TW201020208A - Carbon nanotube film - Google Patents

Carbon nanotube film Download PDF

Info

Publication number
TW201020208A
TW201020208A TW97146249A TW97146249A TW201020208A TW 201020208 A TW201020208 A TW 201020208A TW 97146249 A TW97146249 A TW 97146249A TW 97146249 A TW97146249 A TW 97146249A TW 201020208 A TW201020208 A TW 201020208A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube film
carbon
carbon nanotubes
nanotubes
Prior art date
Application number
TW97146249A
Other languages
Chinese (zh)
Other versions
TWI478865B (en
Inventor
Kai-Li Jiang
Chen Feng
Lin Xiao
Zhuo Chen
Liang Liu
Shou-Shan Fan
Qun-Qing Li
Li Qian
Kai Liu
Yang Wei
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097146249A priority Critical patent/TWI478865B/en
Publication of TW201020208A publication Critical patent/TW201020208A/en
Application granted granted Critical
Publication of TWI478865B publication Critical patent/TWI478865B/en

Links

Abstract

The present invention relates to a carbon nanotube film. The carbon nanotube film includes a plurality of first carbon nanotubes and a plurality of second carbon nanotubes. The first carbon nanotubes are arranged along a same direction. At least part of the second carbon nanotubes are contacted with at least two first carbon nanotubes.

Description

.201020208 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米材料膜,尤其涉及一種奈米碳管 .膜。 【先前技術】 奈米碳管(Carbon Nanotube,CNT)係一種新型後材 料,1991年由日本研究人員Iijima在實驗室製備獲得(請 參見,Helical Microtubules of Graphitic Carbon,Nature, V354, P56〜58 (1991))。奈米碳管的特殊結構决定了其具有 特殊的性質,如高抗張强度和高熱穩定性;隨著奈米碳管 螺旋方式的變化,奈米碳管可呈現出金屬性或半導體性 等。由於奈米碳管具有理想的一維結構以及在力學、電學、 熱學等領域優良的性質,其在材料科學、化學、物理學等 交叉學科領域已展現出廣闊的應用前景,包括場發射平板 顯示,電子器件,原子力顯微鏡(Atomic Force Microscope, ❹AFM)針尖,熱傳感器,光學傳感器,過濾器等。 雖然奈米碳管性能優異,具有廣泛的應用前景,然, 由於奈米碳管爲奈米級,大量奈米碳管易團聚,不易分散 形成均勻的宏觀的奈米碳管結構,從而限制了奈米碳管在 宏觀領域的應用。有鑒於此,如何獲得宏觀的奈米碳管結 構係奈米領域研究的關鍵問題。 爲了製成宏觀的奈米碳管結構,先前的方法主要包 括:直接生長法、喷塗法或朗缪爾·布洛節塔(Langmuir Blodgett,LB)法。其中,直接生長法一般通過控制反應條 8 ‘201020208 爲添加劑或設置多層催化劑等,通過化學 ’、4 、、 生長得到奈米碳管薄膜結構。噴塗法一般 通過將奈求碳管粉末形成水性溶液並塗覆於一面 碳管溶液混入另一;;法-般通過將-奈米 利用八早白细# %、 冋雄、度之/合液(如有機溶劑)中, 裝運動’奈㈣管浮出溶液表面形成夺米破 管薄膜結構。 田小风不木板 ❹ 、’:而上述製備奈米碳管結構的方法通常步驟較爲繁 士 ?過ΐ接生長法或喷塗法獲得的奈米碳管薄膜結構 不、米碳&往往容易聚集成團,導致薄膜厚度不均。奈 米碳管在奈米碳管結構中爲無序排列,不利於充分發揮奈 米碳管的性能。 爲克服上述問題,申請人於2002年9月16日申請的 2008年8月20日公告的專利號為zlo^4·.3中國專利 中揭示了-種簡單的獲得有序的奈米碳管結構的方法。該 ©奈米碳管結構爲一連續的奈米碳管繩,其爲直接從一超順 排奈来碳管陣列中拉取獲得。所製備的奈米碳管繩中的奈 米碳管首尾相連且通過凡德瓦爾力緊密結合。該奈米碳管 繩的長度不限。其寬度與奈米碳管陣列所生長的基底尺寸 有關。進一步地,所述奈米碳管繩包括多個首尾相連的奈 米碳管片段,每個奈米碳管片段具有大致相等的長度且每 個奈米碳管片段由多個相互平行的奈米碳管構成,奈米碳 管片段兩端通過凡德瓦爾力相互連接。.201020208 IX. Description of the Invention: [Technical Field] The present invention relates to a nanomaterial film, and more particularly to a carbon nanotube film. [Prior Art] Carbon Nanotube (CNT) is a new type of post-material that was prepared in the laboratory by Japanese researcher Iijima in 1991 (see, Helical Microtubules of Graphitic Carbon, Nature, V354, P56~58 ( 1991)). The special structure of the carbon nanotubes determines its special properties, such as high tensile strength and high thermal stability. With the change of the helical shape of the carbon nanotubes, the carbon nanotubes can exhibit metallic or semiconducting properties. Because the carbon nanotubes have an ideal one-dimensional structure and excellent properties in the fields of mechanics, electricity, heat, etc., they have shown broad application prospects in the fields of materials science, chemistry, physics and other interdisciplinary fields, including field emission flat panel display. , electronic devices, Atomic Force Microscope (❹AFM) tips, thermal sensors, optical sensors, filters, etc. Although the performance of the carbon nanotubes is excellent, it has a wide application prospect. However, since the carbon nanotubes are nanometer-scale, a large number of carbon nanotubes are easily agglomerated and are not easily dispersed to form a uniform macroscopic carbon nanotube structure, thereby limiting the The application of carbon nanotubes in macroscopic fields. In view of this, how to obtain macroscopic carbon nanotube structures is a key issue in the field of nanotechnology research. In order to make a macroscopic carbon nanotube structure, the prior methods mainly include: direct growth method, spray method or Langmuir Blodgett (LB) method. Among them, the direct growth method generally obtains a carbon nanotube film structure by chemical reaction, 4, and growth by controlling the reaction strip 8 '201020208 as an additive or providing a multilayer catalyst. The spraying method generally comprises mixing the carbon tube powder into an aqueous solution and coating the carbon nanotube solution into another one; the method generally adopts the method of using - eight nanometer white fine #%, 冋雄,度之/合液(such as organic solvent), loaded with the movement 'Nei (four) tube floats out of the surface of the solution to form a membrane structure. Tian Xiaofeng does not board ❹, ': And the above method for preparing the structure of the carbon nanotubes is usually more complicated. The structure of the carbon nanotube film obtained by the splicing growth method or the spraying method is not, and the carbon carbon is often easy to aggregate. Agglomeration results in uneven film thickness. The carbon nanotubes are disorderly arranged in the carbon nanotube structure, which is not conducive to the full performance of the carbon nanotubes. In order to overcome the above problems, the applicant has disclosed the patent number zlo^4..3 published on August 20, 2008, which is a simple acquisition of ordered carbon nanotubes. The method of structure. The © carbon nanotube structure is a continuous carbon nanotube rope that is directly drawn from an array of super-sequential carbon nanotubes. The carbon nanotubes in the prepared carbon nanotube ropes are connected end to end and tightly bonded by van der Waals force. The length of the carbon nanotube string is not limited. Its width is related to the size of the substrate on which the carbon nanotube array is grown. Further, the carbon nanotube string comprises a plurality of end-to-end carbon nanotube segments, each of the carbon nanotube segments having substantially equal lengths and each of the carbon nanotube segments being composed of a plurality of mutually parallel nanometers. The carbon tube is formed, and the carbon nanotube segments are connected to each other by Van der Waals force.

