TW201030169A - Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same - Google Patents

Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same Download PDF

Info

Publication number
TW201030169A
TW201030169A TW98103467A TW98103467A TW201030169A TW 201030169 A TW201030169 A TW 201030169A TW 98103467 A TW98103467 A TW 98103467A TW 98103467 A TW98103467 A TW 98103467A TW 201030169 A TW201030169 A TW 201030169A
Authority
TW
Taiwan
Prior art keywords
copper
sputtering
plating layer
copper plating
layer
Prior art date
Application number
TW98103467A
Other languages
Chinese (zh)
Other versions
TWI382102B (en
Inventor
Chon-Hsin Lin
Jinn Chu
Original Assignee
Chon-Hsin Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chon-Hsin Lin filed Critical Chon-Hsin Lin
Priority to TW98103467A priority Critical patent/TWI382102B/en
Publication of TW201030169A publication Critical patent/TW201030169A/en
Application granted granted Critical
Publication of TWI382102B publication Critical patent/TWI382102B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This invention is concerning with the composition, properties, and production of new copper films containing dilute soluble expansive elements (AgNx) substances prepared by co-sputter deposition. This invention provides an uncomplicated process to obtain copper films with dilute amounts of up to 1.2 atomic percent each. The sputter deposition process claimed involves co-sputtering of a target or targets consisting of expansive element (AgNx) and copper in pure Ar atmosphere for films having AgNx in a Ar/N2 mixture atmosphere for films containing AgNx. With a control of Ag and N amount, desirable dilute Ag nitride contents in the copper film can be attained. The copper films containing nitrides [Cu(AgNx)] claimed in this invention process reveal many excellent properties such as adhesion, electrical resistivity and leakage current properties, when compared with those of pure copper films and copper-silver nitride films.

Description

.201030169 六、發明說明: 【發明所屬之技術領域】 本發明係一種銅鍍層,尤其是藉由磁控濺鍍法製備微 量且互溶貴金屬元素銀氮化物(AgNx)以固溶於銅鑛層,藉 以提升銅錢層之附著性、導電性與漏電流性質。 【先前技術】.201030169 VI. Description of the Invention: [Technical Field] The present invention is a copper plating layer, in particular, a micro- and mutually soluble precious metal element silver nitride (AgNx) is prepared by magnetron sputtering to be dissolved in a copper ore layer. In order to improve the adhesion, conductivity and leakage current properties of the copper layer. [Prior Art]

由於銅及其合金具有極優良的導電性、熱傳性與良好 的常溫機械性質,因而被廣泛地使用,然而銅與銅合金在 尚溫使用時之機械性質較差,因而這些合金材料有效使用 的工作溫度皆不高,以致其良好的導電性、熱傳性無法受 到有效的運用,使得材料在使用上受到許多限制。 近年來,由於銅除具有極佳的導電性外,尚具有較高 的電荷遷移阻力’使得銅導線的元件具有更高的壽命及穩 定性,進而取代鋁成為半導體元件中的導電層,因此,使 仔銅薄膜在應用上又增添了更有效的利用價值;但不論在 製程上或是材料方面,銅導電層在使用上仍有一些限制, 如較差的时性及易與石夕產生反應等。然』添加合金元素 後,銅的導電性隨即下降且硬度值提高。因此經由添加不 互溶元素應是解決之道,此可由相關參考文獻卜7可得知。 一般在銅薄膜所添加之不互溶氮化物(如WNx),可以 :效使晶粒細化,並且不互溶氮化物中的氮於高溫下會於 晶界析出並與矽基板反應形成氮矽化合物(SkNj,以有效 降低鋼原子之擴散速率並使電阻下降。然而,目前尚無研 究^能夠提升銅鑛層t附著性、冑電性與漏電流性質。故 目前的銅錄層仍有改善之必要。 4 .201030169Copper and its alloys are widely used because of their excellent electrical conductivity, heat transfer properties and good room temperature mechanical properties. However, copper and copper alloys have poor mechanical properties when used at room temperature, so these alloy materials are effectively used. The working temperature is not so high that its good electrical conductivity and heat transfer property cannot be effectively used, which makes the material subject to many restrictions. In recent years, due to its excellent electrical conductivity, copper has a high charge-migrating resistance, which makes the components of the copper wire have higher life and stability, and thus replaces aluminum as a conductive layer in a semiconductor element. The use of copper film has added more effective value in application; however, there are still some restrictions on the use of copper conductive layer in terms of process or materials, such as poor timeliness and easy reaction with Shixi. . However, when the alloying element is added, the conductivity of copper decreases and the hardness value increases. Therefore, the solution should be solved by adding an immiscible element, which can be known from the related reference. Generally, the immiscible nitride (such as WNx) added to the copper film can: refine the grain, and the nitrogen in the immiscible nitride precipitates at the grain boundary at a high temperature and reacts with the ruthenium substrate to form a ruthenium compound. (SkNj, in order to effectively reduce the diffusion rate of steel atoms and reduce the electrical resistance. However, there is no research to improve the adhesion, electrical conductivity and leakage current properties of copper ore layers. Therefore, the current copper recording layer is still improved. Necessary. 4 .201030169

