TW201023376A - Light absorption layer of CIGS solar cell and manufacturing method thereof - Google Patents

Light absorption layer of CIGS solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201023376A
TW201023376A TW097147719A TW97147719A TW201023376A TW 201023376 A TW201023376 A TW 201023376A TW 097147719 A TW097147719 A TW 097147719A TW 97147719 A TW97147719 A TW 97147719A TW 201023376 A TW201023376 A TW 201023376A
Authority
TW
Taiwan
Prior art keywords
layer
sol
selenide
copper
indium
Prior art date
Application number
TW097147719A
Other languages
Chinese (zh)
Inventor
Quan-Long Zhuang
Original Assignee
Jenn Feng Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenn Feng Ind Co Ltd filed Critical Jenn Feng Ind Co Ltd
Priority to TW097147719A priority Critical patent/TW201023376A/en
Publication of TW201023376A publication Critical patent/TW201023376A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A light absorption layer of CIGS solar cell and the manufacturing method thereof are disclosed. A sputtering method is utilized to form a copper sulfide layer. A CIGS sol gel solution is then used to produce a plurality of CIGS stacking layers by a method of immersing, rotating, printing or spraying with a pre-drying treatment. A fast temperature rise heat treatment is then applied to merge the copper sulfide layer and CIGS stacked layers into a CIGSS light absorption layer, to construct the CIGS solar cell with high photoelectric conversion efficiency and high light absorption rate.

Description

201023376 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種銅銦鎵砸太陽能電池,尤其是吸光層的 結構與製造方法。 【先前技術】 隨著石化能源的逐漸枯竭,尋求穩定可靠的替代能源 已是本世紀所有人類要面對的最大生存課題,而包括生質 能源、地熱能源、風力能源、核能的各種能源,在來源可 靠度、使用安全性、環境保護的考慮下,皆比不上取自太 陽光輻射的太陽能,因為在地球表面上皆能接收到太陽 光,且使用過程中只是將光能轉換成電能,而沒有任何污 染性的物質產生,因此太陽能是目前最為潔淨的替代能源。 太陽能電池係將太陽光之光能轉換成方便使用之電能 的裝置,在眾多太陽能電池中,銅銦鎵硒 (Copper/Indium/Gallium/Selenium,CIGS)太陽能電池由 於高吸光率與光電轉換效率的優異性能而漸漸獲得重視。 CIGS太陽能電池係由銅銦硒201023376 IX. Description of the Invention: [Technical Field] The present invention relates to a copper indium gallium germane solar cell, and more particularly to a structure and a manufacturing method of a light absorbing layer. [Prior Art] With the gradual depletion of petrochemical energy, the search for stable and reliable alternative energy sources is the biggest survival problem for all human beings in this century, including various energy sources such as biomass energy, geothermal energy, wind energy and nuclear energy. Source reliability, safety of use, and environmental protection are not comparable to solar energy taken from solar radiation, because sunlight can be received on the surface of the earth, and only light energy is converted into electrical energy during use. Without any polluting substances, solar energy is currently the cleanest alternative energy source. Solar cells are devices that convert the light energy of sunlight into convenient power. Among many solar cells, Copper/Indium/Gallium/Selenium (CIGS) solar cells have high absorbance and photoelectric conversion efficiency. Excellent performance and gradually gained attention. CIGS solar cell system consists of copper indium selenide

(Copper/Indium/Selenium,CIS)太陽能電池演進而來。CIS(Copper/Indium/Selenium, CIS) Solar cells evolved. CIS

太陽能電池主要包括CuInSe2 ’係屬於直接遷移性半導體, 尤其吸光係數極高,CuInSe2的禁止帶幅(Eg)為lev,小於 最適用於太陽電池的1. 4-1. 5eV,因此與Eg=l. 6eV的 CuGaSe2較高帶幅材料形成Cu(InGa)Se2,亦即所謂的ciGS 混晶材料,以提高禁止帶幅。 參閱第一圖,習用技術的CIGS太陽能電池之示意圖。 201023376 如第一圖所示,CIGS太陽能電池1 一般包括玻璃基板1〇、 背面電極層20、CIGS吸光層30、緩衝層80以及透明電極 層90,其中背面電極層20係用以導電,一般是使用鉬金屬, CIGS吸光層30係p型半導體層,最主要的作用是吸光,緩 衝層80通常是使用硫化鎘(cdS) ’用以形成η型半導體, 而透明電極層90主要利用氧化鋅鋁(Aluminum ZincThe solar cell mainly includes CuInSe2's which are direct-migrating semiconductors, especially the absorption coefficient is extremely high, and the forbidden band width (Eg) of CuInSe2 is lev, which is less than 1.4-1. 5eV, which is most suitable for solar cells, and therefore Eg=l 6eV CuGaSe2 higher band material forms Cu(InGa)Se2, also known as ciGS mixed crystal material, to increase the band gap. Referring to the first figure, a schematic diagram of a conventional CIGS solar cell. 201023376 As shown in the first figure, the CIGS solar cell 1 generally includes a glass substrate 1 〇, a back electrode layer 20, a CIGS light absorbing layer 30, a buffer layer 80, and a transparent electrode layer 90, wherein the back electrode layer 20 is used for conducting electricity, generally Using molybdenum metal, CIGS light absorbing layer 30 is a p-type semiconductor layer, the most important function is to absorb light, buffer layer 80 is usually used to form n-type semiconductor using cadmium sulfide (cdS), and transparent electrode layer 90 mainly uses zinc oxide aluminum. (Aluminum Zinc

