TW201025627A - A solar cell and the method of manufacturing thereof - Google Patents

A solar cell and the method of manufacturing thereof Download PDF

Info

Publication number
TW201025627A
TW201025627A TW97151469A TW97151469A TW201025627A TW 201025627 A TW201025627 A TW 201025627A TW 97151469 A TW97151469 A TW 97151469A TW 97151469 A TW97151469 A TW 97151469A TW 201025627 A TW201025627 A TW 201025627A
Authority
TW
Taiwan
Prior art keywords
titanium oxide
solar cell
substrate
titanium
particle solution
Prior art date
Application number
TW97151469A
Other languages
Chinese (zh)
Inventor
Wen-Hsien Ho
Chi-Sheng Jiang
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW97151469A priority Critical patent/TW201025627A/en
Publication of TW201025627A publication Critical patent/TW201025627A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell comprises a substrate, a titanium oxide sputtering layer, at least one titanium oxide porous layer, a counter electrode and an electrolyte. The titanium oxide sputtering layer is sputtered on the substrate. The titanium oxide porous layer comprises a stack of titanium dioxide particles on the titanium oxide sputtering layer. The counter electrode is arranged on the titanium oxide porous layer. The electrolyte is filled between the counter electrode and the substrate.

Description

201025627 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池,且特別是有關於一種複 合式太陽能電池及其製造方法。 【先前技術】 染料敏化太陽能電池(dye-sensitized solar cells, DSSC)為 利用染料光敏化劑,將所吸收的太陽能藉由光化學反應轉換成 ® 電能的太陽能電池。在製造染料敏化太陽能電池之光電極的過 程中,需先將Ti02微粒塗佈於基板上,再以高溫進行燒結處 理,以於基板上形成一層鍍膜。然而,此高溫製程卻不利應用 於軟性基板。 此外,在多種製作光電極的方式中,儘管溼式鍍膜法可於 常溫下進行,但所形成的鍍膜附著性不佳。而物理鍍膜法所製 備之鍍膜雖擁有較佳附著性,但因鍍膜效率差,難以達到所需 厚度。 Φ 因此,仍待開發出一種能於常溫下進行的太陽能電池製造 方法,且能在兼顧電池效能的情況下,同時改善光電極厚度不 足及低溫鍍膜附著性不佳的問題。 【發明内容】 因此本發明之一目的是在提供一種太陽能電池及其製造 方法,除了能在常溫下進行外,並能改善光電極厚度不足及提 升低溫鍍膜的附著性。 201025627 根據上述,提供一種太陽能電池,其包含一基板、—氧化鈦鍍 〜 層、一氧化鈦鍍層、至少一氧化鈦多孔層、一相對電極以及一 電解質。其中氧化鈦鍍層係鍍覆於基板上。氧化鈦多孔層則包 含複數個二氧化鈦微粒堆疊於氧化鈦鍍層上。而相對電極則設 置於氧化鈦多孔層上。至於電解質乃充填於該相對電極與該基 板之間。 依照本發明一實施例,氧化鈦鍍層厚度小於100 ηπ^氧 化鈦多孔層厚度小於20叫。二氧化鈦微粒之比表面積為2〇_ 零 165 cm2/g。 根據上述,亦提供一種製備太陽能電池之方法,該方法至少包 含下列步驟。首先,提供-基板,將氧化欽賤鍛於基板上,以 形成-氧化㈣層。之後塗佈—氧化鈦微粒溶液於該氧化欽锻 層上,並壓合該氧化鈦微粒溶液,以形成一氧化欽多孔層。最 後進行染料吸附’以及組裝一相對電極。 依照本發明-實施例,將氧化欽濺鑛於基板上之步驟係使 聽化鈦⑽於室溫下進行之。且麟步驟可於-丨_7 m伽r 肇 之腔室壓力下進行。而所配製之氧化鈇微粒溶液濃度為ι%_2〇 %。 據上述,相較於習知方式,可於常溫下進行前述製造太陽 能電池的方法,且藉由在光電極上形成一氧化欽鑛層與至少一 氧化欽多孔層,不僅可達到所需厚度,並可同時提高光電轉換 效率。 【實施方式】 201025627 第1圖係繪示依照本發明實施例之一種製備太陽能電池 方法的概略流程圖,而第2圖係繪示利用第1圖方法所製得的 太陽能電池結構剖面圖。現請一併參照第1與2圖,以進行更 詳細的解說。首先,提供一基板202(步驟102)。基板202的 材質可為銦錫氧化物/聚萘二甲酸乙二酯(ITO/PEN,Indium Tin Oxide/poly(ethylene naphthalene-2,6-dicarboxylate) 、 ITO/PET、氟摻雜氧化錫/玻璃(FTO/glass)、氧化銦錫導電玻璃 (ITO/glass)等透明導電氧化物或金屬。接著,於室溫中,在u mTon·的腔室壓力下,使用氧化鈦靶材,將氧化鈦濺鍍於基板 202上,進而形成一氧化鈦鍍層204(步驟104)。氧化鈦鍍層 204的材質為二氧化鈦,而厚度小於1〇〇nm。 另一方面’將二氧化鈦微粒分散於無水酒精中,以配製成 氧化欽微粒溶液(步驟1〇6)。所使用的二氧化钦微粒之比表面 積為2.0-165 m2/g ’其晶相為金紅石(Rutile)或銳鈦礦 (Anatase)。而所配製的氧化鈦微粒溶液濃度可為1%_2〇%。之 後,將配製好的氧化鈦微粒溶液塗佈於氧化鈦鑛層2〇4上塗 佈高度約為10 μηι(步驟108^再來,對氧化鈦微粒溶液進行 壓合,以形成一氧化鈦多孔層206(步驟11〇)。於此步驟中, 所施加的壓合力約5〇 kg/cm2 - 150 kg/cm2,壓合時間為30 _ 60 秒。在所形成的氧化欽多孔層2〇6中包含了許多二氧化鈦微粒 210,些一氧化鈦微粒21〇則堆疊於先前形成的氧化鈦鍍層 204 上。 此外,為達到足夠的光電極厚度’可依序重複前述塗佈 氧化鈦微粒溶液與壓合該氧化鈦微粒溶液之步驟(步驟112), 201025627 直至氧化鈦多孔層的總厚度小於20 μιη。然後,進行染料吸附 (步驟114),使染料208分佈於氧化鈦多孔層206中二氧化鈦 微粒210之表層上,所使用的染料為Ν719 (順-雙(異氰酸基) 雙(2,2,-聯吡啶基-4,4,-二羧根基)-釕(II),雙-四丁銨) (cis-bis(isothiocyanato)bis(2J2'-bipyridyl-4,4'-dicarboxylato)-r uthenium(II),bis-tetrabutylammonium)、N3 (順-雙(異氰酸基) 雙 (2,2,- 聯吡啶基 -4,4’- 二羧根基 )) (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4’-dicarboxylato)、 Z-907 (順-雙(異氰酸基)(2,2’-聯处啶基-4,4’-二羧根基))(2,2’-聯 吡啶基 -4,4’- 二- 壬基) 釕 (II))(cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato)(2 ,2’-bipyridyl-4,4’-di-nonyl) ruthenium(II))、N-749 (參(異氰酸 基)-釕(11)-2,2':6',2”-三聯吡啶基-4,4',4"-三羧酸,參-四丁基銨 鹽)(tris(isothiocyanato)-ruthenium(II)-2,2,:6,,2"-terpyridine-4,4' ,4"-tricarboxylic acid, tris-tertrabutylammonium salt)、 Ruthenium 470 (參(2,2,-聯吡啶基-4,4,-二羧根基)二氣化釕) (tris(2,2'bipyridyl-4,4' dicarboxylato) ruthenium (II) dichloride)、Ruthenium 505 (順-雙(氰酸)(2,2’-聯》比咬基-4,4,-二叛根基)釕(II)) (cis-bis(cyanido) (2,2’bipyridyl-4,4, dicarboxylato) ruthenium (II))。於吸附染料後,組裝一相對電 極212,其設置於氧化鈦多孔層206上(步驟116)?相對電極 212之材質可為鉑、碳、導電高分子或透明導電氧化物(TC〇)。 最後’注入一電解質214至相對電極212與基板202之間,即 完成一太陽能電池(步驟118) ’而所使用的電解質214包含破 201025627 化裡、蛾、4-第三丁基0比咬(4-tert-Butylpyridine)以及乙腈 (acetonitrile) 〇 為了測試在上述製造過程中,各製程參數對太陽能電池 效能的影響,因此於下文中,將改變不同製程參數,同時對所 製得的太陽能電池其效能進行光電化學的測試。 實施例一:腔窒壓力的影響 於此實施例中,將同時製備數個太陽能電池樣品,且在 製備過程中分別改變各樣品的腔室壓力,以探討腔室壓力對所 製得之太陽能電池效能的影響。各樣品的製程條件,乃列於下 表一中。 另外,於此實施例中氧化鈦鍍層係使用Ti02靶材進行濺 鍍’功率密度皆為4.9 W/cm2,而腔室氣體流速比例為 Ar:02=15:2 seem,工作距離則為 7 cm。 至於氧化鈦多孔層’則是先將Ti02微粒(即,P25粉體) 分散於99.5%無水酒精中配製成氧化鈦微粒溶液,之後再以刮 刀法塗佈於氧化鈦鍍層上。且在完成第一次的塗佈後,於室溫 下以50 kg/cm2的壓合力壓合3〇秒以形成第一氧化鈦多孔層。 而為達足夠的光電極厚度,再分別形成第二氧化鈦多孔層’第 二氧化鈦多孔層則是於140〇c下以15〇 kg/cm2的壓合力壓合 60秒。最後,以染料N719進行吸附至少7小時後,以白金作 為相對電極進行級裝。所使用的電解質包含以99%乙腈 (acetonitrile)溶液配製的〇 5 μ碘化鋰(Lil)、〇·〇5 Μ碘(12)以及 0.5Μ 之 4-第二丁 基^比^定(4_tert_Butylpyridine)。 201025627 ❿201025627 IX. Description of the Invention: [Technical Field] The present invention relates to a solar cell, and more particularly to a composite solar cell and a method of fabricating the same. [Prior Art] Dye-sensitized solar cells (DSSCs) are solar cells that use a dye photosensitizer to convert absorbed solar energy into ® electrical energy by photochemical reaction. In the process of manufacturing a photoelectrode of a dye-sensitized solar cell, the TiO 2 particles are first coated on a substrate, and then sintered at a high temperature to form a plating film on the substrate. However, this high temperature process is disadvantageous for soft substrates. Further, in various methods of fabricating a photoelectrode, although the wet coating method can be carried out at normal temperature, the formed coating film has poor adhesion. The coating prepared by the physical coating method has better adhesion, but it is difficult to achieve the required thickness due to poor coating efficiency. Φ Therefore, a solar cell manufacturing method capable of being carried out at a normal temperature has been developed, and the problem of insufficient thickness of the photoelectrode and poor adhesion of the low-temperature coating film can be simultaneously improved while achieving the battery efficiency. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a solar cell and a method of manufacturing the same, which can improve the thickness of the photoelectrode and improve the adhesion of the low temperature coating, in addition to being able to be carried out at room temperature. According to the above, there is provided a solar cell comprising a substrate, a titanium oxide plating layer, a titanium oxide plating layer, at least one titanium oxide porous layer, an opposite electrode, and an electrolyte. The titanium oxide plating layer is plated on the substrate. The porous layer of titanium oxide comprises a plurality of titanium dioxide particles stacked on the titanium oxide layer. The opposite electrode is placed on the porous layer of titanium oxide. As for the electrolyte, it is filled between the opposite electrode and the substrate. According to an embodiment of the present invention, the thickness of the titanium oxide plating layer is less than 100 ηπ^ the thickness of the porous layer of titanium oxide is less than 20 Å. The specific surface area of the titanium dioxide particles is 2 〇 _ 165 cm 2 /g. According to the above, there is also provided a method of preparing a solar cell, the method comprising at least the following steps. First, a substrate is provided, and oxidized forging onto a substrate to form an oxidized (tetra) layer. Then, a titanium oxide fine particle solution is coated on the oxidized forging layer, and the titanium oxide fine particle solution is pressed to form an oxidized porous layer. Finally, dye adsorption is performed and a counter electrode is assembled. In accordance with the present invention, the step of oxidizing the mineral on the substrate is carried out by subjecting the hearing titanium (10) to room temperature. And the step of the lining can be carried out under the chamber pressure of -丨7 m gamma 肇. The concentration of the cerium oxide microparticle solution prepared was ι% 〇 〇 %. According to the above, the above method for manufacturing a solar cell can be carried out at a normal temperature, and by forming an oxidized layer and at least one oxidized porous layer on the photoelectrode, not only the desired thickness can be achieved, but also It can simultaneously improve the photoelectric conversion efficiency. [Embodiment] 201025627 Fig. 1 is a schematic flow chart showing a method of preparing a solar cell according to an embodiment of the present invention, and Fig. 2 is a cross-sectional view showing the structure of a solar cell obtained by the method of Fig. 1. Please refer to Figures 1 and 2 together for a more detailed explanation. First, a substrate 202 is provided (step 102). The material of the substrate 202 may be indium tin oxide/polyethylene naphthalate (ITO/PEN, Indium Tin Oxide/poly (ethylene naphthalene-2, 6-dicarboxylate), ITO/PET, fluorine doped tin oxide/glass (FTO/glass), transparent conductive oxide or metal such as indium tin oxide conductive glass (ITO/glass), and then titanium oxide target is used at room temperature under a chamber pressure of u mTon· Sputtering on the substrate 202 to form a titanium oxide plating layer 204 (step 104). The titanium oxide plating layer 204 is made of titanium dioxide and has a thickness of less than 1 〇〇 nm. On the other hand, the titanium dioxide particles are dispersed in anhydrous alcohol to It is formulated into an oxidized granule solution (step 1 〇 6). The specific surface area of the cerium dioxide particles used is 2.0-165 m2/g 'the crystal phase is Rutile or Anatase. The prepared titanium oxide fine particle solution concentration may be 1% _2%. After that, the prepared titanium oxide fine particle solution is coated on the titanium oxide ore layer 2〇4 and the coating height is about 10 μm (step 108^ again) And pressing the titanium oxide fine particle solution to form a titanium oxide porous layer 206 ( Step 11 〇). In this step, the applied pressing force is about 5 〇 kg / cm 2 - 150 kg / cm 2 , and the pressing time is 30 _ 60 seconds. In the formed oxidized porous layer 2 〇 6 is included A plurality of titanium dioxide particles 210 and a plurality of titanium oxide particles 21 are stacked on the previously formed titanium oxide plating layer 204. Further, in order to achieve a sufficient photoelectrode thickness, the above-mentioned coated titanium oxide fine particle solution may be sequentially repeated and pressed for oxidation. The step of the titanium fine particle solution (step 112), 201025627 until the total thickness of the porous layer of titanium oxide is less than 20 μm. Then, dye adsorption (step 114) is performed to distribute the dye 208 on the surface of the titanium oxide fine particles 210 in the porous layer 206 of titanium oxide. The dye used is Ν719 (cis-bis(isocyanato)bis(2,2,-bipyridyl-4,4,-dicarboxylate)-ruthenium (II), bis-tetrabutylammonium) ( Cis-bis(isothiocyanato)bis(2J2'-bipyridyl-4,4'-dicarboxylato)-r uthenium(II), bis-tetrabutylammonium), N3 (cis-bis(isocyanato) double (2,2,- Bipyridyl-4,4'-dicarboxyl)) (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxy Lato), Z-907 (cis-bis(isocyanato)(2,2'-linked pyridyl-4,4'-dicarboxylate)) (2,2'-bipyridyl-4,4 '-Di- fluorenyl) 钌(II))(cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato)(2,2'-bipyridyl-4,4'-di-nonyl Ruthenium(II)), N-749 (paraxyl (isocyanato)-oxime (11)-2,2':6',2"-teridopyridyl-4,4',4"-tricarboxylic acid , cis-tetrabutylammonium salt) (tris(isothiocyanato)-ruthenium(II)-2,2,:6,,2"-terpyridine-4,4',4"-tricarboxylic acid, tris-tertrabutylammonium salt), Ruthenium 470 ((2,2'-bipyridyl-4,4,-dicarboxyl) disulfide) (tris(2,2'bipyridyl-4,4' dicarboxylato) ruthenium (II) dichloride), Ruthenium 505 (cis-bis(cyanate) (2,2'-linked) than biting base-4,4,-two rebellious)钌(II)) (cis-bis(cyanido) (2,2'bipyridyl- 4,4, dicarboxylato) ruthenium (II)). After adsorbing the dye, a counter electrode 212 is assembled, which is disposed on the porous layer 206 of titanium oxide (step 116). The material of the counter electrode 212 may be platinum, carbon, a conductive polymer or a transparent conductive oxide (TC〇). Finally, 'injection of an electrolyte 214 between the opposite electrode 212 and the substrate 202, that is, completing a solar cell (step 118)', and the electrolyte 214 used contains the broken 201025627, the moth, the 4-tert-butyl 0 bite ( 4-tert-Butylpyridine) and acetonitrile (acetonitrile) 〇 In order to test the effect of various process parameters on the performance of the solar cell during the above manufacturing process, in the following, different process parameters will be changed, and the solar cell produced will be The performance is tested by photoelectrochemistry. Embodiment 1: Effect of cavity pressure In this embodiment, several solar cell samples will be prepared at the same time, and the chamber pressure of each sample is changed during the preparation process to investigate the chamber pressure on the prepared solar cell. The impact of performance. The process conditions for each sample are listed in Table 1 below. In addition, in this embodiment, the titanium oxide plating layer is sputtered using a TiO 2 target, and the power density is 4.9 W/cm 2 , and the chamber gas flow rate ratio is Ar:02=15:2 seem, and the working distance is 7 cm. . As for the porous layer of titanium oxide, the TiO 2 particles (i.e., P25 powder) were first dispersed in 99.5% of anhydrous alcohol to prepare a titanium oxide fine particle solution, and then coated on a titanium oxide plating layer by a doctor blade method. And after the first coating was completed, it was pressed at a pressure of 50 kg/cm 2 for 3 sec at room temperature to form a first titanium oxide porous layer. To achieve a sufficient photoelectrode thickness, a second porous layer of titanium oxide was formed, respectively. The porous layer of titanium dioxide was pressed at 140 〇c for 15 seconds at a pressure of 15 〇 kg/cm 2 . Finally, adsorption was carried out with dye N719 for at least 7 hours, and then platinum was used as a counter electrode for grading. The electrolyte used contained μ5 μ lithium iodide (Lil), 〇·〇5 Μ iodine (12) and 0.5 Μ of 4-second butyl hydride (4_tert_Butylpyridine) formulated in a 99% acetonitrile solution. ). 201025627 ❿

