JPS6154109B2 - - Google Patents

Info

Publication number
JPS6154109B2
JPS6154109B2 JP13145782A JP13145782A JPS6154109B2 JP S6154109 B2 JPS6154109 B2 JP S6154109B2 JP 13145782 A JP13145782 A JP 13145782A JP 13145782 A JP13145782 A JP 13145782A JP S6154109 B2 JPS6154109 B2 JP S6154109B2
Authority
JP
Japan
Prior art keywords
boride
alloy
dispersed
silver
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13145782A
Other languages
Japanese (ja)
Other versions
JPS5923835A (en
Inventor
Hironori Fujita
Jiro Mizuno
Tooru Arai
Osami Kasuya
Koichi Oono
Hisahiro Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Tokai Rika Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd, Toyota Central R&D Labs Inc filed Critical Tokai Rika Co Ltd
Priority to JP13145782A priority Critical patent/JPS5923835A/en
Priority to EP19830107389 priority patent/EP0101936B1/en
Priority to DE8383107389T priority patent/DE3377990D1/en
Publication of JPS5923835A publication Critical patent/JPS5923835A/en
Publication of JPS6154109B2 publication Critical patent/JPS6154109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電気接点材料及び摺動材料等に使用
される金属材料の表層部に硼化物を分散させた合
金の製造方法に関するものである。 従来、硼化物と金属との複合材料を作るには、
粉末焼結法や溶解法が知られている。粉末焼結法
は、微細な硼化物粉末と例えば銅粉末とを適量混
合し適当な温度及び適当なガス雰囲気中で焼結し
て、微細硼化物分散銅を得る方法である。しか
し、この方法は、硼化物を均一に分散させること
が困難であり生産コストが高くつくという欠点を
有している。 また溶解法は、銅と硼化物を混合し、高温加熱
によつて溶解し、冷却凝固して硼化物分散銅合金
を得る方法である。しかし、この方法は、溶融し
た合金を凝固させる時に、硼化物が晶出するため
硼化物粒が粗大となり、鍜造によつても硼化物の
微細化には自と限度があるという欠点を有してい
た。 さらには、両公知方法共に、金属材料の表層部
にのみ硼化物を分散させることができないため例
えば電気伝導度が小さくなるという欠点があつ
た。 本発明は上記従来の方法とはまつたく異なり、
硼化物の構成元素の金属と金または銀との合金を
作り、その合金の表面から硼素を浸透拡散し、合
金の表層部に硼化物の微粒子が分散した層を生成
させるものである。 すなわち本発明の硼化物分散合金の製造方法は
少なくとも表面より0.01〜0.1mm深さまでの表層
部がベリリウム(Be)、マグネシウム(Mg)、ア
ルミニウム(Al)、シリコン(Si)、チタン
(Ti)、バナジウム(V)、クロム(Cr)、マンガ
ン(Mn)、鉄(Fe)、コバルト(Co)、ニツケル
(Ni)、ガリウム(Ga)、砒素(As)、ジルコニウ
ム(Zr)、ニオブ(Nb)、モリブデン(Mo)、パ
ラジウム(Pd)、カドミウム(Cd)、タンタル
(Ta)、タングステン(W)及び白金(Pt)から
なる群より選ばれた1種又は2種以上の元素を合
金あるいは微細粒子として0.5〜40原子%含み、
残部が金、銀又は金合金、銀合金である金属材料
を調整する第1工程と、上記金属材料にボロンを
浸透拡散させ、該金属材料の表層部に、上記群よ
り選ばれた1種又は2種以上の元素の硼化物より
なる微細な粒子を形成する第2工程とよりなるこ
とを特徴とするものである。 本発明の製造方法に用いられる金属材料におい
て、表面より0.01〜0.1mm深さまでの少なくとも
表層部が、Be、Mg、Al、Si、Ti、V、Cr、
Mn、Fe、Co、Ni、Ga、As、Zr、Nb、Mo、
Pd、Cd、Ta、W及びPtからなる群より選ばれた
1種又は2種以上の元素を0.5〜40原子%含み、
残部が金、銀、金合金、銀合金である金属材料で
あるとして表層部の金属組成を規定したのは、表
層部のみに硼化物を形成させるためである。した
がつて金属材料の他の部分には、使用目的等に応
じて任意の金属のものを使用することができる。 表層部を形成する金属をBe、Mg、Al、Si、
Ti、V、Cr、Mn、Fe、Co、Ni、Ga、As、Zr、
Nb、Mo、Pd、Cd、Ta、W及びPtからなる群よ
り選ばれた1種又は2種以上としたのは、上記
Be、Mg、Al、等は、いずれも金、銀、金合金、
銀合金中に固溶あるいは分散し、かつ金属材料の
表面から拡散浸透してきたボロン(B)と結合
し、硼化物の微細な粒子を分散形成することがで
きるためである。又、その他の理由として上記元
素の硼化物は、比較的硬度が高く、固有抵抗が低
く、融点が高く、このため本発明の製造方法で得
られる材料の有力な用途と考えられる電気接点材
料又は摺動材料として優れた特性を有することが
挙げられる。第1表に硼化物の物理的特性を従来
の接点材料と比較して挙げた。これによると上記
硼化物はいずれも固有抵抗が20〜100×10-6Ωcm
であり、溶融点1270〜3040℃、硬度Hv1500〜
3000と従来タイプの接点材に比較し溶融、硬度の