Oxide ’ AZO)、氧化鋅钢(indium Zinc Oxide,IZO)或氧化 錫銦(Indium Tin Oxide ’ ITO) ’具有高透光性以及導電性。 Φ 太陽光L如箭頭方向所示係由上而下射入CIGS太陽能電池 1,穿透過透明電極層90以及緩衝層80而到達CIGS吸光 層30,經CIGS吸光層30吸收後產生具電位能量的電洞電 子對’並分別由透明電極層90與背面電極層2〇傳導至外 部而提供電能。 參閱第一圖,習用技術的另一 CIGS太陽能電池之示意 圖。如第二圖所示,由於CIGS吸光層30與背面電極層2〇 的貼合性不佳,因此會在CIGS吸光層30與背面電極層2〇 參之間加入包含錮銅銘銀的合金層22 ’當作媒合層,以加強 對背面電極層20的貼合性。同時在合金層22上加入硫化 亞銅層(或硒化亞銅層)24,藉以調節合金層22與吸光層30 之間的熱你服係數差異,以避免具有不同熱彰服係數的合 金層22與吸光層30在後續的熱處理中於交接面處產生剪 力效應而相互剝離。 參閱第三圖’習用技術的薄膜吸收光譜範圍之示意 圖。如第三圖所示,在習用技術中,CIGS吸光層主要包括 二石西化銅鎵(CuGaSez)與二硒化銅銦(CuInSe2),其中CuGaSe2 201023376 的吸收光譜主要是針對波長370〜735nm的範圍,且具有4〜 8%的吸光率’而CuInSe2的吸收光譜主要落在波長55〇 〜1170nm的範圍,且具有6〜10%的吸光率,但是與太陽光 的光譜曲線作比較,在波長700〜900nm的範圍内,仍有相 當高比例的光能未被利用。 此外’在習用技術中’ CIGS吸光層的製造方法通常係 使用蒸鍍法、濺鍍法或電化學沉積法,需要一系列的真空 製程,造成硬體投資與製造成本均相當高昂。針對非真空 技術,ISET 公司(International Solar ElectricOxide ' AZO), indium Zinc Oxide (IZO) or indium tin oxide (ITO) has high light transmittance and electrical conductivity. Φ Sunlight L is incident on the CIGS solar cell 1 from top to bottom as indicated by the direction of the arrow, penetrates the transparent electrode layer 90 and the buffer layer 80 to reach the CIGS light absorbing layer 30, and is absorbed by the CIGS light absorbing layer 30 to generate potential energy. The hole electron pair 'and is respectively conducted from the transparent electrode layer 90 and the back electrode layer 2 to the outside to supply electric energy. See the first figure, a schematic of another CIGS solar cell of the prior art. As shown in the second figure, since the adhesion between the CIGS light absorbing layer 30 and the back electrode layer 2 is not good, an alloy layer containing beryllium copper is added between the CIGS light absorbing layer 30 and the back electrode layer 2 22' is used as a bonding layer to enhance the adhesion to the back electrode layer 20. At the same time, a cuprous sulfide layer (or cuprous selenide layer) 24 is added on the alloy layer 22, thereby adjusting the difference in heat ratio between the alloy layer 22 and the light absorbing layer 30 to avoid alloy layers having different heat scalding coefficients. 22 and the light absorbing layer 30 are separated from each other by a shearing effect at the interface at the subsequent heat treatment. See Figure 3 for a schematic representation of the range of absorption spectra of conventional films. As shown in the third figure, in the conventional technology, the CIGS light absorbing layer mainly includes copper gallium (CuGaSez) and copper indium diselenide (CuInSe2), wherein the absorption spectrum of CuGaSe2 201023376 is mainly for the wavelength range of 370 to 735 nm. And having an absorbance of 4 to 8%' and the absorption spectrum of CuInSe2 mainly falls in the range of wavelength 55 〇 to 1170 nm, and has an absorbance of 6 to 10%, but is compared with the spectral curve of sunlight at a wavelength of 700. In the range of ~900 nm, a relatively high proportion of light energy is still unused. In addition, in the conventional technology, the CIGS light absorbing layer is usually produced by a vapor deposition method, a sputtering method or an electrochemical deposition method, and requires a series of vacuum processes, resulting in a relatively high hardware investment and manufacturing cost. For non-vacuum technology, ISET (International Solar Electric