Sample 鍍層〜 腔室 壓力 (mTorr) 鍍膜 厚度 (ηηι) 鍍膜 時間 (min) a 1.3 60 90 b 2.6 50 c 6.8 —'——-- 50 η 是否 加偏壓 (V) 50 Ti〇2比表 面積 (m2/g) Ti〇2 濃度 (%) 各次塗 佈高度 (㈣ 各層壓合力 (kg/cm2) /壓合時間⑻ 50.94 20 10 50/30 ; 150/60 *〜八此电吧保〇口傻,册长照元1籴仵 ιυυυ W/m (AM 1.5)下,對樣品a_c進行光電化學量測。由於在太陽 光到達地表前’會經過大氣層的吸收與散射,故太陽光通過大 軋層的路控長度,簡稱AM (air mass)。AM 〇是指在外太空太 陽正射的情形。AM 1是指在地表上太陽入射天頂角為〇度的 It况。AM 1.5是指在地表上太陽的位置在天頂角4819度。 一般而言’太陽電池標準測試條件為Am 1.5。 光電化學量測包含了開路電位(v〇c)、短路電流(isc)、填 充因子(Fill Factor,FF)以及光電轉換效率(Efficiency)等的測 量。各樣品的測試結果則如表二所示。 於表二中,開路電壓和短路電流是太陽電池特性的二個 重要參數,開路電位(open circuit voltage,v〇c)為太陽電池在開 路條件下(即,I =0)的輸出電壓,此亦為該太陽電池所能供應 的最大輸出電壓。 短路電流(short-circuited current ’ Isc)為太陽電池在短路條 201025627 件下(即V = 0) ’入射光所產生的光電流(light current),此為 該太陽電池所能提供的最大輸出電流。由此可知,若這兩個參 數的值越大,則表示太陽電池所能產生的電能也就越高,意即 電池的光電轉換效率也越好。 填充因子(Fill Factor)則代表太陽電池電路的實際最大輸 出功率(Pmax = (lxV)max),與太陽電池的最大輸出功率(即開路 電位與短路電流的乘積)的比較值,其算式如下: FF = Pmax/(Lc><Y〇e) = (IxVVax/CLcXYoc) ^光電轉換效率⑶):太陽電池單位受光面積的最大輸出功 率(^maX)與入射太陽光能量密度(Piigh〇的百分比。光電轉換效率 越高,太陽能電池的功效越好,其算式如下: η (%) = χ j 〇〇0/〇 短路電流 (mA/cm2) 填充因子 光電轉換效率 (%) 0.23 0.01 0.19 0.63 lightSample Plating ~ Chamber Pressure (mTorr) Coating Thickness (ηηι) Coating Time (min) a 1.3 60 90 b 2.6 50 c 6.8 —'——-- 50 η Whether to apply a bias voltage (V) 50 Ti〇2 specific surface area ( M2/g) Ti〇2 Concentration (%) Coating height ((4) Lamination force (kg/cm2) / pressing time (8) 50.94 20 10 50/30; 150/60 *~8 This electric bar protects the mouth Silly, the book long photo 1籴仵ιυυυ W/m (AM 1.5), photoelectrochemical measurement of sample a_c. Because the sun's light will absorb and scatter through the atmosphere before it reaches the earth's surface, the sunlight passes through the large rolling The length of the layer is referred to as AM (air mass). AM 〇 refers to the situation of the sun orthosphere in outer space. AM 1 refers to the situation of the sun on the surface of the zenith angle of the sun. AM 1.5 refers to the surface. The position of the sun is 4819 degrees at the zenith angle. Generally speaking, the standard test condition for solar cells is Am 1.5. Photoelectrochemical measurements include open circuit potential (v〇c), short circuit current (isc), and fill factor (Fill Factor, FF). And measurements such as photoelectric conversion efficiency (Efficiency), etc. The test results of each sample are shown in Table 2. In Table 2, the open circuit voltage and short circuit current are two important parameters of the characteristics of the solar cell. The open circuit voltage (v〇c) is the output voltage of the solar cell under open circuit conditions (ie, I =0). The maximum output voltage that can be supplied by the solar cell. The short-circuited current 'Isc is the light current generated by the incident light of the solar cell under the short-circuit strip 201025627 (ie, V = 0), This is the maximum output current that the solar cell can provide. It can be seen that if the value of these two parameters is larger, it means that the solar cell can generate more electric energy, which means that the photoelectric conversion efficiency of the battery is also higher. The Fill Factor represents the actual maximum output power of the solar cell circuit (Pmax = (lxV)max), which is compared with the maximum output power of the solar cell (ie, the product of the open circuit potential and the short circuit current). As follows: FF = Pmax / (Lc >< Y〇e) = (IxVVax / CLcXYoc) ^ photoelectric conversion efficiency (3)): the maximum output power of the solar cell unit light receiving area (^maX) and incident solar energy The density of the material (the percentage of Piigh〇. The higher the photoelectric conversion efficiency, the better the efficiency of the solar cell, the equation is as follows: η (%) = χ j 〇〇 0 / 〇 short-circuit current (mA / cm2) fill factor photoelectric conversion efficiency ( %) 0.23 0.01 0.19 0.63 light