点で優れている。 硼化物形成元素の組成割合を0.5〜40原子%と
したのは、0.5%より少ないと、形成される硼化
物の量が少ないため、目的とする硼化物特有の効
果が得られないためであり、40%より多くなる
と、形成される硼化物の量が多くなり、本発明で
得られる材料の硼化物と金、銀、金合金、銀合金
との混合形態が悪くなり導電性及び熱伝導性が低
下すると共に被覆層のクラツクや剥離が生じやす
くなるためである。 硼化物を分散させる表層部を0.01〜0.1mmとし
たのは、硼化物が接点材料として接点表面部に要
求される耐摩耗性、耐溶着性、耐アーク性の諸効
果を発揮できる様にし、かつ表層下の母材内部で
は、高導電性、高熱伝導性、高強度性等の要求を
具備するようにするためである。即ち、合金母材
の内部全体に硼化物を分散させることは、必ずし
も上記の内部母材に要求される高導電性又は高熱
伝導性、高強度性を得るには得策ではない。この
様な目的には、上記表層部にのみ硼化物を分散さ
せ、表層部以下の内部は、要求される特性に応じ
て、金、または銀の純度を向上したり、強化元素
を添加したりするのが好ましい。 なお、表層部の母材合金材料の組成によつて
は、ボロンの浸透拡散により微細な硼化物粒子が
分散した層が形成されず、不均一な硼化物層が形
成される場合がある。このような場合には母材合
金中の硼化物形成金属元素の組成を少なくした
り、母材合金中に硼化物を形成しやすい他の元素
を添加して硼化物の分散を図るのが好ましい。 金属材料は表層部を含め全体を所定の硼化物形
成元素と金または銀の合金とすることができる。
この場合には目的とする組成の金属を溶解し、合
金とするものである。 従来、一般に銀系接点材料としてはAg−Ni合
金、Ag−CdO、Ag−InO材が使用されている。
これらの従来の銀系接点材料をそのまま、さらに
は硼化物形成元素を加えて、本発明の母材合金と
することができる。Ni、Cuはアーク等による銀
の消耗量を減少させ、InO、CdOは表面浄化作用
がある。 表層部のみを所定の合金とする金属材料を調整
する代表的な方法としては、母材を金または銀と
し、その表面にV、Ni等を被覆し、さらに被覆
されたV等の金属を加熱処理により母材中に拡散
させ、表層部のみを所定の合金とするものであ
る。母材の表面にV等を被覆する方法としては、
電気メツキ、化学メツキ、真空蒸着、スパツタリ
ング、溶射等公知の方法が採用できる。V等の母
材中への拡散は高温における金属元素の熱拡散現
象を利用して達成する。 金属材料の形状は板状、棒状、線状等、使用目
的に応じて任意の形状とすることができる。 金属材料の表面に硼素を浸透、拡散させ、表層
部にボライドの微細粒子が分散した層を形成させ
る工程は、通常公知の浸硼素処理法により達成さ
れる。代表的な浸硼素処理法としては、硼素を溶
解した溶融塩浴に金属材料を浸漬して処理する溶
融塩法、炭化硼素等の粉末とフツ化ホウ素、塩化
アンモン等の粉末の混合粉末中に金属材料を埋設
し、加熱処理をおこなう粉末法、真空中で硼素を
蒸着させる等の物理的蒸着法が利用できる。金属
材料中に浸透した硼素は母材合金中のV等と化合
し、硼化物を形成する。得られる硼化物は、
AlB2、AlB10、AsB、ASB6、CdB6、Co2B、
CoB、CrB、CrB2、FeB、Fe2B、VB2、MgB2
MgB4、MoB2、Mo2B、NbB、NbB2、PtB、
Pt2B3、TaB、TaB2、W2B5、ZrB2等のうち1種
又は2種以上の混合物である。 これらの方法により、金、銀、金合金、銀合金
中に硼化物粒子が分散した層が形成される。硼化
物粒子の大きさは小さければ小さい程よい。本発
明の方法では0.1〜10ミクロン程度の粒径をもつ
硼化物が得られる。なお、表層部に占める硼化物
粒子の割合は容量%で0.6〜50%が望ましい。表
層部の層の厚さは0.01〜0.1mmが良い。なお、厚
い層を得るには、硼素の浸透拡散処理時間を長く
したり、処理温度を高くすることにより達成でき
る。 本発明に係る製造方法は以上の構成よりなる。 本発明の製造方法によれば、金属材料の表層部
にのみ硼化物を微細かつ均一に分散させることが
容易にできる。 かつ、従来の焼結法による硼化物分散合金に比
較し製造コストが安く、得られる硼化物分散合金
の性質もすぐれている。 硼化物は、表に示したように従来の接点材料に
比べて硬度、溶融温度及び分解温度が高く化学的
にも安定している。このため本発明方法によつて
表層部にのみ硼化物を分散させて製造した金属材
料は、耐摩耗性、耐溶着性及び耐アーク性に優れ
た表層部を有することになり、該表層部を接点部
材とする特性の優れた電気接点材料及び電気摺動
The present invention relates to a method for manufacturing an alloy in which boride is dispersed in the surface layer of a metal material used for electrical contact materials, sliding materials, and the like. Conventionally, to make composite materials of boride and metal,
Powder sintering methods and melting methods are known. The powder sintering method is a method in which a suitable amount of fine boride powder and, for example, copper powder are mixed and sintered at a suitable temperature and in a suitable gas atmosphere to obtain fine boride-dispersed copper. However, this method has the disadvantage that it is difficult to uniformly disperse the boride and the production cost is high. The melting method is a method in which copper and boride are mixed, melted by high temperature heating, and solidified by cooling to obtain a boride-dispersed copper alloy. However, this method has the disadvantage that when the molten alloy is solidified, the boride grains become coarse due to the crystallization of the boride, and there is a limit to the refinement of the boride even by forging. Was. Furthermore, both of the known methods have the disadvantage that, for example, the electrical conductivity becomes low because the boride cannot be dispersed only in the surface layer of the metal material. The present invention is completely different from the above conventional method,
This method involves making an alloy of metals that are constituent elements of boride and gold or silver, and then penetrating and diffusing boron from the surface of the alloy to form a layer in which fine particles of boride are dispersed on the surface of the alloy. In other words, the method for producing a boride dispersed alloy of the present invention is such that at least the surface layer from the surface to a depth of 0.01 to 0.1 mm contains beryllium (Be), magnesium (Mg), aluminum (Al), silicon (Si), titanium (Ti), Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), gallium (Ga), arsenic (As), zirconium (Zr), niobium (Nb), One or more elements selected from the group consisting of molybdenum (Mo), palladium (Pd), cadmium (Cd), tantalum (Ta), tungsten (W), and platinum (Pt) as an alloy or fine particles. Contains 0.5 to 40 atomic%,
A first step of preparing a metal material in which the balance is gold, silver, a gold alloy, or a silver alloy, and boron is permeated and diffused into the metal material, and one type selected from the above group or boron is added to the surface layer of the metal material. This method is characterized by comprising a second step of forming fine particles made of borides of two or more elements. In the metal material used in the manufacturing method of the present invention, at least the surface layer from the surface to a depth of 0.01 to 0.1 mm contains Be, Mg, Al, Si, Ti, V, Cr,
Mn, Fe, Co, Ni, Ga, As, Zr, Nb, Mo,
Contains 0.5 to 40 at% of one or more elements selected from the group consisting of Pd, Cd, Ta, W and Pt,
The reason why the metal composition of the surface layer portion is defined as a metal material in which the remainder is gold, silver, gold alloy, or silver alloy is to form boride only in the surface layer portion. Therefore, for the other parts of the metal material, any metal can be used depending on the purpose of use. The metals forming the surface layer are Be, Mg, Al, Si,
Ti, V, Cr, Mn, Fe, Co, Ni, Ga, As, Zr,
One or more selected from the group consisting of Nb, Mo, Pd, Cd, Ta, W, and Pt are selected from the above.
Be, Mg, Al, etc. are all gold, silver, gold alloy,
This is because boron (B), which is dissolved or dispersed in the silver alloy and which has diffused and penetrated from the surface of the metal material, can be combined with the boron (B) to disperse and form fine particles of boride. In addition, for other reasons, the borides of the above elements have relatively high hardness, low specific resistance, and high melting points, and for this reason, they are considered to be effective applications for electrical contact materials or materials obtained by the manufacturing method of the present invention. One example is that it has excellent properties as a sliding material. Table 1 lists the physical properties of borides in comparison to conventional contact materials. According to this, all of the above borides have a specific resistance of 20 to 100×10 -6 Ωcm.
Melting point 1270~3040℃, hardness Hv1500~
3000 and is superior to conventional contact materials in terms of melting and hardness. The reason why the composition ratio of boride-forming elements is set to 0.5 to 40 atomic % is because if it is less than 0.5%, the amount of boride formed is small and the desired effect peculiar to boride cannot be obtained. , more than 40%, the amount of boride formed increases, and the mixing form of the boride and gold, silver, gold alloy, and silver alloy of the material obtained by the present invention deteriorates, resulting in poor electrical conductivity and thermal conductivity. This is because cracks and peeling of the coating layer become more likely to occur as the coating layer decreases. The reason why the surface layer in which the boride is dispersed is set to 0.01 to 0.1 mm is to enable the boride to exhibit the various effects required for the contact surface as a contact material, such as wear resistance, welding resistance, and arc resistance. In addition, the interior of the base material below the surface layer is to meet requirements such as high electrical conductivity, high thermal conductivity, and high strength. That is, dispersing boride throughout the interior of the alloy base material is not necessarily a good idea in order to obtain the high electrical conductivity, high thermal conductivity, and high strength required for the above-mentioned internal base material. For this purpose, boride is dispersed only in the above-mentioned surface layer, and in the interior below the surface layer, depending on the required characteristics, the purity of gold or silver may be improved, or reinforcing elements may be added. It is preferable to do so. Note that depending on the composition of the base alloy material in the surface layer portion, a layer in which fine boride particles are dispersed may not be formed due to the permeation and diffusion of boron, and a non-uniform boride layer may be formed. In such cases, it is preferable to reduce the composition of boride-forming metal elements in the base alloy or add other elements that tend to form borides to the base alloy to disperse the boride. . The entire metal material including the surface layer can be an alloy of a predetermined boride-forming element and gold or silver.
In this case, metals having the desired composition are melted to form an alloy. Conventionally, Ag-Ni alloy, Ag-CdO, and Ag-InO materials have been generally used as silver-based contact materials.
These conventional silver-based contact materials can be used as they are, or even with the addition of a boride-forming element, to form the base alloy of the present invention. Ni and Cu reduce the amount of silver consumed by arcing, etc., and InO and CdO have a surface purifying effect. A typical method for preparing a metal material in which only the surface layer is a specified alloy is to use gold or silver as the base material, coat the surface with V, Ni, etc., and then heat the coated metal such as V. The alloy is diffused into the base material through treatment, and only the surface layer becomes a predetermined alloy. The method of coating V etc. on the surface of the base material is as follows:
Known methods such as electroplating, chemical plating, vacuum deposition, sputtering, and thermal spraying can be used. Diffusion of V and the like into the base material is achieved by utilizing the thermal diffusion phenomenon of metal elements at high temperatures. The shape of the metal material can be any shape depending on the purpose of use, such as a plate, a rod, or a line. The step of infiltrating and diffusing boron into the surface of the metal material to form a layer in which fine boride particles are dispersed on the surface layer is accomplished by a commonly known boron treatment method. Typical boron treatment methods include the molten salt method, in which metal materials are immersed in a molten salt bath containing dissolved boron, and the boron treatment in a mixed powder of boron carbide powder, boron fluoride, ammonium chloride powder, etc. A powder method in which a metal material is buried and heat treated, and a physical vapor deposition method in which boron is deposited in a vacuum can be used. The boron that has penetrated into the metal material combines with V and the like in the base alloy to form boride. The obtained boride is
AlB2 , AlB10 , AsB, ASB6 , CdB6 , Co2B ,
CoB, CrB, CrB2 , FeB, Fe2B , VB2 , MgB2 ,
MgB4 , MoB2 , Mo2B , NbB, NbB2 , PtB,
It is one or a mixture of two or more of Pt 2 B 3 , TaB, TaB 2 , W 2 B 5 , ZrB 2 and the like. By these methods, a layer in which boride particles are dispersed in gold, silver, a gold alloy, or a silver alloy is formed. The smaller the size of the boride particles, the better. The method of the present invention yields boride having a particle size of about 0.1 to 10 microns. The proportion of boride particles in the surface layer is preferably 0.6 to 50% by volume. The thickness of the surface layer is preferably 0.01 to 0.1 mm. Note that a thick layer can be achieved by increasing the boron permeation/diffusion treatment time or by increasing the treatment temperature. The manufacturing method according to the present invention has the above configuration. According to the manufacturing method of the present invention, boride can be easily and finely and uniformly dispersed only in the surface layer portion of the metal material. In addition, the manufacturing cost is lower than that of boride-dispersed alloys produced by conventional sintering methods, and the obtained boride-dispersed alloys have excellent properties. As shown in the table, boride has higher hardness, higher melting temperature, higher decomposition temperature, and is chemically more stable than conventional contact materials. Therefore, the metal material produced by dispersing boride only in the surface layer by the method of the present invention has a surface layer with excellent wear resistance, welding resistance, and arc resistance. Electric contact materials and electric slides with excellent properties for use as contact members

【表】【table】

【表】 材料として使用することができる。又硼化物は、
比較的高い導電性を有し、しかも表層部のみに微
細に分散せしめ、かつ、母材金属は導電性のさら
によい金、銀合金であるため電気接点材料として
十分な高伝導性および高熱伝導性を得ることがで
きる。すなわち、表層部にのみ硼化物分散層を形
成するため、接点材料全体の抵抗値を低く押さえ
ることができる。 本発明製造方法によれば硼化物分散合金の母材
内部の組成をほぼ任意に構成できるため、曲げ、
打抜き、コイニング等の加工が容易になる様又熱
伝導性を高くする様に母材内部の組成を選択する
ことができる。 以下実施例により説明する。 実施例 1 Au95重量部とCo5重量部を溶解し、Au85.0原
子%、Co15.0原子%よりなる直径10mmのコバル
ト金合金を得た。これをスエージングマシンで直
径4mmに鍛造した後、さらに圧延ロールにより1
mm厚さの板材にした。この板材より4×20mmの試
料を作成した。次にこの試料を硼砂(Na2B4O7
60重量部、炭化硼素(B4C)粉末(粒径79〜149
μm)40重量部よりなる900℃の溶融塩浴中に4
時間浸漬保持し、硼素を試験中に拡散浸透させ、
その後浴より取り出し空冷した。 得られた試料の一部を切断し、その切断面を顕
微鏡で調べた。この顕微鏡写真を第1図に示す。
図中領域1は硼化物の分散層、領域2はコバルト
金合金よりなる母材を表わす。この結果、表面よ
り約0.08mmの深さまで粒径2〜10μmの硼化物が
分散していることが分る。また硼化物の表層部に
占める割合は面積比で約18%であつた。この硼化
物はX線回析およびEPMAの測定の結果CoBであ
ることが確認された。また、硼化物の周囲の金属
はAuであつた。 実施例 2 Au90重量部とNi10重量部を溶解し、Au73原子
%Ni27原子%よりなるニツケル金合金を得た。
これを実施例1と同じ方法で硼素を拡散浸透させ
た。これにより表面より約0.10mmの深さまで粒径
5〜50μmの硼化物が分散した表層部をもつ硼化
物分散合金をを得た。この硼化物はNi2Bであ
り、この硼化物の表層部に占める割合は面積で約
32%であつた。 実施例 3 AuとVを溶解し、Au70原子%、V30原子%の
合金を得た。これより直径6.4mm長さ24mmの円柱
状試料を作つた。この試料を、75%の炭化硼素粉
末と5重量%の塩化アンモニウム粉末および20%
重量部のアルミナ粉末を混合した処理材粉末中に
埋設し、アルミナ製のルツボ中に入れ900℃で4
時間加熱し、その後ルツボのまま空冷した。 これにより第2図にその断面顕微鏡写真を示す
分散層1をもつ硼化物分散合金を製造した。 分散層1の厚さは約0.06mm、硼化物の粒径は約
5〜15μm、硼化物はVB2であつた。また分散層
における硼化物の占める割合は面積で約36%であ
つた。 実施例 4 Ag97重量部とCo3重量部とを溶解し、Ag95原
子%、Co5%よりなる合金を得た。この合金を実
施例1と同じ方法で硼素を拡散浸透させ、硼化物
分散合金を製造した。 この硼化物分散合金は直径約0.5μmの極めて
微細なCoBよりなる硼化物が分散した分散層を有
するものであつた。分散層の厚さは0.09mmであつ
た。硼化物の占める割合は面積で約6%であつ
た。 実施例 5 Ag97重量部とTi3重量部を溶解し、Ag93原子
%、Ti7原子%よりなる合金を得た。この合金を
実施例1と同じ方法で硼素を拡散浸透させた。 これにより、第3図にその断面顕微鏡写真を示
す分散層1をつ硼化物分散合金を製造した。 分散層1の厚さは約0.25mm、硼化物の粒径は約
2〜15μm、分散層1における硼化物の占める割
合は面積で約8%であつた。X線回析により硼化
物はTiB2であることが確認された。
[Table] Can be used as a material. Also, boride is
It has relatively high conductivity and is finely dispersed only in the surface layer, and the base metal is a gold or silver alloy with even better conductivity, so it has high conductivity and high thermal conductivity sufficient for use as an electrical contact material. can be obtained. That is, since the boride-dispersed layer is formed only on the surface layer, the resistance value of the entire contact material can be kept low. According to the manufacturing method of the present invention, the composition inside the base material of the boride-dispersed alloy can be configured almost arbitrarily.
The composition inside the base material can be selected to facilitate processing such as punching and coining, and to increase thermal conductivity. This will be explained below using examples. Example 1 95 parts by weight of Au and 5 parts by weight of Co were melted to obtain a cobalt-gold alloy having a diameter of 10 mm and consisting of 85.0 atomic % of Au and 15.0 atomic % of Co. After this was forged to a diameter of 4 mm using a swaging machine, it was further rolled to a diameter of 4 mm.
It was made into a plate material with a thickness of mm. A 4 x 20 mm sample was made from this plate material. Next, this sample was mixed with borax (Na 2 B 4 O 7 ).
60 parts by weight, boron carbide ( B4C ) powder (particle size 79-149
μm) in a molten salt bath at 900°C consisting of 40 parts by weight.
Dip and hold for a period of time to allow boron to diffuse and penetrate during the test.
Thereafter, it was taken out of the bath and cooled in the air. A part of the obtained sample was cut and the cut surface was examined under a microscope. This micrograph is shown in FIG.
In the figure, region 1 represents a boride dispersed layer, and region 2 represents a base material made of a cobalt-gold alloy. The results show that borides with particle sizes of 2 to 10 μm are dispersed to a depth of about 0.08 mm from the surface. The proportion of boride in the surface layer was approximately 18% in terms of area. This boride was confirmed to be CoB by X-ray diffraction and EPMA measurements. Furthermore, the metal surrounding the boride was Au. Example 2 90 parts by weight of Au and 10 parts by weight of Ni were melted to obtain a nickel-gold alloy consisting of 73 atomic % Au and 27 atomic % Ni.
Boron was diffused into this material in the same manner as in Example 1. As a result, a boride-dispersed alloy was obtained which had a surface layer in which boride particles having a grain size of 5 to 50 μm were dispersed to a depth of about 0.10 mm from the surface. This boride is Ni 2 B, and the proportion of this boride in the surface layer is approximately
It was 32%. Example 3 Au and V were melted to obtain an alloy containing 70 atomic % of Au and 30 atomic % of V. A cylindrical sample with a diameter of 6.4 mm and a length of 24 mm was made from this. This sample was combined with 75% boron carbide powder, 5% ammonium chloride powder and 20%
The weight part of alumina powder was embedded in the mixed treatment material powder, and the mixture was placed in an alumina crucible and heated at 900℃ for 4 hours.
