TW201017893A - Solar cell system - Google Patents

Solar cell system Download PDF

Info

Publication number
TW201017893A
TW201017893A TW97139662A TW97139662A TW201017893A TW 201017893 A TW201017893 A TW 201017893A TW 97139662 A TW97139662 A TW 97139662A TW 97139662 A TW97139662 A TW 97139662A TW 201017893 A TW201017893 A TW 201017893A
Authority
TW
Taiwan
Prior art keywords
magnetic
power system
layer
solar power
solar
Prior art date
Application number
TW97139662A
Other languages
Chinese (zh)
Inventor
Yueh-Teng Hsu
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97139662A priority Critical patent/TW201017893A/en
Publication of TW201017893A publication Critical patent/TW201017893A/en

Links

Abstract

A solar cell system which includes a solar cell, an accumulator unit and an conductive component is provided. The solar cell is used to convert light into electrical energy and transmit the electrical energy to the accumulator unit through the conductive component. The accumulator unit includes at least a magnetic capacitor and accumulates the electrical energy from the solar cell. Thus, the solar cell system can utility small volume for accumulating large capacity electric energy.

Description

201017893 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種電源系統,特別是關於 由太陽能所轉換出能源的太陽能電源系統。 【先前技術】 ❿ 能源的快速消耗,已使得能源短缺的 視,且人們為了得到所需的能源,使得 :: 的生態產生一定影響。故近年來,隨著環保意識^ ; ==:^受到重視及採納。而在綠丄 被廣泛發展與應用的技術。 囑且 而,現有的太陽能技術的應用而言,主要是透過太 能電池(sdarceU)來接收外界的—光源(如太陽光^ 將此光源轉換成電能輸出供一負載 電池所轉換出電能先儲存於一二次電池, 電源時則從二次電池中所儲存的電能取得電源供應來源。 、而目前供太陽能電池使用的=次電池主要是以蓄電 池為主,蓄電池是利用化學產生變化來儲蓄電能,而要使 用時便將電能釋放成化學物質的變化。另外蓄電池雖然可 重複使用,但還是有其壽命之限制,因為在多次充放 長時間不使用的情況下,蓄電池的容量會下降,且容易損 壞,其原因在於蓄電池是利用化學能轉換為電能,化學物 質要常保其活性,才不至於失效變質,當原來的化合物活 201017893 性都作用完或將近用完時,便無法再進行新的化學反應, 進而導致蓄電池老化而宣告壽終。 〜 - 此外,一般的蓄電池並無法提供等量的容量來儲存電 ,,因而必須增加充放電的次數,進而導致蓄電池的使用 壽命很快降低。若是利用多顆蓄電池來儲存電能,卻仍 導致有需要頻繁充電或更換蓄電電池的不便,並又造成充 電電路的結構複雜、佔據空間過於龐大、成本昂貴等現象, 故基於前述分析,目前太陽能電池在儲存電量時普遍存在 # 著前述問題’而有待加以改善。 【發明内容】 ,本發明所要解決的技術問題,在於提供一種太陽能電 源系統’其可提供一種體積小又具有高能量儲存密度,且 可不觉充放電限制、並以電位能形式儲存能量的能量儲存 元件來儲存電能,以解決習知技術所遭遇之問題。 為了解決上述技術問題,根據本發明的一種方案,提 供-種太陽能電源系統,包括:一太陽能電池、一蓄電單 元,-導通元件,其中太陽能電池是用來接收光能並轉換 電月b輪出,蓄電單元搞接於太陽能電池,並以電位能形 電池輪出之電能’導通元件是祕於太陽“ 單元之間,並使得太陽能電池輸出之電能能傳輪 至蓄電單元。 為了解決上述技術問題,根據本發明的另一種方案, ,供-種太陽能電源祕,包括複數個光電職單元:且 .母個光電儲能單元係包括:一太陽能電池、一蓄電單元 201017893 及一導通元件,其中 能輸出,·而蓄電單_ 犯電池是用來接收光能並轉換電 儲存能量儲存太陽於太陽能電池’並以電位能形式 太陽能電池與蓄電輪出^電能,導通元件是搞接於 能傳輸至蓄電單元,荄ί?得太陽能電池輪出之電 式相耦接。 。二畜電早70彼此之間係以並聯方 在本發明的實施例中,並 ❹ 電容,而磁性電容包括./畜電平70具有至少一磁性 極及-介電層,雜電極、—第二磁性電 磁性電極置於第—磁性電極與第二 電極與第二磁性電極是電能’以及第-磁性 於介電層中的電能漏^別具有複數個磁偶極以避免儲存 因此透過上述實施方式,本發明是以磁性電容來儲 太%能電池難生之電能,並透過雜本= 使得太陽能電源系統可以不佔用太多空間即 的電量’且同時可提供穩定電能供負载使用等優點。里 以上之概賴接下來的詳細朗及關, 進-步說明本發明為達成預定目的所採取之方式、= 功效。而有關本發明的其他目的及優點’將在後續的^ 及圖式中加以闡述。 【實施方式】 本發明係提供一種太陽能電源系統,其係透過一種俱 備壽命長(高充放電次數)、高能量儲存密度、瞬間高功^ 輸出及快速充放電、且體積小的能量儲存元件來儲存太陽 7 201017893 能,而;b能量儲存元件係為 capacitor),此磁性電容是葬 ^ agnetlc 達大二量 出之效果,且由於磁性電容並 ::翰 :容數的限制因為= 級電容具有許多以3習知的電池、電容、超 ^ . y. ”” 此以下先就本案整體系統做一詳 揭路,之後再對磁性電容單元作一介紹。201017893 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a power supply system, and more particularly to a solar power supply system that converts energy from solar energy. [Prior Art] 快速 The rapid consumption of energy has made energy shortages, and people have an impact on the ecology of :: in order to get the energy they need. Therefore, in recent years, with the awareness of environmental protection ^ ; ==: ^ has been valued and adopted. And in the green 丄 is widely developed and applied technology. Moreover, in the application of the existing solar energy technology, the sdarceU is mainly used to receive the external light source (such as sunlight). This light source is converted into an electrical energy output for a load battery to convert the electrical energy to be stored first. In a secondary battery, when the power is supplied, the power supply source is obtained from the electrical energy stored in the secondary battery. Currently, the secondary battery used for the solar battery is mainly a battery, and the battery uses chemical changes to save energy. When it is used, it will release the electrical energy into a change of chemical substance. In addition, although the battery can be reused, it still has a limitation on its life, because the capacity of the battery will decrease if it is not used for a long time. And it is easy to damage. The reason is that the battery is converted into electric energy by using chemical energy. The chemical substance should always keep its activity, so that it will not deteriorate. When the original compound is in use or nearly used up, it can no longer be new. The chemical reaction, which leads to the aging of the battery and the end of life. ~ - In addition, the general battery It is impossible to provide an equal amount of capacity to store electricity, so it is necessary to increase the number of times of charge and discharge, which leads to a rapid decrease in the service life of the battery. If multiple batteries are used to store electrical energy, it still results in the need to frequently charge or replace the storage battery. Inconvenience, and the structure of the charging circuit is complicated, the space is too large, and the cost is expensive. Therefore, based on the foregoing analysis, the solar cell currently has a problem in the storage of electric power, and needs to be improved. The technical problem to be solved by the present invention is to provide a solar power system that can provide an energy storage component that is small in size and has high energy storage density, and can be stored in the form of potential energy without storing and discharging, and storing energy. In order to solve the problems encountered by the prior art, in order to solve the above technical problem, according to an aspect of the present invention, a solar power system is provided, comprising: a solar cell, an electric storage unit, and a conducting component, wherein the solar cell is used Receive light energy and convert electricity month b When it is turned out, the power storage unit is connected to the solar cell, and the electric energy of the potential energy-shaped battery is turned on. The conduction element is secret between the solar cells, and the electric energy output from the solar cell can be transmitted to the electric storage unit. Technical Problem According to another aspect of the present invention, a solar power supply system includes a plurality of photovoltaic units: and the mother photovoltaic energy storage unit includes: a solar battery, a power storage unit 201017893, and a conduction component. Among them, it can output, and the electricity storage list _ is used to receive light energy and convert electric storage energy to store the sun in the solar cell', and in the form of potential energy, the solar cell and the storage battery output ^ electrical energy, the conduction component is connected to the transmission To the power storage unit, the solar cell is electrically coupled to the battery. The second battery is 70 in parallel with each other in the embodiment of the present invention, and the capacitor is included, and the magnetic capacitor includes . The animal level 70 has at least one magnetic pole and a dielectric layer, and the impurity electrode, the second magnetic electromagnetic electrode is disposed on the first magnetic electrode and the second electrode and the second magnetic The electrode is electrical energy and the first magnetic flux in the dielectric layer has a plurality of magnetic dipoles to avoid storage. Therefore, the present invention uses magnetic capacitors to store electrical energy that is too difficult for the battery to be stored. And through the hybrid = so that the solar power system can not take up too much space that is the amount of electricity 'and at the same time can provide stable power for load use and so on. The above is a detailed description of the following details, and further explains the method and effect of the present invention for achieving the intended purpose. Other objects and advantages of the present invention will be set forth in the following drawings and drawings. [Embodiment] The present invention provides a solar power system that transmits an energy storage element having a long life (high number of charge and discharge times), high energy storage density, instantaneous high power output, fast charge and discharge, and small volume. To store the sun 7 201017893 can, and; b energy storage components are capacitors), this magnetic capacitor is the effect of burial ^ agnetlc up to the second, and due to the magnetic capacitance and:: John: the limit of the capacitance because of the = capacitor There are many well-known batteries, capacitors, and super. y. ”. The following is a detailed explanation of the overall system of this case, and then introduce the magnetic capacitor unit.

