TW201027828A - A gas diffusion electrode that utilizes a catalyst collector layer and its manufacturing method - Google Patents

A gas diffusion electrode that utilizes a catalyst collector layer and its manufacturing method Download PDF

Info

Publication number
TW201027828A
TW201027828A TW098101162A TW98101162A TW201027828A TW 201027828 A TW201027828 A TW 201027828A TW 098101162 A TW098101162 A TW 098101162A TW 98101162 A TW98101162 A TW 98101162A TW 201027828 A TW201027828 A TW 201027828A
Authority
TW
Taiwan
Prior art keywords
catalyst
collector layer
gas diffusion
diffusion electrode
layer
Prior art date
Application number
TW098101162A
Other languages
Chinese (zh)
Other versions
TWI460907B (en
Inventor
zhi-hua Wang
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW098101162A priority Critical patent/TWI460907B/en
Publication of TW201027828A publication Critical patent/TW201027828A/en
Application granted granted Critical
Publication of TWI460907B publication Critical patent/TWI460907B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

This invention is a gas diffusion electrode that utilizes a catalyst collector layer and its manufacturing method. It comprises a collector layer which has a catalyst, and a multi-layered structure which is vertically stacked with diffusion layer and catalyst layer located on two sides of the catalyst-containing collector layer. The catalyst-containing collector layer includes: a metallic net with its surface having conductive polymer thin film, and catalyst deposited over the conductive polymer thin film. The catalyst-containing collector layer in this invention is to form a conductive polymer layer on a metallic net. Not only this design can reduce the corrosion of the metallic net, but also allow the conductive polymer to carry a catalyst for triggering gas reaction. This design helps increase the usage efficiency of the catalyst, and improve the working characteristic of the gas diffusion electrode.