Technology,Inc.)開發出墨印法,係先備製奈米級金屬粉 末或氧化物粉末’經適當溶劑混合後製成漿料,再以類似 油墨製程(Ink Process)將漿料配置在鉬金屬層上而形成 CIGS吸光層,可大幅降低製造成本。 然而’習用技術的缺點為,受限於CuGaSe2與CuInSez 的本質吸光特性’波長700〜900nm範圍内的光能仍有約50% 未被充分利用,使得整體吸光效率無法進一步改善,並影 響CIGS太陽能電池的光電轉換效率。 因此’需要一種更高光電轉換效率的吸光層以及製造 方法’利用非真空方式的墨印法’以適當成分的膠凝膠溶 液,配合快速升溫熱處理,形成高吸光率的吸光層,藉以 提高對波長700〜900nm範圍内之太陽光的吸光率,進而解 決習用技術的缺點。 【發明内容】 201023376 本發明之主要目的在提供一種銅銦鎵砸太陽能電池的 吸光層,係在玻璃基板上依序由下而上堆疊出紹導電層與 鉬銅鋁銀合金層後,於合金層上形成硫化亞銅層,並在硫 化亞銅層上形成由銅、銦、鎵與硒所構成的複數個銅銦鎵 硒堆疊層,經熱處理後形成銅銦鎵硫砸吸光層,用以供後 續依序堆疊出緩衝層與透明電極層,藉以構成具高光電轉 換效率以及高吸光率的銅銦鎵硒太陽能電池。 本發明之另一目的在提供一種銅銦鎵硒太陽能電池之 φ 吸光層的製造方法,係利用濺鍍法形成硫化亞銅層,並利 用包括銅、銦、鎵與硒的溶膠-凝膠溶液,以浸泡、旋轉、 印刷或喷塗方式並配合預乾烘烤處理,形成複數個銅銦鎵 硒堆疊層,接著利用快速升溫熱處理,將硫化亞銅層與銅 銦鎵硒化合物層融合而形成銅銦鎵硫硒吸光層,用以供後 續依序堆疊出缓衝層與透明電極層,藉以構成具高光電轉 換效率以及高吸光率的銅銦鎵硒太陽能電池。 因此,藉由本發明所提供的吸光層以及製造方法,可 ❿提供更高光電轉換效率的吸光層,用以加強對波長7〇〇 〜900nm範圍内之太陽光的吸光率,提高銅銦鎵砸太陽能電 池的整體吸光率與光電轉換效率,因而解決上述習知技術 的所有缺點。 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更詳 細的說明,俾使熟習該項技藝者在研讀本說明書後能據以 實施。 201023376 參閱第四圖,本發明第一實施例的結構示意圖。如第 四圖所示,本發明的CIGS太陽能電池3係在玻璃基板10 上依序沉積出背面電極層20與鉬銅鋁銀合金層22後,將 石荒化亞銅層24、第一混合層41、第二混合層42以及第三 混合層43依序堆疊在鉬銅鋁銀合金層22上,而硫化亞銅 層24、第一混合層41、第二混合層42以及第三混合層43 經熱處理後形成高吸光率的銅銦鎵硫硒吸光層,最後將緩 衝層80以及透明電極層(圖中未顯示)沉積到第三混合層 φ 43 上。 第一混合層41包括硒化亞銅以及硒化鎵,第二混合層 42包括硒化銦以及硒化鎵’而第三混合層43包括硒化亞銅 以及硒化銦。因此,第一混合層41、第二混合層42以及第 三混合層43形成銅銦鎵栖堆疊層。 參閱第五圖,本發明第一實施例的製造流程圖。如第 五圖所示’本發明的製造方法係由步驟sl〇〇開始,在玻璃 基板上依序沉積出背面電極層與鉬銅鋁銀合金層後,利用 參 硫化亞銅作濺鍍乾材進行滅鍵處理,在鉬銅鋁銀合金層上 形成硫化亞銅層,進入步驟S20〇。在步驟S2〇〇中,利用包 括銅銦鎵硒的溶膠凝膠溶液,在硫化亞銅層上形成複數個 銅銦鎵硒堆疊層,再進入步驟s3〇〇,利用融合熱處理,使 銅銦鎵雨堆疊層進行擴散與融合作用,形成具高吸光率的 銅銦鎵硫砸吸光層。 參閱第六圖,本發明第一實施例中形成銅銦鎵硒堆疊層的 流程圖。如第六圖所示,在步驟S21〇中,利用包括硒化亞 銅以及魏•鎵的第-轉轉減,崎泡或旋轉或印刷 201023376 或喷塗等方式進行舰塗佈加工,而在硫化亞鋼層上形成 第-溶膠轉層,進人倾咖,進行職轉處理,供 烤溫度60 ~ 150t:,烘烤時間1〇分〜20分,以去除第一溶 膠凝膠層中的溶劑而形成第一混合成層,其中第一混合成 層包括碼化亞銅以及砸化鎵,接著進入步驟如4/。 在步驟S214中,利用包括硒化銦以及硒化鎵的第二溶 膠凝膠溶液’以浸泡或旋轉或印刷或噴塗等方式進行薄膜 塗佈加工’而在第—混合成層上形成第二溶膠凝膠層,進 Ο 入步驟S216,進行預乾烘烤處理,烘烤溫度60〜15(TC, 烘烤時間10分〜20分’以去除第二溶膠凝膠層中的溶劑而 形成第二混合成層,其中第二混合成層包括石西化鋼以及石西 化鎵,接著進入步驟S218。 在步驟S218中,利用包括硒化亞銅以及硒化銦的第三 膠凝膠溶液’以浸泡或旋轉或印刷或噴塗等方式進行薄膜 塗佈加工’ _第二混合成層上形成第三轉凝膠層,進 入步驟S219,進行預乾烘烤處理,烘烤溫度6〇〜, ⑩ 烘烤時間10分〜20分’以去除第三溶膠娜層中的溶劑而 形成第三混合成層’其中第三混合成層包括硒化亞銅以及 :化銦’因而形成包括第一混合成層、第二混合成層以及 第三混合成層的銅銦鎵硒堆疊層。 參閱第七圖,本發明第一實施例中融合熱處理的製造 流程圖。如第七圖所,在步驟S31〇中,進行快速升溫處理, 使溫度以5〜lot:/sec的升溫速率,在時間tl内,由室 溫上升到融合溫度Th,約働〜腦。c,如第八圖的τι溫 度曲線所不,接著進入步驟S32〇。在步驟S32〇中,在時間 201023376 tl至t2内進行融合溫度Th下的恆溫烘烤’約10〜20分, 如第八圖的T2溫度曲線所示’使硫化亞銅層、第一混合成 層、第二混合成層以及第三混合成層進行擴散與融合作 用,進入步驟S330。在步驟S330中,通入冷卻氣體進行快 速冷卻處理,使溫度在時間t2至t3間下降至50〜200。(:, 如第八圖的T3溫度曲線所示,其中降溫時間約40〜180 分,冷卻氣體可使用氬氣或氮氣。因此,形成具高吸光率 的銅铜嫁硫砸吸光層。Technology, Inc.) developed the ink printing method, which is prepared by preparing a nano-sized metal powder or an oxide powder, which is mixed with a suitable solvent to form a slurry, and then the slurry is disposed in the molybdenum in an ink process (Ink Process). The CIGS light absorbing layer is formed on the metal layer, which can greatly reduce the manufacturing cost. However, the disadvantage of the conventional technology is that it is limited by the intrinsic absorption characteristics of CuGaSe2 and CuInSez. The light energy in the wavelength range of 700 to 900 nm is still underutilized, so that the overall light absorption efficiency cannot be further improved and the CIGS solar energy is affected. The photoelectric conversion efficiency of the battery. Therefore, it is required to have a light-absorbing layer with higher photoelectric conversion efficiency and a manufacturing method using a non-vacuum ink printing method to form a high-absorbance light-absorbing layer by using a gel electrogel solution of a suitable composition in combination with rapid heat treatment. The absorbance of sunlight in the wavelength range of 700 to 900 nm further solves the shortcomings of conventional techniques. SUMMARY OF THE INVENTION 201023376 The main purpose of the present invention is to provide a light-absorbing layer of a copper indium gallium germanium solar cell, which is formed by sequentially stacking a conductive layer and a molybdenum-copper-aluminum-silver alloy layer on a glass substrate. a cuprous sulfide layer is formed on the layer, and a plurality of copper indium gallium selenide stack layers composed of copper, indium, gallium and selenium are formed on the cuprous sulfide layer, and a copper indium gallium sulphide light absorbing layer is formed after heat treatment. The buffer layer and the transparent electrode layer are sequentially stacked in order to form a copper indium gallium selenide solar cell with high photoelectric conversion efficiency and high light absorption. Another object of the present invention is to provide a method for producing a φ light absorbing layer of a copper indium gallium selenide solar cell, which comprises forming a cuprous cup by sputtering, and using a sol-gel solution including copper, indium, gallium and selenium. Forming a plurality of copper indium gallium selenide stack layers by immersion, rotation, printing or spraying, and pre-drying baking treatment, and then forming a copper sulfide layer and a copper indium gallium selenide compound layer by rapid thermal processing. The copper indium gallium sulphide selenium light absorbing layer is used for sequentially stacking the buffer layer and the transparent electrode layer in order to form a copper indium gallium selenide solar cell with high photoelectric conversion efficiency and high light absorption. Therefore, the light absorbing layer and the manufacturing method provided by the present invention can provide a light absorbing layer with higher photoelectric conversion efficiency for enhancing the light absorption rate of sunlight in the wavelength range of 7 〇〇 900 900 nm, and improving the copper indium gallium germanium. The overall absorbance and photoelectric conversion efficiency of the solar cell thus solves all of the above-mentioned drawbacks of the prior art. [Embodiment] Hereinafter, the embodiments of the present invention will be described in more detail with reference to the drawings and the reference numerals, and those skilled in the art can implement the present invention after studying the present specification. 201023376 Referring to the fourth figure, a schematic structural view of a first embodiment of the present invention. As shown in the fourth figure, the CIGS solar cell 3 of the present invention sequentially deposits the back electrode layer 20 and the molybdenum-copper-aluminum-silver alloy layer 22 on the glass substrate 10, and then the stone-resolved cuprous layer 24, the first mixture The layer 41, the second mixed layer 42 and the third mixed layer 43 are sequentially stacked on the molybdenum-copper-aluminum-silver alloy layer 22, and the cuprous sulfide layer 24, the first mixed layer 41, the second mixed layer 42, and the third mixed layer After the heat treatment, a high in absorptivity copper indium gallium sulfide selenium light absorbing layer is formed, and finally a buffer layer 80 and a transparent electrode layer (not shown) are deposited on the third mixed layer φ 43 . The first mixed layer 41 includes cuprous selenide and gallium selenide, the second mixed layer 42 includes indium selenide and gallium selenide ', and the third mixed layer 43 includes cuprous selenide and indium selenide. Therefore, the first mixed layer 41, the second mixed layer 42, and the third mixed layer 43 form a copper indium gallium nitride stacked layer. Referring to the fifth drawing, a manufacturing flow chart of the first embodiment of the present invention. As shown in the fifth figure, the manufacturing method of the present invention starts from step s1, and sequentially deposits the back electrode layer and the molybdenum copper aluminum silver alloy layer on the glass substrate, and then uses the cuprous sulfide as the sputter dry material. The key-off treatment is performed to form a cuprous sulfide layer on the molybdenum-copper-aluminum-silver alloy layer, and the process proceeds to step S20. In step S2, a plurality of copper indium gallium selenide stack layers are formed on the cuprous sulfide layer by using a sol-gel solution comprising copper indium gallium selenide, and then proceeding to step s3〇〇, using fusion heat treatment to make copper indium gallium The rain stack layer diffuses and fuses to form a copper indium gallium sulphide light absorbing layer with high absorbance. Referring to a sixth embodiment, a flow chart for forming a copper indium gallium selenide stack layer in the first embodiment of the present invention. As shown in the sixth figure, in step S21, the ship coating process is performed by means of a first-to-reduction reduction including cuprous selenide and Wei-gallium, a soaking or rotating or printing 201023376 or spraying, and The first sol-transformed layer is formed on the vulcanized steel layer, and the person is turned into a coffee, and the job is rotated for a baking temperature of 60 to 150 tons: and the baking time is 1 to 20 minutes to remove the first sol gel layer. A first mixed layer is formed by the solvent, wherein the first mixed layer comprises coded cuprous and gallium antimonide, followed by a step such as 4/. In step S214, a second sol-gel solution including indium selenide and gallium selenide is used to perform a film coating process by dipping or rotating or printing or spraying, and a second sol is formed on the first mixed layer. The adhesive layer is advanced to step S216 to perform a pre-drying baking treatment at a baking temperature of 60 to 15 (TC, baking time of 10 minutes to 20 minutes) to remove the solvent in the second sol-gel layer to form a second mixture. Layering, wherein the second mixed layer comprises stone westernized steel and gallium arsenide, and then proceeds to step S218. In step S218, a third gelatin solution comprising cuprous selenide and indium selenide is used to soak or rotate or print Or film coating processing by spraying or the like _ forming a third transfer gel layer on the second mixed layer, proceeding to step S219, performing pre-dry baking treatment, baking temperature 6 〇 〜 10 baking time 10 minutes 〜 20 Dividing 'to remove the solvent in the third sol layer to form a third mixed layer' wherein the third mixed layer comprises cuprous selenide and: indium' thus forming a first mixed layer, a second mixed layer, and a third mixture Layer of copper indium gallium selenide stacking layer. Referring to the seventh figure, a manufacturing flow chart of the fusion heat treatment in the first embodiment of the present invention. As shown in the seventh figure, in step S31, a rapid temperature rising process is performed to make the temperature 5~ The heating rate of lot:/sec, within time t1, rises from room temperature to the fusion temperature Th, about 脑~ brain.c, as the τι temperature curve of the eighth figure does not, and then proceeds to step S32〇. At step S32〇 In the time period 201023376 tl to t2, the constant temperature baking at the fusion temperature Th is performed, about 10 to 20 minutes, as shown in the T2 temperature curve of the eighth figure, 'the copper sulphide layer, the first mixed layer, the second mixture The layering and the third mixed layer are subjected to diffusion and fusion, and the process proceeds to step S330. In step S330, the cooling gas is passed through for rapid cooling treatment, so that the temperature is lowered to 50 to 200 between time t2 and t3. The T3 temperature curve of the figure shows that the cooling time is about 40 to 180 minutes, and the cooling gas can be argon or nitrogen. Therefore, a copper-copper sulphur oxide light absorbing layer having a high light absorption rate is formed.