Baughma,Ray, H.等人 2005 於文獻 “ strong, 9 201020208Baughma, Ray, H. et al. 2005 in the literature "strong, 9 201020208

Transparent, Multifunctional, Carbon Nanotube Sheets”Transparent, Multifunctional, Carbon Nanotube Sheets”

Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Ray H.Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Ray H.

Baughman, etc.. Science, Vol.309, P1215,l219(2005)中揭示 * 了一種奈米碳管膜的製備方法。所述奈米碳管膜同樣可從 一奈米碳管陣列中拉取製備。該奈米碳管陣列爲一生長在 一基底上的奈米碳管陣列。所述奈米碳管膜的長度不限。 然而,上述兩種方式製備的奈米碳管膜或繩的寬度均受所 _ 述奈米碳管陣列生長基底的尺寸的限制(先前的用於生長 〇 奈米碳管陣列的基底一般爲4英寸),無法製備大面積奈米 碳管膜。另外,所製備的奈米碳管膜的透光度不够好。 有鑒於此,提供一種尺寸不受製備基底限制的奈米碳 管膜實為必要。 【發明内容】 一種奈米碳管膜,其包括:多個第一奈米碳管;以及 多個第二奈米碳管,其中,所述多個第一奈米碳管沿同一 φ 方向定向排列,至少部分第二奈米碳管與至少兩個第一奈 米碳管接觸。 相較於先前技術,本技術方案提供的奈米碳管膜具有 以下優點:其一,本技術方案提供的奈米碳管膜可通過對 奈米碳管膜進行拉伸來提高其透光度’無需採用繁雜的工 序或昂貴的設備對奈米碳管膜進行後續處理來提高奈米碳 管膜透光度,方法簡單易控’且不會破壞奈米碳管膜的結 構,其可廣泛應用於對透光度具有較高要求的裝置中’如 觸摸屏等。其二,所述奈米碳管膜具有較好的拉伸性能, .201020208 故所述奈米碳管臈可用於彈性可拉伸元件及設備中。其 三’本技術方案奈米碳管膜具有較大尺寸,不底 的限制,進而有利於擴大奈米碳管膜在大尺寸裝置中二應 用。 〜 【實施方式】 以下將結合附圖詳細說明本技術方案實施例提供的夺 米碳管膜及其拉伸方法。 «月參閲圖1至圖4,本技術方案實施例提供一種米 碳5膜10。該奈米碳管臈1〇包括多個奈米碳管⑽。該奈 米:管1〇〇包括多個第一奈米碳管1〇2以及多個第二奈米 碳吕104。其中,所述多個第一奈米碳管1〇2均勾分布在 所述奈米碳管膜1()中且沿第—方蚊向排列。所述第一方 ❹ 向。具體地’在第—方向上第-奈米碳管ι〇2 尾相連所述夕個首尾相連的第一奈米碳管m之間通 =凡德瓦爾^密連接。在第二方向上,所述第一奈米碳 102相互平行。該第二方向爲叫方向所述μ方向垂 直於所述D1方向。所述第二奈米碳管綱均句分布在所 =奈米碳管膜10中且與所述第一奈来碳管1〇2形成網絡結 構。至少部分第二奈米碳管1〇4與至少兩個第一奈米碳管 102通過凡德瓦爾力接觸。優選地,至少部分第二奈来碳 管104與至少兩個並排設置的第一奈米碳管1〇2接觸。所 述第二奈米碳管104的排列方向不限,所述第二奈米碳管 1〇4的排列方向可不同。所述多個第一奈米碳管皿和多 個第二奈米碳管廟形成一具有自支撐結構的奈米碳管臈 11 201020208 10。所謂自支撑結構的奈米碳管膜 10無需通過一支撑體支撐,也能保 ::米碳管膜 只需部分設置在-支撐體上即可維持 丛疋的形狀或 碳管膜H)本身的結構不會發生變化。如將;且奈来 • 10設置在-框架或兩個間隔設置的支撐碳管膜 未與框架或支撑結構接觸的奈米碳 ❹ 述奈米碳管膜10中,多個第一奈米碳管1〇2和多r第i 米碳管m形成多個間隙106。所述碳納管 奈 方向,即D2方向拉伸。由於多個第二夺 。^ 在’所述Η碳管膜1G在維制的結構的前提下可在1 方向上拉伸。在拉伸過程中,平行的第一奈米碳管⑽之 = 方ΐ述間隙⑽也可變化,即其隨著奈米 ^膜1〇在D2方向上形變率的增加而變大。所述平行的 第-奈未碳管1〇2之間的距離(即沿D2方向的 於0微米且小於等於50斜本 α秘 寻於5〇微未。所述第一奈米碳管102和第 二奈米碳管1〇4在奈米碳管膜1〇中的數量比大於等於Μ j J於等於6.1。本技術方案實施例中所述第—奈米碳 管102和第二奈米碳管1〇4在奈米碳管膜1〇中的數量比爲 4:1。 所述奈米碳管膜10的長度、寬度及厚度不限,可根據 實際需求製備。所述奈米碳管膜1G的厚度優選爲大於等於 0.5奈米且小於等於!毫米。所述奈米碳管膜ι〇中的奈卡 碳管100的直徑大於等於0.5奈米且小於等於5〇奈来。所 述奈米峡管100的長度爲大於等於5〇微米且小於等於5 12 .201020208 毫米。 所述奈米碳管膜10在D2方向上的形變率與奈米碳管 膜10的厚度及密度有關。所述奈米碳管膜10的厚度及密 度愈大,其在D2方向上的形變率愈大。進一步地,所述 奈米碳管膜10的透光度與第二奈米碳管1〇4的含量有關> 在一定含量範圍内,所述第二奈米碳管1〇4的含量越多, 所述奈米碳管膜10在D2方向上的形變率越大。所述奈米 ❹碳管膜10在D2方向上的形變率可達3〇〇%。拉伸前後的 奈米碳管膜10的電阻不發生變化。本技術方案實施例中, 所述奈米碳管膜10的厚度爲5〇奈米,其在D2方向上的 形變率可達到150%。 所述奈米碳管膜10的透光度(光透過比率)與奈米碳 管膜10的厚度及密度有關。所述奈米碳管膜1〇的厚度及 密度越大,所述奈米碳管膜1〇的透光度越小。進一步地, 所述奈米碳管膜10的透光度與間隙1〇6及第二奈米碳管 © 104的含量有關。所述間隙1〇6越大,第二奈米碳管ι〇4 的含量越少,則所述奈米碳管膜1〇的透光度越大。所述奈 米碳管膜10的透光度大於等於6G%且小於等於95%。請 參閱圖7,本技術方案實施例中,當奈米碳管膜1〇的厚▲ 爲50奈米時’拉伸前該奈米碳管膜1()的透錢爲大 於67%且小於等於82%。當其形變率爲12〇%時, 米碳管膜1〇的透光度爲大於等於⑽且小於等於咖不 以波長爲550奈米的綠光爲例,拉伸前所述奈米碳管膜〇 的透光度爲78%,當形變率爲12〇%時,該奈米碳管膜忉 13 .201020208 的透光度可達89%。 由於所述奈米碳管膜10可在D2方向上被拉伸,故所 述奈米碳管膜10可廣泛應用於彈性可拉伸元件和設備 中。另外,本技術方案提供的奈米碳管膜1〇的拉伸方法避 免了採用繁雜的設備對奈米碳管膜1〇進行後續處理來提 高奈米碳管膜10透光度的步驟,其可廣泛應用於對透光度 具有較高要求的裝置中,如觸摸屏等。另外,所述奈米碳 ❹管膜10可用於發聲裝置中’且奈米碳管1〇在拉伸過程中 不影響發聲效果。 請同時參閱圖5及圖6,本技術方案實施例進一步提 供一種拉伸奈米碳管膜的方法,具體包括以下步驟: 步驟一:提供至少一奈米碳管膜10及至少一彈性支撑 體20。 請參閱圖3’該奈米碳管膜1〇包括多個第一奈米碳管 102以及多個第二奈米碳管1〇4。其中,所述多個第一奈米 ❹碳管102均勻分布在所述奈米碳管膜1〇中且沿第一方向定 向排列。所述多個第一奈米碳管1〇2在第二方向上相互平 行。所述第一方向爲D1方向,所述第二方向爲D2方向, 所述D2方向垂直於所述01方向。具體地,在第一方向上 第一奈米碳管102首尾相連。所述多個首尾相連的第一奈 米碳官102之間通過凡德瓦爾力緊密連接。所述第二奈^ 碳管104均勻分布在所述奈米碳管膜1〇中且與所述第 米碳管102形成網絡結構。至少部分第二奈米碳管^ 至少兩個第一奈米碳管102通過凡德瓦爾力接觸。優異 201020208 地=少部分第二奈米碳管1G4與至少兩個相互平行的第 〜米碳管102接觸。所述第二奈米碳管撕的排列方向 不限,所述第二奈米碳管104的排列方向可不同。所述多 個第-奈米碳管皿和多個第二奈米碳管綱形成一具有 自支撑結構的奈米碳管膜1(W/f述奈米碳管膜ig中多 個第-奈米碳管道和多個第二奈米碳管⑽形成多個間 隙106。所述平行的第-奈米碳管1〇2之間的距離(即沿 Φ D2方向的距離)大於〇微米小於等於5〇微米。所述第一 奈米碳管102和第二奈米碳管1〇4在奈米碳管膜ι〇中的數 量比大於等於2:1且小於等於6:1。本技術方案實施例中, 所述第-奈米碳管1〇2和第二奈米碳管1〇4在奈米碳管膜 10中的數量比爲4:1。 所述奈米碳管膜1〇的透光度(光透過比率)與奈米碳 =膜10的厚度及密度有關。所述奈米碳管膜10的厚度及 岔度越大,所述奈米碳管膜10的透光度越小。進一步地, ©所述奈求碳管膜10的透光度與間隙及第二奈米碳管的含 量有關。所述間隙106越大,第二奈米碳管的含量越少, 貝!所述奈米碳官膜10的透光度越大。請參閱圖6,本技術 方案實施例中,該直接製備的奈米碳管膜10的厚度爲5〇 奈米,其透光度大於等於67%且小於等於82%。 所述彈性支撑體20具有較好的彈性。所述彈性支撑體 2〇的形狀和結構不限,其可爲一平面結構或一曲面結構。 所述彈性支撑體20包括一彈性橡膠、彈簧及橡皮筋中的一 種或幾種。該彈性支撐體20可用於支撐並拉伸所述奈米碳 15 ,201020208 管膜10。 步驟二:將所述至少一奈米碳管膜1〇至少部分固定設 置在所述至少一彈性支撑體20。 該彈性支撲體20可用於支撐並拉伸所述奈米碳管膜 10。所述奈米%管膜10可直接設置並貼合在彈性支撐體 20的表面,此時,所述彈性支撐體2〇爲具有一表面的基 體,如一彈性橡膠。另外,所述奈米碳管膜1〇也可部分設 ❹置在所述彈性支撑體20的表面。如鋪設在兩個彈性支撑體 20如彈簀或橡皮筋之間。由於奈米碳管具有極大的比表面 積,在凡德瓦爾力的作用下,該奈米碳管膜1〇本身有很好 的黏附性,可直接設置在彈性支撑體2〇上。可以理解,爲 提高奈米碳管膜10與彈性支撑體20之間的結合力,所述 奈米碳管膜10也可通過黏結劑固定於所述彈性支撑體20 上。另外,可將所述多個奈米碳管膜沿同一方向重叠輔 βΧ,形成一多層奈米碳管膜。相鄰兩層奈米碳管膜1〇中的 ◎第一奈米故管的排列方向相同。多個奈米碳管膜重叠設置 可增加奈米碳管膜的厚度,提高奈米碳管膜的形變率。 本技術方案實施例中,將直接拉取的一層奈米碳管膜 10設置於兩個彈性支揮體20上。請參閱圖6,所述兩個彈 性支撺體20平行且間隔設置。所述兩個彈性支撑體均 沿D2方向设置。所述奈米碳管膜1〇通過黏結劑設置在所 述彈性支撑體20表面。所述奈米碳管膜1〇沿方向的 兩端分別固定於該兩個彈性支撑體20上。該黏結劑爲一層 銀膠。所述奈米碳管膜在設置時,奈米碳管膜1〇中的 16 201020208 第一奈米碳管沿一個彈性支攆體20至另一個彈性支撑體 20的方向延伸。 步驟三:拉伸該彈性支撑體2〇。 具體地’可通過將上述彈性支撑體20固定於一拉伸裝 置(圖未示)中,通過該拉伸裝置拉伸該彈性支撑體2〇。 本技術方案實施例中,可分別將兩個彈性支撐體2〇的兩端 分別固定於拉伸裝置上。 ❹ 所述拉伸速度不限,可根據所要拉伸的奈米碳管膜10 具體進行選擇。拉伸速度太大,則奈米碳管膜10容易發生 破裂。優選地,所述彈性支律體20的拉伸速度小於10厘 米每和本技術方案實施例中,所述彈性支撑體20的拉伸 速度爲2厘米每秒。 ,所述拉伸方向與至少一層奈米碳管膜1〇中的第一奈 米碳管102的排列方向㈣。所述拉伸方向爲沿垂直於第 一奈米碳管的排列方向,即D2方向。 〇 由於所述至少一奈米碳管膜1〇固定在所述彈性支撑 體20上,故在拉力的作用下,隨著所述彈性支揮體2〇被 =伸,該奈米碳管膜10也隨之被拉伸。由於所述第一奈米 碳管102爲首尾相連,且至少部分第二奈米碳管1〇4與至 少兩個第一奈米碳管1〇2通過凡德瓦爾力接觸,所述多個 第一奈米碳管102和多個第二奈米碳管1〇4之間形成多個 間隙106,在奈米碳管膜1〇被拉伸過程中,所述第一奈米 碳管102和第二奈来碳管撕之間可維持凡德瓦爾力連 接,平行的第一奈米碳管102之間的距離增大。其中,拉 17 201020208 伸前所述平行的第一奈米碳管102之間的距離大於〇微来 小於10微米,拉伸後平行的第一奈米碳管1〇2之間的距離 最大可達50微米。所述奈米碳管膜1〇仍維持膜狀結構。 當所述多個奈米碳管膜10重叠設置形成一多層奈米碳管 膜時,由於該多層奈米碳管膜中的奈米碳管1〇〇分布更均 勻、密度更大,故當對該多層奈米碳管膜進行拉伸時,可 獲得更高的形變率。所述奈米碳管膜1〇的形變率小於等於 ❹300%,且可基本維持奈米碳管膜1〇的形態。即所述奈米 碳管膜10可在原有尺寸的基礎上增加300%。本實施例 中,所述奈米碳管膜爲單層奈米碳管膜,拉伸方向爲沿與 第奈米碳官102排列方向垂直的方向。所述奈米碳管膜 10在垂直於所述第一奈米碳管102的排列方向上可拉伸 25%至150%。圖4爲奈米碳管膜1〇拉伸120%時放大5〇〇 倍的掃描電鏡照片’從圖中可以看出拉伸後的奈米碳管膜 10相對拉伸前的奈米碳管膜10,平行的第一奈米碳管1〇2 ❹之間的距離變大。從圖7中可以看出,當形變率爲12〇% 時,所述奈米碳官膜10對波長大於190奈米小於9〇〇奈米 的光的透光度可達84%至92%。