0.01 ~~-~~~~~~__U-32__3.22 mT t所不之、乡。果可知’依本發明實施例之方法在約1--二室壓力下所製得的太陽能電'池,隨著腔室壓力的4 …太㈣電池驗路Μ及光電轉触能更可提高至13‘ 201025627 mA/cm2 及 3.22% 〇 膏施例二:二氣化鈦微粒大小的影餐 為了探討氧化鈦多孔層中,二氧化鈦微粒大小對太陽能 電池效能的影響’於此實施例中’乃於基板上未濺鍍氧化欽锻 層的情況下’直接使用不同比表面積的二氧化鈦微粒來製備數 個太陽能電池樣品。而製程步驟則如實施例一所示,故不再資 述,僅將製程參數條件列於下表三中。 表三、Ti02製程參數條件0.01 ~~-~~~~~~__U-32__3.22 mT t not, township. It can be seen that the solar energy 'cell produced by the method according to the embodiment of the present invention under the pressure of about 1 - two chambers can be improved with the chamber pressure and the photoelectric contact energy of the chamber. To 13' 201025627 mA/cm2 and 3.22% 〇 cream Example 2: The effect of titanium dioxide particle size in order to investigate the effect of titanium dioxide particle size on the performance of solar cells in the porous layer of titanium oxide 'in this example' Several solar cell samples were prepared by directly using titanium dioxide particles of different specific surface areas without sputtering an oxidized indented layer on the substrate. The process steps are as shown in the first embodiment, so no further description is made. Only the process parameter conditions are listed in Table 3 below. Table 3, Ti02 process parameters conditions

Sample 氧化鈦鍍層 氧化鈦多孔層 N/A Ti02之比表面積 (m2/g) 晶相 Ti02 濃度(%) 各次塗佈 高度(μπι) 各層壓合力 (kg/cm2) /壓合時間 (S) d N/A 2.60 Rutile 10 10 50/30; 150/60; 150/60 e 7.39 Rutile f 163.00 Rutile g 50.94 Anatase h 130.42 AnataseSample Titanium oxide coated titanium oxide porous layer N/A Ti02 specific surface area (m2/g) Crystal phase Ti02 concentration (%) Each coating height (μπι) Each lamination force (kg/cm2) / press time (S) d N/A 2.60 Rutile 10 10 50/30; 150/60; 150/60 e 7.39 Rutile f 163.00 Rutile g 50.94 Anatase h 130.42 Anatase

同樣地,在完成各太陽能電池樣品後,亦對其進行光電 化學量測。樣品d-h的測試結果則如表四所示。 表四、不同比,面積TiCb微粒對所製備太陽能電池效能的影響Similarly, after each solar cell sample was completed, it was also subjected to photoelectric chemical measurement. The test results of sample d-h are shown in Table 4. Table 4, different ratios, the effect of area TiCb particles on the performance of prepared solar cells

