbar. Subsequently, the high pressure dad was filled with nitrogen and the temperature was increased to 120 °C. 493.0 g of ethylene oxide was added over 8 hours. The resulting reaction mixture was further stirred at 120 ° C for 3 h and under reduced pressure to release the volatile component. This gave 700 g of a light brown solid which was soluble in water. Dynamic viscosity (l〇〇°C): 7210 mPas; hydroxyl number: 19.8 mg KOH/g (calculated value: 11 · 1 mg KOH/g); GPC (THF): Mw=26200; degree of polymerization dispersibility: Mw/ Mn = 1.45; TAI 4 NMR (CDC13): no secondary OH group; EO/PO ratio: 3.87: 1.00. J45075.doc -26-

Claims (1)

201033248 七、申請專利範圍: 1. 一種製備由疏水性聚氧伸烷基基本骨架及終端羥基(聚氧 伸乙基)組成之聚氧伸烧基欲段共聚物之方法,其令,義 於聚氧伸院基嵌段共聚物之總重量,該疏水性聚氧伸烧 基基本骨架之至少30重量%程度由C3_C6_氧基伸烷基單 元所構成且其中該羥基(聚氧伸乙基)之比例為1至9〇重量 % ’該方法包括 a) 在下列成份存在下,使至少一種C2_C6環氧化物反應 以提供聚氧伸烷基多元醇: (1) 至少一種多金屬氰化物觸媒, (2) 至少一種連續添加之起始物心,其係選自 多元醇及/或C^C:6多元醇寡聚物,及 (3) 視需要之至少一種最初帶電荷之多元醇起動劑 Sv, ❹ 該q-C6環氧化物及起始物Sk係在反應期間連續 添加;及 起始物sk係以基於步驟勾中之起始化合物之使用 量之至少1重量%之含量添加;及 b) 使在步驟a)中所獲得之聚氧伸烷基多元醇之自由羥 基與環氧乙院反應。 2. 如。月求項1之方法,其中該步驟a)中之反應係在至少一種 起始物sv存在下進行β 3. 如上述请求項之任一項之方法,上 巧心乃在,其中該步驟…中之反應 係在多金屬氰化物觸媒存在下進行。 145075.doc 201033248 4. 5. 6. =返睛求項之任—項之方法,其中該多元醇起始物Sv 具有平岣2至3個之羥基。 如上述請求項之任—項之方法,其中該多元醇起始 係選自乙二醇、丙二醇、1>2-丁二醇、2,3_丁二醇、2_甲 _ 丙一醇、丙二醇、三羥甲基丙烷、及可自該等多 凡^藉由同質·或異質縮合反應製得之聚氧伸院基類。 請求項5之方法,其中該多元醇起始物&為丙二醇及/ 或聚丙二醇。 如上述1求項之任一項之方法,其中該C2_C6環氧化物係 選自環氧乙炫、環化丙燒、U2_環氧基丁燒、2,3_環氧基 丁烷及丨,2-環氧基-2-曱基丙烷、及其混合物。 8.如凊求項7之方法,其中該C2_c6環氧化物為環氧基丙 烷。 9.如上述睛求項之任一項之方法其中該c2_C6環氧化物之 使用量為基於步驟a)中之起始化合物之使用量之1至卯重 量%。 1〇·如上述凊求項之任一項之方法,其中該起始物Sk係選自 乙一醇、丙二醇、込2·丁二醇、2,3-丁二醇、2-曱基-1,2- 丙一醇、丙三醇、三羥曱基丙烷及其混合物之單_、二_ 及二聚物。 11.如請求項10之方法,其中該起始物心係選自丙二醇之單_ 、二-及三聚物。 12·如上述請求項之任一項之方法,其中該起始物Sk之使用 量為基於步驟a)中之起始化合物之使用量之1至98重量 145075.doc -2 - 201033248 %。 13. 如上述請求項之任一項之方法,其中該多金屬氰化物觸 媒係選自包括至少一種如下通式(D)之雙金屬氰化物化合 物之觸媒: ► 其中: M1 為金屬離子,其係選自包括以下之群:Zn(II)、 Fe(II)、Co(III)、Ni(II)、Mn(II)、Co(II)、Sn(II)、 • Pb(II)、Fe(III)、Mo(IV)、Mo(VI)、Al(III)、 V(IV)、V(V)、Sr(II)、W(IV)、W(VI)、Cu(II)及 Cr(III)。 M2 為金屬離子,其係選自包括以下之群:Sr(I)、 Mg(II)、Zn(II)、Fe(II)、Fe(III)、Co(III)、 Cr(III)、Mn(II)、Mn(III)、Ir(III)、Rh(III)、 Ru(II)、V(IV)、V(V)、Co(II)、Cr(II)、Ti(IV)。 籲 X 為除氰化物之外之形成與M1之鍵結之配位基之 基,其係選自包括以下之群:裁基、氰酸根、異 氰酸根、亞硝酸根、硫氰酸根及亞墙醯基。 . a、b、r、t為選擇成符合電中性之整數。 14. 如請求項13之方法,其中M1為Zn(II)及M2係選自Co(III) 1 及 Fe(III)。 15. 如上述請求項之任一項之方法,其中步驟b)中之與環氧 乙烷之反應係在適宜鹼存在下進行。 16. 如上述請求項之任一項之方法,其中該羥基(聚氧伸乙 145075.doc 201033248 基)之比例為基於所製得之聚氧伸燒基嵌段共聚物之總重 量之5至85重量%。 17. 如上述請求項之任—項之方法,纟中所製得t聚氧伸燒 基嵌段共聚物之該疏水性聚氧伸烷基基本骨架具有至少 1500 g/mol之分子量。 18. 如上述請求項之任一項之方法,藉由該方法製得具有至 少6000 g/m〇l之分子量之聚氧伸烷基嵌段共聚物。 19. 如上述請求項之任一項之方法’其可用於製備如下式⑴ 之聚氧伸烷基嵌段共聚物: HO(C2H40)1(C3H60)in(C2H4〇)nH (1) 其中1、m及η分別各自> 0。 20. —種聚氧伸烷基嵌段共聚物,其係藉由如請求項工至 中任一項所定義之方法獲得。 