在拉伸過程中,所述奈米 碳管膜10在拉伸方向上的電阻不發生變化。 進一步地,當形變率小於60%時,所述平行的第一奈 米碳管102之間的距離最大可達20微米。該拉伸後的奈书 碳管膜10可在反向拉力的作用下逐漸回復爲拉伸前的奈 米碳管膜10。在回復的過程中,所述平行的第—奈米碳管 102之間的距離逐漸减小。故所述奈米碳管膜1〇可在拉力 18 201020208 的作用下實現伸縮。所述奈米碳管膜10可廣泛應用於可伸 縮的裝置中。 本技術方案實施例提供的奈米碳管膜10及其拉伸方 法具有以下優點:其一,所述拉伸奈米碳管膜10的方法爲 通過將所述奈米碳管膜10設置在一彈性支撑體20上,拉 伸該彈性支撐體20,該拉伸方法簡單、成本較低。其二, 本技術方案乂供的奈米碳管膜的拉伸方法避免了採用 ❹繁雜的工序和昂貴的設備(如雷射器)對奈米碳管膜10 進行後續處理來提面奈米碳官膜10透光度的步驟,其可廣 泛應用於對透光度具有較高要求的裝置中,如觸摸屏等。 其三,由於所述奈米碳管膜10具有較好的拉伸性能,其可 在一定方向上被拉伸,故所述奈米碳管膜10可用於彈性可 拉伸疋件及設備中。其四,本技術方案拉伸奈米碳管膜 的方法有利於製備纟尺寸奈米碳管膜,進而有利於擴大奈 米碳管膜在大尺寸裝置中的應用。 ❹ 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之中請專利範圍。舉凡f知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 4 【圖式簡單說明】 圖1係本技術方案實施例奈米碳管膜的結構示意圓。 圖2係圖1中的局部放大結構示意圖。 圖3係本技術方案實施例拉伸前奈米碳管膜的掃描電 19 201020208 鏡照片。 圖4係本技術方案實施例拉伸後奈米碳管膜的掃描電 鏡照片。 圖5係本技術方案實施例奈米碳管膜的拉伸方法流程 圖。 圖6係本技術方案實施例奈米碳管膜的拉伸示意圖。 圖7係本技術方案實施例奈米碳管膜拉伸前後透光度 ❹對比示意圖。 【主要元件符號說明】 奈米碳管膜 奈米碳管 100 第一奈米碳管 102 第二奈米碳管 1〇4 間隙 106 Ο彈性支撑體 20Baughman, etc.. Science, Vol. 309, P1215, l219 (2005) discloses a method for preparing a carbon nanotube film. The carbon nanotube film can also be prepared by drawing from a carbon nanotube array. The carbon nanotube array is an array of carbon nanotubes grown on a substrate. The length of the carbon nanotube film is not limited. However, the width of the carbon nanotube film or rope prepared by the above two methods is limited by the size of the growth substrate of the carbon nanotube array (the previous substrate for growing the nanotube array is generally 4). Inch), large area carbon nanotube film cannot be prepared. In addition, the transmittance of the prepared carbon nanotube film is not good enough. In view of this, it is necessary to provide a carbon nanotube film of a size that is not limited by the preparation substrate. SUMMARY OF THE INVENTION A carbon nanotube film includes: a plurality of first carbon nanotubes; and a plurality of second carbon nanotubes, wherein the plurality of first carbon nanotubes are oriented in the same φ direction Arranged, at least a portion of the second carbon nanotubes are in contact with at least two first carbon nanotubes. Compared with the prior art, the carbon nanotube film provided by the technical solution has the following advantages: First, the carbon nanotube film provided by the technical solution can improve the transmittance of the carbon nanotube film by stretching the film. 'There is no need to use complicated processes or expensive equipment to carry out subsequent treatment of the carbon nanotube film to improve the transparency of the carbon nanotube film. The method is simple and easy to control' and does not damage the structure of the carbon nanotube film. It is applied to devices that have high requirements for transmittance, such as touch screens. Second, the carbon nanotube film has good tensile properties, and the carbon nanotubes can be used in elastic stretchable components and equipment. The three carbon nanotube membranes of the present invention have a large size and a bottomless limit, which in turn facilitates the expansion of the carbon nanotube membrane in a large-sized device. [Embodiment] Hereinafter, a carbon nanotube film provided by an embodiment of the present technical solution and a stretching method thereof will be described in detail with reference to the accompanying drawings. «Month Referring to Figs. 1 to 4, the embodiment of the present technical solution provides a carbon 5 film 10. The carbon nanotubes 1〇 include a plurality of carbon nanotubes (10). The nanotube: tube 1 includes a plurality of first carbon nanotubes 1〇2 and a plurality of second nanocarbons 104. Wherein, the plurality of first carbon nanotubes 1〇2 are uniformly distributed in the carbon nanotube film 1() and arranged along the first mosquito direction. The first direction is toward. Specifically, in the first direction, the end of the first carbon nanotube ι〇2 is connected to the first carbon nanotube m connected end to end; the van der Waals is closely connected. In the second direction, the first nanocarbons 102 are parallel to each other. The second direction is the direction in which the μ direction is perpendicular to the D1 direction. The second carbon nanotubes are distributed in the carbon nanotube film 10 and form a network structure with the first carbon nanotubes 1〇2. At least a portion of the second carbon nanotubes 1〇4 are in contact with at least two first carbon nanotubes 102 by van der Waals forces. Preferably, at least a portion of the second carbon nanotubes 104 are in contact with at least two first carbon nanotubes 1〇2 disposed side by side. The arrangement direction of the second carbon nanotubes 104 is not limited, and the arrangement direction of the second carbon nanotubes 1〇4 may be different. The plurality of first carbon nanotubes and the plurality of second carbon nanotubes form a carbon nanotube 臈 11 201020208 10 having a self-supporting structure. The so-called self-supporting structure of the carbon nanotube film 10 does not need to be supported by a support body, and can also ensure that: the carbon nanotube film only needs to be partially disposed on the support body to maintain the shape of the cluster or the carbon tube film H) itself. The structure does not change. If the Nailai 10 is disposed in the frame or two spaced-apart carbon nanotube membranes that are not in contact with the frame or support structure, the plurality of first nanocarbons The tube 1〇2 and the multi-r i-th carbon tube m form a plurality of gaps 106. The carbon nanotubes are stretched in the direction