參閱第九圖’本發明第二實施例的結構示意圖。如第 九圖所示,本發明的CIGS太陽能電池4係將硫化亞銅層 24、硒化亞銅層51、硒化銦層52以及硒化鎵層53依序堆 疊在鉬銅鋁銀合金層22上’並在硫化亞銅層24、硒化亞銅 層51、砸化銦層52以及石西化鎵層53經熱處理而進行擴散 與融合作用後’形成高吸光率的銅銦鎵硫石西吸光層,最後 將緩衝層80以及透明電極層(圖中未顯示)沉積到硒化鎵層 53上。 第九圖中硫化亞銅層24如同第四圖,因此硫化亞銅層 24的形成方法在此不再贅述。 麥閱第十圖’本發明第二實施例巾形成銅銦鎵砸堆疊 層的流程圖。如第十圖所示,在步驟S23{)中,利用利用碼 々膠娜溶液’以浸泡錢轉獅械噴塗等方式 二:_加工’而在硫化亞銅層上形細化亞銅溶膠 〜進入步驟S232,進行預乾烘烤處理,烘烤溫度60 屌巾ίΐ、烤㈣1Q分〜2G分,以去除魏亞銅溶膠凝膠 層中的溶_形_化亞鋼層,接著進人步驟細。在步 201023376 2成靴銦轉轉層,狄麵獅,騎預乾供烤 f理’供烤溫度6g ~靴,烘烤時間1G分.分,以去 =硒化銦轉轉層帽溶#_柄化銦層,進入步驟 38 ,在步驟S238中’利用石西化鎵溶膠凝膠溶液在硒化銦 上形成硒化鎵溶膠凝膠層,進入步驟S239,進行預乾烘 烤處理’烘烤溫度⑼〜⑽。C,烘烤時間Μ分〜2Q分以Referring to the ninth drawing, a schematic structural view of a second embodiment of the present invention. As shown in the ninth figure, the CIGS solar cell 4 of the present invention sequentially stacks the cuprous sulfide layer 24, the cuprous selenide layer 51, the indium selenide layer 52, and the gallium selenide layer 53 on the molybdenum-copper-aluminum-silver alloy layer. 22 on the 'copper cuprous layer 24, the cuprous selenide layer 51, the indium antimonide layer 52 and the gallium antimonide layer 53 after heat treatment for diffusion and fusion, forming a high absorbance of copper indium gallium sulphide The light absorbing layer finally deposits a buffer layer 80 and a transparent electrode layer (not shown) onto the gallium selenide layer 53. The cuprous sulfide layer 24 in the ninth drawing is the same as the fourth drawing, and therefore the formation method of the cuprous sulfide layer 24 will not be described herein. Fig. 10 is a flow chart showing the formation of a copper indium gallium germanium stack layer in the second embodiment of the present invention. As shown in the tenth figure, in step S23{), the cuprous sol is formed on the cuprous sulfide layer by using the code 々胶娜溶液's soaking money to turn the lion's machine to spray two or more: _processing' Proceeding to step S232, a pre-drying baking process is performed, and the baking temperature is 60 屌, 烤, and (4) 1Q minutes to 2G minutes to remove the _ _ _ _ steel layer in the Wei Ya copper sol gel layer, and then enter the steps fine. In step 201023376 2 into the indium turn layer, Di lion, riding pre-dry for roasting f for 'bake temperature 6g ~ boots, baking time 1G points. points to go = indium selenide turn layer cap solution # Forming the indium layer into step 38, forming a gallium selenide sol gel layer on the indium selenide using the galvanized sol sol gel solution in step S238, proceeding to step S239, performing pre-dry baking treatment 'baking Temperature (9) ~ (10). C, baking time 〜 points ~ 2Q points

去除硒化鎵溶膠凝膠層中的溶劑而形成硒化鎵層。因而形 成包括硒化亞銅層、硒化銦層以及硒化鎵層的銅銦鎵硒堆 疊層。 本發明第一貫施例的銅铜錄栖堆疊層再經如同第一實 施例的融合熱處理’而形成具高吸光率的銅銦鎵硫硒吸光 層。 參閲第十一圖,本發明第三實施例的結構示意圖。如 第十一圖所示,本發明的CIGS太陽能電池5係將硫化亞銅 層24以及銅銦鎵硒混合層61依序堆疊在鉬銅鋁銀合金層 22上’其_銅銦鎵碼混合層61包括砸化亞銅、砸化銦以及 砸化鎵。硫化亞銅層24與銅銦鎵硒混合層61在經熱處理 而進行擴散與融合作用後,形成高吸光率的銅銦鎵硫西吸 光層,最後將缓衝層80以及透明電極層(圖中未顯示)沉積 到銅鋼嫁砸混合層61上。 第Η —圖中硫化亞銅層24如同第四圖,因此硫化亞銅 層24的形成方法在此不再贅述。 12 201023376The solvent in the gallium selenide sol gel layer is removed to form a gallium selenide layer. Thus, a copper indium gallium selenide stack including a cuprous selenide layer, an indium selenide layer, and a gallium selenide layer is formed. The copper-copper recording layer of the first embodiment of the present invention is further subjected to a fusion heat treatment as in the first embodiment to form a copper indium gallium sulfide selenium light absorbing layer having a high absorbance. Referring to Figure 11, a schematic structural view of a third embodiment of the present invention. As shown in FIG. 11 , the CIGS solar cell 5 of the present invention sequentially stacks the cuprous sulfide layer 24 and the copper indium gallium selenide mixed layer 61 on the molybdenum copper aluminum silver alloy layer 22 'its copper indium gallium code mixture Layer 61 includes cuprous halide, indium antimonide, and gallium antimonide. The cuprous sulfide layer 24 and the copper indium gallium selenide mixed layer 61 are subjected to heat treatment for diffusion and fusion to form a high absorbance copper indium gallium sulfide sulfur absorbing layer, and finally the buffer layer 80 and the transparent electrode layer (in the figure) It is not shown) deposited on the copper-steel mixed layer 61. The second embodiment - the cuprous sulfide layer 24 is as shown in the fourth figure, so the formation method of the cuprous sulfide layer 24 will not be repeated here. 12 201023376