145075.doc 201033248 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 145075.doc201033248 VII. Patent application scope: 1. A method for preparing a polyoxyalkylene-stretching base copolymer composed of a hydrophobic polyoxyalkylene basic skeleton and a terminal hydroxyl group (polyoxyethylene), The total weight of the polyoxyalkylene-based block copolymer, at least 30% by weight of the basic skeleton of the hydrophobic polyoxyalkylene group consists of C3_C6_oxyalkylene units and wherein the hydroxyl group (polyoxyethylene) The ratio is from 1 to 9% by weight. The method comprises a) reacting at least one C2_C6 epoxide to provide a polyoxyalkylene polyol in the presence of the following components: (1) at least one multimetal cyanide catalyst (2) at least one continuously added starting core selected from the group consisting of a polyol and/or a C^C:6 polyol oligomer, and (3) at least one initially charged polyol starter as needed Sv, ❹ the q-C6 epoxide and the starting material Sk are continuously added during the reaction; and the starting material sk is added in an amount of at least 1% by weight based on the amount of the starting compound used in the step; b) the polyoxyalkylene obtained in step a) Free hydroxyl group is reacted with the polyol of ethylene oxide hospital. 2. For example. The method of claim 1, wherein the reaction in the step a) is carried out in the presence of at least one of the starting materials sv. 3. The method according to any one of the preceding claims, wherein the step is... The reaction is carried out in the presence of a multimetal cyanide catalyst. 145075.doc 201033248 4. The method of claim 5, wherein the polyol starting material Sv has 2 to 3 hydroxy groups. The method of any one of the preceding claims, wherein the polyol starting is selected from the group consisting of ethylene glycol, propylene glycol, 1> 2-butanediol, 2,3-butanediol, 2-methylpropanol, Propylene glycol, trimethylolpropane, and polyoxyl extension bases which can be obtained by homogenous or heterogeneous condensation reactions. The method of claim 5, wherein the polyol starting material & is propylene glycol and/or polypropylene glycol. The method according to any one of the preceding claims, wherein the C2_C6 epoxide is selected from the group consisting of epoxy epoxigen, cyclized propylene, U2_epoxybutane, 2,3-epoxybutane and hydrazine. , 2-epoxy-2-mercaptopropane, and mixtures thereof. 8. The method of claim 7, wherein the C2_c6 epoxide is an epoxy propane. The method according to any one of the preceding claims, wherein the c2_C6 epoxide is used in an amount of from 1 to 卯 by weight based on the amount of the starting compound used in the step a). The method of any one of the preceding claims, wherein the starting material Sk is selected from the group consisting of ethyl alcohol, propylene glycol, hydrazine 2, butanediol, 2,3-butanediol, 2-mercapto-1 , mono-, di- and dimers of 2-propanol, glycerol, trihydrocarbyl propane and mixtures thereof. 