of the tube, i.e., in the direction of D2. Due to multiple second wins. ^ In the case where the carbon nanotube film 1G is in a dimensionally maintained structure, it can be stretched in one direction. During the stretching process, the parallel first carbon nanotubes (10) can also be varied, that is, they become larger as the deformation rate of the nanofilm 1〇 increases in the D2 direction. The distance between the parallel first-nano carbon tubes 1〇2 (ie, 0 micrometers in the D2 direction and less than or equal to 50 slopes) is secreted at 5 micrometers. The first carbon nanotubes 102 and The number ratio of the second carbon nanotubes 1〇4 in the carbon nanotube film 1〇 is greater than or equal to Μ j J is equal to 6.1. The first carbon nanotubes 102 and the second nanometer described in the embodiment of the present technical solution The ratio of the number of carbon tubes 1〇4 in the carbon nanotube film 1〇 is 4: 1. The length, width and thickness of the carbon nanotube film 10 are not limited and can be prepared according to actual needs. The thickness of the tubular film 1G is preferably 0.5 nm or more and less than or equal to ! mm. The diameter of the nica carbon nanotube 100 in the carbon nanotube film ι is 0.5 nm or more and 5 Å or less. The length of the nanochannel tube 100 is 5 μm or more and 5 12 .201020208 mm. The deformation rate of the carbon nanotube film 10 in the D2 direction is related to the thickness and density of the carbon nanotube film 10. The larger the thickness and density of the carbon nanotube film 10, the greater the deformation rate in the D2 direction. Further, the carbon nanotube film 10 is transparent. The degree is related to the content of the second carbon nanotube 1〇4> The content of the second carbon nanotube 1〇4 is larger in a certain content range, and the carbon nanotube film 10 is in the D2 direction. The deformation rate of the carbon nanotube film 10 in the D2 direction is up to 3%. The resistance of the carbon nanotube film 10 before and after stretching does not change. The carbon nanotube film 10 has a thickness of 5 Å, and the deformation rate in the D2 direction can reach 150%. The transmittance (light transmittance ratio) of the carbon nanotube film 10 and the naphthalene The thickness and density of the carbon nanotube film 10 are related. The greater the thickness and density of the carbon nanotube film, the smaller the transmittance of the carbon nanotube film 1 。. Further, the nanometer The transmittance of the carbon tube film 10 is related to the content of the gap 1〇6 and the second carbon nanotubes©104. The larger the gap 1〇6, the smaller the content of the second carbon nanotube ι〇4, The transmittance of the carbon nanotube film 1 越大 is greater. The transmittance of the carbon nanotube film 10 is greater than or equal to 6 G% and less than or equal to 95%. Referring to FIG. 7 , in the embodiment of the present invention, When nano When the thickness of the film 1 为 is 50 nm, the permeation of the carbon nanotube film 1 () before stretching is more than 67% and less than or equal to 82%. When the deformation rate is 12%, the carbon carbon The transmittance of the tubular film 1 大于 is greater than or equal to (10) and less than or equal to the green light having a wavelength of 550 nm. The transmittance of the carbon nanotube film 拉伸 before stretching is 78% when deformed. When the rate is 12%, the transmittance of the carbon nanotube film 13 201020208 can reach 89%. Since the carbon nanotube film 10 can be stretched in the D2 direction, the nano carbon The tubular film 10 can be widely used in elastic stretchable components and equipment. In addition, the stretching method of the carbon nanotube film 1〇 provided by the technical solution avoids the complicated equipment to follow the carbon nanotube film 1〇 The step of improving the transmittance of the carbon nanotube film 10 can be widely applied to devices having high requirements for transmittance, such as a touch screen or the like. Further, the carbon nanotube film 10 can be used in a sounding device' and the carbon nanotubes 1 does not affect the sounding effect during stretching. Referring to FIG. 5 and FIG. 6 , the embodiment of the present invention further provides a method for stretching a carbon nanotube film, which specifically includes the following steps: Step 1: providing at least one carbon nanotube film 10 and at least one elastic support 20. Referring to Fig. 3', the carbon nanotube film 1 includes a plurality of first carbon nanotubes 102 and a plurality of second carbon nanotubes 1〇4. Wherein, the plurality of first carbon nanotubes 102 are evenly distributed in the carbon nanotube film 1 定 and are aligned in the first direction. The plurality of first carbon nanotubes 1〇2 are parallel to each other in the second direction. The first direction is a D1 direction, the second direction is a D2 direction, and the D2 direction is perpendicular to the 01 direction. Specifically, the first carbon nanotubes 102 are connected end to end in the first direction. The plurality of first and second carbon directors 102 connected end to end are closely connected by Van der Waals force. The second carbon nanotubes 104 are uniformly distributed in the carbon nanotube film 1 and form a network structure with the carbon nanotubes 102. At least a portion of the second carbon nanotubes ^ at least two of the first carbon nanotubes 102 are contacted by a van der Waals force. Excellent 201020208 Ground = a small portion of the second carbon nanotube 1G4 is in contact with at least