❹ 參閱第十二圖’本發明第三實施例甲形成銅姻錄石西堆 疊層的流程圓。如第十二圖所示,在步驟從5()中,利用鋼 麵鎵磁溶膠郷雜魏岐鋪上形油銦綱溶膠凝 膠層,其中鋼錮鎵硒溶膠凝膠溶液包括硒化亞銅、硒化銦 以及硒化鎵的混合物,以浸泡、旋轉、印刷或喷塗等方式 進行賴塗佈加王,*在硫化亞鋪上戦_嫁砸溶ς 凝膠層,進人步驟S252,進行減輯處理,輯溫度即 150 C火、烤時間1〇分〜2〇分,以去除銅銦鎵砸溶膠凝膠 層^的’讀而形成包括刪t亞銅、靴她及砸化嫁的銅 銦鎵砸此合層。因而形成包括则b亞靖以及銅銦錄砸混 合層的銅銦錁碼堆叠層。 本發月第一Λ知例的銅銦鎵硒堆疊層再經如同第一實 施例的融合祕理’轉成具高吸鱗_銦鎵硫魏光 層0 參f第:二圖’本發明的薄膜吸收光譜範圍之示意 =如第十―圖所不,本發明的銅銦鎵硫栖吸光層具有二 j二(CuInS2) ’因此可提高對波長珊〜咖⑽範圍内 轉換料的吸光率,藉以提升⑽太陽能電池的整體光電 人^述者僅翻以解釋本發明之較佳實施例,並非 ΐΞ:二接本發明做任何形式上之限制,是以,凡有在相 二二士神下所作有關本發明之任何修飾或變更,皆仍 應包括在本翻意_護之範嘴。 201023376 【圖式簡單說明】 第一圖為_示習用技術的CIGS太陽能電池之示意圖。 f =圖為顯示習用技術的另一 CIGS太陽能電池之示意圖。 第一圖為顯示習用技術的薄膜吸收光譜範圍之示意圖。 第四圖為顯示本發明第-實施例的結構示意圖。 第五圖為顯示本發明第一實施例的製造流程圖。 第/、圖為顯示本發明第一實施例中形成銅銦鎵晒堆疊層的 流程圖。 φ 第七圖為顯示本發明第-實施例中融合熱處理的製造流程 圖。 第八圖為顯示本發明第一實施例的加熱曲線圖。 第九圖為顯示本發明第二實施例的結構示意圖。 第十圖為顯示本發明第二實施例巾形成銅銦鎵碼堆疊層的 流程圖。 第十一圖為顯示本發明第三實施例的結構示意圖。 第十二圖為顯示本發明第三實施例中形成鋼鋼錄 的流程圖。 曰 第十二圖為顯示本發明的薄膜吸收光譜範圍之示音圖。 【主要元件符號說明】 1 CIGS太陽能電池 2 CIGS太陽能電池 3 CIGS太陽能電池 4 CIGS太陽能電池 5 CIGS太陽能電池 10玻璃基板 201023376 20背面電極層 22鉬銅鋁銀合金層 24硫化亞銅層 30 CIGS吸光層 41第一混合層 42第二混合層 43第三混合層 51石西化亞銅層 52石西化姻層 53石西化鎵層 61銅銦鎵硒混合層 80缓衝層 90透明電極層 L光線 S100利用濺鍍法形成硫化亞銅層 S200利用溶膠凝膠形成溶膠凝膠層 S210形成第一溶膠凝膠層 S212預乾烘烤 S214形成第二溶膠凝膠層 S216預乾烘烤 S218形成第三溶膠凝膠層 S219預乾烘烤 S230形成硒化亞銅溶膠凝膠層 S232預乾烘烤 S234形成硒化銦溶膠凝膠層 15 201023376 S236預乾烘烤 S238形成硒化鎵溶膠凝膠層 S239預乾烘烤 S250形成銅銦鎵硒溶膠凝膠層 S252預乾烘烤 S300融合熱處理 S310快速昇溫熱處理 S320恆溫烘烤 S330通氬氣/氮氣進行分段快速冷卻 ΐΐ時間 t2時間 t3時間 T1溫度曲線 T2溫度曲線 T3溫度曲線 16参阅 Referring to the twelfth figure, a third embodiment of the present invention forms a flow circle of a copper marriage stone pile stack. As shown in Fig. 12, in step 5(), a steel-coated gallium sol-gel is used to coat the indium-like sol gel layer of the oil, wherein the steel-gallium-gallium-sol sol-gel solution includes selenization. a mixture of copper, indium selenide and gallium selenide, which is coated by immersion, rotation, printing or spraying, etc., * on the vulcanized sub-shop, 砸 砸 砸 砸 砸 gel layer, step S252 , the reduction processing, the temperature is 150 C fire, roasting time 1 〇 minutes ~ 2 〇 points, to remove the copper indium gallium arsenate sol gel layer ^ read and formed including the deletion of t-bronze, boots her and 砸化Married copper indium gallium ruthenium. Thus, a copper indium ruthenium stack layer comprising a mixed layer of b and a copper indium ruthenium is formed. The copper indium gallium selenide stack layer of the first example of the present month is further transformed into a high-sucking scale_indium gallium sulphide layer 0 with the same fusion principle as in the first embodiment. Schematic diagram of the absorption spectrum range of the film = as shown in the tenth - figure, the copper indium gallium sulphide absorption layer of the invention has two j (CuInS2)', so that the absorbance of the conversion material in the range of wavelength to coffee (10) can be improved. In order to enhance (10) the overall photovoltaic system of the solar cell, the preferred embodiment of the invention is merely explained, and it is not a simplification: the second embodiment of the invention is limited in any form, so that there is a god in the phase two Any modifications or alterations made in connection with the present invention should still be included in the present disclosure. 201023376 [Simple description of the diagram] The first picture is a schematic diagram of the CIGS solar cell of the teaching technology. f = Figure is a schematic diagram showing another CIGS solar cell showing conventional technology. The first figure is a schematic diagram showing the absorption spectrum range of a film of a conventional technique. The fourth figure is a schematic view showing the structure of the first embodiment of the present invention. The fifth figure is a manufacturing flow chart showing the first embodiment of the present invention. The figure / is a flow chart showing the formation of a copper indium gallium drying stack in the first embodiment of the present invention. φ Fig. 7 is a manufacturing flow diagram showing the fusion heat treatment in the first embodiment of the present invention. The eighth figure is a heating graph showing the first embodiment of the present invention. The ninth drawing is a schematic view showing the structure of the second embodiment of the present invention. Fig. 10 is a flow chart showing the formation of a copper indium gallium pattern stack by the towel of the second embodiment of the present invention. Figure 11 is a schematic view showing the structure of a third embodiment of the present invention. Fig. 12 is a flow chart showing the formation of steel in the third embodiment of the present invention.曰 Twelfth is a diagram showing the absorption spectrum range of the film of the present invention. [Main component symbol description] 1 CIGS solar cell 2 CIGS solar cell 3 CIGS solar cell 4 CIGS solar cell 5 CIGS solar cell 10 glass substrate 201023376 20 back electrode layer 22 molybdenum copper aluminum silver alloy layer 24 cuprous sulfide layer 30 CIGS light absorbing layer 41 first mixed layer 42 second mixed layer 43 third mixed layer 51 lithiated cuprous layer 52 lithiated aramid layer 53 stone westernized gallium layer 61 copper indium gallium selenide mixed layer 80 buffer layer 90 transparent electrode layer L light S100 utilization Sputtering to form a cuprous sulfide layer S200 using a sol-gel to form a sol-gel layer S210 to form a first sol-gel layer S212 pre-drying baking S214 to form a second sol-gel layer S216 pre-drying baking S218 to form a third sol-gel Adhesive layer S219 pre-dry baking S230 to form a cuprous selenide sol gel layer S232 pre-dry baking S234 to form indium selenide sol gel layer 15 201023376 S236 pre-dry baking S238 to form a gallium selenide sol gel layer S239 pre-dry Baking S250 to form copper indium gallium selenide sol gel layer S252 pre-dry baking S300 fusion heat treatment S310 rapid heating heat treatment S320 constant temperature baking S330 argon gas / nitrogen for segmental rapid cooling ΐΐ time t2 t3 time temperature curve T1 T2 T3 temperature curve temperature curve 16