Sample 比較參數: Ti02比表 面積 (m2/g) 晶相 開路電位 (V) 短路電流 (mA/cm2) 填充因子 光電轉換 效率(%) d 2.60 Rutile 0.71 1.22 0.42 0.36 e 7.39 Rutile 0.71 2.22 0.46 0.72 12 201025627 f 163.00 Rutile 0.69 2.70 g 50.94 Anatase 0.75 11.13 h 130.42 Anatase 0.76 4.77 由樣品d-f測試結果可知,當晶相為rutile時,隨著_氧 化欽微粒之比表面積由2.60 m2/g逐漸變大,光電轉換效率亦 隨之提高。當比表面積增加至163.00 m2/g時,光電轉換效率 更可達1%。但若二氧化鈦晶相為anatase時(樣品g_h),比表 面積愈大,短路電流及光電轉換效率將下降,由此可知,以本 發明實施例之方法所製得的太陽能電池,光電轉換效率值將隨 一氧化鈦sa相的不同、比表面積的大小而有所改變。 實施例三:偏懕沾f導 為了探討在激锻氧化鈦锻層過程中,施加偏壓對太陽1 電池效能的影響,故於此實施例中,分別在未施加偏壓與施加 偏壓50V的情況下,製備太陽能電池樣品。製程參數條件列 於下表五中。 ® ____ 表五、Ti〇2製程參數條件Sample Comparison parameters: Ti02 specific surface area (m2/g) Crystal phase open circuit potential (V) Short circuit current (mA/cm2) Fill factor photoelectric conversion efficiency (%) d 2.60 Rutile 0.71 1.22 0.42 0.36 e 7.39 Rutile 0.71 2.22 0.46 0.72 12 201025627 f 163.00 Rutile 0.69 2.70 g 50.94 Anatase 0.75 11.13 h 130.42 Anatase 0.76 4.77 From the sample df test results, when the crystal phase is rutile, the specific surface area of the oxidized granules gradually increases from 2.60 m2/g, and the photoelectric conversion efficiency It also increased. When the specific surface area is increased to 163.00 m2/g, the photoelectric conversion efficiency is up to 1%. However, if the titanium dioxide crystal phase is an anase (sample g_h), the larger the specific surface area, the shorter the short-circuit current and the photoelectric conversion efficiency, and it is understood that the photoelectric conversion efficiency value of the solar cell obtained by the method of the embodiment of the present invention will be It varies with the size of the titanium oxide sa phase and the specific surface area. Embodiment 3: Deviation 为了 导 In order to investigate the influence of the applied bias voltage on the solar cell performance during the forging of the titanium oxide forging layer, in this embodiment, the bias voltage and the applied bias voltage are respectively 50V. In the case of a solar cell sample, a solar cell sample was prepared. Process parameter conditions are listed in Table 5 below. ® ____ Table 5, Ti〇2 process parameters

Sample 氧化鈦鍍層 氧化 ----- 腔室 壓力 (mTorr) 鍍膜 厚度 (nm) 鍍膜 時間 (min) 是否 加偏壓 (V) Ti〇2比表面 積(m2/g) Ti〇2 濃度 (%) ---- 各次塗佈 古由 (_ —--- 各層壓合力 (kg/cm2) /壓合時間⑻ 50/30; 150/60 i 2.6 35 90 無 50.94 20 10 μιη j 50 50V 太陽能電池樣品i-j的光電化學量測則如表六所示。 13 201025627 表六、施加偏壓對所製備太陽能電池效能的影響Sample Titanium Dioxide Plating----- Chamber Pressure (mTorr) Coating Thickness (nm) Coating Time (min) Whether Bias (V) Ti〇2 Specific Surface Area (m2/g) Ti〇2 Concentration (%) ---- Each coating ancient (_---- each laminated force (kg/cm2) / pressing time (8) 50/30; 150/60 i 2.6 35 90 no 50.94 20 10 μηη j 50 50V solar battery The photoelectrochemical measurement of sample ij is shown in Table 6. 13 201025627 Table 6. Effect of bias applied on the performance of prepared solar cells

Sample 比較參數: 加偏壓 開路電位 (V) 短路電流 (mA/cm2) 填充因子 光電轉換效率 (%) i 0 0.72 5.67 0.15 0.60 j 50 V 0.73 4.63 0.19 0.63 由表六可知’在0-50V的偏壓範圍下所製得的太陽能電 池’其光電轉換效率並無多大差異,約0.6%。 實施例四:氧化鈦微粒滚液溴唐的影響 ❹ 接著,為了探討在製作氧化欽多孔層的過程中,氧化鈦 微粒溶液濃度對太陽能電池效能的影響,故於此實施例中,乃 於基板上未減锻氧化鈦鍍層的情況下,直接利用不同濃度的氧 化鈦微粒溶液在基板上製作氧化鈦多孔層,以製備太陽能電池 樣品。製程參數條件列於下表七中。 表七二Ti〇2製程參數條件 氡化鈦鍍層 衣狂食双惊什 氧化鈦多孔層 — Sample N/A Ti〇2比表面積 (m2/g) Ti〇2濃度 (%) 各次塗佈高度 (μιη) 各層壓合力 (kg/cm2) K 1 N/A 50.94 10~ 20 ~~ 10 50/30^ 150/60 太陽能電池樣品k-ι的光電化學量測則如表八所示。 表八、不 比較參數 Sample氧化鈦微粒溶液 濃度(%) 短路電流 (mA/cm2) 填充因子 光電轉換效率 (%)Sample comparison parameters: biased open circuit potential (V) short circuit current (mA/cm2) fill factor photoelectric conversion efficiency (%) i 0 0.72 5.67 0.15 0.60 j 50 V 0.73 4.63 0.19 0.63 can be seen from Table 6 'at 0-50V The solar cell produced under the bias voltage has no significant difference in photoelectric conversion efficiency, about 0.6%. Example 4: Effect of Titanium Oxide Particle Rolling Bromozone Next, in order to investigate the effect of the concentration of the titanium oxide fine particle solution on the solar cell performance in the process of producing the porous oxide layer, in this embodiment, the substrate is used. In the case where the titanium oxide plating layer is not reduced, the titanium oxide porous layer is directly formed on the substrate by using different concentrations of the titanium oxide fine particle solution to prepare a solar cell sample. Process parameter conditions are listed in Table VII below. Table VII Ti〇2 Process Parameters Conditions Titanium Dioxide Coating, Erected Bismuth Titanium Oxide Porous Layer — Sample N/A Ti〇2 Specific Surface Area (m2/g) Ti〇2 Concentration (%) (μιη) Lamination force (kg/cm2) K 1 N/A 50.94 10~ 20 ~~ 10 50/30^ 150/60 The photoelectrochemical measurement of the solar cell sample k-ι is shown in Table 8. Table 8. No comparison parameters Sample titanium oxide particle solution Concentration (%) Short-circuit current (mA/cm2) Fill factor Photoelectric conversion efficiency (%)