two mutually parallel first to the carbon nanotubes 102. The arrangement direction of the second carbon nanotube tearing is not limited, and the arrangement direction of the second carbon nanotubes 104 may be different. The plurality of first-nanocarbon tubes and the plurality of second carbon nanotubes form a carbon nanotube film 1 having a self-supporting structure (W/f of the plurality of carbon nanotube films ig - The nano carbon pipe and the plurality of second carbon nanotubes (10) form a plurality of gaps 106. The distance between the parallel first-carbon nanotubes 1〇2 (ie, the distance along the Φ D2 direction) is greater than 〇 micron is smaller than The number of the first carbon nanotubes 102 and the second carbon nanotubes 1〇4 in the carbon nanotube film 〇 is greater than or equal to 2:1 and less than or equal to 6:1. In the embodiment, the number ratio of the first carbon nanotube 1〇2 and the second carbon nanotube 1〇4 in the carbon nanotube film 10 is 4:1. The carbon nanotube film 1 The transmittance (light transmission ratio) of the crucible is related to the thickness and density of the nanocarbon=film 10. The greater the thickness and the twist of the carbon nanotube film 10, the light transmission of the carbon nanotube film 10. Further, the transmittance of the carbon nanotube film 10 is related to the gap and the content of the second carbon nanotube. The larger the gap 106, the smaller the content of the second carbon nanotube. , Bei! The nano carbon official film 10 is transparent The larger the degree is, please refer to FIG. 6. In the embodiment of the technical solution, the directly prepared carbon nanotube film 10 has a thickness of 5 nanometers and a transmittance of 67% or more and 82% or less. The elastic support body 20 has better elasticity. The shape and structure of the elastic support body 2〇 are not limited, and may be a planar structure or a curved structure. The elastic support body 20 includes an elastic rubber, a spring and a rubber band. One or more of the elastic support body 20 can be used to support and stretch the nanocarbon 15, 201020208 tubular film 10. Step two: at least partially fix the at least one carbon nanotube film 1 The at least one elastic support body 20. The elastic baffle body 20 can be used to support and stretch the carbon nanotube film 10. The nano% tube film 10 can be directly disposed and attached to the elastic support body 20. The surface, at this time, the elastic support body 2 is a substrate having a surface, such as an elastic rubber. In addition, the carbon nanotube film 1 may be partially disposed on the surface of the elastic support body 20. For example, it is laid between two elastic support bodies 20 such as a magazine or rubber band. Since the carbon nanotube has a large specific surface area, the carbon nanotube film itself has good adhesion under the action of van der Waals force, and can be directly disposed on the elastic support body 2 可以. It can be understood that In order to improve the bonding force between the carbon nanotube film 10 and the elastic support body 20, the carbon nanotube film 10 may also be fixed to the elastic support body 20 by an adhesive. The carbon nanotube film overlaps the auxiliary βΧ in the same direction to form a multi-layered carbon nanotube film. The arrangement direction of the first nano tube in the adjacent two layers of the carbon nanotube film is the same. The overlap of the carbon nanotube film can increase the thickness of the carbon nanotube film and increase the deformation rate of the carbon nanotube film. In the embodiment of the technical solution, the first layer of the carbon nanotube film 10 is directly stretched to two elastic layers. The body 20 is supported. Referring to Figure 6, the two elastic support bodies 20 are arranged in parallel and at intervals. The two elastic supports are all disposed along the D2 direction. The carbon nanotube film 1 is disposed on the surface of the elastic support 20 by a binder. The two ends of the carbon nanotube film 1 〇 are fixed to the two elastic support bodies 20, respectively. The binder is a layer of silver glue. When the carbon nanotube film is disposed, the 16 201020208 first carbon nanotubes in the carbon nanotube film 1 延伸 extend in the direction of one elastic support body 20 to the other elastic support body 20 . Step 3: Stretch the elastic support 2〇. Specifically, the elastic support body 20 can be stretched by the stretching device by fixing the above-described elastic support body 20 to a stretching device (not shown). In the embodiment of the technical solution, the two ends of the two elastic supporting bodies 2〇 are respectively fixed to the stretching device. ❹ The stretching speed is not limited and can be specifically selected depending on the carbon nanotube film 10 to be stretched. When the stretching speed is too large, the carbon nanotube film 10 is liable to be broken. Preferably, the elastic support body 20 has a drawing speed of less than 10 cm per and in the embodiment of the technical solution, the elastic support body 20 has a stretching speed of 2 cm per second. And the stretching direction is opposite to the arrangement direction of the first carbon nanotubes 102 in the at least one layer of the carbon nanotube film (4). The direction of stretching is along the direction perpendicular to the arrangement of the first carbon nanotubes, i.e., the direction D2. 