接下來請參閱第一圖,其係 能電源系統的功能方塊M 《太~ 以主要是將m圖。本貫施例所述之太陽能電源系 要疋將先月匕轉換成電能加以儲存復以可提供負載16 使用。太龍轉系統1大體包財魅概電儲能單元 一電能轉換单元12及—切換關14。其中光電儲能 單兀10疋提供光能轉電能的轉換,且可將轉換之後的電能 加以儲存。電能轉換單元12耦接於光電儲能單元10,其 是將光電儲能單元10儲存之電能轉換成可以供負載16使 用之電能,例如視負载16之用電需求可能是交流電源或直 流電源,因此電能轉換單元12可以相對是直流/交流換流 器【如太陽光變頻器(Photovoltaic Inverter,簡稱pv inverter)】或是直流/直流轉換器。切換開關14耦接於電能 轉換單元12、負載16與一供電來源(p0wer SUppiy source ) 之間,主要用來切換電能轉換單元12或供電來源來與負载 16連接,而此供電來源可以是一交流電源(如市電)或是 一直流電源(如電源轉換器輸出提供的直流電源)’以使負 載16可以從電能轉換單元12或是供電來源取得電源供應。 8 201017893 本實施例之光電儲能單元10是包括有一太陽能電池 (solar cell) 10卜一單向設計的導通元件1〇3及一蓄電單 元105其中導通元件1〇3疋麵接於太陽能電池I。】與蓄 電單元105<間,以使太陽能電& 1〇1將光能轉換成的電 月b輸出至蓄電單元1〇5儲存,以避免蓄電單 電能逆流至太陽能電池101,而此導通元二在= 僅提供單向性導通的二極體(diGde)做舉 ❹ 元㈣則是由至少一個磁性電容組成,本實施例::: 個磁性電容作舉例說明,但亦可以是如第二圖所示由多個 磁性電容透财聯及並聯歧合串麟的轉連接 構成一蓄電單元H)5A’故對於熟習該項 電容的數量是可以視需求(如視太陽能 的規格或疋負載_需求電源量)而構成。 ㈣例之光電儲能單元10是具有複數個,而這些 杳# ϋ70 ^之間是透過並聯方式連接。具體來說,本 各*電儲能單元丨。中的蓄電單元⑴5透過並聯 ’以使各蓄電單元ι〇5所儲存之電量可以透 電容可而達到相互平衡,亦即儲存電量高的磁性 量低的磁性電容充電,最後使得各蓄電 個的光電儲二i之電量呈現相等。故本實施例所提供複數 角度或各位:'1〇可以透過分散設置的方式來接收各 可:充分接收曰以使各光電儲能單元1〇可以儘 單元105轉換成電能儲存,而讓各蓄電 101轉換幹出3^述平衡的功㊣來充分儲存各太陽能電池 儲存=能,以使各蓄電單元105之間出現電量 9 201017893 接下來進一步說明本實施例所述之磁性電容的構 成’並請參閱第三圖,其係為本發明實施例之一磁性電容 示意圖。如第二圖所示磁性電容2( magnetic capacit〇r )包 括一介電層20、一第一磁性電極22及一第二磁性電極24, 其中介電層20係設置於第一磁性電極22與第二磁性電極 24之間’以於在第一磁性電極Μ與第二磁性電極24處累 積電荷以儲存電位能,且第一磁性電極22與第二磁性電極 鲁 24係由具有磁性導電材料所構成,並可藉由對第一磁性電 極22與第二磁性電極24外加電場進行磁化,而使第一磁 I電極22與第二磁性電極24内分別形成磁偶極(magnetic :〇1:) 26、28,如此可以在磁性電容2中構成一磁場而 仑對帶電粒子的移動造成影響,因此使得磁性電容2中的 二電層20可以用來儲存電能及藉由磁偶極26、28形成的 礤場來避免電能漏電。 為前述第—磁性電極22與第二磁性電極24之材質可以 素’介電層2G係由氧化鈦(™3)、氧化鎖欽 1 )或—半導體層,例如氧化矽(silicon 〇xide)所構 雷^而本發明並不限於此’第一磁性電極2 2、第二磁性 74舆介電層2 G均可視產品之需求而選用適當之其他 中&並 第二圖中第一磁性電極22與第二磁性電極24 上传ΓΓ㈣來表^磁偶極26、28,磁偶極26、28實際 習該ιΐίϋ整齊排列的微小磁偶極所疊加成,然而對於熟 向iiMP :者而言’本實施例對於磁偶極26、28之形成方 …、t疋,如可以指向同一方向或不同方向。 201017893 根據前述說明,前述第三圓 ❹ 理主要是利用第一磁性電極22不之磁性電容2,其原 排列的磁偶極26、28來形成磁場,=性電極24中整齊 存的電荷朝同—自旋方向轉動Λ使得介電層2〇中儲 列,因此在介電層2〇中即可以容:丁整齊且緊密的排 磁性電容2的電能儲存密度。由於m電荷,進而增加 係由電谷之面積A、介電層之介質當 '。谷_ %容值c 如下公式(-),因此類比於習知電#及厚度d決定, 容2相當於藉由磁場之作來=冑施例之礙性電 而造成電容值之大幅提升。术作介電層之介電常數,故 C = f〇fdi d .........公式(一) 在此要㈣強調,本實關< 全部係以電位能的方式進行儲存電#2儲存的能量 存的其他能量儲存媒介(例如傳統電池Π要二學J 5 外,更因充分保有電容的二f可匹配的能量儲存密度 數)、盔記情嗖庫矸、隹—- 士玄具有壽命長(高充玫電次 故可有效解決當前電池所_的、特點’ 能元件多半以化學能的方式進行儲存,知; =之否則往往會造成效率的大幅下降。相較於 ====;的方式進行儲存’且因所 磁性電容2以及周邊電路連接,進而縮小磁性 L,ί:!與重量,由於此製作方法可使用-般半導體 μ其應為熟習該項技藝者所熟知,故在此不予資述。 11 201017893Next, please refer to the first figure, which is the function block of the power supply system M "Too ~ to mainly m map. The solar power system described in the present embodiment is designed to convert the first moon into electrical energy for storage to provide load 16 for use. Tailong transfer system 1 is generally a package of energy storage unit. A power conversion unit 12 and - switch off 14. Among them, the photoelectric storage unit 10兀 provides conversion of light energy to electric energy, and can store the converted electric energy. The electrical energy conversion unit 12 is coupled to the photovoltaic energy storage unit 10, which converts the electrical energy stored by the photovoltaic energy storage unit 10 into electrical energy that can be used by the load 16. For example, the power demand of the load 16 may be an alternating current power source or a direct current power source. Therefore, the power conversion unit 12 can be a DC/AC converter (such as a Photovoltaic Inverter (pv inverter)) or a DC/DC converter. The switch 14 is coupled between the power conversion unit 12, the load 16 and a power source (p0wer SUppiy source), and is mainly used to switch the power conversion unit 12 or the power source to be connected to the load 16, and the power source may be an AC. A power source (such as a commercial power source) or a DC power source (such as a DC power source provided by the power converter output) is used to enable the load 16 to obtain a power supply from the power conversion unit 12 or a power source. 8 201017893 The photovoltaic energy storage unit 10 of the present embodiment includes a solar cell 10 and a unidirectionally designed conduction element 1 〇 3 and a power storage unit 105. The conduction element 1 〇 3 is connected to the solar cell I . Between the power storage unit 105 <, the solar power b converted into solar energy is output to the power storage unit 1 〇 5 to prevent the power storage unit from flowing back to the solar battery 101, and the conduction element Secondly, the dipole (diGde) which only provides unidirectional conduction is composed of at least one magnetic capacitor. This embodiment::: a magnetic capacitor is used as an example, but it may be as a second The figure shows that the plurality of magnetic capacitors and the parallel connection of the parallel strings form a power storage unit H) 5A'. Therefore, the number of the capacitors can be used as needed (for example, depending on the specifications of the solar energy or the load) It is composed of demand power. (4) The photovoltaic energy storage unit 10 has a plurality of, and these 杳# ϋ 70 ^ are