Description

201027828 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種含觸媒的集電層,特別是一種利用 導電高分子以實現保護集電金屬網並且承載觸媒雙重功 能的集電層,其製造方法及使用該集電層之氣體擴散電 極。 【先前技術】 β 氣體擴散電極(Gas Diffusion Electrode,GDE)廣泛用 於鋅空氣電池(Zinc-Air Battery)或燃料電池(Fuel Cell), 以作為該電池系統的陰極。鋅空氣電池是目前使用的電解 液電池系統中之能量密度最高者,除了輸出電壓穩定和安 全可靠之外,鋅空氣電池還具有環保及價格便宜等優勢, 極具取代鹼性電池的發展潛力。燃料電池產生電力的機制 是將氫氣和空氣中的氧通過電化學過程結合成水,因此其 ® 唯一的排放物是水,真正能符合清潔再生的環保要求。此 外,燃料電池的運作不需燃燒而且無轉動機件,具有發電 效率高、雜音低、運轉壽命長、可靠性佳等各項優點。有 鑑於地球上的石油面臨枯竭而氫來源卻不虞匮乏,國際能 源界進而預測2 1世紀將屬於氩能源經濟時代。以氫為能 源的燃料電池將是繼水力、火力、核能之後的***發電 裝置。如果氣體擴散電極的功效不彰,鋅空氣電池或燃料 電池的電化學反應及電池效能必也隨之下降。故,氣體擴 201027828 散電極可謂能源科技的最重要關鍵零組件之一。 氣體擴散電極係將外界的純氧或空氣中的氧氣擴散 導入電池並且均勻分佈至觸媒上,然後利用觸媒的催化作 用’使氧氣和水轉化為氫氧根離子(OH_)以完成鋅空氣電 池的陰極反應’或是使氧氣與氫離子反應成為水分子以完 成燃料電池的陰極反應。氣體擴散電極的主要功能包括收 集電流、承載觸媒與提供陰極反應所需之氣體通道和電子 通道。為了實現上述功能,氣體擴散電極必須具備良好的 導電度、足夠的機械強度、抗腐蝕性、高透氣性與適當的 疏水性。例如’疏水性不足會使氣體擴散電極產生太多水 份,將阻塞氣體通道而影響透氣性及電化學反應。反之, 氣艘擴散電極水份不足則將影響質子傳導及電化學反應。 習知的氣髏擴散電極是三層結構,主要由擴散層、集 電層和催化層所構成。擴散層直接與氣體接觸,屬於一透 氣而不透水之薄層,主要由碳纖維或石墨等碳粒子與疏水 性黏結劑(binder)諸如聚四氟乙烯(PTFE)、聚乙烯及聚丙 烯之粒子,混合均勻之後加以滚壓成型。緊鄰著該擴散層 的是具有導電作用的集電層,其構成物質為導電性良好的 金屬材料。集電層的另一側即是催化層,主要由碳纖維或 石墨等碳粒子、具高表面積的微粒材料諸如活性碳、沸石 以及黏著劑的混合物所構成。構成該催化層的混合物中亦 包括鉑、銀、過渡金屬、二氧化錳與金屬氫氧化物,諸如 201027828 氫氧化錳、氫氧化鎳、氫氧化鐵及其它適合加速電化學反 應速率的觸媒。 集電層的作用是傳導氣體擴散電極產生的電流。集電 層的導電材料必須具備足以支撐氣體擴散電極的機械強 度,此外還要提供足夠的通道讓氧氣容易擴散通過該導電 結構,因此業界多半使用金屬網狀物諸如銅網、鎳網或不 銹鋼網。銅網的導電性極佳,但是在酸性或鹼性電解質中 容易腐蝕。鎳網的耐蝕性較佳,材料成本卻比較昂貴。不 銹鋼網的材料成本適中,然而其耐蝕性及導電性仍不理 想》如果氣體擴散電極的金屬導.電結構發生腐蝕,不但會 對電極的機械強度和使用壽命造成不利的影響,而且腐蝕 生成物會增加集電層表面的電阻及電池的内電阻,導致電 池的輸出功率降低。因此,在全球貴金屬價格日益緘高的 情況下’業界需要—種成本低廉而且具備較高耐蚀性與 導電性的集電層材料,以實現低製造成本與高效能的氣趙 擴散電極。 催化層是氣體擴散電極產生陰極電化學反應和電流 的核心部分。為了增加催化層的觸媒活性以加速電化學反 應速度’通常將觸媒擔載於-具有高表面積的載想諸如活 性碳及沸石的材質上。該載體可提供大量的界面接觸表面 /、觸媒進行氧氣的催化反應。有效分散觸媒尤其是責 屬觸媒,可提高觸媒性能和減少觸媒使用量以降低成 201027828 本。為更進一步提高載體的表面積以及觸媒的使用效率, 許多研究發明使用奈米管件諸如奈米碳管(Carbon Nanotube,CNT)及其他適合的奈米管狀材料作為觸媒的 載體。如美國第6,713,519 B2號(2004年)專利和第 7,037,619號(2006年)專利分別揭示可擔載觸媒的奈米碳 管及碳讖維。然而,儘管相關的奈米技術能夠將觸媒均勻 分佈於高表面積的載體上,卻未必能使觸媒充分發揮催 ❹ 化功能。因為,催化層中的載體如果凝聚成團,或者無法 充分接觸良好導電物質以傳遞觸媒催化反應所產生的電 流,載艘上的觸媒將處於非活性(inactive)狀態,因此許 多觸媒將無法充分發揮功能而導致觸媒實際利用率下 降。習知的氣體擴散電極製作方式是將擴散層、集電層和 催化層等三層部分個別製作,最後再予以熱壓結合為單一 電極。由於催化層混合物中的黏結劑屬於非良導體,而且 在熱塵過程中具有流動性’容易堵塞氣體通道和包覆載體 的觸媒’結果導致氧氣擴散產生阻礙以及觸媒利用率降 低,進而限制了氣體擴散電極的陰極反應電流和整體電池 的輸出功率。 由此可見,習用的氣體擴散電極製造方法仍有諸多缺 失,亟待加以改良。 本案發明人鑑於上述習用方式所衍生的各項缺點,乃 亟思加以改良創新,終於成功研發完成本件一種含觸媒的 201027828 集電層及使用該集電層之氣體擴散電極β 【發明内容】 本發明之目的在於提供一種表層被覆導電高分子薄 膜的金屬網集電層,以提高氣體擴散電極之集電層的耐蝕 性。 本發明之次一目的在於進一步提供上述被覆導電高 分子的集電層之製造方法。 習知之氣體擴散電極僅含一組催化層,而且該催化層 所用的黏結劑會阻礙所含觸媒的催化反應。本發明之第三 目的即在於提供一種利用導電高分子承載觸媒的集電 層。該集電層所含觸媒係直接沉積於不含黏結劑的導電高 分子上’可作為氣體擴散電極的第二組催化層,以增加觸 媒的活性及利用率。 本發明之第四目的在於進一步提供上述含觸媒的集 電層之製造方法。 本發明之第五目的在於提供一種使用上述含觸媒集 電層的氣體擴散電極及其製造方法,以提升氣體擴散電極 的陰極反應效能。 為實現上述第一目的,本發明提供一種表層被覆導電 高分子薄膜的金屬網集電層。適合用於本發明的網狀金屬 基材包括鐵(Fe)、銅(Cu)、鎳(Ni)、不銹鋼(ss)及其他 合金之金屬發泡網或金屬絲網。金屬網的網目在1〇至4〇〇 201027828 之間’尤以20至200網目為佳。所述之導電高分子包括 聚吡咯(polypyrro丨e,Ppy)、聚苯胺(p〇lyaniline, PANI)、聚乙块(polyacetylene)、聚塞吩 polythiophene)、聚苯硫(polyphenylene sulfi(Je)等藉由共 耗結構以傳導電子的高分子。其中’尤以聚吡咯及聚苯胺 為佳《該導電高分子薄膜可以提供金屬網集電層較佳的防 蝕性和較低的接觸電阻。 為實現上述第二個目的,本發明提供上述被覆導電高 分子薄膜之金屬網集電層的製造方法。熟習此技藝者所熟 知’在金屬表層形成導電高分子的製造方法有下列幾種: (1) 洗鑄法 將適當比例的共輛導電高分子、離子鹽例如Licl〇4 及可離子化聚合物例如聚環氧烷(polyalkylene oxide)等 三種成分溶於共同有機溶劑中均勻混合。然後將此混合物 洗鑄於金屬上,以形成導電高分子薄膜。 (2) 壓製法 首先’利用化學法合成導電高分子粉末,將摻雜態 (doping state)的導電高分子粉末與黏結劑和碳黑混合均 勻後壓成片狀,再以加壓方式附著於金屬上,以形成導電 高分子薄膜。 (3)電聚合法(Electro-polymerization) 利用電化學方法諸如定電位法(p〇tenti〇static)、定電 201027828 流法(Galvastatic)和循環伏安法(Cyclic voltammetry)將溶 液的導電高分子單體氧化聚合於金屬上,以形成導電高分 子薄膜。 使用堯鑄法的缺點是共軛導電高分子在一般有機溶 劑中的溶解度甚低,僅微溶於Ν·甲基四氫吡喀網 (l-methyl-2-pyrrolidinone,NMP)等高極性溶劑中,限制 了製程的方便性》而且洗鑄成型的導電高分子難於控制厚 ❹ 度,容易堵塞金屬網的通孔而阻礙氣逋擴散電極的氧氣輸 送。使用壓製法的缺點則是加壓容易破壞導電高分子薄 膜,而且導電高分子薄膜與金屬之間的接觸電阻較大。此 外’壓製方式無法在金屬網上形成完整被覆的導電高分子 薄膜。較佳地’本發明使用電聚合法在金屬網集電層表面 形成可控制厚度而且具有較大比表面積(Speeific area)的 •導電高分子薄膜。尤佳地’本發明使用製程控制最簡易的 定電流法,將溶液中的導電高分子單體聚合於金屬網集電 層表面’藉由形成緻密而且導電性良好的導電高分子薄 膜,以實現上述第二個目的。 為實現上述第三個目的,本發明提供—種利用導電高 分子承載觸媒的集電層。該集電層表面的導電高分子具有 較大比•表面積,該觸媒直接沉積於不受黏結劑影響的導電 高分子上,可以增加觸媒的活性及利用率,進而增大氧氣 催化反應電流。適合用於本發明的觸媒包括貴金屬pt、 201027828 9 g及過渡金屬氧化物或鹽類,例如,Co、Ni、Μη等過 渡金屬氧化物或鹽類。 為資現上述第四個目的,本發明提供上述以導電高分 子承載觸媒的製造 聚造方法。適合在導電高分子上沉積觸媒的 方法包括習用的化學鍍(Chemical plating)、濺鍍 (P ring)和電化學沉積。此外利用導電高分子能夠 與貴金屬離子產4 # Μ、ΛΛ Γ" + ❿ 生氧化還原反應(Redox reaction)的特 陡在不使用電力的室溫溶液中,即可使溶液中的貴金屬 離子因冑自發性的還原❼沉積於導電高分子表面。這種自 發吐還原方法雖然亦屬於無電電鍍(Electroless201027828 VI. Description of the Invention: [Technical Field] The present invention relates to a collector layer containing a catalyst, and more particularly to a collector layer using a conductive polymer to protect a collector metal mesh and carrying a dual function of a catalyst. , a method of manufacturing the same, and a gas diffusion electrode using the collector layer. [Prior Art] A Gas Diffusion Electrode (GDE) is widely used as a Zinc-Air Battery or a Fuel Cell as a cathode of the battery system. Zinc air battery is the highest energy density in the current electrolytic cell system. In addition to stable and safe output voltage, zinc air battery has the advantages of environmental protection and low price, which has the potential to replace alkaline batteries. The fuel cell's power generation mechanism combines the hydrogen and oxygen in the air into the water through an electrochemical process. Therefore, the only emission of its ® is water, which can meet the environmental requirements of clean recycling. In addition, the fuel cell does not need to be burned and has no rotating parts, and has the advantages of high power generation efficiency, low noise, long operating life, and good reliability. In view of the depletion of oil on the earth and the lack of hydrogen sources, the international energy community has predicted that the 21st century will belong to the era of argon energy economy. The hydrogen-powered fuel cell will be the fourth generation of power generation equipment after water, firepower and nuclear power. If the efficiency of the gas diffusion electrode is not sufficient, the electrochemical reaction and battery efficiency of the zinc-air battery or the fuel cell must also decrease. Therefore, the gas expansion 201027828 scattered electrode is one of the most important key components of energy technology. The gas diffusion electrode diffuses external pure oxygen or oxygen in the air into the battery and evenly distributes it onto the catalyst, and then uses the catalytic action of the catalyst to convert oxygen and water into hydroxide ions (OH_) to complete the zinc air. The cathodic reaction of the battery 'either reacts oxygen with hydrogen ions into water molecules to complete the cathode reaction of the fuel cell. The main functions of the gas diffusion electrode include the collection of current, the carrier and the gas and electron channels required to provide the cathode reaction. In order to achieve the above functions, the gas diffusion electrode must have good electrical conductivity, sufficient mechanical strength, corrosion resistance, high gas permeability and appropriate hydrophobicity. For example, 'hydrophobicity will cause the gas diffusion electrode to generate too much water, which will block the gas passage and affect the gas permeability and electrochemical reaction. Conversely, insufficient water in the gas carrier diffusion electrode will affect proton conduction and electrochemical reactions. The conventional gas diffusion electrode is a three-layer structure mainly composed of a diffusion layer, a collector layer and a catalytic layer. The diffusion layer is in direct contact with the gas and belongs to a permeable, water-impermeable thin layer mainly composed of carbon particles such as carbon fiber or graphite and hydrophobic binders such as particles of polytetrafluoroethylene (PTFE), polyethylene and polypropylene. After mixing, it is rolled and formed. Adjacent to the diffusion layer is a collector layer having a conductive effect, and the constituent material is a metal material having good conductivity. The other side of the collector layer is the catalytic layer, which is mainly composed of carbon particles such as carbon fibers or graphite, and a mixture of high surface area particulate materials such as activated carbon, zeolite, and an adhesive. The mixture constituting the catalytic layer also includes platinum, silver, a transition metal, manganese dioxide and a metal hydroxide such as 201027828 manganese hydroxide, nickel hydroxide, iron hydroxide and other catalysts suitable for accelerating the electrochemical reaction rate. The function of the collector layer is to conduct the current generated by the gas diffusion electrode. The conductive material of the collector layer must have sufficient mechanical strength to support the gas diffusion electrode, and in addition provide sufficient channels for oxygen to diffuse easily through the conductive structure, so the industry mostly uses metal meshes such as copper mesh, nickel mesh or stainless steel mesh. . Copper mesh is excellent in electrical conductivity but is susceptible to corrosion in acidic or alkaline electrolytes. The nickel mesh has better corrosion resistance and the material cost is relatively expensive. The material cost of stainless steel mesh is moderate, but its corrosion resistance and electrical conductivity are still not ideal. If the metal conduction and electrical structure of the gas diffusion electrode is corroded, it