而磁控濺鍍法(sputter deP〇sition)製程將完全不互★ 的元素或化合物合成製造是以「原子長原子」的成長方$ (atom-by-atom growth)形成「過飽和固溶體" (supersaturated so丨丨d so丨ution),因而不會受限於傳統二 力學如固溶限及相平衡等的限制’進而可輕易合成以往認 定為不可能的材料。此種方法所製造出之材料具有之特點 包括:具有非平衡相(.equi_um)、超微粒顯微組織 (nano-scale microstructure)結構之金屬複合材料、高溫穩 定性佳以及機械強度高。_ 【發明内容】 本發明人有鑑於尚無良好附著性、導電性與漏電流性 質的銅鍍層,因此經過不斷的研究與試驗,終於發明出此 銅鍵層。 本發明之目的即在於藉由磁控濺鍍法製備微量且互溶 貴金屬元素銀氮化物(AgNx)以固溶於銅鍍層,藉以提升銅 鍍層之附著性、導電性與漏電流性質。 為達上述目的,本發明之銅錄層,其係包括銅以及銀 氮化物。 較佳的是,該銅鍍層中的銀含量係低於2〇原子百分 比;而氮含量係在原子百分比之間。 其中’該銅鐘層具有2.0〜3.0微歐姆-公分(μΩ-cm)之 電阻係數值以及1〇_11〜10·10安培/平方公分(A/cm2)之漏電 流性質以及20~30MPa之接著強度,較佳的是約24 4MPa 之接著強度。 本發明又關於一種銅鍍層的濺鍍合成方法,其係包含: 5 ‘201030169 將一錢鍵真空系統之藏鐘壓力調整在1χΐ〇-2〜1 x1〇·3 托耳(torr); 再將商純度氬氣(Ar)與微量氮氣(N2)導入該滅锻真空系 統中; 將該濺鍍真空系統的濺鍍功率調整在為130〜150瓦 (W),令純銅與銀在該滅鑛真空系統中以磁控共錢鐘的方式 形成一含有銀氮化物的銅鍵層。 較佳的是,該磁控共滅鑛的溫度係調整在常溫至1〇〇 _ 〇c。 較佳的是,該含有銀氮化物的鋼鍍層尚包括將一退火 製程,該退火製程之真空退火壓力為1x1〇-e〜1x10-7t〇rr, 且加熱速率為每分鐘4°C到6°C,再於加熱至2〇〇。〇至 650°C後持溫一小時。 其中’經由不同退火溫度後,該含銀氮化物之銅鎮層 均有接近純銅鍍層之電阻係數值(2_0~3·0 μΩ-cm),且均具 有低之漏電流性質A/cm2)e且退火前或經由不 ® 同退火溫度後’含銀其氮化物之銅鍍層均極佳之附著性質。 本發明尚關於一種由上述濺鍍合成方法所製造的銅錄 層。 本發明的材料是選擇能夠互溶之貴金屬元素銀氮化物 (AgNx) ’主要的目的能夠藉由磁控共濺鍍過程在鋼錄層中 調整微量責金屬含量,而得到具有細微顯微組織結構、低 電阻、低漏電流與良好接著強度之優越性質。因此本發明 含銀氮化物之銅鍍層具有下列之獨創性: (1)本發明以真空潔淨無污染之濺鍍製程,並且在導入 201030169 微量氮氣與氬氣混合狀態下使銅靶與銀靶以共同濺鍍的方 式,進而控制銅鑛層中之氮化銀含量; (2) 含氮化銀之銅鍍層於高溫下析出形成之阻絕層(se|f_ passivation |ayer)具高溫穩定性及隔絕銅與矽反應之功能 外尚能作為阻絕其他氣體進入的阻絕層(passivation 丨ayer)、或者作為阻絕銅矽之間反應的擴散阻絕(diffusj〇n barrier); (3) 因自然形成之阻絕層係自發性生成之產物,因此毋 Φ 須再經由化學氣相沉積(chemical vapor deposition)高溫製 程製得阻絕層;故本發明所提供之方法可將銅鍍層與阻絕 層的製程合而為一,大幅降低整體製程複雜性與製造成本; (4) 銅與貝金屬元素銀氮化物(AgNx)皆為微量互溶,將 這些微量互溶物質導入於銅鍍層中製得含微量互溶物質之 銅鍍層,且經由退火後銀析出形成之界面層具高溫穩定性、 附著性佳、較低電阻係數值與漏電流等性質,故本發明能 k供良好的導電鐘層,適用於半導體、光電與其他相關產 ® 業,進而可改善目前之銅製程技術。 【實施方式】 本發明係以較佳的實例之製程及合金組成來說明含貴 金屬元素銀氮化物之銅鍵層的優異性質,然而其並非用以 限定本發明,因此於所屬技術領域中具有通常知識者皆能 在本發明之原理以及概念下,根據本發明之技術思想做些 許更動與改變,但其皆屬於本發明之範_。本發明之保護 範圍應包含本發明濺鍍技術之原則而達到具高溫穩定性且 有良好導電性質之含貴金屬元素銀氮化物之銅鑛層。 201030169 實施例一、本發明含銀氮化物之銅鍍層的濺鍍合成法 含過渡金屬元素銀氮化物之銅鍍層在本發明之實施例 中係以直流磁控減鍵(DC magnetron sputter dep〇siti〇n)製 程製得,先將濺鍍真空系統腔體控制在7 χ 1〇·7托耳(t〇rr) 以下的壓力,再將高純度氬氣(A「)與微量氮氣(n2)導入真空 系統中,使濺鍍工作壓力調整在ιχ10-2〜1 χ1〇-3托耳(t〇rr) 以150瓦(W)的能量進行濺鐘之工作。以純銅及貴金屬元素 銀作為濺鍍靶材之材料,將靶材以直流磁控共濺鍍(c〇_The sputter deP〇sition process is a synthesis of elements or compounds that are completely different from each other. The "atom-by-atom growth" forms a "supersaturated solid solution". (supersaturated so丨丨d so丨ution), so it is not limited by the limitations of traditional two-mechanics such as solid solution limit and phase balance, and thus can easily synthesize materials that were previously considered impossible. The material has the characteristics of: a metal composite material having a non-equilibrium phase (.equi_um), a nano-scale microstructure structure, high temperature stability, and high mechanical strength. [Invention] The present inventors In view of the copper plating which has no good adhesion, conductivity and leakage current properties, the copper bond layer has finally been invented through continuous research and experimentation. The object of the present invention is to prepare a trace amount by magnetron sputtering. The mutually soluble precious metal element silver nitride (AgNx) is solid-solubilized in a copper plating layer to enhance the adhesion, conductivity and leakage current properties of the copper plating layer. To achieve the above object, the copper record of the present invention The system includes copper and silver nitride. Preferably, the copper content in the copper plating layer is less than 2 atomic percent; and the nitrogen content is between atomic percentages. wherein 'the copper clock layer has 2.0 to 3.0 The resistivity value of micro ohm-cm (μΩ-cm) and the leakage current property of 1〇_11~10·10 amps/cm 2 (A/cm 2 ) and the bonding strength of 20-30 MPa, preferably about 24 4 MPa. The invention further relates to a method for sputter synthesis of a copper plating layer, comprising: 5 '201030169 adjusting the storage clock pressure of a money key vacuum system at 1χΐ〇-2~1 x1〇·3 Torr (torr And introducing the commercial purity argon (Ar) and trace nitrogen (N2) into the forging and forging vacuum system; adjusting the sputtering power of the sputtering vacuum system to 130~150 watts (W), so that pure copper and silver In the ore-extinguishing vacuum system, a copper bond layer containing silver nitride is formed by a magnetic control method. Preferably, the temperature of the magnetron co-extortion is adjusted to a normal temperature to 1 〇〇 〇 〇c Preferably, the steel coating containing silver nitride further comprises an annealing process, and the annealing process The vacuum annealing pressure is 1x1 〇-e~1x10-7t〇rr, and the heating rate is 4 ° C to 6 ° C per minute, and then heated to 2 Torr. After 〇 to 650 ° C, the temperature is maintained for one hour. 