connected in parallel. Specifically, each of the *electric energy storage units is defective. The power storage unit (1) 5 is connected in parallel so that the amount of electricity stored in each of the power storage units ι 5 can be balanced by the capacitance, that is, the magnetic capacitor having a low magnetic charge is charged, and finally the photovoltaics of each storage battery are charged. The electricity stored in the second is equal. Therefore, the plurality of angles or bits provided by the embodiment: '1〇 can be received through a distributed setting: sufficient receiving so that each photovoltaic energy storage unit 1 can be converted into electrical energy storage by the unit 105, and each storage battery 101 conversion of the balance of the work of the balance to fully store the solar cell storage = energy, so that the power generation between each of the power storage units 105 9 201017893 Next, the composition of the magnetic capacitor described in this embodiment is further described Referring to the third figure, it is a schematic diagram of a magnetic capacitor according to an embodiment of the present invention. The magnetic capacitor 2 includes a dielectric layer 20, a first magnetic electrode 22, and a second magnetic electrode 24, wherein the dielectric layer 20 is disposed on the first magnetic electrode 22 and Between the second magnetic electrodes 24 to accumulate charges at the first magnetic electrode Μ and the second magnetic electrode 24 to store potential energy, and the first magnetic electrode 22 and the second magnetic electrode 24 are made of a magnetic conductive material The magnetic polarization is formed by applying an electric field to the first magnetic electrode 22 and the second magnetic electrode 24 to form a magnetic dipole (magnetic: 〇1:) in the first magnetic I electrode 22 and the second magnetic electrode 24, respectively. 26, 28, so that a magnetic field can be formed in the magnetic capacitor 2 to affect the movement of the charged particles, so that the second electrical layer 20 in the magnetic capacitor 2 can be used to store electrical energy and form by the magnetic dipoles 26, 28. The market to avoid power leakage. The material of the first magnetic electrode 22 and the second magnetic electrode 24 may be a dielectric layer 2G made of titanium oxide (TM3), oxidized lock 1 or a semiconductor layer such as silicon germanium (xide). The present invention is not limited to this. The first magnetic electrode 2, the second magnetic 74, and the dielectric layer 2G are all selected according to the requirements of the product, and the first magnetic electrode is selected in the second figure. 22 and the second magnetic electrode 24 are uploaded ΓΓ (4) to represent the magnetic dipoles 26 and 28, and the magnetic dipoles 26 and 28 are actually superimposed on the ιΐίϋ neatly arranged micro magnetic dipoles, but for the familiar iiMP: In this embodiment, for the formation of the magnetic dipoles 26, 28, ..., for example, the same direction or different directions may be pointed. According to the foregoing description, the third circular symmetry mainly utilizes the magnetic capacitor 2 of the first magnetic electrode 22, and the magnetic dipoles 26 and 28 of the original arrangement form a magnetic field, and the uniform charge in the positive electrode 24 is opposite. - Spinning in the spin direction causes the dielectric layer 2 to be stored in the dielectric layer 2, so that the dielectric storage density of the magnetic capacitor 2 can be accommodated in the dielectric layer 2〇. Due to the m charge, it is increased by the area A of the electricity valley and the medium of the dielectric layer. The valley _% value c is as follows (-), so the analogy is determined by the conventional electric # and the thickness d, and the capacity 2 is equivalent to a large increase in the capacitance value by the magnetic field. The dielectric constant of the dielectric layer, so C = f〇fdi d ......... Formula (1) Here (4) emphasize that this real control < all is stored in the form of potential energy Other energy storage media stored in the energy stored in #2 (for example, the traditional battery is required to learn J 5 , and the number of energy storage densities that can be matched by the full capacity of the capacitor), the helmet 记 嗖 矸, 隹 — - Shi Xuan has a long life (high-filled rose can effectively solve the current battery's characteristics, the characteristics of most of the components can be stored in chemical energy, know; = otherwise it will often cause a significant drop in efficiency. Store in the way of ====; and the magnetic capacitor 2 and the peripheral circuit are connected, thereby reducing the magnetic L, ί:! and the weight. Since this manufacturing method can use the general semiconductor μ, it should be familiar with the skill. It is well known, so it is not mentioned here. 11 201017893