will not only adversely affect the mechanical strength and service life of the electrode, but also corrosive products. The resistance of the surface of the collector layer and the internal resistance of the battery are increased, resulting in a decrease in the output power of the battery. Therefore, in the case of increasingly high global precious metal prices, the industry needs a collector material that is inexpensive and has high corrosion resistance and conductivity to achieve a low manufacturing cost and high efficiency gas diffusion electrode. The catalytic layer is the core part of the gas diffusion electrode that produces the cathodic electrochemical reaction and current. In order to increase the catalytic activity of the catalytic layer to accelerate the electrochemical reaction rate, the catalyst is usually supported on a material having a high surface area such as activated carbon and zeolite. The carrier can provide a large amount of interfacial contact surface /, the catalyst for the catalytic reaction of oxygen. Effectively dispersing the catalyst, especially the catalyst, can improve the performance of the catalyst and reduce the amount of catalyst used to reduce it to 201027828. In order to further increase the surface area of the carrier and the efficiency of use of the catalyst, many research inventions have used a honeycomb tube such as a carbon nanotube (CNT) and other suitable nanotube materials as a carrier for the catalyst. For example, the US Patent No. 6,713,519 B2 (2004) and the No. 7,037,619 (2006) respectively disclose a carbon nanotube and a carbon nanotube which can carry a catalyst. However, although the related nanotechnology can evenly distribute the catalyst on a high surface area carrier, it does not necessarily enable the catalyst to fully function. Because the carrier in the catalytic layer agglomerates into a mass, or does not fully contact a good conductive material to transfer the current generated by the catalytic reaction of the catalyst, the catalyst on the carrier will be in an inactive state, so many catalysts will Failure to fully utilize the function will result in a decrease in the actual utilization rate of the catalyst. A conventional gas diffusion electrode is produced by separately forming three layers of a diffusion layer, a collector layer, and a catalytic layer, and finally thermocompression bonding into a single electrode. Since the binder in the catalyst layer mixture is a non-conductor, and the fluidity in the hot dust process is 'easy to block the gas channel and the catalyst supporting the carrier', the oxygen diffusion is hindered and the catalyst utilization is lowered, thereby limiting The cathode reaction current of the gas diffusion electrode and the output power of the overall battery. It can be seen that there are still many defects in the conventional gas diffusion electrode manufacturing method, which needs to be improved. In view of the shortcomings derived from the above-mentioned conventional methods, the inventor of the present invention succeeded in researching and developing the 201027828 collector layer containing the catalyst and the gas diffusion electrode β using the same. [Inventive content] It is an object of the present invention to provide a metal mesh current collector layer coated with a conductive polymer film to improve the corrosion resistance of the collector layer of the gas diffusion electrode. A second object of the present invention is to provide a method for producing the above-mentioned conductive layer coated with a conductive polymer. Conventional gas diffusion electrodes contain only one catalytic layer, and the binder used in the catalytic layer hinders the catalytic reaction of the contained catalyst. A third object of the present invention is to provide a collector layer using a conductive polymer-carrying catalyst. The catalyst layer contained in the collector layer is directly deposited on the conductive polymer without the binder. The second catalyst layer can be used as a gas diffusion electrode to increase the activity and utilization of the catalyst. A fourth object of the present invention is to provide a method for producing the above-described catalyst-containing collector layer. A fifth object of the present invention is to provide a gas diffusion electrode using the above-described catalyst-containing collector layer and a method for producing the same, which improve the cathode reaction efficiency of the gas diffusion electrode. In order to achieve the above first object, the present invention provides a metal mesh collector layer in which a surface layer is coated with a conductive polymer film. A mesh metal substrate suitable for use in the present invention includes a metal foamed mesh or a wire mesh of iron (Fe), copper (Cu), nickel (Ni), stainless steel (ss), and other alloys. The mesh of the metal mesh is between 1〇 and 4〇〇 201027828, especially 20 to 200 mesh. The conductive polymer includes polypyrro丨e (Ppy), polyaniline (PANI), polyacetylene (polyacetylene), polyphenylene sulfi (Je), etc. A polymer that conducts electrons by a consumable structure. Among them, polypyrrole and polyaniline are preferred. The conductive polymer film can provide a metal mesh collector layer with better corrosion resistance and lower contact resistance. The second object of the present invention is to provide a method for producing a metal mesh collector layer coated with the above-mentioned conductive polymer film. As is well known to those skilled in the art, the following methods for forming a conductive polymer on a metal surface layer are as follows: (1) The washing method mixes a suitable ratio of a plurality of conductive polymers, an ionic salt such as Licl 4 and an ionizable polymer such as polyalkylene oxide in a common organic solvent, and then uniformly mixes the mixture. It is washed and cast on metal to form a conductive polymer film. (2) Pressing method First, the conductive polymer powder is synthesized by chemical method, and the doping state is conductive. The molecular powder is uniformly mixed with the binder and carbon black, and then pressed into a sheet, and then adhered to the metal by pressure to form a conductive polymer film. (3) Electro-polymerization using an electrochemical method such as Potentiometric method (P〇tenti〇static), constant power 201027828 flow method (Galvastatic) and cyclic voltammetry (Cyclic voltammetry) oxidative polymerization of a conductive polymer monomer of a solution onto a metal to form a conductive polymer film. The disadvantage of the casting method is that the conjugated conductive polymer has a very low solubility in a general organic solvent, and is only slightly soluble in a highly polar solvent such as l-methyl-2-pyrrolidinone (NMP). The convenience of the process is limited. Moreover, the conductive polymer formed by washing and casting is difficult to control the thickness, and it is easy to block the through hole of the metal mesh and hinder the oxygen transport of the gas diffusion electrode. The disadvantage of using the pressing method is that the pressurization easily destroys the conductive. Polymer film, and the contact resistance between the conductive polymer film and the metal is large. In addition, the 'pressing method cannot form a thin coated conductive polymer thin on the metal mesh. Preferably, the present invention uses an electropolymerization method to form a conductive polymer film having a controllable thickness and a large surface area (Speeific area) on the surface of the metal mesh collector layer. Particularly preferably, the present invention is the easiest to use for process control. The constant current method is to polymerize the conductive polymer monomer in the solution onto the surface of the metal mesh collector layer to achieve the second object by forming a dense and conductive conductive polymer film. In one aspect, the present invention provides a collector layer using a conductive polymer-carrying catalyst. The conductive polymer on the surface of the collector layer has a large specific surface area, and the catalyst is directly deposited on the conductive polymer which is not affected by the binder, which can increase the activity and utilization of the catalyst, thereby increasing the oxygen catalytic reaction current. . Catalysts suitable for use in the present invention include noble metal pt, 201027828 9 g and transition metal oxides or salts, for example, transition metal oxides or salts such as Co, Ni, Mn. In view of the above fourth object, the present invention provides the above-described method for producing a polymerized polymer with a conductive polymer. Suitable methods for depositing a catalyst on a conductive polymer include conventional chemical plating, sputtering, and electrochemical deposition. In addition, the conductive polymer can be used with noble metal ions to produce 4# Μ, Γ Γ quot + Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Red Spontaneous reduction ruthenium is deposited on the surface of the conductive polymer. This spontaneous emission reduction method is also electroless plating (Electroless)