的影響 開路電位 (V) 201025627 1 20 0.73 11.20 0.30 2.46 由表八可知,在10%-20%的氧化鈦微粒溶液濃度範圍下 所製得的太陽能電池,其光電轉換效率可保持在約2.5% » 實施例五:氧化鈦鍍層屎唐的影孿 為了探討在製作氧化鈦鍍層的過程中,氧化鈦鍍層厚度 對太陽能電池效能的影響,故於此實施例中,分別將不同厚度 的氧化鈦鍍層鍍覆於基板上,以製備太陽能電池樣品。製程參 數條件列於下表九中。 表九、Ti〇2製程參數條件 氧化鈦鍍層 氧化鈦多孔J 腔室 鍍膜 鍍膜 是否 Ti02比表 Ti02 各次塗 各層壓合力 Sample 壓力 厚度 時間 加偏壓 面積 濃度 佈高度 (kg/cm2) (mTorr) ㈣ (min) (V) (m2/g) (%) (μτη) /壓合時間⑻ τη 20 15 η 30 30 50/30; 150/60 0 6.8 65 60 80 50.94 20 10 P 70 90 q 90 120Effect of open circuit potential (V) 201025627 1 20 0.73 11.20 0.30 2.46 From Table 8, it can be seen that the solar cell produced in the range of 10%-20% titanium oxide particle solution concentration can maintain the photoelectric conversion efficiency of about 2.5%. » Example 5: Effect of titanium oxide coating on the thickness of titanium oxide In order to investigate the effect of the thickness of titanium oxide coating on the performance of solar cells in the process of making titanium oxide coating, in this embodiment, different thicknesses of titanium oxide are respectively coated. It is plated on a substrate to prepare a solar cell sample. Process parameter conditions are listed in Table IX below. Table IX, Ti〇2 process parameters conditions Titanium oxide coating Titanium oxide J chamber coating coating Whether Ti02 ratio Table Ti02 Each coating adhesion force Sample Pressure thickness time plus bias area concentration cloth height (kg/cm2) (mTorr) (4) (min) (min) (V) (m2/g) (%) (μτη) / press time (8) τη 20 15 η 30 30 50/30; 150/60 0 6.8 65 60 80 50.94 20 10 P 70 90 q 90 120

各太陽能電池樣品的光電化學量測則如表十所示。 表十、氧化欽鎮層厚度對所製備太陽能電池效能的影響Photoelectrochemical measurements of each solar cell sample are shown in Table 10. Table 10: Effect of thickness of oxidized Qinzhen layer on the performance of prepared solar cells

Sample 比較參數: 氧化鈦鍍層厚度(μιη) 開路電位(V) 短路電流(mA/cm2) m 20 0.66 2.18 η 30 0.62 2.22 0 65 0.63 1.38 15 201025627 由表十可知,隨氧化鈦鍍層厚度提高,短路電流有下降 趨勢。 實施例六:濺鍍及塗佈壓合贺裎對氧化鈦鍍層之髟孿 最後,為了探討附著性之影響,樣品r與s分別在基板上 以濺鍍法及塗佈壓合法製備厚度50 nm之氧化鈦鍍層與氧化 鈦多孔層’並進行ASTMD 3359-95附著性測試,製程參數及 # 測試結果如表十一。 ,_参十一、氧化鈦鍍層製程參數及附著性測試 氧化鈦鍍層Sample Comparison parameters: Titanium oxide coating thickness (μιη) Open circuit potential (V) Short-circuit current (mA/cm2) m 20 0.66 2.18 η 30 0.62 2.22 0 65 0.63 1.38 15 201025627 It can be seen from Table 10 that the thickness of the titanium oxide coating increases, short circuit The current has a downward trend. Example 6: Sputtering and coating press-bonding on the titanium oxide coating Finally, in order to investigate the influence of adhesion, the samples r and s were respectively deposited on the substrate by sputtering and coating pressing to a thickness of 50 nm. The titanium oxide coating and the porous layer of titanium oxide 'and ASTM 3359-95 adhesion test, process parameters and # test results are shown in Table 11. , _ reference eleven, titanium oxide coating process parameters and adhesion test titanium oxide coating

Sample 腔室 壓力 (mTorr) 鍍膜 時間 (min) 是否 加偏壓 (V) Ti〇2 比 表面積 (m2/g) Ti02 濃度 (%) 各次塗 佈高度 (㈣ 各層壓合力 (kg/cm2) /壓合時間(S) 附著性 等級 r 6.8 90 50 N/A 4B s N/A 50.94 1 10 50/30 3B 由表十一可知在相同厚度下,以濺鍍法所製備的氧化鈦 e 鍍層,其對基板的附著性優於以塗佈壓合法所製備的氧化鈦多 孔層,故於基板上加上氧化鈦鍍層可提高附著性。 最後,若比較樣品1與樣品C的測試數據,可發現不具氧 化鈦鍍層的太陽能電池樣品1其光電轉換效率僅有2 46%。然 而,同時具有氧化鈦鍍層與氧化鈦多孔層的複合式太陽能電池 樣品c’其光電轉換效率則可達3.22%,增加了約3〇%。由此 可知,同時採用氧化鈦鐘層與氧化鈦多孔層來製備光電極,不 16 201025627 僅可藉由濺鍍與塗覆多層的方式達到一定的厚度,更可提高低 溫製備鍍膜附著性及光電轉換效率。而藉由改變不同的製程參 數,亦可增進太陽能電池效能。 雖然本發明已以實施例揭露如上,然其並非用以限定本發 明,任何具有本發明所屬技術領域之通常知識者,在不脫離本 發明之精神和範圍内,當可作各種之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 • 【圖式簡單說明】 第1圖係繪示依照本發明之一實施例,一種製備太陽能電 池方法的流程圖。 第2圖係繪示利用第1圖方法所製得的太陽能電池結構剖 面圖。 【主要元件符號說明】 102 :步驟 104 :步驟 106 :步驟 108 :步驟 110 :步驟 112 :步驟 114 :步驟 116 :步驟 118 :步驟 202 :基板 204 :氧化鈦鍍層 206 :氧化鈦多孔層 208 :染料 210 :二氧化鈦微粒 212 :相對電極 214 :電解質 17Sample chamber pressure (mTorr) Coating time (min) Whether biased (V) Ti〇2 Specific surface area (m2/g) Ti02 Concentration (%) Each coating height ((4) Lamination force (kg/cm2) / Pressing time (S) Adhesion grade r 6.8 90 50 N/A 4B s N/A 50.94 1 10 50/30 3B Table 11 shows the titanium oxide e plating prepared by sputtering at the same thickness. The adhesion to the substrate is superior to the porous layer of titanium oxide prepared by coating pressing, so that the addition of the titanium oxide coating on the substrate can improve the adhesion. Finally, if the test data of sample 1 and sample C are compared, it can be found. The solar cell sample 1 without titanium oxide coating has a photoelectric conversion efficiency of only 2 46%. However, the composite solar cell sample c' having both the titanium oxide coating and the porous titanium oxide layer has a photoelectric conversion efficiency of 3.22%, an increase. About 3〇%. It can be seen that the titanium oxide layer and the porous layer of titanium oxide are simultaneously used to prepare the photoelectrode, and the thickness can be increased by sputtering and coating multiple layers, and the low temperature can be improved. Preparation of coating adhesion and photoelectric conversion efficiency. The solar cell performance can also be improved by changing the different process parameters. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one having the ordinary knowledge in the technical field of the present invention does not deviate from the present invention. The scope of protection of the present invention is defined by the scope of the appended claims, and the scope of the invention is defined by the scope of the appended claims. One embodiment of the present invention is a flow chart of a method for preparing a solar cell. Fig. 2 is a cross-sectional view showing the structure of a solar cell obtained by the method of Fig. 1. [Description of main components] 102: Step 104: Step 106 Step 108: Step 110: Step 112: Step 114: Step 116: Step 118: Step 202: Substrate 204: Titanium oxide plating layer 206: Titanium oxide porous layer 208: Dye 210: Titanium dioxide particles 212: Counter electrode 214: Electrolyte 17