請參閱第四圖,其係為本發明另一實施例之一磁性電 容之示意圖。磁性電容3係包括一介電層30、一第一磁性 電極32與一第二磁性電極34,其中介電層30係設置於第 一磁性電極32與第二磁性電極34之間。第一磁性電極32 更包括有一第一隔離層320、一第一磁性層322及一第二 磁性層324,弟一隔離層320是設置於第一磁性層322與 第二磁性層324之間。第二磁性電極34更包括一第二隔離 層340、一第三磁性層342及一第四磁性層344,第二隔離 層340是設置於第三磁性層342與第四磁性層344之間。 第一隔離層320與第二隔離層34〇均是由非磁性材料所構 成0 第四圖所示之磁性電容3之操作原理係與第三圖所示 之磁性電容2相同,—樣是透過外加電場於第-磁性層 322'第二磁性層324、第三磁性層342與第四磁性層Μ#, 而,第石兹f生層322、第二磁性層324、第三磁性層342 與第四磁性層344中分別形成磁偶極(magnetic dipole) 二5、36。因此磁性電容3在磁化過程中’可以藉 由不同的外加電場,你丨知蚀绝 Λ94 ”如使第一磁性層322與第二磁性層 324中的磁偶極31、33分 磁性層342與第四磁性;^同的方向,以及使第三 π间66古a , 層344中的磁偶極35、3ό分別具有 樣本實施例對於磁偶極3 性電谷3之漏電抓同 定,如可叫向同—方向或之形成方向並無限 在此特別強調,前述之笛 電極Μ之結構並不限於^^磁^電極32及第二磁性 义之二層結構,而可以類似之方 12 201017893 式,以複數個磁性層與非磁性層不斷交錯堆疊,再藉由各 磁性層内磁偶極方向的調整來進一步抑制磁性電容3之漏 電流’以達到幾乎無漏電流的效果。 再者為了更突顯本發明所述之磁性電容具有高能量 儲存密度之技術特點,請參閱第五圖所 性電容與其他能量儲存媒介之作崎,從第=== 楚得知磁性電容㈣於—般電容(Capaeit⑽)、電化學超 級電容(electrochemical supercapacit〇rs )、電池 j^eries)、燃料電池(fud ceUs)是具有較佳的能量儲 存被度’並藉由此磁性電容之技術特點,而得以讓蓄電單 =05可从有高功率輸出、快速充放f、从充放電次 數限制、體積小、重量輕的技術效果。 久丄i复參㈣—圖’太陽能電源系統1之動作方式係透過 2電儲能單元K)中的太陽能電池1〇1來吸收白天的日光 ”、、射,並將光能轉換成電能輸出至對應的蓄電單元奶進 存^當各蓄電單元1〇5儲存電能已飽合時,則 I透過控制切換開關14的切換方向,例如於當夜間無 時即可控制此切換開關14將電能轉換單 : 提供給細使用,因此負載16即可透過此 太陽能所轉換輸出之電能使用,以達到節約能收 =而耗盡時,則可再透過切換開關14的 載16直接接收供電來源(例如:市電),而使得光能儲ί π =量收日光照射,叫=轉茲 的月匕讀存之動作,疋以藉由重複上述動作之執行 13 201017893 達到光電儲能單元料斷儲能,以提供負載16所需之不 同於市電的另一種電源。 此外需要說明的是’本實施例雖然提供有電能轉換單 兀12,但若負载16所需之電源屬於直流電源,且若蓄電 單元105所儲存之電能規格是符合負載16所需,則蓄電單 = 105所輸出之電能可以不透過電能轉換單元12的處理而 直接長·供給負载16使用。Please refer to the fourth figure, which is a schematic diagram of a magnetic capacitor according to another embodiment of the present invention. The magnetic capacitor 3 includes a dielectric layer 30, a first magnetic electrode 32 and a second magnetic electrode 34. The dielectric layer 30 is disposed between the first magnetic electrode 32 and the second magnetic electrode 34. The first magnetic electrode 32 further includes a first isolation layer 320, a first magnetic layer 322 and a second magnetic layer 324. The isolation layer 320 is disposed between the first magnetic layer 322 and the second magnetic layer 324. The second magnetic layer 34 further includes a second isolation layer 340, a third magnetic layer 342, and a fourth magnetic layer 344. The second isolation layer 340 is disposed between the third magnetic layer 342 and the fourth magnetic layer 344. The first isolation layer 320 and the second isolation layer 34 are both made of a non-magnetic material. The operation principle of the magnetic capacitor 3 shown in the fourth figure is the same as that of the magnetic capacitor 2 shown in the third figure. An applied electric field is applied to the second magnetic layer 324, the third magnetic layer 342 and the fourth magnetic layer Μ# of the first magnetic layer 322', and the first magnetic layer 322, the second magnetic layer 324, and the third magnetic layer 342 are Magnetic dipoles 2, 36 are formed in the fourth magnetic layer 344, respectively. Therefore, during the magnetization process, the magnetic capacitor 3 can be separated by a different applied electric field, such as the magnetic layers 342 of the first magnetic layer 322 and the second magnetic layer 324. The fourth magnetic direction; the same direction, and the third π 66 ancient a, the magnetic dipoles 35, 3 层 in the layer 344 respectively have the leakage of the sample embodiment for the magnetic dipole 3 electric valley 3, such as It is called the same direction or the direction of formation and infinitely emphasized here, the structure of the aforementioned horn electrode 并不 is not limited to the two-layer structure of the magnetic electrode 32 and the second magnetic sense, but can be similar to the formula 12 201017893 The magnetic layer and the non-magnetic layer are continuously staggered and stacked, and the leakage current of the magnetic capacitor 3 is further suppressed by the adjustment of the magnetic dipole direction in each magnetic layer to achieve almost no leakage current. To highlight the technical characteristics of the magnetic capacitor of the present invention having high energy storage density, please refer to the capacitance of the fifth figure and other energy storage media, from the === Chu magnetic capacitance (four) to the general capacitance ( Capaeit (10)), Electrochemistry The level of capacitance (electrochemical supercapacit〇rs), the battery j^eries), the fuel cell (fud ceUs) is the better energy storage degree' and the technical characteristics of the magnetic capacitor, so that the electricity storage single = 05 can be It has high power output, fast charge and discharge f, limited charge and discharge times, small size and light weight. Long time i complex (4) - Figure 'The operation mode of solar power system 1 is through 2 electric energy storage unit K) The solar cell 1〇1 absorbs daylight in the daytime, shoots, and converts the light energy into electrical energy and outputs it to the corresponding storage unit. The milk is stored in the storage unit. When each of the storage units 1〇5 stores the stored energy, then I By controlling the switching direction of the changeover switch 14, for example, when the nighttime is out of time, the switch 14 can be controlled to provide a power conversion: for the fine use, so that the load 16 can be used to convert the output power through the solar energy to save. When it can be used up and depleted, it can be directly received by the load 16 of the switch 14 (for example, the mains), so that the light energy storage π = the amount of sunlight, the = 转 兹 匕 匕 匕 匕Operation, by performing Cloth to repeat the above operation of the optical storage unit reaches 13201017893 off storage material to provide the desired load 16 is different from the other power supply mains. In addition, it should be noted that although the present embodiment provides the power conversion unit 12, if the power source required for the load 16 belongs to the DC power source, and if the power specification stored by the power storage unit 105 is required to meet the load 16, the power storage list is The electric energy outputted by =105 can be directly used by the load 16 without being processed by the electric energy conversion unit 12.