Plating) ’但是與化學鍍不同,並不需要藉由還原劑 (Reducing agent)提供電子使貴金屬離還原,因此具有製 程簡易的優勢。尤佳的,本發明使用自發性還原方法將貴 金屬觸媒分散沉積於導電高分子薄膜以製作含觸媒的集 ’電層。 為實現上述第五個目的,本發明提供一種使用上述含 觸媒集電層的氣體擴散電極。與先前技術相比,本發明之 重要特徵是在氣體擴散電極的集電層上提供一導電高分 子薄膜,並且在該導電高分子薄膜上沉積可催化氧氣反應 的觸媒。該特徵具有增強氣體擴散電極的耐蝕性及作為第 二組催化層的雙重功能。 【實施方式】 10 201027828 下面結合附圖對本發明作進一步詳細說明。 請參閱第一圖,係本發明之使用含觸媒集電層製造之 氣體擴散電極結構示意圖,其組成包括:集電層基材 導電高分子薄膜12、觸媒13、擴散層14及催化層15。 本發明所示的氣體擴散電極10,係以該基材11作為收集 電流的集電層,該基材i i係以導電性良好的金屬絲網製 成。 該基材11的表面以電聚合的方式產生一層導電高 分子薄膜12 ^該薄膜12使用導電高分子構成的目的,係 減低基材11的接觸電阻及腐蝕性,並且提供較高的比表 面積以進行催化反應。 利用該導電南分子薄膜12的南的比表面積承載觸媒 13。該觸媒13可選用Pt、Ag、或是c〇、Ni、Μη等過渡 金屬氧化物’係以化學沉積、電化學沉積或自發性還原方 式沉積於導電高分子薄膜12之上。觸媒13可催化氧氣進 行陰極電化學反應。 在該觸媒13的兩側分別鲞上一層擴散層14及一層催 化層15,加壓燒結後即可完成氣體擴散電極1〇的製作。 該擴散層14係由疏水性碳材及聚四氟乙稀(PTFE)黏結劑 所構成,能夠發揮令氧氣擴散進入,並且防止電解液外漏 的功能。催化層15由附著觸媒的親水性碳材及黏著劑所 構成。與先前技術相比較,本發明之氣體擴散電極1〇使 201027828 用的觸媒13和催化層15皆具有催化氧氣的功能,因此能 夠提供更大的陰極反應電流。 本發明還提供上述氣體擴散電極1〇的製作流程,請 參考圖2。首先,提供一催化層、一擴散層及一金屬網集 電層(步驟20^其中,催化層可使用碳黑或奈米碳管等碳 材’與聚四氟乙烯(PTFE)黏結劑及貴金屬或過渡金屬氧化 物觸媒粉末混合,再加入去離子水及曱醇等溶劑攪拌均 φ 勻’烘烤後輾壓成厚度為〇. 1mm至0· 6 mm的薄膜。擴散 層可使用疏水性碳黑、聚四氟乙烯(PTFE)黏結劑、去離子 水及甲醇攪拌混合,烘烤後輾壓成厚度為〇.lmm至0.6 mm的薄膜。金屬網集電層可選用20網目至2〇〇網目的 網狀金屬’諸如鐵、銅、鎳、不銹鋼及其他合金之金屬絲 網或金屬發泡網。 其次,利用電化學方式在金屬網集電層的表面,將酸 性溶液中的導電高分子單體聚合形成導電高分子薄膜(步 驟30) °適用的電化學方法包括定電位法、定電流法和循 環伏安法》其中’尤以定電流法的控制最為簡易;適合的 定電流密度為0· 1 mA/cm2至5 mA/cm2,定電流時間為1〇2 秒至1〇4秒’導電高分子單體為聚啦咯(Ρργ)或聚苯胺 (PANI)的單體。該導電高分子單體在酸性諸如硫酸、鹽酸 和麟酸溶液中的適用濃度為0.1M至0.5M,該酸性溶液的 濃度為0.1M至1M。 12 201027828 然後’再將觸媒沉積於導電高分子薄膜上(步驟40)。 /儿積觸媒的方法可選用無電電鍍(包括化學鍍及自發性還 原法)、濺鍍、電化學沉積。其中,自發性還原方法係將 導電同分子薄膜浸入含貴金屬離子,如Ag+、Au3+,的溶 液中如此’不需要添加還原劑、錯合劑(Complexing agent)、pH值調整劑(pH adjust〇r)或控制溫度,貴金屬離 子即可與導電高分子發生自發性的還原反應,致使貴金屬 觸媒顆粒沉積於導電高分子薄膜之上。 最後’在經由步驟4〇製作完成之含觸媒集電層的兩 側分別疊上一層擴散層及一層催化層,再予以壓合後燒結 (步驟50),即可完成本發明之氣體擴散電極的製作。壓合 的壓力為300〜500公斤,壓合時間為3〜1〇分鐘。燒結的 溫度為200〜400°C,燒結時間為1〇〜4〇分鐘。本發明之氣 艘擴散電極的厚度為0.3〜2mm。Plating) 'But unlike electroless plating, there is no need to provide electrons to reduce the precious metal by a reducing agent, so it has the advantage of simple process. More preferably, the present invention uses a spontaneous reduction method to deposit a noble metal catalyst on a conductive polymer film to form a catalyst-containing collector layer. In order to achieve the above fifth object, the present invention provides a gas diffusion electrode using the above-described catalyst-containing collector layer. An important feature of the present invention is that a conductive polymer film is provided on the collector layer of the gas diffusion electrode, and a catalyst capable of catalyzing the oxygen reaction is deposited on the conductive polymer film as compared with the prior art. This feature has the dual function of enhancing the corrosion resistance of the gas diffusion electrode and as the second group of catalytic layers. [Embodiment] 10 201027828 The present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , a schematic diagram of a gas diffusion electrode structure using a catalytic collector layer of the present invention comprises: a collector layer conductive polymer film 12 , a catalyst 13 , a diffusion layer 14 and a catalytic layer. 15. In the gas diffusion electrode 10 of the present invention, the substrate 11 is used as a current collecting layer for collecting current, and the substrate i i is made of a metal wire having good conductivity. The surface of the substrate 11 is electrically polymerized to form a conductive polymer film 12. The film 12 is formed by using a conductive polymer to reduce the contact resistance and corrosion of the substrate 11, and to provide a high specific surface area. A catalytic reaction is carried out. The catalyst 13 is carried by the south specific surface area of the conductive south molecular film 12. The catalyst 13 may be deposited on the conductive polymer film 12 by chemical deposition, electrochemical deposition or spontaneous reduction using Pt, Ag, or a transition metal oxide such as c〇, Ni, or Μ. Catalyst 13 catalyzes the catalytic electrochemical reaction of oxygen. A diffusion layer 14 and a catalytic layer 15 are respectively deposited on both sides of the catalyst 13, and the gas diffusion electrode 1 is fabricated by pressure sintering. The diffusion layer 14 is composed of a hydrophobic carbon material and a polytetrafluoroethylene (PTFE) binder, and functions to diffuse oxygen and prevent leakage of the electrolyte. The catalytic layer 15 is composed of a hydrophilic carbon material to which a catalyst is attached and an adhesive. Compared with the prior art, the gas diffusion electrode 1 of the present invention allows the catalyst 13 and the catalytic layer 15 used in 201027828 to function as a catalyst for oxygen, thereby providing a larger cathode reaction current. The present invention also provides a manufacturing process of the above gas diffusion electrode 1〇, please refer to Fig. 2. First, a catalytic layer, a diffusion layer and a metal mesh collector layer are provided (step 20, wherein the catalytic layer can use a carbon material such as carbon black or carbon nanotubes) and a polytetrafluoroethylene (PTFE) binder and a precious metal. Or the transition metal oxide catalyst powder is mixed, and then added with deionized water and a solvent such as decyl alcohol, and the mixture is uniformly φ uniformly baked and pressed into a film having a thickness of 〇. 1 mm to 0.6 mm. The diffusion layer may be hydrophobic. Carbon black, polytetrafluoroethylene (PTFE) binder, deionized water and methanol are mixed and mixed. After baking, they are pressed into a film with a thickness of 〇.lmm to 0.6 mm. The metal mesh collector layer can be used with 20 mesh to 2〇. a mesh metal such as iron, copper, nickel, stainless steel and other alloys, or a metal foamed mesh. Secondly, electrochemically on the surface of the collector layer of the metal mesh, the conductivity in the acidic solution is high. Polymerization of molecular monomers to form a conductive polymer film (step 30) ° Suitable electrochemical methods include potentiometric method, constant current method and cyclic voltammetry. Among them, the control of the constant current method is the easiest; suitable constant current density 0 to 1 mA/cm2 to 5 m A/cm2, constant current time is from 1 〇 2 sec to 1 〇 4 sec. 'The conductive polymer monomer is a monomer of poly-palladium (Ρργ) or polyaniline (PANI). The conductive polymer monomer is acidic such as sulfuric acid. The suitable concentration in the hydrochloric acid and linonic acid solution is 0.1M to 0.5M, and the concentration of the acidic solution is 0.1M to 1M. 12 201027828 Then, the catalyst is deposited on the conductive polymer film (step 40). The method of accumulating the catalyst may be electroless plating (including electroless plating and spontaneous reduction), sputtering, and electrochemical deposition. Among them, the spontaneous reduction method immerses the conductive molecular film with precious metal ions such as Ag+, Au3+. In the solution, it is not necessary to add a reducing agent, a complexing agent, a pH adjuster (pH adjuster) or a controlled temperature, and the noble metal ion can spontaneously reduce the reaction with the conductive polymer, resulting in a precious metal catalyst. The particles are deposited on the conductive polymer film. Finally, a diffusion layer and a catalytic layer are respectively stacked on both sides of the catalytic collector layer formed through the step 4, and then pressed and sintered (step 50). , which is The gas diffusion electrode of the present invention is produced. The pressing pressure is 300 to 500 kg, and the pressing time is 3 to 1 minute. The sintering temperature is 200 to 400 ° C, and the sintering time is 1 to 4 minutes. The gas boat diffusion electrode of the present invention has a thickness of 0.3 to 2 mm.