'After different annealing temperatures, the silver-bearing copper-bearing town layer has a resistivity value close to that of pure copper plating (2_0~3·0 μΩ-cm), and both have low leakage current properties A/cm2)e and The copper coating with silver and its nitrides has excellent adhesion properties before annealing or after the same annealing temperature. The present invention is also directed to a copper recording layer produced by the above-described sputtering synthesis method. The material of the present invention is a silver metal nitride (AgNx) which is selected to be mutually soluble. The main purpose of the invention is to adjust the trace metal content in the steel recording layer by a magnetron co-sputtering process to obtain a fine microstructure. Excellent properties of low resistance, low leakage current and good adhesion strength. Therefore, the copper-plated layer containing silver nitride of the present invention has the following originality: (1) The present invention uses a vacuum clean and non-polluting sputtering process, and introduces a copper target and a silver target in a state in which a small amount of nitrogen gas and argon gas are mixed in 201030169. Co-sputtering method to control the content of silver nitride in the copper ore layer; (2) The barrier layer formed by precipitation of copper-plated silver-plated copper at high temperature (se|f_passivation |ayer) has high temperature stability and isolation The function of the reaction between copper and yttrium can be used as a barrier 阻ayer to block the entry of other gases, or as a diffusion barrier to block the reaction between copper ruthenium; (3) a barrier layer formed by natural formation The product is formed spontaneously, so 毋Φ must be further formed by a chemical vapor deposition high temperature process; therefore, the method provided by the present invention can combine the process of the copper plating layer and the barrier layer into one. Significantly reduce the overall process complexity and manufacturing cost; (4) Copper and shell metal element silver nitride (AgNx) are all miscible, and these traces of miscible substances are introduced into the copper plating to produce micro-containing The copper plating layer of the mutually soluble substance, and the interface layer formed by the silver precipitation after annealing has high temperature stability, good adhesion, low resistivity value and leakage current, etc., so the present invention can provide a good conductive clock layer, and is suitable for use. In the semiconductor, optoelectronics and other related products, the current copper process technology can be improved. [Embodiment] The present invention describes the excellent properties of the copper bond layer containing the noble metal element silver nitride by the process of the preferred example and the alloy composition. However, it is not intended to limit the present invention, and therefore is generally used in the art. Those skilled in the art can make some changes and changes according to the technical idea of the present invention under the principles and concepts of the present invention, but all of them belong to the scope of the present invention. The scope of protection of the present invention should include the principles of the sputtering technique of the present invention to achieve a copper ore layer containing a noble metal element silver nitride having high temperature stability and good electrical conductivity. 201030169 Embodiment 1 Sputtering Synthesis Method of Copper Plating Layer Containing Silver Nitride of the Invention Copper plating layer containing transition metal element silver nitride is a DC magnetron sputter dep〇siti in the embodiment of the present invention. 〇n) Process, firstly control the sputtering vacuum system cavity to a pressure below 7 χ 1〇·7 Torr (t〇rr), then high purity argon (A “) and trace nitrogen (n2) Introduce into the vacuum system to adjust the sputtering working pressure to ιχ10-2~1 χ1〇-3Torr (t〇rr). Splash clock with 150 watts (W) of energy. Splash with pure copper and precious metal element silver. The material of the target is plated with DC magnetron co-sputtering (c〇_

sputtering)的方式以形成鋼鍍層,該鋼鍍層中所需要之銀 及其氮含量如以下表一所示,將靶材置於基材之正下方約 20公分處,且面朝上。基材為碎晶片,為求鍍層均句,藏 鍍過程基材以定速作旋轉運動。其它濺鍍製程重要參數詳 如表二所示。 表 一__ -—-——ΙΞΞΖΞαηϊ 參數項目 — 一^ __ 參勢 濺鍍系統基本真空壓力 (System base pressure) —---— 多文、 7”0'7torr 以下 氬氣/氮氣工作壓力 (Argon/ Nitrogen working pressure) 1*102torr 直流錢鍍能量(DC power) 一_ 150W 基材溫度 常溫(不加熱)至1〇〇°C 靶材 無氧純銅(99.9%)/銀(99.95%) 靶材與基材相對位置及距離 基材位於靶材正上方相距20公分 濺鍍速率 4.8 nm/min 201030169 實施例二、針對銅鐘層中氮和貴金屬元素銀含量定性、 定量與電阻測定 本發明之銅鍍層中之銀與氮含量分別由電子微探針分 析儀(ΕΡΜΑ)測得,其組成如上述表一所示。表三所示為純 Cu,Cu(Ag)與 Cu(AgNx)鐘層退火前後依 ASTM D4541-02 測試法量得之接著強度量測結果比較,依此結果可知含銀 氮化物之銅鍍層均有極佳之附著性質,且Cu(AgNx)鍍層於 退火前後均具良好之接著強度。 φ 表三 樣品狀況 接著強度(MPa) 開裂位置 (Fracture location) 濺鍍後、退火前 Cu Cu(Ag〇.5) Cu(Ag12N07) 2.2±0.1 3.8±0_3 5.0±0.5 在銅鍍層與矽基板之間 在銅鍍層與矽基板之間 在銅鍍層與矽基板之間 在 600°C,1x1〇-6〜1x10-7 torr退火1小時 Cu Cu(Ag05) Cu(Ag12N07) 3.7±0.2 15.9±0.4 24.4±0.4 在銅鍍層與矽基板之間 在銅鍍層與矽基板之間 在銅鍍層與矽基板之間 _ *數值愈大表接著強度愈佳 第一 A圖所示為純Cu鍍層、Cu(Ag)鑛層、Cu(AgNx) 鍍層與於不同退火溫度中持溫一小時後之電阻係數值比 較;而第一 B圖所示為Cu(Ag)鍍層以及Cu(AgNx)锻層於 400°C經不同退火時間之電阻係數比較。依第一 A及B圖 可知Cu(AgNx)經600°C退火後仍無銅碎化合物生成,且 導入微量AgN之銅鐘層具2.2 μΩ-cm之低電阻,且經400°C 之240小時長時間退火之電阻係數為2.6 μΩ-cm。 201030169 第二圖係顯示Cu(AgNx)經400oC退火一小時之二次 離子質譜(SIMS)之銅擴散曲線。依此圖可知相較於純銅,· Cu(AgNx)經400°C退火一小時之擴散深度較淺。 第三圖係顯示Cu(AgNx)經40CTC退火一小時之漏電 流密度。由此圖可知經400°C退火一小時後之Cu(AgNx) 銅鍍層漏電流密度較純銅為低,此與SIMS結果相符。 第四圖所示係Cu(Ag)鍍層以及Cu(AgNx)鍍層與純銅 鐘層經不同溫度退火之一小時之X射線衍射圖(XRD)。依 ❿ 此圖可知Cu(AgNx)薄膜之高溫穩定性較Cu(Ag)與純銅為 佳。 第三實施例、含貴金屬元素銀氮化物之銅鍍層的性質 測試 本發明實施例中,主要說明含銀氮化物之銅鍍層性質。 依ASTM D4541-02測試法量測接著強度,經在600。〇、 1x10〜1x1〇 7t〇rr真空退火1小時的含銀氮化物之銅鑛層 具有24.4 MPa之良好接著強度,故可得知導入氮原子於鍍 層中可提升銅鍍層之高溫穩定性,並獲低電阻、低漏電流 及良好之接著強度。 综上所述,本發明所使用之方法及含銀氬化物之銅鍍 層的合金組成與性質實前所未見,符合新穎首創之要件, 且在產業上的利用更具有高度之價值性及應用性。 【圖式簡單說明】 第一 A圖係本發明實施例中Cu(Ag)艘層、Cu(AgNx) 鍍層與純Cu鍍層於不同退火度持溫—小時後之電阻係數值 比較。 201030169 第一 B圖係本發明實施例中Cu(Ag)鍍層、Cu(AgNx) 鍍層於400。〇經不同退火時間之電阻係數比較。 第二圖係本發明實施例中Cu(AgNx)鍍層經400oC退 火一小時之二次離子質譜(SIMS)的銅擴散曲線。 第三圖係本發明實施例中Cu(AgNx>鍍層經400°C退 火一小時之漏電流密度。 第四圖係本發明實施例中Cu(Ag)鍍層、Cu(AgNx)鍍層 與純銅鍍層經不同溫度退火之一小時之XRD圖。 【主要元件符號說明】 無 【參考文獻】 1. J. P. Chu, C. H. Chung, P. Y. Lee, J. M. Rigsbee, and J. Y. Wang,"Microstructure and Properties of Cu-C Pseudoalloy Films Prepared by Sputter Deposition", Metallurgical and Materials Transactions A, Vol. 29A, p. 647-658,(1998) ° 2. J. P. Chu and T. N. Lin,"Deposition, Microstructure and Properties of Sputtered Copper Films Containing Insoluble Molybdenum, Journal of Applied Physics, 85, p.6462-6469 (1999卜 3. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin and S. F. Wang, "Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten: A Thermal Annealing Study," Journal of Materials Research, Vol. 18, No. 6, p. 1429-1434 (2003) 〇 201030169 4. J. P. Chu and C. H. Lin, M Formation of A Reacted Layer at The Barrierless Cu(WN)/Si Interface," Applied Physics Letters,Vol_ 87,No. 21,p. 211902 (2005) 〇 5. S. L. Zhang, J. Μ. E. Harper and F. M. D'Heurle, "High conductivity copper-boron alloys obtained by low temperature annealing", Journal of Electronic Materials, V〇l· 30, p_ L1,(2001)。 6·本國發明專利證書號第1521〇〇號「含钽之銅鍍層The method of sputtering is to form a steel coating. The silver and its nitrogen content required in the steel coating are as shown in Table 1 below, and the target is placed approximately 20 cm directly below the substrate with the surface facing upward. The substrate is a broken wafer. In order to find the coating layer, the substrate during the plating process is rotated at a constant speed. Other important parameters of the sputtering process are shown in Table 2. Table 1 __ -—-——ΙΞΞΖΞαηϊ Parameter item—一^ __ Basic system pressure of parasitic sputtering system —--- — Multi-text, 7”0'7torr The following argon/nitrogen working pressure ( Argon/ Nitrogen working pressure) 1*102torr DC power plating (DC power) _ 150W substrate temperature at normal temperature (no heating) to 1 〇〇 °C target anaerobic pure copper (99.9%) / silver (99.95%) target The relative position of the material and the substrate is at a distance of 20 cm from the substrate directly above the target. The sputtering rate is 4.8 nm/min. 201030169 Example 2 Qualitative, quantitative and electrical resistance determination of the silver content of nitrogen and precious metal elements in the copper bell layer. The silver and nitrogen contents in the copper plating layer were respectively measured by an electronic microprobe analyzer (ΕΡΜΑ), and the composition thereof is shown in Table 1 above. Table 3 shows pure Cu, Cu (Ag) and Cu (AgNx) clock layers. According to the results of the ASTM D4541-02 test method, the copper strength of the silver-containing nitride has excellent adhesion properties, and the Cu(AgNx) coating has good before and after annealing. Then the strength. φ Table 3 sample condition then Degree (MPa) Fracture location After sputtering, before annealing, Cu Cu(Ag〇.5) Cu(Ag12N07) 2.2±0.1 3.8±0_3 5.0±0.5 Between copper plating and tantalum substrate in copper plating and tantalum The substrate is annealed between the copper plating layer and the tantalum substrate at 600 ° C, 1×1〇-6~1×10-7 torr for 1 hour Cu Cu(Ag05) Cu(Ag12N07) 3.7±0.2 15.9±0.4 24.4±0.4 in the copper plating layer Between the copper substrate and the germanium substrate between the copper plating layer and the germanium substrate, the larger the value, the better the strength. The first A picture shows the pure Cu plating layer, the Cu (Ag) ore layer, Cu ( AgNx) coatings are compared with resistivity values after holding for one hour at different annealing temperatures; and Figure 1B shows the resistance of Cu(Ag) coatings and Cu(AgNx) forged layers at 400 °C for different annealing times. Coefficient comparison. According to the first A and B graphs, Cu(AgNx) is still formed without annealing of copper after annealing at 600 °C, and the copper bell layer with a small amount of AgN has a low resistance of 2.2 μΩ-cm and passes through 400 °C. The resistivity of the 240-hour long-time annealing is 2.6 μΩ-cm. 201030169 The second figure shows the secondary ion mass spectrometry (SIMS) of Cu(AgNx) annealed at 400oC for one hour. Copper diffusion curve. According to this figure, compared with pure copper, Cu (AgNx) is annealed at 400 ° C for one hour and has a shallow diffusion depth. The third graph shows the leakage current density of Cu(AgNx) annealed at 40 CTC for one hour. It can be seen from the figure that the leakage current density of Cu(AgNx) copper plating after annealing at 400 ° C for one hour is lower than that of pure copper, which is consistent with the SIMS results. The fourth figure shows the X-ray diffraction pattern (XRD) of the Cu (Ag) coating and the Cu (AgNx) coating and the pure copper bell layer annealed at different temperatures for one hour. According to this figure, the high temperature stability of Cu(AgNx) film is better than that of Cu(Ag) and pure copper. Third Embodiment Properties of Copper Plating Layer Containing Precious Metal Element Silver Nitride In the embodiment of the present invention, the copper plating property of the silver-containing nitride is mainly explained. The strength was measured according to the ASTM D4541-02 test method at 600. 〇, 1x10~1x1〇7t〇rr vacuum annealed copper ore layer with silver nitride for 1 hour has a good adhesion strength of 24.4 MPa, so it can be known that the introduction of nitrogen atoms in the plating layer can improve the high temperature stability of the copper plating layer, and Low resistance, low leakage current and good adhesion strength. In summary, the method and the alloy composition and the properties of the copper-plated layer containing silver argon are not seen before, and meet the requirements of the novel initiative, and the industrial use is more highly valuable and applied. Sex. BRIEF DESCRIPTION OF THE DRAWINGS The first A is a comparison of the resistivity values of Cu(Ag) ship layer, Cu(AgNx) plating layer and pure Cu plating layer in different annealing degrees after the temperature is maintained for one hour in the embodiment of the present invention. 201030169 The first B is a Cu (Ag) plating layer and a Cu (AgNx) plating layer in the embodiment of the present invention. Comparison of the resistivity of different annealing times. The second graph is a copper diffusion curve of a secondary ion mass spectrometer (SIMS) in which a Cu (AgNx) plating layer is annealed at 400 ° C for one hour in the embodiment of the present invention. The third figure is the leakage current density of Cu (AgNx> plating layer annealed at 400 ° C for one hour in the embodiment of the present invention. The fourth figure is Cu (Ag) plating layer, Cu (AgNx) plating layer and pure copper plating layer in the embodiment of the present invention. One-hour XRD pattern at different temperatures. [Main component symbol description] None [References] 1. JP Chu, CH Chung, PY Lee, JM Rigsbee, and JY Wang, "Microstructure and Properties of Cu-C Pseudoalloy Films Prepared by Sputter Deposition", Metallurgical and Materials Transactions A, Vol. 29A, p. 647-658, (1998) ° 2. JP Chu and TN Lin,"Deposition, Microstructure and Properties of Sputtered Copper Films Containing Insoluble Molybdenum, Journal Of Applied Physics, 85, p.6462-6469 (1999, 3. CH Lin, JP Chu, T. Mahalingam, TN Lin and SF Wang, "Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten: A Thermal Annealing Study, " Journal of Materials Research, Vol. 18, No. 6, p. 1429-1434 (2003) 〇201030169 4. JP Chu and CH Li n, M Formation of A Reacted Layer at The Barrierless Cu(WN)/Si Interface," Applied Physics Letters, Vol_ 87, No. 21, p. 211902 (2005) 〇 5. SL Zhang, J. Μ. E. Harper and FM D'Heurle, "High conductivity copper-boron alloys obtained by low temperature annealing", Journal of Electronic Materials, V〇l. 30, p_L1, (2001). 6·National Invention Patent No. 1521 「 “Copper plating containing bismuth

以提升銅鍵層之導電性、高溫穩定性與硬度性質及其藏鍵 製作法」,朱瑾、朱閔聖。In order to improve the conductivity, high temperature stability and hardness properties of the copper bond layer and the method of making the keys, Zhu Xi and Zhu Xisheng.

1212

Claims (1)

.201030169 七、申請專利範圍: 1 _ 一種銅鍍層,其係包括銅以及銀氮化物。 2_如申請專利範圍第彳項所述之銅鍍層,其中該銅 鍍層中的銀含量係低於2·〇原子百分比,而氮含量係在 0.1 ~ 1.5原子百分比之間。 3. 如申請專利範圍第]或2項所述之銅鍍層,其中 該銅鑛層具有2.0~3.0微歐姆-公分(pQ_cm)之電阻係數 值、10 ~10 10安培/平方公分(A/cm2)之漏電流性質以及 ® 2〇_3〇 MPa之良好接著強度。 4. 一種銅鍍層的濺鍍合成方法,其係包含: 將一藏鍍真空系統之濺鍍壓力調整在1χ1〇-2〜1χ1〇_3 托耳(torr); 再將高純度氬氣(Ar)與微量氮氣(n2)導入該濺鍍真空系 統中; 將該濺鍍真空系統的濺鑛功率調整在為13〇〜15〇瓦 φ (W) ’令純銅與銀在該濺鍍真空系統中以磁控共濺锻的方 式形成一含有銀氮化物的銅鑛層。 5_如申請專利範圍第4項所述之銅鍍層的濺鍍合成 方法’其中該磁控共濺鑛的溫度係調整在常溫至1 〇〇°C。 6. 如申請專利範圍第4或5項所述之銅鍍層的濺鍍 合成方法’其中該含有銀氮化物的銅鑛層尚包括將一退火 製程’該退火製程之真空退火壓力為1x1〇·6〜1x10-1t〇rr, 且加熱速率為每分鐘4°C到6°C,再於加熱至200°C至 650°C後持溫一小時。 13 1 如申請專利範圍第4或5項所述之銅鍍層的濺鍍 .201030169 合成方法,其中該銅鍍層具有2.〇〜3·〇微歐姆_&^(μΩ(;ηι) 之電阻係數值以及_1 安培/平方公分(A/cm2)之漏 電流性質以及20-30 MPa之接著強度。 8_如申請專利範圍第6項所述之銅鍍層的濺鍍合成 方法,其中該銅鍍層具有2.0〜3.0微歐姆-公分(μΩ-cm)之 電阻係數值以及1〇-11~1〇·1〇安培/平方公分(A/cm2)之漏電 流性質以及20-30 MPa之接著強度。 9· 一種銅鍵層,其係由申請專利範圍第4至6項中 • 任一項所述之濺鍍合成方法所製成者。 10.如申請專利範圍第9項所述之銅鍍層,其中該銅 鍵層具有2_0〜3.0微歐姆·公分(μΩ_εΓτι)之電阻係數值以及 1 〇 11〜1 〇_10安培/平方公分(A/cm2)之漏電流性質以及20-30 MPa之接著強度。 八、圖式:(如次頁).201030169 VII. Patent application scope: 1 _ A copper plating system comprising copper and silver nitride. 2_ The copper plating layer of claim 2, wherein the copper content in the copper plating layer is less than 2. 〇 atomic percentage, and the nitrogen content is between 0.1 and 1.5 atomic percent. 3. The copper plating layer as claimed in claim 2 or 2, wherein the copper ore layer has a resistivity value of 2.0 to 3.0 micro ohm-cm (pQ_cm), and 10 to 10 10 amps/cm 2 (A/cm 2 ) The leakage current property and the good adhesion strength of ® 2〇_3〇MPa. 4. A method for sputtering a copper plating layer, comprising: adjusting a sputtering pressure of a vacuum plating system to 1 χ 1 〇 2 to 1 χ 1 〇 _3 torr (torr); and then purifying high purity argon (Ar) Introducing a trace amount of nitrogen (n2) into the sputtering vacuum system; adjusting the sputtering power of the sputtering vacuum system to 13 〇 15 〇 φ (W) 'making pure copper and silver in the sputtering vacuum system A copper ore layer containing silver nitride is formed by magnetron co-sputtering. 5_ A sputtering synthesis method of a copper plating layer as described in claim 4, wherein the temperature of the magnetron sputtering is adjusted to a normal temperature to 1 〇〇 °C. 6. The method for sputter synthesis of a copper plating layer as described in claim 4 or 5, wherein the copper ore layer containing the silver nitride further comprises an annealing process: the vacuum annealing pressure of the annealing process is 1×1〇· 6~1x10-1t〇rr, and the heating rate is 4 ° C to 6 ° C per minute, and then heated to 200 ° C to 650 ° C and held for one hour. 13 1 Sputtering of a copper plating layer as described in claim 4 or 5, wherein the copper plating layer has a resistance of 2. 〇 〜3·〇 micro ohm _&^(μΩ(;ηι) The coefficient value and the leakage current property of _1 ampere/cm 2 (A/cm 2 ) and the bonding strength of 20-30 MPa. 8_ The sputtering method for copper plating according to claim 6 of the patent application, wherein the copper The coating has a resistivity value of 2.0 to 3.0 micro ohm-cm (μΩ-cm) and a leakage current property of 1〇-11~1〇·1〇 ampere/cm 2 (A/cm 2 ) and a bonding strength of 20-30 MPa. A copper bond layer produced by the sputtering synthesis method according to any one of claims 4 to 6. 10. The copper plating layer as claimed in claim 9 Wherein the copper bond layer has a resistivity value of 2_0 to 3.0 micro ohm·cm (μΩ_εΓτι) and a leakage current property of 1 〇11~1 〇_10 amps/cm 2 (A/cm 2 ) and a subsequent 20-30 MPa Strength. Eight, schema: (such as the next page)
TW98103467A 2009-02-04 2009-02-04 Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same TWI382102B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98103467A TWI382102B (en) 2009-02-04 2009-02-04 Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98103467A TWI382102B (en) 2009-02-04 2009-02-04 Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same

Publications (2)

Publication Number Publication Date
TW201030169A true TW201030169A (en) 2010-08-16
TWI382102B TWI382102B (en) 2013-01-11

Family

ID=44854194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98103467A TWI382102B (en) 2009-02-04 2009-02-04 Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same

Country Status (1)

Country Link
TW (1) TWI382102B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650436B (en) * 2017-05-17 2019-02-11 林宗新 Antibacterial copper coating film and preparation method thereof

Also Published As

Publication number Publication date
TWI382102B (en) 2013-01-11

Similar Documents

Publication Publication Date Title
Hsu et al. Electroless copper deposition for ultralarge-scale integration
Wang et al. Formation of aluminum oxynitride diffusion barriers for Ag metallization
JP2003529206A (en) Physical vapor deposition targets, conductive integrated circuit metal alloy interconnects, electroplated anodes, metal alloys for use as conductive interconnects in integrated circuits
JP2008506040A (en) Materials for conductive wires made from copper alloys
US20090186230A1 (en) Refractory metal-doped sputtering targets, thin films prepared therewith and electronic device elements containing such films
Chang et al. Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers
Zhao et al. Influence of sputtering and electroless plating of Cr/Cu dual-layer structure on thermal conductivity of diamond/copper composites
US20070281457A1 (en) Copper layer and a method for manufacturing said copper layer
JPS6154109B2 (en)
WO2010119785A1 (en) Barrier film for semiconductor wiring, sintered sputtering target, and method of manufacturing sputtering targets
Tsai et al. Characteristics of a 10 nm-thick (TiVCr) N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects
Fang et al. Low resistivity Fe–Co–B–Ti–Nb amorphous thin film as a copper barrier
Chang et al. Fabrication and crystallization behaviors of sputtered Ni–Cu–P films on tool steel
TW201030169A (en) Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same
Lin et al. The application of barrierless metallization in making copper alloy, Cu (RuHfN), films for fine interconnects
Lingwal et al. Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices
Lin et al. Copper–holmium alloy film for reliable interconnects
Li et al. Addition of strong interaction element Fe (or Sn) to improve the stability of solid solution Cu (Ge) film
TWI395829B (en) Sputtered copper layer with good properties and method for manufacturing the same
Chu et al. Thermal Stability Study of Cu (MoN x) Seed Layer on Barrierless Si
KR20220013887A (en) Semiconductor interconnect, electrode for semiconductor device, and method of preparing multielement compound thin film
TWI408244B (en) New technique for fabrication of copper films with excellent properties
TWI237328B (en) Copper films with good thermal stability, electrical conductivity and leakage current properties and the method for making the same
US20050087268A1 (en) Copper film containing tungsten carbide for improving electrical conductivity, thermal stability and hardness properties and a manufacturing method for the copper film
TWI464286B (en) Copper deposition for buffer layer and method of manufacturing the same