个只她例扠仏的光能轉換單元1〇之數量雖然 =複數個作舉例㈣,但亦可以僅輯— 栽 需之電能。 、戰汀 ^述說明田%芯个赞叼提供的太陽能電源 系、、先1具有體積小之技術特點,且可在有日糾進雷 =無日光,行放電_作,藉以增加產品的功能性。 實i 畜電單元105使用的元件係可透過半導體製程 =得太陽能電源系統1得以模組化整合的方式來 (生及便利’且可歧和於各種需要❹魏場合彈 而已惟凡上:為f f明之實施例 ,改良,而這些改變仍屬於本種 定之專利範财〇 Μ賴做W下所界 【圖式簡單說明】 第圖圖係為树_關之—域“ _狀功能方棟 14 201017893 第二圖係為本發明另一實施例蓄電單元之示意圖; 第三圖係為本發明實施例之一磁性電容之示意圖; 第四圖係為本發明另一實施例之一磁性電容之示意圖;以 及 第五圖係為將磁性電容與其他能量儲存媒介作比較之示意 圖。 【主要元件符號說明】 1太陽能電源系統 10光電儲能單元 101太陽能電池 103導通元件 105、105A蓄電單元 12電能轉換單元 14切換開關 16負載 磁性電容 20介電層 22第一磁性電極 24第二磁性電極 2 6、2 8磁偶極 磁性電容 30介電層 31、33磁偶極 32第一磁性電極 320第一隔離層 322第一磁性層 324第二磁性層 15 201017893Although the number of light-energy conversion units 1 她 例 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The warfare tells the description of the solar power system provided by Tian Yixin, and the first one has the technical characteristics of small size, and can be used to improve the function of the product in the case of daily correction of lightning = no daylight and discharge. Sex. The components used in the livestock unit 105 can pass through the semiconductor process = the solar power system 1 can be modularized and integrated (birth and convenience) and can be differentiated from various needs. Ff Ming's embodiment, improvement, and these changes still belong to this category of patents Fancai 〇Μ 做 做 下 【 【 【 【 【 【 【 【 【 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The present invention is a schematic diagram of a storage capacitor according to another embodiment of the present invention; the third diagram is a schematic diagram of a magnetic capacitor according to an embodiment of the present invention; and the fourth diagram is a schematic diagram of a magnetic capacitor according to another embodiment of the present invention. And the fifth diagram is a schematic diagram comparing the magnetic capacitor with other energy storage media. [Main component symbol description] 1 solar power system 10 photoelectric energy storage unit 101 solar battery 103 conduction element 105, 105A power storage unit 12 power conversion unit 14 switch 16 load magnetic capacitor 20 dielectric layer 22 first magnetic electrode 24 second magnetic electrode 2 6, 2 magnetic dipole magnetic capacitor 30 dielectric layer 31, 33 magnetic dipole 32 first magnetic electrode 320 first isolation layer 322 first magnetic layer 324 second magnetic layer 15 201017893