D 實施例 本發明於下文將舉例加以說明,但應瞭解的是,以下 的例子僅為例示說明之用,而不應被解釋為本發明實施之 限制。 實施例1 : 如圖二之步驟30,於金屬網集電層的表面進行電化 學處理以形成導電高分子薄膜。首先,配製含〇 1M H2S〇4 與0·1Μ吡咯單體的水溶液,將4〇網目的不銹鋼網集電 13 201027828 層以酒精及去離子水清洗,然後置入該溶液中進行電聚合 製程’在不銹鋼網表面將咄咯單體聚合成為具有導電性的 聚吼咯(Ppy)薄膜。電聚合製程使用電化學方式之定電流 法’定電流密度為1 mA/cm2,定電流時間為500秒。請 參閱圖三係本發明使用含觸媒集電層之氣體擴散電極及 其製造方法之定電流法在不銹鋼網集電層上合成之Ppy • 的表面形態圖。從圖三(a)可知ρργ薄膜相當均勻完整的 將不銹鋼網包覆。從囷三(b)可知ppy之表面為多孔性結 構’具有較高的比表面積,將可提供觸媒較多的活性位 置。圊三之Ppy薄膜厚度為8〜12微米m) » 請參閱圖四’係配製8M氫氧化鉀(KOH)溶液以測試 本發明之表面被復Ppy薄膜之不銹鋼網集電層(Ppy/SS實 施例)防蝕效果的電化學極化曲線關係圖。該8M KOH溶 _ 液係辞空氣電池所習用的電解質,對菸金屬具有強烈的腐 姓性’因此業界多半使用耐蚀性較佳的錄或不錄鋼作為集 電層的基材。圖四之測試係將不銹鋼網集電層(ss實施例) 與表面被覆Ppy薄膜的不銹鋼網集電層(ppy/ss實施例) 分別置於8M KOH溶液中進行電化學極化曲線測試。本 測試使用的分析儀器為EG&E恆電位儀(型號PAR 273 A)’測試所用之輔助電極(counter electrode)為碳棒, 參考電極為飽和甘采電極(standard calomel electrode SCE)。極化曲線的測試乃由-0.5V開始,以1毫伏特/秒 14 201027828 (mV/sec)的掃描速率往陽極方向掃描至〇4v為止。由圖 四的測試結果所示’ Ppy/SS實施例的陽極電流值小於SS 實施例,顯示本發明以Ppy薄膜包覆不錄鋼網集電層, 可提供抑制SS基材溶解的防蝕效果。 實施例2 如圖二之步驟40’將觸媒沉積於於導電高分子薄膜 上。首先,配製0.1M硝酸銀(AgN03)溶液。將實施例1 之Ppy/SS置於該溶液中持續30分鐘,藉由Ag+與ppy之 間的氧化還原反應,使銀觸媒自發性的還原沉積於Ppy 薄膜之上,以完成Ag/PPy/SS實施例的製作。圖五為 Ag/Ppy/SS實施例的顯微分析結果。。從圖五(a)的表面形 態圖可知,步驟40可在Ppy表面沉積許多的微細銀觸 媒。圖五(b)的場發射電子束微探儀(field emission _ electron probe microanalyzer,FE-EPMA)分析結果顯示, 銀觸媒的分佈均勻,並無大量凝聚為團簇的現象。均勻分 佈的觸媒比凝聚成團的觸媒具備更大的活性面積,可以發 揮更佳的催化效能。 為更進一步說明本發明之含觸媒的集電層的效果,請 參考圖六,係本發明之含觸媒的集電層(Ag/Ppy/SS實施 例)及Ppy/SS實施例於8M KOH溶液中之循環伏安分析 圖’其掃描速度為20毫伏特/秒(mV/sec)。該循環伏安分 析係持續改變電壓,並測量電極表面相對應之氧化還原反 15 201027828 應電流。如圖六所示,Ag/Ppy/SS實施例具有相當明顯的 氧化還原反應電流,而Ppy/SS實施例則否。對照二者β 得知,本發明之含觸媒的集電層具有穩定的催化氧氣$得、 性質。 實施例3 如圖二之步驟50’將催化層與擴散層分別置於實施 例2之Ag/Ppy/SS的兩側,施以壓合後燒結成為氣體擴散 ® 電極。本實施例的氣艎擴散電極10,其結構係如圖一所 示,以40網目的不銹鋼絲網為集電層11的基材,首先在 不銹鋼網集電層表面以電聚合的方式產生一層厚度為1〇 //m的Ppy導電高分子薄膜12,然後使用自發性還原方 式,在Ppy薄膜上沉積銀觸媒13,再分別於兩側疊上— 層擴散層14及一層催化層15,施以400公斤加壓5分鐘 並於280°C燒結20分鐘後完成。氣體擴散電極10的厚度 藝 為0.5 mm。其中,該擴散層14的製法,係使用疏水性碳 黑與聚四氟乙浠(PTFE)黏結劑及去離子水以2 ·· 1 : 50比 例攪拌混合’烘烤後輾壓成厚度為〇_3mm的薄膜。催化 層15的製法,係使用親水性碳黑與聚四氟乙烯(PTFE)黏 結劑及二氧化錳觸媒粉末以4 : 1 : 1比例混合,再加入去 離子水及甲醇等溶劑攪拌均勻,烘烤後輾壓成厚度為0.2 mm的薄膜。 接著’請參考圖七,係本發明使用含觸媒集電層之氣 201027828 體擴散電極及其製造方法之兩種不同的氣體擴散電極於 8M KOH溶液中之電壓-電流的電性測試關係圖係對本 實施例的氣體擴散電極1 〇進行電壓電流之電性測試,以 驗證本實施例所製成的氣體擴散電極1〇作為陰極使用 時,具有優異的性能。將本實施例製成的氣體擴散電極 (GDE 1實施例)與一般氣體擴散電極(GDE 2實施例)分別 置於8M KOH溶液中,以恆電位儀(型號pAR 273A)進行 電壓-電流之電性測試。測試所用之輔助電極為碳棒,參 考電極為飽和甘汞電極(SCEp本測試乃由_〇 1V開始, 以1毫伏特/秒(„1¥/3^)的掃描速率往陰極方向掃描至 -0.8V為止。一般氣體擴散電極(GDE 2實施例)係按照圖 二之步驟20及步驟50所製成,該一般氣體擴散電極的製 程因為不含本發明的步驟3〇及步驟4〇,因此其使用的集 電層並無導電高分子薄膜和觸媒的結構。 由第七圖所示的電壓_電流之電性測試結果,顯示本 實施例所製成的氣體擴散電極(GDE i實施例),在以飽和 甘汞電極(SCE)測試的工作電壓為_〇 8V時電流密度達 到72mA/Cm2。相對的,習用製程之氣體擴散電極(gde2 實施例)的電流密度則為35 mA/cm2。 習用製程之氣體擴散電極會由於催化層混合物中的 黏結劑包覆了載體上的觸媒’導致氧氣不易擴散和觸媒利 用率降低,限制了氣體擴散電極的陰極反應電流。與習用 17 201027828 製程之氣體擴散電極相比較,本發明之實施 甘' 果電層上 被覆了聚吡咯導電高分子’並且利用聚吡 务衣面多孔性的 高比表面積結構以承載觸媒,不但可以提供氣體 瑪散電極 作為第二組催化層,而且該催化層避免了黏結劑對於觸媒 的不利影響。因此,本發明之氣體擴散電極比—般氣體擴 散電極具有更佳的陰極反應效能。 本發明所提供之含觸媒的集電層及使用該集電層之 氣體擴散電極,與其他習用技術相互比較時,更具備下列 優點: 1. 本發明可降低集電層的腐蝕速率,延長集電層的使 用哥命。 2. 本發明之含觸媒的集電層具備優異的催化氧氣還 原反應功能》 3. 本發明可延長氣體擴散電極的使用壽命。 4. 本發明之氣體擴散電極可增加觸媒的使用效率,以 提供更大的陰極反應電流。 上列詳細說明乃針對本發明之一可行實施例進行具 體說明,惟該實施例並非用以限制本發明之專利範圍,凡 未脫離本發明技藝精神所為之等效實施或變更,均應包含 於本案之專利範圍中。 【圖式簡單說明】 圖一係本發明使用含觸媒集電層之氣體擴散電極及其 18 201027828 製造方法之氣體擴散電極結構示意圖; 圊二係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之氣體擴散電極的製作流程圖; 圖三係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之不锈鋼網集電層表面Ppy薄膜的表面形態 圖;(a)放大倍數1〇〇倍,(b)放大倍數3000倍; 圖四係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之兩種不同的不镑鋼網集電層於8M KOH溶 液中之電化學極化曲線關係圖; 圖五係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之銀觸媒沉積於Ppy薄膜之上的顯微分析結 果;(a)表面型態圖,放大倍數8000倍,(b)元素分佈 圖’放大倍數8000倍; _ 圖六係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之二種不同的不锈鋼網集電層於8M KOH溶 液中之循環伏安分析關係圖;以及 圖七係本發明使用含觸媒集電層之氣體擴散電極及其 製造方法之兩種不同的氣體擴散電極於8M KOH溶液 中之電壓-電流的電性測試關係圖。 【主要元件符號說明】 10 氣體擴散電極 11 集電層 19 201027828The invention is illustrated by the following examples, but it should be understood that the following examples are merely illustrative and are not to be construed as limiting. Embodiment 1: As shown in step 30 of Fig. 2, electrochemical treatment is performed on the surface of the collector layer of the metal mesh to form a conductive polymer film. First, an aqueous solution containing 〇1M H2S〇4 and 0·1 Μpyrrole monomer is prepared, and the 4 〇 mesh stainless steel mesh collector 13 201027828 layer is washed with alcohol and deionized water, and then placed in the solution for electropolymerization process' The fluorene monomer is polymerized on the surface of the stainless steel mesh into a conductive polypyrrole (Ppy) film. The electropolymerization process uses an electrochemical constant current method with a constant current density of 1 mA/cm2 and a constant current time of 500 seconds. Please refer to FIG. 3 for the surface morphology of the Ppy® synthesized on the stainless steel mesh collector layer by the constant current method using the gas diffusion electrode containing the catalyst collector layer and the manufacturing method thereof. It can be seen from Fig. 3(a) that the ρργ film is relatively uniform and completely covered with a stainless steel mesh. From the third (b), it can be seen that the surface of the ppy is a porous structure having a high specific surface area, which will provide a more active site of the catalyst. The Ppy film thickness of 圊3 is 8~12 μm m) » Please refer to Figure 4 for the preparation of 8M potassium hydroxide (KOH) solution to test the surface of the stainless steel mesh collector layer of the Ppy film of the present invention (Ppy/SS implementation) Example) Electrochemical polarization curve diagram of corrosion protection effect. The 8M KOH solution is an electrolyte used in air batteries, and has a strong rot property for smoky metals. Therefore, most of the industries use a recording or non-recording steel having a good corrosion resistance as a substrate for a collector layer. In the test of Fig. 4, a stainless steel mesh collector layer (ss example) and a stainless steel mesh collector layer (ppy/ss example) coated with a Ppy film were placed in an 8 M KOH solution for electrochemical polarization curve test. The analytical instrument used in this test is the EG&E potentiostat (model PAR 273 A)' test. The counter electrode used for the test is a carbon rod, and the reference electrode is a standard calomel electrode (SCE). The polarization curve was tested starting at -0.5 V and scanning in the anode direction to 〇4v at a scan rate of 1 millivolt/sec 14 201027828 (mV/sec). As shown by the test results of Fig. 4, the anode current value of the 'Ppy/SS example is smaller than that of the SS example, showing that the present invention coats the unrecorded steel grid with the Ppy film, and provides an anti-corrosion effect for suppressing the dissolution of the SS substrate. Example 2 A catalyst was deposited on a conductive polymer film as shown in step 40' of Fig. 2. First, a 0.1 M silver nitrate (AgN03) solution was prepared. Ppy/SS of Example 1 was placed in the solution for 30 minutes, and a spontaneous reduction of silver catalyst was deposited on the Ppy film by an oxidation-reduction reaction between Ag+ and ppy to complete Ag/PPy/ Production of the SS embodiment. Figure 5 shows the results of microscopic analysis of the Ag/Ppy/SS examples. . As can be seen from the surface shape diagram of Fig. 5(a), step 40 can deposit a plurality of fine silver catalysts on the surface of Ppy. The field emission _ electron probe microanalyzer (FE-EPMA) analysis of Fig. 5(b) shows that the distribution of silver catalyst is uniform and there is no agglomeration of clusters. The evenly distributed catalyst has a larger active area than the agglomerated catalyst and can provide better catalytic performance. In order to further illustrate the effect of the catalyst-containing