Claims (1)

201023376 十、申請專利範圍: 1. 一種銅銦鎵硒太陽能電池之吸光層,該吸光層位於一金 屬層或一緩衝層上,該吸光層包括一含硫缓衝層以及一 銅銦鎵硒混合層,其中該銅銦鎵硒混合層包括複數個由 銅、銦、鎵以及磁所構成的化合物,該含硫緩衝層以及 該銅銦錄砸混合層經一融合熱處理而形成一銅銦錄石泉ί® 吸光層。 0 2.依據申請專利範圍第1項所述之吸光層,其中該金屬層 包括一鉬金屬層,而且該金屬層位於一基板上。 3. 依據申請專利範圍第1項所述之吸光層,其中該緩衝層 包括一翻銅銘銀合金層,係位於一钥金屬層上,而且該 金屬層位於一基板上。 4. 依據申請專利範圍第1項所述之吸光層,其中該含硫緩 衝層包括硫化亞銅。 ❹ 5·依據申請專利範圍第1項所述之吸光層,其中該等化合 物包括硒化亞銅、硒化銦以及硒化鎵。 6· —種銅銦鎵硒太陽能電池之吸光層,該吸光層位於一金 屬層或一緩衝層上,該吸光層包括一含硫緩衝層以及複 數個堆疊層,其中該等堆疊層包括複數個由銅、銦、鎵 以及砸所構成的化合物,該含硫緩衝層以及該等堆疊層 經融合熱處理而形成一銅銦鎵硫硒吸光層。 17 201023376 7·依據申請專利範圍第6項所述之吸光層,其中該金屬層 包括一鉬金屬層’而且該金屬層位於一基板上。 8. 依據申請專利範圍第6項所述之吸光層,其中該緩衝層 包括一鉬銅鋁銀合金層,係位於一鉬金屬層上,而且該 金屬層位於一基板上。 9. 依據申請專利範圍第6項所述之吸光層,其中該含硫緩 衝層包括硫化亞銅。 ❹ 10.依據申請專利範圍第6項所述之吸光層,其中該等堆疊 層包括一砸化亞銅層、一硒化銦層以及一砸化鎵層。 11.依據申請專利範圍第6項所述之吸光層,其中該等堆疊 層包括一第一混合層、一第二混合層以及一第三混合 層’該第一混合層包括砸化亞銅以及砸化鎵,該第二混 合層包括’硒化銦以及硒化鎵,而第三混合層包括碼化 亞銅以及叾西化铜。 © 12. —種銅銦鎵硒太陽能電池之吸光層的製造方法,該吸光層 位於一金屬層或一緩衝層上,該金屬層包括一鉬金屬層,而 且該金屬層位於一基板上,該缓衝層包括一鉬銅鋁銀合金 層’係位於該钥金屬層上,該製造方法包括以下步驟: 利用硫化亞銅當作一錢鑛把材以進行減鍍處理,而在該金屬 層或緩衝層上形成一硫化亞銅層; 將複數個溶膠凝膠溶液經一堆疊層形成法而在該硫化亞銅 ‘201023376 層上开&gt; 成一銅銦鎵碼堆疊層,該等溶膠凝膠溶液包括一溶劑 以及複數個由銅、銦、鎵以及砸所構成的化合物; 利用一融合熱處理,使該硫化亞銅層與該銅銦鎵硒堆疊層進 行擴散與融合作用,形成一銅銦鎵硫碰吸光層。 13. 依據申請專利範圍第12項所述之吸光層,其中該等溶 膠凝膠溶液包括一銅銦鎵硒膠凝膠溶液,該銅銦鎵硒膠 凝膠溶液包含硒化亞銅、硒化銦、硒化鎵以及該溶劑, S亥堆疊層形成法係包括以下步驟: 利用浸泡、旋轉、印刷或喷塗,將該銅銦鎵硒溶膠凝膠溶液 塗佈到該硫化亞銅層上,形成一銅銦鎵硒溶膠凝膠層;以及 該銅銦鎵硒溶膠凝膠層經一預乾烘烤處理,去除該溶劑,形 成包括硒化亞銅、硒化銦以及硒化鎵的該銅銦鎵硒堆疊層。 14. 依據申請專利範圍第13項所述之吸光層,其中該預乾 烘烤處理包括-輯溫度以及—烘烤時間,該烘烤溫度 係60〜150°C,該烘烤時間係10分〜2〇分。 15依據申請專利範圍第12項所述之吸光層,其中該等溶膠 凝膠溶液包括一硒化亞銅溶膠凝膠溶液、一硒化銦溶膠 凝勝溶液以及i化鎵轉凝雜液,翻化亞銅溶膠 凝膠溶液包含魏亞銅以及該溶劑,_化銦溶膠凝膠 溶液包含魏錮以及該溶劑’該砸化鎵溶膠凝膠溶液包 含硒化鎵以及該溶劑,該堆疊層形成法係包括以下步驟: .201023376 利用/又泡旋轉ep刷或喷塗’將該碼化亞銅砸溶膠凝勝溶 液塗侧化亞銅層上,軸_靴轉凝膠層^ 該石西化亞娜膠娜輕—職烘烤處理,叫除該溶劑, 形成一磁化亞銅層; 利用浸泡、旋轉、印刷或喷塗’將該魏錮麟膠凝膠溶液 塗佈到該魏亞域上,軸—魏銦轉凝膠層;201023376 X. Patent application scope: 1. A light absorption layer of a copper indium gallium selenide solar cell, the light absorption layer is located on a metal layer or a buffer layer, the light absorption layer comprises a sulfur buffer layer and a copper indium gallium selenide mixture a layer, wherein the copper indium gallium selenide mixed layer comprises a plurality of compounds composed of copper, indium, gallium, and magnetic, and the sulfur-containing buffer layer and the copper-indium-copper mixed layer are subjected to a fusion heat treatment to form a copper indium-recorded stone spring. Ί® light absorbing layer. The light absorbing layer according to claim 1, wherein the metal layer comprises a molybdenum metal layer, and the metal layer is on a substrate. 3. The light absorbing layer of claim 1, wherein the buffer layer comprises a copper-plated silver alloy layer on a key metal layer, and the metal layer is on a substrate. 4. The light absorbing layer of claim 1, wherein the sulfur-containing buffer layer comprises cuprous sulfide. The light absorbing layer according to claim 1, wherein the compounds include cuprous selenide, indium selenide, and gallium selenide. a light-absorbing layer of a copper indium gallium selenide solar cell, the light absorbing layer being located on a metal layer or a buffer layer, the light absorbing layer comprising a sulfur-containing buffer layer and a plurality of stacked layers, wherein the stacked layers comprise a plurality of A compound composed of copper, indium, gallium, and antimony, the sulfur-containing buffer layer and the stacked layers are subjected to fusion heat treatment to form a copper indium gallium sulfide selenium light absorbing layer. The light absorbing layer of claim 6, wherein the metal layer comprises a molybdenum metal layer and the metal layer is on a substrate. 8. The light absorbing layer of claim 6, wherein the buffer layer comprises a layer of molybdenum-copper-aluminum-silver alloy, which is on a layer of molybdenum metal, and the layer of metal is on a substrate. 9. The light absorbing layer of claim 6, wherein the sulfur-containing buffer layer comprises cuprous sulfide. The light absorbing layer according to claim 6, wherein the stacked layers comprise a cuprous germanium layer, an indium selenide layer, and a gallium antimonide layer. 11. The light absorbing layer of claim 6, wherein the stacked layers comprise a first mixed layer, a second mixed layer, and a third mixed layer, the first mixed layer comprising cuprous bismuth and Gallium antimonide, the second mixed layer includes 'indium selenide and gallium selenide, and the third mixed layer includes coded cuprous and copper bismuth. </ RTI> A method for manufacturing a light absorbing layer of a copper indium gallium selenide solar cell, the light absorbing layer being on a metal layer or a buffer layer, the metal layer comprising a molybdenum metal layer, and the metal layer is located on a substrate, The buffer layer comprises a molybdenum-copper-aluminum-silver alloy layer on the key metal layer, and the manufacturing method comprises the following steps: using cuprous sulfide as a money ore material for deplating treatment, and in the metal layer or Forming a cuprous sulfide layer on the buffer layer; and forming a copper indium gallium code stack layer on the cuprous sulfide '201023376 layer by a stacking layer forming method, the sol gel solution The invention comprises a solvent and a plurality of compounds composed of copper, indium, gallium and germanium; and the fusion and heat treatment is used to diffuse and fuse the cuprous sulfide layer and the copper indium gallium selenide stack layer to form a copper indium gallium sulfide. Touch the light absorbing layer. 13. The light absorbing layer according to claim 12, wherein the sol-gel solution comprises a copper indium gallium selenide gel solution containing cuprous selenide and selenization. Indium, gallium selenide and the solvent, the SH stacking layer forming method comprises the steps of: coating the copper indium gallium selenide sol gel solution onto the cuprous sulfide layer by dipping, rotating, printing or spraying, Forming a copper indium gallium selenide sol gel layer; and the copper indium gallium selenide sol gel layer is subjected to a pre-dry baking treatment to remove the solvent to form the copper including cuprous selenide, indium selenide, and gallium selenide Indium gallium selenide stacked layer. 