Φ 34第二磁性電極 340第二隔離層 342第三磁性層 344第四磁性層 35、36磁偶極 16Φ 34 second magnetic electrode 340 second isolation layer 342 third magnetic layer 344 fourth magnetic layer 35, 36 magnetic dipole 16

Claims (1)

201017893 十、申請專利範圍: 1、 一種太陽能電源系統,包括: 一太陽能電池(solar cell),用以接收光能並轉換電能 輸出; 一蓄電單元,耦接於該太陽能電池,並以電位能形式 儲存該太陽能電池輸出之電能;以及 一導通元件,耦接於該太陽能電池與該蓄電單元之 間,使該太陽能電池輸出之電能傳輸至該蓄電單 ❿ 元。 2、 如申請專利範圍第1項所述之太陽能電源系統,其中 該蓄電單元包含有至少一磁性電容,且各該磁性電容 係以串聯或並聯或串並聯地耦接。 3、 如申請專利範圍第2項所述之太陽能電源系統,其中 該磁性電容包括: 一第一磁性電極; 一第二磁性電極;以及 ® —介電層,設置於該第一磁性電極與該第二磁性電極 之間; 其中該介電層用以儲存電能,以及該第一磁性電極與 該第二磁性電極係分別具有複數個磁偶極以避免 儲存於該介電層中的電能漏電。 4、 如申請專利範圍第3項所述之太陽能電源系統,其中 該第一磁性電極包括: '一第^一磁性層, 17 201017893 •一第二磁性層;以及 一第一隔離層,包含有非磁性材料,設置於該第一磁 性層與該第二磁性層之間。 5、 如申請專利範圍第3項所述之太陽能電源系統,其中 該第二磁性電極包括: 一第三磁性層; 一第四磁性層;以及 一第二隔離層,包含有非磁性材料,設置於該第三磁 ❹ 性層與該第四磁性層之間。 6、 如申請專利範圍第1項所述之太陽能電源系統,其中 該導通元件係為單向性導通元件。 7、 如申請專利範圍第6項所述之太陽能電源系統,其中 該導通元件係為二極體。 8、 如申請專利範圍第1項所述之太陽能電源系統,更進 一步包括: 一電能轉換單元,耦接於該蓄電單元,用以對該蓄電 ® 單元所儲存之電能進行轉換以供一負載使用。 9、 如申請專利範圍第8項所述之太陽能電源系統,其中 該電能轉換單元係為一直流/交流換流器。 10、 如申請專利範圍第9項所述之太陽能電源系統,其中 該直流/交流換流器係為太陽光變頻器(photovoltaic inverter)。 11、 如申請專利範圍第8項所述之太陽能電源系統,其中 該電能轉換單元係為一直流/直流轉換器。 18 201017893 12、 如申請專利範圍弟8項所述之太陽能蝥、、E 4 見碌糸統,争m 一步包括: 又進 一切換開關,用以切換一供電來源與讀雷处 的其中之一與該負載耦接。 %換單元 13、 一種太陽能電源系統’包括複數個光電儲# m _ 其中該光電儲能單元係包括: ^早元’且 -太陽能電池(s—邮,用以缝光能 能輸出; w状电 ❿ 一蓄電單元,耦接於該太陽能電池,迷以電 ^ 、 儲存該太陽能電池輸出之電能;以及“立成形式 一導通元件,耦接於該太陽能電池與該蓄一 3:使該太陽能電池輸出之電能傳輪至該;;: 其中该些蓄電單元之間係以並聯方式相耦接。 14=蓄申ϊί利3Γ3項所述之太陽能電源系統,发中 該畜電早70包含有至少一磁性電容,且各 j 係以串聯或並聯或串並聯地耦接。 乂 電容 15、如中料娜_ 14項所叙太 該磁性電容包括·· 電源系統’其中 一第一磁性電極; 一第二磁性電極;以及 .磁性電極 ;1^層a置於該第—磁性電極與該第 其=介電層用以儲存電能’以及該第—磁性 磁性電極係分別具有複數個磁偶極以避免儲 19 201017893 存於該介電層中的電能漏電。 16、 如申請專利範圍第15項所述之太陽能電源系統,其中 該第一磁性電極包括: 一第一磁性層; 一第二磁性層;以及 一第一隔離層,包含有非磁性材料,設置於該第一磁 性層與該第二磁性層之間。 17、 如申請專利範圍第15項所述之太陽能電源系統,其中 β 該第二磁性電極包括: 一第三磁性層; 一第四磁性層;以及 一第二隔離層,包含有非磁性材料,設置於該第三磁 性層與該第四磁性層之間。 18、 如申請專利範圍第13項所述之太陽能電源系統,其中 該導通元件係為單向性導通元件。 19、 如申請專利範圍第18項所述之太陽能電源系統,其中 β 該導通元件係為二極體。 20、 如申請專利範圍第13項所述之太陽能電源系統,更進 一步包括: 一電能轉換單元,耦接於該蓄電單元,用以對該蓄電 單元所儲存之電能進行轉換以供一負載使用。 2卜如申請專利範圍第20項所述之太陽能電源系統,其中 該電能轉換單元係為一直流/交流換流器。 20 201017893 22、 如申請專利範圍第21項所述之太陽能電源系統,其中 該直流/交流換流器係為太陽光變頻器(photovoltaic inverter) 〇 23、 如申請專利範圍第20項所述之太陽能電源系統,其中 該電能轉換單元係為一直流/直流轉換器。 24、 如申請專利範圍第20項所述之太陽能電源系統,更進 一步包括: 一切換開關,用以切換一供電來源與該電能轉換單元 • 的其中之一與該負載耦接。201017893 X. Patent application scope: 1. A solar power system comprising: a solar cell for receiving light energy and converting electrical energy output; an electric storage unit coupled to the solar cell and in the form of potential energy Storing the electrical energy outputted by the solar cell; and a conducting component coupled between the solar cell and the electrical storage unit to transmit electrical energy output by the solar cell to the electrical storage unit. 2. The solar power system of claim 1, wherein the power storage unit comprises at least one magnetic capacitor, and each of the magnetic capacitors is coupled in series or in parallel or in series and parallel. 3. The solar power system of claim 2, wherein the magnetic capacitor comprises: a first magnetic electrode; a second magnetic electrode; and a dielectric layer disposed on the first magnetic electrode and Between the second magnetic electrodes; wherein the dielectric layer is used to store electrical energy, and the first magnetic electrode and the second magnetic electrode system respectively have a plurality of magnetic dipoles to prevent electrical energy stored in the dielectric layer from leaking. 4. The solar power system of claim 3, wherein the first magnetic electrode comprises: 'a first magnetic layer, 17 201017893 a second magnetic layer; and a first isolation layer comprising A non-magnetic material is disposed between the first magnetic layer and the second magnetic layer. 5. The solar power system of claim 3, wherein the second magnetic electrode comprises: a third magnetic layer; a fourth magnetic layer; and a second isolation layer comprising a non-magnetic material, Between the third magnetic layer and the fourth magnetic layer. 