〇 Since the at least one carbon nanotube film 1〇 is fixed on the elastic support body 20, the carbon nanotube film is stretched with the elastic support body 2 under the action of the tensile force 10 is also stretched. Since the first carbon nanotubes 102 are connected end to end, and at least a portion of the second carbon nanotubes 1〇4 are in contact with at least two first carbon nanotubes 1〇2 by van der Waals force, the plurality of A plurality of gaps 106 are formed between the first carbon nanotubes 102 and the plurality of second carbon nanotubes 1〇4, and the first carbon nanotubes 102 are formed during the stretching of the carbon nanotube film 1〇 The Van der Waals force connection is maintained between the second Nylon carbon tube tear and the distance between the parallel first carbon nanotubes 102 is increased. Wherein, the distance between the parallel first carbon nanotubes 102 before stretching is higher than 10 micrometers, and the distance between the parallel first carbon nanotubes 1〇2 after stretching is maximum. Up to 50 microns. The carbon nanotube film still maintains a film structure. When the plurality of carbon nanotube films 10 are overlapped to form a multi-layered carbon nanotube film, since the carbon nanotubes in the multi-layered carbon nanotube film are more uniformly distributed and denser, When the multilayered carbon nanotube film is stretched, a higher deformation rate can be obtained. The deformation rate of the carbon nanotube film 1 小于 is less than or equal to ❹300%, and the morphology of the carbon nanotube film can be substantially maintained. That is, the carbon nanotube film 10 can be increased by 300% based on the original size. In this embodiment, the carbon nanotube film is a single-layer carbon nanotube film, and the stretching direction is in a direction perpendicular to the direction in which the carbon nanotubes 102 are arranged. The carbon nanotube film 10 can be stretched by 25% to 150% in a direction perpendicular to the arrangement of the first carbon nanotubes 102. Fig. 4 is a scanning electron micrograph of a magnification of 5 times when the carbon nanotube film is stretched by 120%. From the figure, it can be seen that the carbon nanotube film 10 after stretching is opposite to the carbon nanotube before stretching. The distance between the film 10 and the parallel first carbon nanotubes 1 〇 2 变 becomes large. As can be seen from FIG. 7, when the deformation rate is 12%, the transmittance of the nano-carbon film 10 to light having a wavelength of more than 190 nm and less than 9 nm can reach 84% to 92%. . The resistance of the carbon nanotube film 10 in the stretching direction does not change during the stretching. Further, when the deformation rate is less than 60%, the distance between the parallel first carbon nanotubes 102 can be up to 20 μm. The stretched Nikken film 10 can be gradually returned to the carbon nanotube film 10 before stretching by the reverse pulling force. During the recovery, the distance between the parallel first carbon nanotubes 102 gradually decreases. Therefore, the carbon nanotube film 1 can be stretched under the action of the tensile force 18 201020208. The carbon nanotube film 10 can be widely used in a stretchable device. The carbon nanotube film 10 and the stretching method thereof provided by the embodiments of the present technical solution have the following advantages: First, the method of stretching the carbon nanotube film 10 is by disposing the carbon nanotube film 10 in The elastic support body 20 is stretched on an elastic support body 20, and the stretching method is simple and low in cost. Secondly, the stretching method of the carbon nanotube film provided by the technical solution avoids the subsequent treatment of the carbon nanotube film 10 by using complicated processes and expensive equipment (such as a laser) to raise the surface nanometer. The step of transmittance of the carbon film 10 can be widely applied to devices having high requirements for transmittance, such as a touch screen. Third, since the carbon nanotube film 10 has good tensile properties, it can be stretched in a certain direction, so the carbon nanotube film 10 can be used in elastic stretchable parts and equipment. . Fourthly, the method of stretching the carbon nanotube film by the technical scheme is advantageous for preparing the niobium-sized carbon nanotube film, thereby facilitating the application of the carbon nanotube film in the large-sized device.综 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be within the scope of the following claims. 4 [Simple description of the drawings] Fig. 1 is a schematic circle of the structure of a carbon nanotube film according to an embodiment of the present technical solution. 2 is a partial enlarged structural view of FIG. 1. 3 is a scanning electron of a carbon nanotube film before stretching in the embodiment of the present technical solution. 19 201020208 Mirror photograph. Fig. 4 is a scanning electron micrograph of a carbon nanotube film after stretching in the embodiment of the present technical solution. Fig. 5 is a flow chart showing the stretching method of the carbon nanotube film of the embodiment of the present invention. FIG. 6 is a schematic view showing the stretching of a carbon nanotube film according to an embodiment of the present technical solution. Fig. 7 is a schematic view showing the contrast of the transmittance before and after stretching of the carbon nanotube film of the embodiment of the present invention. [Main component symbol description] Carbon nanotube film Carbon nanotube 100 First carbon nanotube 102 Second carbon nanotube 1〇4 Clearance 106 Ο Elastic support 20