14. The light absorbing layer according to claim 13, wherein the pre-drying baking treatment comprises a temperature and a baking time, the baking temperature is 60 to 150 ° C, and the baking time is 10 minutes. ~2 points. The light absorbing layer according to claim 12, wherein the sol-gel solution comprises a cuprous selenide sol gel solution, an indium selenide sol condensate solution, and an i-gallium turning coagulating liquid. The cuprous sol sol gel solution comprises Wei Ya copper and the solvent, and the indium sol sol gel solution comprises Wei Wei and the solvent. The gallium sol sol gel solution comprises gallium selenide and the solvent, and the stacked layer is formed. The system comprises the following steps: .201023376 Utilizing / foaming ep brush or spraying 'coating the coded cuprous bismuth sol solvate solution on the side of the copper layer, the shaft _ boot to the gel layer ^ the stone westernization Jiao Na light-job baking treatment, called the solvent, to form a magnetized cuprous layer; using the soaking, rotating, printing or spraying 'coating the Wei Qilin gel solution onto the Wei Ya domain, the axis - Wei Indium Gel layer 該碼化銦歸凝騎_預乾輯處理,时除該溶劑,形 成一 ί西化钢層; 利用浸泡、旋轉、印刷或喷塗,將細化鎵麟膠凝谬溶液 塗佈到該硒化銦層上,形成一硒化鎵溶膠凝膠層;以及 該硒化鎵溶膠凝膠層經該預乾烘烤處理,以去除該溶劑,&lt; 成一晒化鎵層; 7 鎵 形成包括該硒化亞銅層、硒化銦層以及硒化鎵層的該鋼銦 碼堆疊層。 16依據申請專利範圍第15所述之吸光層,其中 该預乾烘烤處理包括一烘烤溫度以及一烘烤時間,該烘烤、 度係60〜150。(: ’該烘烤時間係10分〜20分。 17依據申請專利範圍第12項所述之吸光層,其中 該等溶膠凝膠溶液包括一第一溶膠凝膠溶液、一第二冰 一^合膠凝 膠溶液以及一第三溶膠凝膠溶液,該第一溶膠凝膠溶液包人 石西化亞銅、硒化鎵以及該溶劑,、硒化亞銅以及該溶 : ’該 20 201023376 第二溶膠凝膠溶液包含砸化銦、硒化鎵以及該溶劑,該第三 溶膠凝膠溶液包含硒化亞銅、硒化銦以及該溶劑,該堆疊層 形成法係包括以下步驟: 利用浸泡、旋轉、印刷或嘴塗,將該第一溶膠凝膠溶液塗佈 到該硫化亞銅層上,形成一第一溶膠凝膠層; 該第-溶膠凝膠層經-預乾烘烤處理,以去除該溶劑,形成 一第一混合層; 利用浸泡、旋轉、_或倾’將該第二溶膠凝膠溶液塗佈 到該第-混合層上’形成一第二溶膠凝膠層; 該第二溶膠凝膠層經該預乾烘烤處理,以去除該溶劑,形成 一第二混合層; 利用浸泡、旋轉、_或,將該第三溶膠凝膠溶液塗佈 到該第一此合層上,形成一第三溶膠凝膠層; 該第三溶膠凝膠層經該預乾供烤處理,以去除該溶劑形成 一第三混合層;以及 形成包括s亥弟一混合展、笛-、、曰人a、,立松一 一此5層以及第二混合層的該銅 銦鎵硒堆疊層。 18依據申請專利範圍第Π所述之吸光層,其中 /預乾、烤处理包括一烘烤溫度以及一供烤時間,該洪烤溫 度係60〜15(TC,該焕烤時間係1〇分2〇分。 19·依據申請專利範圍第12項所述之吸光層,其中 .201023376 該融合熱處理包括以下步驟·· 一快速升溫處理,以-快速升溫速率將溫度上升到一融合溫 度’該快速升溫速率係、5〜HTC/sec,而該融合溫度係· 〜800°C ; 一恆溫融合處理,在該融合溫度下,維持—融合時間,該融 合時間係10〜20分;以及 —快速冷卻處理,通入一冷卻氣體,使該溫度在一冷卻時門 内下降至一冷卻目標溫度,該冷卻時間係4〇〜18〇分, 冷卻目標溫度係50〜200〇C ; 20·依據申請專利範圍第19項所述之吸光層,其中該冷郤 氣體包括氬氣或氮氣。The coded indium is treated by a pre-drying process, and the solvent is removed to form a layer of westernized steel; the galvanized gel solution is applied to the selenization by soaking, rotating, printing or spraying. Forming a gallium selenide sol gel layer on the indium layer; and the pre-drying baking treatment of the gallium selenide sol gel layer to remove the solvent, forming a gallium nitride layer; 7 gallium formation including the selenium The indium copper code layer of the cuprous layer, the indium selenide layer, and the gallium selenide layer. The light absorbing layer according to claim 15, wherein the pre-drying baking treatment comprises a baking temperature and a baking time, and the baking degree is 60 to 150. (: 'The baking time is 10 minutes to 20 minutes. 17 The light absorbing layer according to claim 12, wherein the sol-gel solution comprises a first sol-gel solution, a second ice-- a gelling gel solution and a third sol-gel solution, the first sol-gel solution encapsulating cuprous chloride, gallium selenide and the solvent, cuprous selenide and the solution: 'The 20 201023376 second The sol-gel solution comprises indium antimonide, gallium selenide and the solvent, the third sol-gel solution comprises cuprous selenide, indium selenide and the solvent, and the stacked layer forming method comprises the following steps: using soaking and rotating Printing or mouth coating, applying the first sol-gel solution onto the cuprous sulfide layer to form a first sol-gel layer; the first-sol-gel layer is subjected to pre-dry baking treatment to remove The solvent forms a first mixed layer; coating the second sol-gel solution onto the first mixed layer by soaking, rotating, or tilting to form a second sol-gel layer; the second sol The gel layer is subjected to the pre-dry baking treatment to go Forming a second mixed layer; applying the third sol-gel solution to the first layer by immersion, rotation, or _ to form a third sol-gel layer; the third sol The gel layer is subjected to pre-drying for baking to remove the solvent to form a third mixed layer; and forming a mixture including shaidi, flute-, 曰人a, 立松一一5 layer, and second The copper indium gallium selenide stack layer of the mixed layer. 18 The light absorbing layer according to the scope of the patent application, wherein the pre-drying and baking treatment comprises a baking temperature and a baking time, the baking temperature is 60-15 (TC, the tempering time is 1 〇 2 points. 19. The light absorbing layer according to claim 12, wherein .201023376 the fusion heat treatment comprises the following steps: · a rapid temperature rise treatment, to - rapid temperature rise The rate raises the temperature to a fusion temperature 'the rapid temperature rise rate, 5 to HTC/sec, and the fusion temperature is ~800 ° C; a constant temperature fusion treatment, at the fusion temperature, the maintenance-fusion time, the fusion Time is 10 to 20 minutes; and - Rapid cooling treatment, a cooling gas is introduced to lower the temperature to a cooling target temperature in a cooling time, the cooling time is 4 〇 18 18 minutes, and the cooling target temperature is 50 〜 200 〇 C; The light absorbing layer of claim 19, wherein the cooling gas comprises argon or nitrogen. 22twenty two
TW097147719A 2008-12-08 2008-12-08 Light absorption layer of CIGS solar cell and manufacturing method thereof TW201023376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097147719A TW201023376A (en) 2008-12-08 2008-12-08 Light absorption layer of CIGS solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097147719A TW201023376A (en) 2008-12-08 2008-12-08 Light absorption layer of CIGS solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201023376A true TW201023376A (en) 2010-06-16