6. The solar power system of claim 1, wherein the conductive element is a unidirectional conductive element. 7. The solar power system of claim 6, wherein the conductive element is a diode. 8. The solar power system of claim 1, further comprising: an electrical energy conversion unit coupled to the electrical storage unit for converting electrical energy stored in the electrical storage unit for use by a load . 9. The solar power system of claim 8, wherein the power conversion unit is a DC/AC converter. 10. The solar power system of claim 9, wherein the DC/AC converter is a photovoltaic inverter. 11. The solar power system of claim 8, wherein the power conversion unit is a DC/DC converter. 18 201017893 12. If the solar energy 蝥, E 4 见 糸 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The load is coupled. % change unit 13, a solar power system 'comprises a plurality of photoelectric storages #m _ wherein the photovoltaic energy storage unit comprises: ^早元' and - solar cells (s-mail, for slitting light energy output; w-like An electric storage unit coupled to the solar cell, the electric energy stored in the solar cell, and the “electrical battery output” coupled to the solar cell and the storage device 3: the solar cell The output power is transferred to the;;: wherein the power storage units are coupled in parallel. 14=The solar power system described in the third paragraph of the claim 3, the hair battery contains 70 at least 70 a magnetic capacitor, and each j is coupled in series or in parallel or in series and parallel. The tantalum capacitor 15, as described in the middle of the material, the magnetic capacitor includes: · the power system 'one of the first magnetic electrodes; a second magnetic electrode; and a magnetic electrode; a layer a is disposed on the first magnetic electrode and the first dielectric layer for storing electrical energy ' and the first magnetic magnetic electrode system has a plurality of magnetic dipoles respectively The solar power supply system of claim 15, wherein the first magnetic electrode comprises: a first magnetic layer; a second magnetic layer; And a first isolation layer comprising a non-magnetic material disposed between the first magnetic layer and the second magnetic layer. 17. The solar power system of claim 15, wherein the The second magnetic electrode comprises: a third magnetic layer; a fourth magnetic layer; and a second isolation layer comprising a non-magnetic material disposed between the third magnetic layer and the fourth magnetic layer. The solar power supply system of claim 13, wherein the conductive element is a unidirectional conductive element. The solar power supply system of claim 18, wherein the conductive element is a diode. 20. The solar power system of claim 13, further comprising: an electric energy conversion unit coupled to the electric storage unit for storing The energy stored in the unit is converted for use by a load. 2 A solar power system as described in claim 20, wherein the power conversion unit is a DC/AC converter. 20 201017893 22, if applied The solar power system of claim 21, wherein the DC/AC converter is a photovoltaic inverter 〇23, such as the solar power system of claim 20, wherein the electric energy The conversion unit is a DC/DC converter. The solar power system of claim 20, further comprising: a switch for switching a power source and the power conversion unit. One is coupled to the load.
TW97139662A 2008-10-16 2008-10-16 Solar cell system TW201017893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139662A TW201017893A (en) 2008-10-16 2008-10-16 Solar cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139662A TW201017893A (en) 2008-10-16 2008-10-16 Solar cell system