Claims (1)

201020208 十、申請專利範圍 1. 一種奈米碳管膜,其包括: 多個第一奈米碳管;以及 多個第二奈米碳管;其改良在於, =述多個第—奈来碳管沿第-方蚊向排列,至少部 分第,奈米碳管與至少兩個第一奈米碳管接觸。 如ΐ明專利範圍第W所述的奈米碳管膜,其中,所 ❹ 述第—奈米碳管在第—方向上首尾相連排列,且通過 凡德瓦爾力緊密連接。 3·如申請專利範圍第丄項所述的奈米碳管膜,其中,所 述第一奈米碳管在第二方向上相互平行且間隔一定距 離排列,該第二方向垂直於第一方向。 如申”青專利範圍第3項所述的奈米碳管膜,其中,所 述至少部分第二奈米碳管與至少兩個平行的第一奈米 碳管通過凡德瓦爾力接觸。 ❿5.*申請專利範圍第3項所述的奈米碳管臈,其中,所 述奈米碳管膜在第二方向上受力後發生形變。 6.如申請專利範圍第5項所述的奈米碳管膜,其中,所 述奈米碳管膜在第二方向上的形變率小於等於3〇〇%。 7·如申請專利範圍第ό項所述的奈米碳管膜,其中,所 述奈米碳管臈在第二方向上的形變率小於等於15〇%。 8.如申請專利範圍第3項所述的奈米碳管膜,其中,所 述相互平行的第一奈米碳管之間的距離受力後發生變 化。 21 201020208 9· if:第8項所述的奈米碳管膜,其中,所 .奈米碳管之間的距離一米且 項的奈米碳管膜,,所 膜中。 一不米碳管均勻分布在奈米碳管 1==!第1項所述的奈米碳管膜,其中,所 碳其开:忐S、的多個第—奈米碳管和多個第二奈米 石反管形成一網絡結構。 丁丁 12·如申請專利範圍第 太 =米碳管㈣度大4:'::::二= ❹ 1==1 第項所述的奈米碳管膜,其中,所 2:工且小於等於6:1。…切管的數4比大於等於 U·如申請專利範圍第1項所述的奈米碳管膜,其中,所 述多個第一奈米碳管和多管成 隙,該間隙受力後發生變化第一不未碳管形成多個間 15:1請專利範圍第1項所述的奈米碳管膜,其中,所 碳管膜的透光度大於等於60%且小於等於 16·=Ι請專利範圍第1項所述的奈米碳管膜,其中,所 迷奈来碳管膜爲自支撑結構b 7·種奈米碳管膜,其包括: 22 201020208 多個第一奈米碳管;以及 多個第二奈米碳管;其改良在於, 所述多個第-奈米碳管沿第一方向定向排列。 18.如申請專利範圍第17項所述的奈米碳管膜 :奈米碳管膜可沿垂直于第-碳納米管的轴向方向拉 19·如申請專利範圍第17項所述的奈米碳管膜,其中,所 ❹=相互平行的第—奈米碳管之間的距離受力後發生變 20.^申請專利範圍第17項所述的奈来碳管膜,其中,所 Y相互平行的第—奈米碳管之間的距離大於0微来且 小於等於50微米。 ❹ 23201020208 X. Patent application scope 1. A carbon nanotube film comprising: a plurality of first carbon nanotubes; and a plurality of second carbon nanotubes; the improvement is that: The tubes are arranged along the first-side mosquito direction, at least in part, the carbon nanotubes are in contact with at least two first carbon nanotubes. The carbon nanotube film according to the invention, wherein the first carbon nanotubes are arranged end to end in the first direction and are closely connected by a van der Waals force. 3. The carbon nanotube film of claim 2, wherein the first carbon nanotubes are parallel to each other and spaced apart in a second direction, the second direction being perpendicular to the first direction . The carbon nanotube film of claim 3, wherein the at least a portion of the second carbon nanotubes are in contact with at least two parallel first carbon nanotubes via a van der Waals force. The carbon nanotube according to claim 3, wherein the carbon nanotube film is deformed after being subjected to a force in the second direction. 6. The invention described in claim 5 a carbon nanotube film, wherein a deformation rate of the carbon nanotube film in the second direction is less than or equal to 3% by mass. 7. The carbon nanotube film according to the above-mentioned claim, wherein The deformation rate of the carbon nanotubes in the second direction is less than or equal to 15%. The carbon nanotube film according to claim 3, wherein the mutually parallel first nanocarbons The distance between the tubes changes after being stressed. 21 201020208 9· if: The carbon nanotube film described in item 8, wherein the carbon nanotubes are one meter apart and the carbon nanotubes are Membrane, in the membrane. A carbon nanotube is evenly distributed in the carbon nanotubes 1 ==! The carbon nanotube membrane described in Item 1, wherein the carbon : 忐S, a plurality of first-nano carbon tubes and a plurality of second nano-stones to form a network structure. Tintin 12· If the patent application scope is too = m carbon tube (four) degree 4: '::: :二 = ❹ 1==1 The carbon nanotube film described in the above item, wherein 2: work is less than or equal to 6:1.... The number of cut pipes is greater than or equal to U. The carbon nanotube film, wherein the plurality of first carbon nanotubes and the plurality of tubes are gapped, and the gap is changed after being subjected to a force. The first non-carbon tube is formed into a plurality of 15:1 patent scope The carbon nanotube film according to the first aspect, wherein the carbon nanotube film has a transmittance of 60% or more and less than or equal to 16%, wherein the carbon nanotube film according to the first aspect of the patent scope, wherein The carbon nanotube film is a self-supporting structure b 7 · a carbon nanotube film, which comprises: 22 201020208 a plurality of first carbon nanotubes; and a plurality of second carbon nanotubes; The plurality of first-carbon nanotubes are aligned in the first direction. 18. The carbon nanotube film according to claim 17 of the patent scope: the carbon nanotube film can be perpendicular to the axis of the carbon nanotube to The invention relates to a carbon nanotube film according to claim 17, wherein the distance between the first carbon nanotubes parallel to each other is changed after being subjected to a force. The carbon nanotube film according to item 17, wherein the distance between the mutually parallel first carbon nanotubes is greater than 0 micrometers and less than or equal to 50 micrometers.
TW097146249A 2008-11-28 2008-11-28 Carbon nanotube film TWI478865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097146249A TWI478865B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097146249A TWI478865B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Publications (2)