Family

ID=44833349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097147719A TW201023376A (en) 2008-12-08 2008-12-08 Light absorption layer of CIGS solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201023376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746034A (en) * 2013-12-30 2014-04-23 电子科技大学 Method for preparing copper-zinc-tin-sulfur thin-film solar cell through interfacial modification
US9478448B2 (en) 2013-04-05 2016-10-25 Avaco Co., Ltd. Thermal treatment system and method of performing thermal treatment and method of manufacturing CIGS solar cell using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478448B2 (en) 2013-04-05 2016-10-25 Avaco Co., Ltd. Thermal treatment system and method of performing thermal treatment and method of manufacturing CIGS solar cell using the same
TWI568011B (en) * 2013-04-05 2017-01-21 亞威科股份有限公司 Thermal treatment system, method of performing thermal treatment and method of manufacturing cigs solar cell
CN103746034A (en) * 2013-12-30 2014-04-23 电子科技大学 Method for preparing copper-zinc-tin-sulfur thin-film solar cell through interfacial modification

Similar Documents

Publication Publication Date Title
Zhang et al. Selenium‐graded Sb2 (S1− xSex) 3 for planar heterojunction solar cell delivering a certified power conversion efficiency of 5.71%
Guo et al. Ink formulation and low‐temperature incorporation of sodium to yield 12% efficient Cu (In, Ga)(S, Se) 2 solar cells from sulfide nanocrystal inks
Sun et al. Semi-transparent solar cells
Lal et al. Optics and light trapping for tandem solar cells on silicon
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
JP5185171B2 (en) Method for forming light absorption layer of thin film solar cell
Jang et al. Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer
Yeom et al. Recent progress in metal halide perovskite‐based tandem solar cells
Hsueh et al. Hybrid Cd‐free CIGS solar cell/TEG device with ZnO nanowires
Zhao et al. Theoretical analysis of two‐terminal and four‐terminal perovskite/copper indium gallium selenide tandem solar cells
Ren et al. Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
JP2008520102A (en) Method and photovoltaic device using alkali-containing layer
JP2007035677A (en) Chalcopyrite solar cell
CN104659123A (en) Compound film solar battery and manufacturing method thereof
JP2014096569A (en) Copper/indium/gallium/selenium(cigs)-based or copper/zinc/tin/sulfur(czts)-based thin film solar cell and manufacturing method therefor
Cheng et al. Air‐Stable Solar Cells with 0.7 V Open‐Circuit Voltage Using Selenized Antimony Sulfide Absorbers Prepared by Hydrazine‐Free Solution Method
TW201108425A (en) Solar cell and fabrication method thereof
CN102074592A (en) Light absorption layer of copper indium gallium selenide (CIGS) solar cell and manufacturing method thereof
Yago et al. Comparison of buffer layers on SnS thin‐film solar cells prepared by co‐evaporation
Xie et al. Thin‐Film Solar Cells using a Selenized Silver Antimony Sulfide Absorber Prepared by Spray Pyrolysis Deposition
Leow et al. Solution‐processed semitransparent CZTS thin‐film solar cells via cation substitution and rapid thermal annealing
Ohm et al. An overview of technological aspects of Cu (In, Ga) Se2 solar cell architectures incorporating ZnO nanorod arrays
JP2013098195A (en) Photoelectric conversion element
US8722452B2 (en) Method of forming optoelectronic conversion layer