Publications (1)

Publication Number Publication Date
TW201017893A true TW201017893A (en) 2010-05-01

Family

ID=44831004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139662A TW201017893A (en) 2008-10-16 2008-10-16 Solar cell system

Country Status (1)

Country Link
TW (1) TW201017893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252680B2 (en) 2012-07-17 2016-02-02 Au Optronics Corporation Solar power system and communication apparatus
US11237201B2 (en) * 2018-03-18 2022-02-01 Lg Electronics Inc. Partial discharge detecting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252680B2 (en) 2012-07-17 2016-02-02 Au Optronics Corporation Solar power system and communication apparatus
US11237201B2 (en) * 2018-03-18 2022-02-01 Lg Electronics Inc. Partial discharge detecting system

Similar Documents

Publication Publication Date Title
US8604746B2 (en) Contactless power charging system and energy storage system including the same
TW201128905A (en) Solar power management system with maximum power tracking
TW200908523A (en) Solar energy charging/discharging system and charging/dischar method thereof
CN101741133A (en) Optical network hybrid power supply uniterruptable power supply having function of correcting power factor on network side
Ibrahim et al. An overview of supercapacitors for integrated PV–energy storage panels
US9065156B2 (en) Photovoltaic capacitor for direct solar energy conversion and storage
TW201004110A (en) Backup power device
CN102290846B (en) Impedance type constant-voltage charging circuit with variable negative temperature coefficients
TW201017893A (en) Solar cell system
TWI377686B (en) Solar power source
CN201286066Y (en) Dual PWM inverter with energy capable of bidirectional flowing
CN206194753U (en) Energy storage formula solar cell based on 3D printing technique
CN101656485A (en) Double PWM inverter with energy capable of bidirectionally flowing
CN202696203U (en) Intelligent ring main unit and power unit thereof
CN211266861U (en) Solar cell panel based on photovoltaic electricity storage in-situ integration
CN105207575A (en) Hybrid energy storage device
CN205846807U (en) A kind of lithium battery and the photovoltaic generating system of super capacitor hybrid energy-storing
CN202142889U (en) Solar charge-discharge controller
Das et al. A standalone charging station for Li-ion digital camera battery from solar photovoltaic module with supercapacitor
CN102496749A (en) Integrated thin film solid storage cell for integrated thin film solar cell
CN209767221U (en) photovoltaic system with super capacitor energy storage
CN209675993U (en) A kind of solar charging device and electric vehicle charging equipment
US8138713B2 (en) Electrical energy storage device for solar cell
CN201444497U (en) Small solar energy storage battery pack
KR20020051292A (en) Power source device with self-charge type which is possible of high rate charge and discharge