collector layer of the present invention, please refer to FIG. 6 , which is a catalyst-containing collector layer (Ag/Ppy/SS embodiment) and a Ppy/SS embodiment of the present invention in 8M. The cyclic voltammetry analysis in the KOH solution has a scanning speed of 20 millivolts per second (mV/sec). The cyclic voltammetry system continuously changes the voltage and measures the corresponding surface of the electrode on which the redox inverse 15 201027828 should be current. As shown in Figure 6, the Ag/Ppy/SS example has a fairly significant redox reaction current, whereas the Ppy/SS example does. It is known from the comparison of β that the catalyst-containing collector layer of the present invention has a stable catalytic oxygen property. Example 3 The catalyst layer and the diffusion layer were placed on both sides of Ag/Ppy/SS of Example 2, respectively, as shown in step 50' of Fig. 2, and pressed and sintered to form a gas diffusion ® electrode. The structure of the gas diffusion electrode 10 of the present embodiment is as shown in FIG. 1. The stainless steel mesh of 40 mesh is used as the substrate of the collector layer 11, and a layer is first formed on the surface of the collector layer of the stainless steel mesh by electropolymerization. a Ppy conductive polymer film 12 having a thickness of 1 Å/m, and then a silver catalyst 13 is deposited on the Ppy film by a spontaneous reduction method, and then a diffusion layer 14 and a catalytic layer 15 are stacked on both sides. It was completed by applying 400 kg of pressure for 5 minutes and sintering at 280 ° C for 20 minutes. The thickness of the gas diffusion electrode 10 is 0.5 mm. The method for preparing the diffusion layer 14 is to use a hydrophobic carbon black and a polytetrafluoroethylene (PTFE) binder and deionized water to stir and mix at a ratio of 2 ·· 1 : 50. After baking, the thickness is 〇 _3mm film. The catalytic layer 15 is prepared by mixing hydrophilic carbon black with a polytetrafluoroethylene (PTFE) binder and a manganese dioxide catalyst powder in a ratio of 4:1:1, and then adding a solvent such as deionized water and methanol to stir evenly. After baking, it is pressed into a film having a thickness of 0.2 mm. Next, please refer to FIG. 7 , which is a voltage-current electrical test relationship diagram of two different gas diffusion electrodes in a 8 M KOH solution using a gas diffusion layer containing a catalyst collector layer 201027828 bulk diffusion electrode and a manufacturing method thereof. The gas diffusion electrode 1 of the present embodiment was subjected to an electrical test of voltage and current to verify that the gas diffusion electrode 1 manufactured in the present example was used as a cathode, and had excellent performance. The gas diffusion electrode (GDE 1 embodiment) prepared in this example and the general gas diffusion electrode (GDE 2 example) were respectively placed in an 8 M KOH solution, and a voltage-current electric current was performed with a potentiostat (model pAR 273A). Sex test. The auxiliary electrode used in the test is a carbon rod, and the reference electrode is a saturated calomel electrode (SCEp is tested from _〇1V, scanning at the scanning rate of 1 millivolt/second („1¥/3^) to the cathode direction- The gas diffusion electrode (GDE 2 embodiment) is prepared according to the steps 20 and 50 of FIG. 2, and the process of the general gas diffusion electrode does not include the steps 3 and 4 of the present invention. The current collector layer used has no structure of a conductive polymer film and a catalyst. The gas diffusion electrode (GDE i example) produced in the present embodiment is shown by the electrical test result of the voltage_current shown in FIG. The current density reached 72 mA/cm2 when the operating voltage tested with a saturated calomel electrode (SCE) was _〇8 V. In contrast, the current density of the gas diffusion electrode (gde2 example) of the conventional process was 35 mA/cm2. The gas diffusion electrode of the conventional process may cause the oxygen to be easily diffused and the catalyst utilization rate to be lowered due to the binder in the catalyst layer mixture coating the carrier on the carrier, which limits the cathode reaction current of the gas diffusion electrode. 01027828 The gas diffusion electrode of the process is compared, the implementation of the present invention is coated with a polypyrrole conductive polymer on the electric layer and uses a high specific surface area structure of polypyrene surface porosity to carry the catalyst, which can provide gas The electrode is used as the second group of catalytic layers, and the catalytic layer avoids the adverse effect of the binder on the catalyst. Therefore, the gas diffusion electrode of the present invention has better cathode reaction efficiency than the general gas diffusion electrode. The provided collector layer containing the catalyst and the gas diffusion electrode using the collector layer have the following advantages when compared with other conventional techniques: 1. The invention can reduce the corrosion rate of the collector layer and extend the collector layer 2. The use of the catalyst-containing collector layer of the present invention has an excellent catalytic oxygen reduction reaction function. 3. The present invention can prolong the service life of the gas diffusion electrode. 4. The gas diffusion electrode of the present invention can increase the touch The efficiency of use of the medium to provide a larger cathode reaction current. The above detailed description is specific to a possible embodiment of the present invention. However, the embodiments are not intended to limit the scope of the invention, and equivalent implementations or modifications of the present invention are intended to be included in the scope of the patents of the present invention. The invention discloses a gas diffusion electrode comprising a catalyst collector layer and a gas diffusion electrode structure thereof according to the manufacturing method of 18 201027828; the second embodiment of the invention uses a gas diffusion electrode comprising a catalyst collector layer and a gas diffusion electrode thereof FIG. 3 is a surface morphology diagram of a Ppy film on a surface of a stainless steel mesh collector layer using a gas diffusion electrode containing a catalyst collector layer and a method for fabricating the same; (a) magnification 1 〇〇, (b) Magnification 3000 times; Figure 4 is the electrochemical polarization curve relationship of two different non-pound steel grid collector layers in 8M KOH solution using the gas diffusion electrode containing catalyst collector layer and its manufacturing method Figure 5 is a microscopic analysis result of depositing a silver catalyst on a Ppy film using a gas diffusion electrode containing a catalyst collector layer and a method for producing the same; (a) surface pattern , magnification 8000 times, (b) element distribution map 'magnification 8000 times; _ Figure 6 is a gas diffusion electrode containing a catalyst collector layer and two different stainless steel mesh collector layers of the present invention. Cyclic voltammetric analysis relationship diagram in 8M KOH solution; and Fig. 7 is a voltage-current of two different gas diffusion electrodes in a 8M KOH solution using a gas diffusion electrode containing a catalyst collector layer and a manufacturing method thereof Electrical test diagram. [Main component symbol description] 10 Gas diffusion electrode 11 Collector layer 19 201027828