11. The method of claim 10, wherein the starting material is selected from the group consisting of mono-, di- and terpolymers of propylene glycol. The method according to any one of the preceding claims, wherein the starting material Sk is used in an amount of from 1 to 98% by weight based on the amount of the starting compound in the step a) 145075.doc -2 - 201033248%. 13. The method of any of the above claims, wherein the multimetal cyanide catalyst is selected from the group consisting of a catalyst comprising at least one double metal cyanide compound of the following formula (D): wherein: M1 is a metal ion It is selected from the group consisting of Zn(II), Fe(II), Co(III), Ni(II), Mn(II), Co(II), Sn(II), • Pb(II) , Fe(III), Mo(IV), Mo(VI), Al(III), V(IV), V(V), Sr(II), W(IV), W(VI), Cu(II) And Cr(III). M2 is a metal ion selected from the group consisting of Sr(I), Mg(II), Zn(II), Fe(II), Fe(III), Co(III), Cr(III), Mn (II), Mn (III), Ir (III), Rh (III), Ru (II), V (IV), V (V), Co (II), Cr (II), Ti (IV). X is a group other than cyanide forming a ligand bonded to M1, which is selected from the group consisting of a base, a cyanate, an isocyanate, a nitrite, a thiocyanate, and a subgroup. Wall base. a, b, r, t are integers selected to be electrically neutral. 14. The method of claim 13, wherein M1 is Zn(II) and M2 is selected from the group consisting of Co(III) 1 and Fe(III). The process of any of the preceding claims, wherein the reaction with ethylene oxide in step b) is carried out in the presence of a suitable base. 16. The method of any one of the preceding claims, wherein the ratio of the hydroxyl group (polyoxyethylene 145075.doc 201033248 base) is 5 based on the total weight of the polyoxyalkylene-based block copolymer produced. 85 wt%. 17. The method of any of the preceding claims, wherein the hydrophobic polyoxyalkylene base skeleton of the t polyoxyalkylene block copolymer produced in the oxime has a molecular weight of at least 1500 g/mol. 18. A process according to any one of the preceding claims, wherein a polyoxyalkylene alkyl block copolymer having a molecular weight of at least 6000 g/m〇l is obtained by the process. 19. The method of any of the above claims, which can be used to prepare a polyoxyalkylene alkyl block copolymer of the following formula (1): HO(C2H40)1(C3H60)in(C2H4〇)nH (1) wherein 1 , m and η are each > 0. 20. A polyoxyalkylene alkyl block copolymer obtainable by a process as defined in any one of the claims. 145075.doc 201033248 IV. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbolic symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please reveal the best indication of the characteristics of the invention. Chemical formula: (none) 145075.doc
TW98144594A 2008-12-23 2009-12-23 Process for preparing block copolymers TW201033248A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08172792 2008-12-23

Publications (1)

Publication Number Publication Date
TW201033248A true TW201033248A (en) 2010-09-16

Family

ID=41698402

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98144594A TW201033248A (en) 2008-12-23 2009-12-23 Process for preparing block copolymers

Country Status (3)

Country Link
AR (1) AR074880A1 (en)
TW (1) TW201033248A (en)
WO (1) WO2010072769A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492326B2 (en) 2010-06-28 2013-07-23 Basf Se Alkoxylates and use thereof
WO2012092986A1 (en) 2011-01-07 2012-07-12 Omya Development Ag Process for water based mineral material slurry surface whitening
CN110922579B (en) * 2019-12-06 2021-12-03 浙江皇马科技股份有限公司 Synthesis method of polyether for low-modulus sealant
CN112358608A (en) * 2020-10-29 2021-02-12 江苏利宏科技发展有限公司 Preparation method of polyether polyol

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016484A1 (en) 1991-03-19 1992-10-01 Cytrx Corporation Polyoxypropylene/polyoxyethylene copolymers with improved biological activity
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
EP1181937A3 (en) 1994-08-09 2004-02-04 Cytrx Corporation Novel vaccine adjuvant and vaccine
US5777177A (en) 1996-02-07 1998-07-07 Arco Chemical Technology, L.P. Preparation of double metal cyanide-catalyzed polyols by continuous addition of starter
DE19742978A1 (en) 1997-09-29 1999-04-01 Basf Ag Multimetal cyanide complexes as catalysts
EP1034035B1 (en) 1997-10-13 2003-06-04 Bayer Ag Crystalline double metal cyanide catalysts for producing polyether polyols
US6613714B2 (en) 1999-06-02 2003-09-02 Basf Aktiengesellschaft Multimetal cyanide compounds, their preparation and their use
DE19941242A1 (en) 1999-08-31 2001-03-08 Basf Ag Polyether alcohols
RU2002126260A (en) 2000-02-29 2004-01-10 БАСФ Акциенгезельшафт (DE) METHOD FOR PRODUCING COMPOUNDS BASED ON METAL CYANIDES
DE10117273A1 (en) 2001-04-06 2002-10-17 Basf Ag Production of hydroxyalkyl carboxylate ester for use, e.g. as raw material for varnish, involves reacting carboxylic acid, e.g. acrylic acid, with alkylene oxide in presence of iron-containing multi-metal cyanide catalyst
US20040064001A1 (en) * 2002-09-30 2004-04-01 Stephan Ehlers Processes for preparing ethylene oxide-capped polyols
DE102004031836A1 (en) 2004-06-30 2006-01-19 Basf Ag Process for the preparation of polyether alcohols
DE102005011581A1 (en) 2005-03-10 2006-09-14 Basf Ag Process for the preparation of DMC catalysts
DE102005020347A1 (en) 2005-05-02 2006-11-09 Basf Ag Process for the preparation of double metal cyanide complex catalysts
DE102005057895A1 (en) 2005-12-02 2007-06-06 Basf Ag Preparing multi-metal cyanide compound, useful to prepare e.g. polyetherpolyol, comprises reacting aqueous solution of a metal salt and -cyanometallate compound to give a multi-metal cyanide compound followed by reacting with a salt

Also Published As

Publication number Publication date
WO2010072769A1 (en) 2010-07-01
AR074880A1 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4241372B2 (en) Method for producing polyol blend
JP4912602B2 (en) Acidification of initiator feedstream in DMC catalysis
RU2178426C2 (en) Method of preparing polyoxyalkyl polyols with low levels of content of transition metals using complex double metal cyanide catalyst
US6355845B1 (en) Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds
KR101173690B1 (en) Single reactor synthesis of koh-capped polyols based on dmc-synthesized intermediates
US6884826B2 (en) Process for preparing double metal cyanide catalyzed polyols
US11001669B2 (en) Lewis acid polymerization catalyst
CA2387152A1 (en) Polyester-polyether block copolymers
EP1785445B1 (en) Double metal cyanide-catalyzed, low unsaturation polyethers from boron-containing starters
TW201033248A (en) Process for preparing block copolymers
KR101909320B1 (en) Process for making polyether alcohols having oxyethylene units by polymerization of ethylene carbonate in the presence of double metal cyanide catalysts
KR100961362B1 (en) Activated Starter Mixtures and the Processes Related thereto
US20080167501A1 (en) High productivity alkoxylation processes
CN104968705A (en) A method to increase the resistance of double metal cyanide catalysts to deactivation
US20040249221A1 (en) Method for producing polyether alcohols
KR20190052038A (en) Macromers for use in polymer polyol dispersions, and processes for the preparation of the macromers
EP1448663B1 (en) Process for the alkoxylation of organic compounds
WO2023224500A1 (en) A method for producing low unsaturation level oxyalkylates, an oxyalkylate, a use thereof and a polyurethane foam
ZA200109789B (en) Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds.
MXPA06012857A (en) Double metal cyanide-catalyzed, low unsaturation polyethers from boron-containing starters
MX2008006907A (en) Method for the production of multimetal cyanide compounds