Claims (1)

201025627 十、申請專利範圍: 1. 一種太陽能電池,該太陽能電池至少包含: 一基板; 一氧化鈦鍍層,鍍覆於該基板上; 至少一氧化鈦多孔層,其包含複數個二氧化鈦微粒堆疊於 該氧化鈦鑛層上; 一相對電極,設置於該氧化鈦多孔層上;以及 一電解質,充填於該相對電極與該基板之間。 2. 如申請專利範圍第1項所述之太陽能電池,其中該氧化 鈦鐘層之厚度小於100 nm。 3. 如申請專利範圍第1項所述之太陽能電池,其中該氧化 鈦鍍層之材質為二氧化鈦。 4. 如申請專利範圍第1項所述之太陽能電池,其中該氧化 Φ 鈦多孔層之厚度係小於20 μιη。 5. 如申請專利範圍第1項所述之太陽能電池,其中該些二 氧化鈦微粒之晶相為金紅石(Rutile)或銳鈦擴(Anatase)。 6. 如申請專利範圍第1項所述之太陽能電池,其中該些二 氧化鈦微粒之比表面積為2.0-165 cm2/g。 18 201025627 7. 如申請專利範圍第1項所述之太陽能電池,更包含一染 料,該染料係分佈於該些二氧化鈦微粒之表層上。 8. 如申請專利範圍第7項所述之太陽能電池,其中該染料 為 Ν719 (tris(2,2’bipyridyl-4,4’ dicarboxylato) ruthenium (II) dichloride) 〇 9.如申請專利範圍第1項所述之太陽能電池,其中該基板 Ο 之材質係為銦錫氧化物/聚萘二甲酸乙二酯(Indium Tin Oxide/poly(ethylene naphthalene-2,6-dicarboxylate)、透明導電 氧化物或金屬。 10·如申請專利範圍第1項所述之太陽能電池,其中該 電解質包含蛾化鋰、換、4-第三丁基〇比咬(4-tert-Butylpyridine) 以及乙腈(acetonitrile)。 φ u.如申請專利範圍第1項所述之太陽能電池,其中該 相對電極為鉑、碳、導電高分子或透明導電氧化物。 12· —種製備太陽能電池之方法,該方法至少包含: 提供一基板; 將氧化鈦藏鑛於該基板上,以形成一氣化鈦鍵層; 塗佈一氧化鈦微粒溶液於該氧化鈦鍍層上; 壓合該氧化鈦微粒溶液,以形成一氧化鈦多孔層; 201025627 進行染料吸附;以及 組裝一相對電極。 13. 如申請專利範圍第12項所述之方法,其中該將氧化 鈦濺鍍於該基板上之步驟係使用氧化鈦靶材於室溫下進行之。 14. 如申請專利範圍第12項所述之方法,其中該濺鍍步 驟係於一 1-7 mTorr之腔室壓力下進行。 ❿ 15. 如申請專利範圍第12項所述之方法,其中該氧化鈦 鑛層之厚度小於100 nm。 16. 如申請專利範圍第12項所述之方法,其中該氧化鈦 微粒溶液係利用將複數個二氧化鈦微粒溶於一無水酒精中配 製而成。 _ 17. 如申請專利範圍第16項所述之方法,其中該氧化鈦 微粒溶液濃度為1%-20%。 18. 如申請專利範圍第16項所述之方法,其中該些二氧 化鈦微粒之比表面積為2.0- 165 cm2/g。 19. 如申請專利範圍第16項所述之方法,其中該些二氧 化鈦微粒之晶相為金紅石(Rutile)或銳鈦礦(Anatase)。 20 201025627 20. 如申請專利範圍第12項所述之方法,其中於塗佈該 氧化鈦微粒溶液之步驟中,該氧化鈦微粒溶液之塗佈高度為 10 μπι。 21. 如申請專利範圍第12項所述之方法,其中於該壓合 該氧化鈦微粒溶液之步驟中,壓合時間為30 - 60秒。 22. 如申請專利範圍第12項所述之方法,其中於該壓合 φ 該氧化鈦微粒溶液之步驟中,壓合力為50 kg/cm2 - 150 kg/cm。 23. 如申請專利範圍第12項所述之方法,於進行染料吸 附之步驟前,更包含依序重複該塗佈該氧化鈦微粒溶液與壓合 該氧化鈦微粒溶液之步驟,直至該氧化鈦多孔層達一小於20 μπι之厚度。 φ 24. 如申請專利範圍第12項所述之方法,其中該基板之 材質係為銦錫氧化物/聚萘二甲酸乙二酯(Indium Tin Oxide/poly(ethylene naphthalene-2,6-dicarboxylate)、導電透明 氧化物或金屬。 25. 如申請專利範圍第12項所述之方法,其中該相對電 極為鉑、碳、導電高分子或導電透明氧化物。 21 201025627 26. 如申請專利範圍第12項所述之方法,其中該染料為 N719 (tris(2,2'bipyridyl-4,4' dicarboxylato) ruthenium (II) dichloride) ° 27. 如申請專利範圍第12項所述之方法,更包含注入一 電解質至該相對電極與該基板之間。 28. 如申請專利範圍第27項所述之方法,其中該電解質 參 包含硖化鐘、破、4-第三丁基°比。定(4-tert-Butylpyridine)以及乙 腈(acetonitrile) 〇 29.如申請專利範圍第12項所述之方法,其中於將氧化鈦濺 鍍於該基板上之步驟中,對該基板施加一 0 -50 V之偏壓。 22201025627 X. Patent application scope: 1. A solar cell comprising at least: a substrate; a titanium oxide plating layer plated on the substrate; at least a porous layer of titanium oxide comprising a plurality of titanium dioxide particles stacked thereon On the titanium oxide ore layer; an opposite electrode disposed on the porous layer of titanium oxide; and an electrolyte filled between the opposite electrode and the substrate. 2. The solar cell of claim 1, wherein the titanium oxide layer has a thickness of less than 100 nm. 3. The solar cell of claim 1, wherein the titanium oxide coating is made of titanium dioxide. 4. The solar cell of claim 1, wherein the oxidized Φ titanium porous layer has a thickness of less than 20 μm. 5. The solar cell of claim 1, wherein the crystal phase of the titanium dioxide particles is Rutile or Anatase. 6. The solar cell of claim 1, wherein the titanium dioxide particles have a specific surface area of from 2.0 to 165 cm 2 /g. The solar cell of claim 1, further comprising a dye distributed on the surface layer of the titanium dioxide particles. 8. The solar cell according to claim 7, wherein the dye is Ν719 (tris(2,2'bipyridyl-4,4' dicarboxylato) ruthenium (II) dichloride) 〇9. The solar cell according to the invention, wherein the substrate is made of indium tin oxide/polyethylene naphthalene-2 (6-dicarboxylate), transparent conductive oxide or metal. 10. The solar cell of claim 1, wherein the electrolyte comprises lithium molybdenum, 4-tert-Butylpyridine, and acetonitrile. The solar cell of claim 1, wherein the opposite electrode is platinum, carbon, a conductive polymer or a transparent conductive oxide. 12. A method for preparing a solar cell, the method comprising: providing at least one substrate And depositing titanium oxide on the substrate to form a vaporized titanium bond layer; coating a titanium oxide particle solution on the titanium oxide plating layer; pressing the titanium oxide particle solution to form a porous layer of titanium oxide; The method of claim 12, wherein the step of sputtering titanium oxide onto the substrate is performed at room temperature using a titanium oxide target. 14. The method of claim 12, wherein the sputtering step is performed at a chamber pressure of 1 to 7 mTorr. ❿ 15. The method of claim 12, wherein The titanium oxide ore layer has a thickness of less than 100 nm. The method of claim 12, wherein the titanium oxide fine particle solution is prepared by dissolving a plurality of titanium dioxide fine particles in an anhydrous alcohol. The method of claim 16, wherein the titanium oxide fine particle solution has a concentration of from 1% to 20%. 18. The method according to claim 16, wherein the specific surface area of the titanium dioxide particles is The method of claim 16, wherein the crystal phase of the titanium dioxide particles is Rutile or Anatase. 20 201025627 20. The method of claim 12, wherein in the step of coating the titanium oxide fine particle solution, the coating height of the titanium oxide fine particle solution is 10 μπι. 21. The method according to claim 12 In the step of pressing the titanium oxide fine particle solution, the pressing time is 30 to 60 seconds. 22. The method according to claim 12, wherein in the step of pressing the titanium oxide fine particle solution, the pressing force is 50 kg/cm2 to 150 kg/cm. 23. The method according to claim 12, before the step of performing dye adsorption, further comprising the step of sequentially coating the titanium oxide fine particle solution and pressing the titanium oxide fine particle solution until the titanium oxide The porous layer has a thickness of less than 20 μm. Φ 24. The method of claim 12, wherein the substrate is made of indium tin oxide/polyethylene naphthalene-2 (6-dicarboxylate). The method of claim 12, wherein the counter electrode is platinum, carbon, a conductive polymer or a conductive transparent oxide. 21 201025627 26. Patent Application No. 12 The method according to the item, wherein the dye is N719 (tris(2,2'bipyridyl-4,4' dicarboxylato) ruthenium (II) dichloride). 27. The method according to claim 12, further comprising injecting An electrolyte is provided between the counter electrode and the substrate. 28. The method of claim 27, wherein the electrolyte parameter comprises a deuterated clock, a broken, a 4-tert-butyl ratio. The method of claim 12, wherein in the step of sputtering titanium oxide on the substrate, a bias of 0 - 50 V is applied to the substrate. Pressure. 22
TW97151469A 2008-12-30 2008-12-30 A solar cell and the method of manufacturing thereof TW201025627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97151469A TW201025627A (en) 2008-12-30 2008-12-30 A solar cell and the method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97151469A TW201025627A (en) 2008-12-30 2008-12-30 A solar cell and the method of manufacturing thereof

Publications (1)

Publication Number Publication Date
TW201025627A true TW201025627A (en) 2010-07-01

Family

ID=44852664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151469A TW201025627A (en) 2008-12-30 2008-12-30 A solar cell and the method of manufacturing thereof

Country Status (1)

Country Link
TW (1) TW201025627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422046B (en) * 2010-11-19 2014-01-01 Univ Nat Cheng Kung Flexible dye-sensitized solar cell and photoanode thereof
TWI453925B (en) * 2012-02-23 2014-09-21 Nat Univ Chung Hsing Method for manufacturing working electrode of dye - sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422046B (en) * 2010-11-19 2014-01-01 Univ Nat Cheng Kung Flexible dye-sensitized solar cell and photoanode thereof
TWI453925B (en) * 2012-02-23 2014-09-21 Nat Univ Chung Hsing Method for manufacturing working electrode of dye - sensitized solar cell

Similar Documents

Publication Publication Date Title
US20200303129A1 (en) Producing method of mesoporous thin film solar cell based on perovskite
KR100927212B1 (en) Photoelectrode for dye-sensitized solar cell containing hollow sphere metal oxide nanoparticles and method for manufacturing same
KR100978401B1 (en) Multiple-dyes sensitized solar cells and method for preparing the same
Chen et al. Fabrication and characterization of plastic-based flexible dye-sensitized solar cells consisting of crystalline mesoporous titania nanoparticles as photoanodes
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
KR20090076408A (en) Biphase platinum catalyst and solar cell using the same
EP2073226A2 (en) Dye-sensitized solar cell and method of manufacturing the same
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
Choudhury et al. Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells
JP5689190B1 (en) Dye-sensitized solar cell provided with a condensing device
Peng et al. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
KR20150048317A (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
US20100163102A1 (en) Solar cell and the method of manufacturing thereof
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
TW201025627A (en) A solar cell and the method of manufacturing thereof
JPWO2004053196A1 (en) Metal oxide film, dye-sensitized solar cell and method for producing the same
JP2008021581A (en) Dye-sensitized type photoelectric conversion element
KR100937799B1 (en) Double layer titanium dioxide electrode for dye-sensitized solar cell, Method of preparing the same and Dye-sensitized solar cell prepared by using the same
KR101774353B1 (en) Dual porous structure and preparing method of the same, and electrode for photoelectrochemical cell including the same
JP4804050B2 (en) Photoelectric conversion element
TWI833810B (en) Dye-sensitized photovoltaic cells
JP5689202B1 (en) Dye-sensitized solar cell provided with a condensing device
TWI758940B (en) Dye adsorption method of photoelectrode
TWI379421B (en) The dye-sensitized solar cell with tio2-c60 composite film and their fabrication