鲁 12 導電高分子薄膜 13 觸媒 14 擴散層 15 催化層 20Lu 12 Conductive Polymer Film 13 Catalyst 14 Diffusion Layer 15 Catalytic Layer 20

Claims (1)

201027828 七、申請專利範圍: i一種使用含觸媒集電層之氣體擴散電極,係由一含觸 媒的集電層’以及分別位於含觸媒的集電層兩側之催化 層和擴散層上下叠合所構成的多層結構;該含觸媒的集 電層包括-表面具有導電高分子薄膜的金屬網以及沉 積形成於該導電高分子薄膜上之觸媒。 2·如申請專㈣圍第】項所述之使用含觸媒集電層之氣 ❹體擴散電極’該氣想擴散電極的厚度為0.3〜2 mm,且 使用用途可作為金屬空氣電池或燃料電池陰極使用。 3·如中請專利範圍第】項所述之使用含觸媒集電層之氣 體擴散電極,其中該金屬網之材質可為鐵銅、鎳不 銹鋼等金屬,金屬網可為金屬發泡網或金屬絲網。 4·如申請專利範圍第1項所述之使用含觸媒集電層之氣 體擴散電極,其中所述導電高分子可選自聚β比咯、聚苯 © 胺、聚乙炔、聚塞吩、聚笨硫等。 5·如申請專利範圍第1項所述之使用含觸媒集電層之氣 體擴散電極’其中所述觸媒可選自Pt、Ag、貴金屬、 Co、Ni、Μη過渡金屬氧化物或其組合。 6.如申請專利範圍第1項所述之使甩含觸媒集電層之氣 體擴散電極,其中所述催化層可選用碳黑、沸石或奈米 碳管燒結製成。 21 201027828 7. 如申請專利範圍第1項所述之使用含觸媒集電層之氣 體擴散電極,其中所述催化層附著觸媒,係Co、Ni、 Μη等過渡金屬氧化物或鹽類。 8. 如申請專利範圍第彳項所述之使用含觸媒集電層之氣 艎擴散電極,其中所述擴散層係選用碳黑燒結製成。 9. 一種使用含觸媒集電層之氣體擴散電極製造方法,包 括以下步驟: a·以金屬網基材,製成集電層; b. 在集電層表面以電聚合法形成導電高分子薄膜; c. 將觸媒沉積於導電高分子薄膜表面,即形成含觸媒 的集電層; d. 將催化層與擴散層分別置於含觸媒的集電層之兩 側’施以壓合後燒結成為氣體擴散電極。 10·如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中所述金屬網材質選自鐵、 銅、錄、不銹鋼等金屬,金屬網選自金屬發泡網、金屬 絲網。 11.如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中所述導電高分子選自聚吡 洛、聚苯胺、聚乙炔、聚塞吩、聚苯硫等藉由共軛結構 以傳導電子的高分子。 22 201027828 12·如申請專利範圍第9項所述之使用含觸媒集電層之氣 雜擴散電極製造方法,其中所述導電高分子薄膜厚度為 3微米〜30微米。 13·如中請專利範固第9項所述之使用含觸媒集電層之氣 艎擴散電極製造方法,其中所述電聚合法係選用定電位 法、定電流法或循環伏安法。 14. 如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中所述觸媒選自pt Ag、貴 金屬、Co、Ni、Μη過渡金屬氧化物或其組合。 15. 如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中所述沉積採用無電電鍍、濺 鍍或電化學沉積等方法。 16. 如申請專利範圍第9項所述之使用含觸媒集電層之氣 艘擴散電極製造方法,其中所述之催化層,係使用碳黑 或奈米碳管等碳材,與聚四氟乙烯黏結劑及貴金屬或過 渡金屬氧化物觸媒粉末混合,再加入去離子水及甲醇等 溶劑攪拌均勻,烘烤後輾壓成厚度為O.i mm〜0.6 mm 的薄膜。 17. 如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中所述之擴散層,係使用疏水 性碳黑、聚四氟乙烯(PTFE)黏結劑、去離子水及曱醇攪 拌混合,烘烤後輾壓成厚度為〇.1mm〜0.6mm的薄膜。 23 201027828 18.如申請專利範圍第9項所述之使用含觸媒集電層之氣 體擴散電極製造方法,其中,在步驟d對催化層、含觸 媒的集電層與擴散層之疊層,施以壓合(300〜500公斤) 3〜10分鐘,然後燒結(200〜400°C) 10〜40分鐘,以製 成多層燒結結構的氣體擴散電極。201027828 VII. Patent application scope: i A gas diffusion electrode using a catalytic collector layer is a collector layer containing a catalyst and a catalytic layer and a diffusion layer respectively located on both sides of the collector layer containing the catalyst. The multilayer structure formed by superposing the upper and lower layers; the catalyst-containing current collecting layer comprises a metal mesh having a conductive polymer film on the surface and a catalyst deposited on the conductive polymer film. 2. The gas diffusion electrode with a catalytic collector layer as described in the application (4), the thickness of the gas diffusion electrode is 0.3~2 mm, and can be used as a metal air battery or fuel. Battery cathode used. 3. The gas diffusion electrode using a catalytic collector layer as described in the above-mentioned patent scope, wherein the metal mesh material may be metal such as iron copper or nickel stainless steel, and the metal mesh may be a metal foam mesh or Metal mesh. 4. The gas diffusion electrode using a catalytic collector layer according to claim 1, wherein the conductive polymer may be selected from the group consisting of polyβ specific azole, polyphenylene amine, polyacetylene, polycetin, Poly sulphur and so on. 5. The gas diffusion electrode using a catalytic collector layer as described in claim 1, wherein the catalyst may be selected from the group consisting of Pt, Ag, noble metal, Co, Ni, Μn transition metal oxide or a combination thereof. . 6. The gas diffusion electrode comprising a catalytic collector layer as described in claim 1, wherein the catalytic layer is optionally sintered by carbon black, zeolite or carbon nanotube. The use of a gas diffusion electrode containing a catalytic collector layer as described in claim 1, wherein the catalytic layer is attached to a catalyst, and is a transition metal oxide or a salt such as Co, Ni or Mn. 8. The use of a gas diffusion electrode comprising a catalytic collector layer as described in the scope of the patent application, wherein the diffusion layer is formed by sintering carbon black. 9. A method for fabricating a gas diffusion electrode using a catalytic collector layer, comprising the steps of: a) forming a collector layer by a metal mesh substrate; b. forming a conductive polymer by electropolymerization on the surface of the collector layer a film; c. depositing a catalyst on the surface of the conductive polymer film to form a collector layer containing the catalyst; d. placing the catalyst layer and the diffusion layer on both sides of the collector layer containing the catalyst After sintering, it is sintered into a gas diffusion electrode. The method for manufacturing a gas diffusion electrode using a catalytic collector layer according to claim 9, wherein the metal mesh material is selected from the group consisting of iron, copper, copper, stainless steel, etc., and the metal mesh is selected from the group consisting of metal hair. Bubble net, wire mesh. 11. The method for producing a gas diffusion electrode using a catalytic collector layer according to claim 9, wherein the conductive polymer is selected from the group consisting of polypyrrole, polyaniline, polyacetylene, polycetin, polyphenylene. A polymer that conducts electrons by a conjugated structure such as sulfur. The method for producing a gas diffusion electrode comprising a catalytic collector layer according to the invention of claim 9, wherein the conductive polymer film has a thickness of from 3 μm to 30 μm. 13. A method for producing a gas diffusion electrode using a catalyst-containing collector layer as described in Patent Application No. 9, wherein the electropolymerization method is a potentiometric method, a constant current method or a cyclic voltammetry method. 14. The method of manufacturing a gas diffusion electrode using a catalytic collector layer according to claim 9, wherein the catalyst is selected from the group consisting of pt Ag, noble metal, Co, Ni, Μη transition metal oxide or a combination thereof. . 15. The method of manufacturing a gas diffusion electrode using a catalytic collector layer according to claim 9, wherein the depositing is performed by electroless plating, sputtering or electrochemical deposition. 16. The method for manufacturing a gas diffusion electrode comprising a catalytic collector layer according to claim 9, wherein the catalytic layer is made of a carbon material such as carbon black or a carbon nanotube, and a poly 4 The fluoroethylene binder is mixed with the noble metal or transition metal oxide catalyst powder, and then added with deionized water and methanol to stir evenly. After baking, it is pressed into a film having a thickness of Oi mm to 0.6 mm. 17. The method for producing a gas diffusion electrode using a catalyst-containing collector layer according to claim 9, wherein the diffusion layer is a hydrophobic carbon black, a polytetrafluoroethylene (PTFE) binder, The deionized water and the decyl alcohol are stirred and mixed, and after baking, they are pressed into a film having a thickness of 〇.1 mm to 0.6 mm. The method of manufacturing a gas diffusion electrode containing a catalytic collector layer according to claim 9, wherein the catalyst layer, the catalyst-containing collector layer and the diffusion layer are laminated in step d Apply a pressure-bonding (300~500 kg) for 3 to 10 minutes, then sinter (200 to 400 ° C) for 10 to 40 minutes to form a gas diffusion electrode of a multilayer sintered structure. 24twenty four
TW098101162A 2009-01-14 2009-01-14 A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same TWI460907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098101162A TWI460907B (en) 2009-01-14 2009-01-14 A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098101162A TWI460907B (en) 2009-01-14 2009-01-14 A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201027828A true TW201027828A (en) 2010-07-16
TWI460907B TWI460907B (en) 2014-11-11