The mixture was heated for an hour and then air cooled in the crucible. As a result, a boride dispersed alloy having the dispersed layer 1 whose cross-sectional micrograph is shown in FIG. 2 was manufactured. The thickness of the dispersion layer 1 was about 0.06 mm, the particle size of the boride was about 5 to 15 μm, and the boride was VB2 . In addition, the proportion of boride in the dispersed layer was approximately 36% in terms of area. Example 4 97 parts by weight of Ag and 3 parts by weight of Co were dissolved to obtain an alloy consisting of 95 atomic % Ag and 5 atomic % Co. Boron was diffused into this alloy in the same manner as in Example 1 to produce a boride dispersed alloy. This boride-dispersed alloy had a dispersion layer in which extremely fine boride of CoB with a diameter of about 0.5 μm was dispersed. The thickness of the dispersion layer was 0.09 mm. The area occupied by boride was approximately 6%. Example 5 97 parts by weight of Ag and 3 parts by weight of Ti were melted to obtain an alloy consisting of 93 atomic percent Ag and 7 atomic percent Ti. This alloy was diffused and infiltrated with boron in the same manner as in Example 1. As a result, a boride-dispersed alloy having the dispersion layer 1 whose cross-sectional micrograph is shown in FIG. 3 was manufactured. The thickness of the dispersion layer 1 was about 0.25 mm, the particle size of the boride was about 2 to 15 μm, and the proportion of the boride in the dispersion layer 1 was about 8% in terms of area. The boride was confirmed to be TiB 2 by X-ray diffraction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAu85原子%Co15原子%の合金を母材
とする実施例1により製造された硼化物分散合金
の厚さ方向切断面の組成を表す顕微鏡写真、第2
図はAu70%原子%V30原子%の合金を母材とす
る実施例2により製造された硼化物分散合金の厚
さ方向切断面の組成を表す顕微鏡写真、第3図は
Ag93原子%Ti7原子%の合金を母材とする実施例
5により製造された硼化物分散合金の厚さ方向切
断面の組成を表す顕微鏡写真である。図中1は分
散層、2は母材領域を示す。
Figure 1 is a micrograph showing the composition of a cross-section in the thickness direction of the boride-dispersed alloy manufactured in Example 1 using an alloy of Au85 atomic% and Co15 atomic% as a base material;
The figure is a micrograph showing the composition of the cross-section in the thickness direction of the boride-dispersed alloy manufactured in Example 2 using an alloy of 70% Au, atomic% V, and 30 atomic% as the base material.
2 is a micrograph showing the composition of a cross-section in the thickness direction of a boride-dispersed alloy produced in Example 5 using an alloy of 93 atomic % Ag and 7 atomic % Ti as a base material. In the figure, 1 indicates a dispersion layer, and 2 indicates a base material region.

Claims (1)

【特許請求の範囲】 1 少なくとも表面より0.01〜0.1mm深さまでの
表層部がベリリウム(Be)、マグネシウム
(Mg)、アルミニウム(Al)、シリコン(Si)、チ
タン(Ti)、バナジウム(V)、クロム(Cr)、マ
ンガン(Mn)、鉄(Fe)、コバルト(Co)、ニツ
ケル(Ni)、ガリウム(Ga)、砒素(As)、ジルコ
ニウム(Zr)、ニオブ(Nb)、モリブデン
(Mo)、パラジウム(Pd)、カドミウム(Cd)、タ
ンタル(Ta)、タングステン(W)及び白金
(Pt)からなる群より選ばれた1種又は2種以上
の元素を合金あるいは微細粒子として0.5〜40原
子%含み、残部が金、銀又は金合金、銀合金であ
る金属材料を調整する第1工程と、 上記金属材料にボロンを浸透拡散させ、該金属
材料の表層部に、上記群より選ばれた1種又は2
種以上の元素の硼化物よりなる微細な粒子を形成
する第2工程とよりなることを特徴とする硼化物
分散合金の製造方法。 2 金、銀、金合金、銀合金の表面に上記群より
選ばれた1種又は2種以上の元素を被覆し、その
後加熱処理を施し被覆した金属を表層部に拡散さ
せることにより上記第1工程の金属材料を調整す
る特許請求の範囲第1項記載の製造方法。
[Claims] 1. At least the surface layer from the surface to a depth of 0.01 to 0.1 mm contains beryllium (Be), magnesium (Mg), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), Chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), gallium (Ga), arsenic (As), zirconium (Zr), niobium (Nb), molybdenum (Mo), 0.5 to 40 atomic % of one or more elements selected from the group consisting of palladium (Pd), cadmium (Cd), tantalum (Ta), tungsten (W), and platinum (Pt) as an alloy or fine particles. a first step of preparing a metal material containing gold, silver, a gold alloy, or a silver alloy; species or two
A method for producing a boride-dispersed alloy, comprising a second step of forming fine particles made of borides of one or more elements. 2 The surface of gold, silver, gold alloy, or silver alloy is coated with one or more elements selected from the above group, and then heat-treated to diffuse the coated metal into the surface layer. The manufacturing method according to claim 1, wherein the metal material in the process is adjusted.
JP13145782A 1982-07-28 1982-07-28 Production of boride diffused alloy Granted JPS5923835A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13145782A JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy
EP19830107389 EP0101936B1 (en) 1982-07-28 1983-07-27 Boride-dispersed alloy material and process for manufacturing same
DE8383107389T DE3377990D1 (en) 1982-07-28 1983-07-27 Boride-dispersed alloy material and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13145782A JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy

Publications (2)

Publication Number Publication Date
JPS5923835A JPS5923835A (en) 1984-02-07
JPS6154109B2 true JPS6154109B2 (en) 1986-11-20

Family

ID=15058401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13145782A Granted JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy

Country Status (3)

Country Link
EP (1) EP0101936B1 (en)
JP (1) JPS5923835A (en)
DE (1) DE3377990D1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104467A (en) * 1982-12-06 1984-06-16 Mitsubishi Metal Corp Surface-hardened au alloy member for ornamental use
JPS59143032A (en) * 1983-02-04 1984-08-16 Mitsubishi Metal Corp Surface hardened pt alloy member for decoration
JPS6021347A (en) * 1983-07-12 1985-02-02 Mitsubishi Metal Corp High-strength au alloy member having surface layer hardened by boriding
JPS6052540A (en) * 1983-09-01 1985-03-25 Mitsubishi Metal Corp Hard au alloy tip material joined to substrate member and used
JPS60110867A (en) * 1983-11-18 1985-06-17 Mitsubishi Metal Corp Surface hardened ag alloy member having excellent resistance to wear and corrosion
JPH0415177Y2 (en) * 1984-10-24 1992-04-06
JPH01223992A (en) * 1988-03-03 1989-09-07 Brother Ind Ltd Controller for cycle sewing machine
JPH02225655A (en) * 1989-02-28 1990-09-07 Agency Of Ind Science & Technol Gold alloy capable of coloring into bright black color and coloring method therefor
JPH03166327A (en) * 1989-11-22 1991-07-18 Seiko Instr Inc Hard-facing colored gold alloy
DE4313272C1 (en) * 1993-04-23 1994-05-05 Degussa Objects made of platinum@ and palladium@ - comprise hard scratch-resistant surface layer contg. boron@ in the metal lattice
US6274254B1 (en) * 1999-08-23 2001-08-14 Lucent Technologies Inc. Electrodeposited precious metal finishes having wear resistant particles therein
CN102277524B (en) * 2010-06-13 2013-04-24 厦门鑫柏龙仪器仪表有限公司 Au-Fe-Ni-Cr alloy
CN114107725B (en) * 2021-12-07 2022-05-20 扬州亚光电缆有限公司 Heat-resistant anti-oxidation silver alloy material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990277A (en) * 1930-09-13 1935-02-05 Feussner Otto Metals of the platinum group and certain alloys
US2001017A (en) * 1930-09-13 1935-05-14 Feussner Otto Metal article
FR1231094A (en) * 1959-03-27 1960-09-26 Soc Metallurgique Imphy Process for producing borided metal parts and parts obtained by this process
NL265282A (en) * 1960-06-22
DE3307182A1 (en) * 1982-05-26 1983-12-01 Technical Materials, Inc., Lincoln, R.I. Alloy for electrical contacts and use for such an alloy

Also Published As

Publication number Publication date
EP0101936A3 (en) 1985-01-30
DE3377990D1 (en) 1988-10-20
EP0101936B1 (en) 1988-09-14
EP0101936A2 (en) 1984-03-07
JPS5923835A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
JPS622627B2 (en)
EP0804627B1 (en) Oxidation resistant molybdenum alloy
US5004498A (en) Dispersion strengthened copper alloy and a method of manufacturing the same
US20090042057A1 (en) Metal composite article and method of manufacturing
TW200821401A (en) Cu-Mn alloy sputtering target and semiconductor wiring
JPS6154109B2 (en)
JPS60228602A (en) Dispersion-enhanced metal composite body
PL165438B1 (en) Oxide-type composite material with silver matrix and method of obtaining same
US4183746A (en) Cermets
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
JP2010138418A (en) Platiniridium alloy and method for producing the same
JPH03166335A (en) Dispersively reinforcing material
WO2021192916A1 (en) Composite material and heat dissipation member
CN113199024B (en) Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof
US4436559A (en) Process for manufacturing boride dispersion copper alloys
JPS6385043A (en) Self-supporting ceramic article and manufacture
US4381955A (en) Gold based electrical contact materials, and method therefor
SE407080B (en) POWDER COMPOSITION CONSISTING OF A CORE WITH METAL COATING
JP2005015827A (en) Aluminum sliding member, and its production method
Schulze et al. Reactions of Nb-Al powder mixtures during sintering
JP2854916B2 (en) Ceramic-copper alloy composite
JP2643680B2 (en) Valve seat made of metal-filled sintered alloy for internal combustion engine
TWI382102B (en) Sputtered copper layer with low resistivity and improved adhesion properties and the method for making the same
Flemmig et al. The sintering behaviour of coated particles
JPH0196338A (en) Manufacture of carbide dispersion-strengthened copper alloy