Publication Number Publication Date
TW201020208A true TW201020208A (en) 2010-06-01
TWI478865B TWI478865B (en) 2015-04-01

Family

ID=44832114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097146249A TWI478865B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Country Status (1)

Country Link
TW (1) TWI478865B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
CN103728743A (en) * 2012-10-15 2014-04-16 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
CN103728742A (en) * 2012-10-15 2014-04-16 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
US20140124495A1 (en) * 2012-11-06 2014-05-08 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
US9239474B2 (en) 2012-10-15 2016-01-19 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display apparatus
US9244294B2 (en) 2012-10-15 2016-01-26 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display device
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element
EP3671342A1 (en) * 2018-12-20 2020-06-24 IMEC vzw Induced stress for euv pellicle tensioning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015710A2 (en) * 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
TWI312337B (en) * 2005-12-16 2009-07-21 Hon Hai Prec Ind Co Ltd Method for making the carbon nanotubes silk

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774B (en) * 2012-04-25 2015-11-25 北京富纳特创新科技有限公司 The preparation facilities of conducting element and preparation method
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element
US10377120B2 (en) 2012-04-25 2019-08-13 Beijing Funate Innovation Technology Co., Ltd. Apparatus and method for making conductive element
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
US9057892B2 (en) 2012-10-15 2015-06-16 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display device
CN103728742A (en) * 2012-10-15 2014-04-16 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
US9244294B2 (en) 2012-10-15 2016-01-26 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display device
US9323077B2 (en) 2012-10-15 2016-04-26 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display device
CN103728743A (en) * 2012-10-15 2014-04-16 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
CN103728742B (en) * 2012-10-15 2017-01-18 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
CN103728743B (en) * 2012-10-15 2017-02-01 北京富纳特创新科技有限公司 Thermochromism display element and thermochromism display device
TWI603130B (en) * 2012-10-15 2017-10-21 北京富納特創新科技有限公司 Thermochromic element and thermochromic display apparatus
TWI603129B (en) * 2012-10-15 2017-10-21 北京富納特創新科技有限公司 Thermochromic element and thermochromic display apparatus
US9239474B2 (en) 2012-10-15 2016-01-19 Beijing Funate Innovation Technology Co., Ltd. Thermochromatic element and thermochromatic display apparatus
US10225888B2 (en) * 2012-11-06 2019-03-05 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows
US20140124495A1 (en) * 2012-11-06 2014-05-08 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube defrost windows
EP3671342A1 (en) * 2018-12-20 2020-06-24 IMEC vzw Induced stress for euv pellicle tensioning
US11163229B2 (en) 2018-12-20 2021-11-02 Imec Vzw Induced stress for EUV pellicle tensioning

Also Published As

Publication number Publication date
TWI478865B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TW201020208A (en) Carbon nanotube film
CN101734644B (en) Method for stretching carbon nano-tube films
CN101734646B (en) Carbon nano-tube film
CN101734645B (en) carbon nano-tube film
CN101276012B (en) Polarization element and preparation method thereof
US8481158B2 (en) Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
TWI395708B (en) Method for stretching carbon nanotube film
TWI478866B (en) Carbon nanotube film
JP5243478B2 (en) Nanomaterial thin film
CN101905877B (en) Method for preparing carbon nanotube membrane
TW201323325A (en) Method for making carbon nanotube films
TWI585039B (en) Method for making transparent carbon nanotube composite film
CN102207575B (en) Polarizing element and manufacturing method thereof
CN102207574B (en) Polarization element and manufacturing method thereof
KR20110046102A (en) Carbon nano tubes film and method for manufacturing the same
TWI481678B (en) Carbon nanotube micro-wave absorbing film
TW200841052A (en) Polarizer and method for making same
TWI344981B (en) Conductive tape and method for making the same
TWI557062B (en) Supporting structure and supporting structure with carbon nanotube films thereon
TWI452007B (en) Carbon nanotubes film supporting structure and method for using the same
TWI387743B (en) Method for making transmission electron microscope sample
KR101304339B1 (en) A method for manufacturing carbon nano tubes sheet structure and the carbon nano tubes sheet structure
TWI444325B (en) Carbon nanotubes film supporting structure and method for using the same
TWI415791B (en) Method for making carbon nanotube film
KR20210079301A (en) Increased transparency of nanofiber sheets