Family

ID=44853305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098101162A TWI460907B (en) 2009-01-14 2009-01-14 A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI460907B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458153B (en) * 2011-04-07 2014-10-21 Nissan Motor Layers and lamination methods
TWI470853B (en) * 2011-04-07 2015-01-21 Nissan Motor Layers and lamination methods
TWI478417B (en) * 2011-04-07 2015-03-21 Nissan Motor Layers and lamination methods
TWI478414B (en) * 2011-04-07 2015-03-21 Nissan Motor Layers and lamination methods
TWI501443B (en) * 2013-09-26 2015-09-21 Lg Chemical Ltd Method of manufacturing electrode assembly
CN114275963A (en) * 2021-08-27 2022-04-05 东北电力大学 Electric flocculation-self-cleaning membrane wastewater treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553279B (en) * 2015-01-09 2016-10-11 Cycle dehumidification device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723385B1 (en) * 2005-09-23 2007-05-30 삼성에스디아이 주식회사 Membrane electrode assembly and fuel cell system adopting the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458153B (en) * 2011-04-07 2014-10-21 Nissan Motor Layers and lamination methods
TWI470853B (en) * 2011-04-07 2015-01-21 Nissan Motor Layers and lamination methods
TWI478417B (en) * 2011-04-07 2015-03-21 Nissan Motor Layers and lamination methods
TWI478414B (en) * 2011-04-07 2015-03-21 Nissan Motor Layers and lamination methods
US9425478B2 (en) 2011-04-07 2016-08-23 Nissan Motor Co., Ltd. Stacking apparatus and stacking method
US10396401B2 (en) 2011-04-07 2019-08-27 Nissan Motor Co., Ltd. Stacking apparatus and stacking method
TWI501443B (en) * 2013-09-26 2015-09-21 Lg Chemical Ltd Method of manufacturing electrode assembly
US10033063B2 (en) 2013-09-26 2018-07-24 Lg Chem, Ltd. Method of manufacturing electrode assembly
CN114275963A (en) * 2021-08-27 2022-04-05 东北电力大学 Electric flocculation-self-cleaning membrane wastewater treatment device

Also Published As

Publication number Publication date
TWI460907B (en) 2014-11-11

Similar Documents

Publication Publication Date Title
Sun et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications
Lim et al. Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells
Zhou et al. High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts
Ahn et al. Anion exchange membrane water electrolyzer with an ultra-low loading of Pt-decorated Ni electrocatalyst
Barakat et al. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst
Hosseini et al. Ni@ Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated membrane method
TWI460907B (en) A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same
Alfi et al. Three-dimensional Pd-Cd nanonetwork decorated on reduced graphene oxide by a galvanic method as a novel electrocatalyst for ethanol oxidation in alkaline media
Liu et al. Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water electrolysis
JP2018522365A (en) Fuel cell electrode material and apparatus
TW200841509A (en) Air diffusion cathodes for fuel cells
Modibedi et al. Preparation, characterisation and application of Pd/C nanocatalyst in passive alkaline direct ethanol fuel cells (ADEFC)
Ghiabi et al. In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media
EP3667785A1 (en) Functionalised electrocatalytically active nanocomposite material and manufacturing process of said material
Qiao et al. Pt catalyst configuration by a new plating process for a micro tubular DMFC cathode
Mozafari et al. Promoted electrocatalytic performance of palladium nanoparticles using doped-NiO supporting materials toward ethanol electro-oxidation in alkaline media
Lei et al. Facile fabrication of hierarchically porous Ni foam@ Ag-Ni catalyst for efficient hydrazine oxidation in alkaline medium
CN104701549B (en) A carbon-free membrane electrode assembly
Cheng et al. Fabrication of coral-like Pd based porous MnO2 nanosheet arrays on nickel foam for methanol electrooxidation
He et al. Carbon coated and nitrogen doped hierarchical NiMo-based electrocatalysts with high activity and durability for efficient borohydride oxidation
Kim Nanoporous gold for energy applications
WO2012160957A1 (en) Electrode catalyst and method for producing same
Zhang et al. Comprehensive study and optimization of membrane electrode assembly structural composition in proton exchange membrane water electrolyzer
Farsak et al. The snowflake‐like structured NiO‐Cu2O@ Fe/Ru catalyst for hydrogen fuel production
Manna et al. Microporous 3D-Structured Hierarchically Entangled Graphene-Supported Pt3Co Alloy Catalyst for PEMFC Application with Process-Friendly Features

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees