TW201015022A - Reflective film for illuminating device - Google Patents

Reflective film for illuminating device Download PDF

Info

Publication number
TW201015022A
TW201015022A TW98127279A TW98127279A TW201015022A TW 201015022 A TW201015022 A TW 201015022A TW 98127279 A TW98127279 A TW 98127279A TW 98127279 A TW98127279 A TW 98127279A TW 201015022 A TW201015022 A TW 201015022A
Authority
TW
Taiwan
Prior art keywords
film
weight
transparent
reflective film
particles
Prior art date
Application number
TW98127279A
Other languages
Chinese (zh)
Other versions
TWI500883B (en
Inventor
Keita Takehisa
Shinya Togano
Hiroshi Kusume
Original Assignee
Teijin Dupont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008208531A external-priority patent/JP2010044238A/en
Priority claimed from JP2008209794A external-priority patent/JP5388505B2/en
Application filed by Teijin Dupont Films Japan Ltd filed Critical Teijin Dupont Films Japan Ltd
Publication of TW201015022A publication Critical patent/TW201015022A/en
Application granted granted Critical
Publication of TWI500883B publication Critical patent/TWI500883B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A reflective film for illuminating devices, which is characterized in that the reflective film is composed of a white film and transparent projections each formed on the surface of the white film and having a height of 3-50 μm, and in that the coverage of the white film surface by the transparent projections is 50-100%. High luminance can be achieved when the reflective film for illuminating devices is used as a reflective film in a backlight unit of a backlight-type liquid crystal display device.

Description

201015022 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種照明裝置所使用的反射薄膜,詳言 之’係有關作爲液晶顯示裝置之背光單元的反射薄膜所使 用的照明裝置用反射薄膜。 【先前技術】 φ 液晶顯示裝置,係有在背光單元之背面上放置光源之 背光方式,與在側面上放置光源之背光方式。於任何一種 方式中,爲防止來自光源之光逃至畫面的背面時,在背光 單元之背面上設置反射薄膜。該反射薄膜企求具備薄且高 的反射率。 以往,該反射薄膜係使用在聚酯中添加有白色顏料之 白色薄膜(日本特開 2004-050479號公報、特開 2004-330727號公報)、或在內部含有微細氣泡之白色薄膜(特 ❹ 開平6-322153號公報、特開平7-118433號公報)。 於背光方式之液晶顯示裝置中,亮度之提高雖可藉由 提高反射薄膜之反射率以達到一定程度,惟僅提高反射率 時有一定的臨界値。 除提高薄膜本身之反射率之外,提高亮度之方法係檢 討在反應薄膜中配合螢光增白劑,提案在反射薄膜之表面 上塗佈螢光增白劑(特開2002-40214號公報)。然而, 一般而言由於背光單元使用冷陰極管作爲光源,在白色薄 膜表面上塗佈螢光增白劑時,因自冷陰極線管所放射的紫 -5- 201015022 外線會導致螢光增白劑惡化’失去經時性反射率的提高效 果。藉由紫外線吸收劑以防止因紫外線所導致的螢光增白 劑惡化情形時’由於螢光增白劑原呈現藉由紫外線激勵的 藍色發光者,故配合紫外線吸收劑時,無法得到藉由螢光 增白劑以提高反射率的效果。 【發明內容】 本發明人等著重於反射薄膜之鏡面反射強時,在背光 單元中、於反射薄膜前方、即反射薄膜與顯示面之間所設 置的光源本身返回形成反射光,導致該光無法到達顯示面 ,產生光損失,成爲亮度降低的原因。 本發明係以提供一種藉由反射薄膜以抑制鏡面反射, 藉由賦予反射光具有回避前方光源的指向性予以反射,於 背光方式之液晶顯示裝置的背光單元中使用作爲反射薄膜 時,可得高亮度之照明裝置用反射薄膜爲課題。 本發明之第二目的,係提供一種在背光方式之液晶顯 示裝置的背光單元中使用作爲反射薄膜時,可得高亮度且 加工性優異的照明裝置用反射薄膜。 本發明之第三目的,係提供一種在背光方式之液晶顯 示裝置的背光單元中使用作爲反射薄膜時,可得高亮度且 顏色不吻合情形少,經時變黃性經抑制的照明裝置用反射 薄膜。 換言之,本發明之照明裝置用反射薄膜,其特徵爲由 白色薄膜及在該白色薄膜表面上所設置的高度爲3〜50μιτ 201015022 之透明突起所形成,藉由該白色薄膜表面之由透明突起所 成的被覆率爲50〜100%。 本發明之較佳形態,包含透明突起由透明粒子所形成 ,於反射薄膜表面上露出率爲5〜100%之透明粒子以50〜 100 %的被覆率被覆於白色薄膜表面之形態。換言之,包含 由藉由白色薄膜及被覆該白色薄膜表面之透明粒子的高度 3〜50μιη之透明突起所形成,於該白色薄膜表面上5〜 100 %之露出率的透明粒子以50〜100%之被覆率被覆白色 薄膜表面之照明裝置用反射薄膜作爲較佳的形態。 〔發明效果〕 藉由本發明,可提供一種於背光方式之液晶顯示裝置 的背光單元中使用作爲反射薄膜時,可得高亮度之照明裝 置用反射薄膜。 第二’藉由本發明’可提供在背光方式之液晶顯示裝 φ 置的背光單元中使用作爲反射薄膜時,可得高亮度且加工 性優異的照明裝置用反射薄膜。 第三’藉由本發明’可提供在背光方式之液晶顯示裝 虞的背光單元中使用作爲反射薄膜時,可得高亮度且顏色 不吻合的情形少、經時變黃性經抑制的照明裝置用反射薄 膜。 〔爲實施發明之最佳形態〕 於下述中,詳細說明本發明。 201015022 白色薄膜 本發明之白色薄膜,係由熱可塑性樹脂所形成,藉由 在薄膜中含有白色之著色劑或空隙(void )形成物質而呈 現白色之薄膜。 構成薄膜之熱可塑性樹脂,例如聚酯、聚烯烴、聚苯 乙烯,就使機械特性及熱安定性兩立而言,以聚酯較佳。 使用聚酯作爲白色薄膜之熱塑性樹脂時,聚酯係使用 由二羧酸成分與二醇成分所形成的聚酯。該二羧酸成分例 Φ 如對苯二甲酸、異苯二甲酸、2,6-萘二羧酸、4,4,-二苯基 二羧酸、己二酸、癸二酸。二醇成分例如乙二醇、1,4-丁 二醇、1,4-環己烷二甲醇、1,6-己二醇。 於此等之聚酯中,以芳香族聚酯較佳,以聚對苯二甲 酸乙二酯更佳。聚對苯二甲酸乙二酯,亦可爲均聚物,惟 以共聚合聚合物較佳。 白色薄膜可由單層所形成,亦可由複數層所形成。白 色薄膜由複數層形成時,以由使光反射之白色反射層與承 © 載該層之支持層所形成的積層薄膜較佳。於該積層薄膜中 ’以白色反射層爲含有較多空隙之層,支持層爲含有較少 空隙或不含空隙之層較佳。白色反射層中所使用的聚酯, 以共聚合聚酯較佳,共聚合成分之比例以全部二羧酸成分 爲基準,例如爲3〜2 0莫耳%,較佳者爲4〜1 5莫耳%, 更佳者爲5〜13莫耳%。藉由使共聚合成分之比例在該範 圍內時,有關含有較多空隙之白色反射層,亦可得優異的 製膜性,可製得熱尺寸安定性優異的白色薄膜。 -8 - 201015022 白色薄膜由複數層形成時,白色反射層以含有螢光物 較佳。此時,螢光物之含量以白色反射層爲基準’較佳者 爲0.1〜7重量%。藉由含有該範圍之量,不會因營光物而 導致白色反射層著色的情形,可提高亮度,使用作爲照明 裝置之反射薄膜時,製得可正確地色再現的反射薄膜。 螢光物可使用無機螢光物、有機螢光物中任何一種。 爲經過長時間後仍可維持安定的螢光功能時,以無機螢光 φ 物較佳。螢光物例如可使用下述說明者。 白色薄膜中所使用的白色著色劑或空隙形成物質,例 如可使用無機粒子、有機粒子。 白色著色劑以使用白色的無機粒子較佳。使用無機粒 子作爲空隙形成物質時,以使用白色無機粒子較佳。白色 無機粒子例如硫酸鋇、二氧化鈦、二氧化矽、碳酸鈣之粒 子。無機粒子之平均粒徑例如0.2〜3·0μιη、較佳者爲0.3 〜2.5μιη、更佳者爲0.4〜2.0μιη。藉由使用該範圍內之平 φ 均粒徑的無機粒子,可適當地分散於聚酯中,不會引起粒 子之凝聚情形,可製得沒有粗大突起的薄膜,同時薄膜之 表面不會過於粗糙,可將光澤度控制於適當的範圍內。而 且,無機粒子可以爲任何的粒子形狀,例如板狀、球狀。 無機粒子亦可進行爲提高分散性時之表面處理。 使用有機粒子作爲空隙形成物質時,在聚酯中使用非 相溶的樹脂粒子作爲有機粒子。該有機粒子以聚矽氧烷樹 脂粒子、聚四氟化乙烯粒子較佳。有機粒子之平均粒徑, 例如爲0.2〜ίο μπι、較佳者爲0.3〜8.0 μιη、更佳者爲0.4 201015022 〜6.Ομιη。藉由使用該範圍之有機粒子,可適當地分散於 聚酯中,不會引起粒子之凝聚情形,可製得沒有粗大突起 的薄膜。 就可得高亮度而言,白色薄膜之光線反射率在波長爲 550nm之反射率,較佳者爲95%以上、更佳者爲96%以上 、最佳者爲97%以上。 透明突起 本發明之照明裝置用反射薄膜,係由白色薄膜及設置 於該薄膜表面之高度3〜50μιη的透明突起所形成。透明的 突起可以連續予以設置、亦可以不連續予以設置。 於本發明中,白色薄膜表面之由透明突起所成的被覆 率爲 50〜100%,較佳者爲 60〜100%,最佳者爲 70〜 1 0 0 %,更佳者爲8 0〜1 0 0 %。被覆率未達5 0 %時,會損害 回避前方光源之光的指向性,無法期待提高亮度。 於本發明中,被覆率係以進行有關薄膜面內垂直二方 向的各波長3mm之測定範圍的合計長度爲爲6mm之測定 範圍,於測定範圍中使白色薄膜表面被覆透明突起的比例 予以定義。 具體而言,使用薄片切片裝置,以薄膜之厚度方向爲 切斷面切成切片,使用日立製作所製S-4700形電場放出 形掃描電子顯微鏡、以倍率3000倍觀察試樣及該切片試 樣,進行觀察有關薄膜面內垂直二方向的各波長3mm之 測定範圍的合計長度爲6mm之測定範圍,累積測定領域 201015022 中沒有被透明突起被覆的部分之長度,以下述式求取。 被覆率 =(6mm —(沒有被覆透明突起的部分之累積長度( mm) ) ) / 6mmx 100 ( % ) 而且’透明突起的最大直徑部分自塗膜表面露出於外 側時’係以透明粒子之最大直徑所被覆的部分被覆於透明 的突起。 Φ 透明的突起,可以透明的物質形成,亦可以有機物及 無機物之任何物質形成。而且’可以有機物與無機物之混 合物形成’亦可以有機物與無機物之複合物形成。形成透 明突起之物質的光線透過率,例如5 0 %以上、較佳者爲 60%以上、更佳者爲70%以上。透明的突起,爲防止著色 時,可以在可見光範圍中沒有吸收光者。 透明突起之形狀,例如圓頂(Dome )形狀或金字塔 形狀,除金字塔形狀外之角錐形狀,例如三角錐狀、六角 φ 錐狀、八角錘狀,較佳者爲圓頂形狀或金字塔形狀,更佳 者爲圓頂形狀。圓頂形狀之突起,爲具備傾斜的凸面之突 起即可,以具有半球面、部分球面或回轉橢圓體面之一部 分較佳,以半球面更佳。半球面並不一定必須爲球的一半 ,只要是球面的一部分以凸狀突出於表面即可’相當於圓 頂形狀之突起。 金字塔形狀係指四角錐狀’透明的突起爲金字塔形狀 時,各金字塔底面之一邊的長度以5〜50μιη較佳。藉由形 成該範圍之一邊的長度’在不會損害賦予反射光具有指向 -11 - 201015022 性之效果下,可防止突起脫落者較佳。金字塔的形狀,以 完全的四角錐較佳,惟四角錐之一部分亦可例如頂點被切 掉的形狀。 本發明中透明突起之高度爲3〜50μπι。高度未達3μιη 時,無法得到光之指向性;超過50μιη時,會有突起脫落 、且賦予反射光具有指向性之效果因背光的設計(即光源 的位置)而產生明顯變化之顧慮。 透明突起爲圓頂形狀時,各圓頂形狀底面之平均直徑 ,以5〜50μιη較佳。藉由形成該範圍之平均直徑,在不會 損害賦予反射光具有指向性之效果下,以可防止突起脫落 較佳。爲圓頂形狀時,最佳的形狀爲半球狀。 形成透明突起之有機物,例如可使用UV硬化性樹脂 、熱硬化性樹脂、丙烯酸樹脂、聚矽氧烷樹脂、苯乙烯樹 脂、胺基甲酸酯樹脂。由於在可見光範圍內幾乎完全沒有 吸收光的情形,故以丙烯酸樹脂及苯乙烯樹脂較佳。形成 透明突起之無機物,以玻璃較佳。 透明的突起,例如可使符合突起形狀之模具中所塡充 有熱硬化性樹脂或UV硬化性樹脂配置於薄膜上,藉由進 行熱硬化或UV硬化形成,例如可藉由使透明粒子以黏合 劑承載於白色薄膜的表面上形成。前者的方法,於形成金 字塔形狀之突起時爲較佳的方法;後者的方法,如下詳述 於形成圓頂形狀之突起時爲較佳的方法。 使用UV硬化性樹脂作爲硬化性樹脂時,可使用使含 有(甲基)丙烯醯基、乙烯基或環氧基等之反應性基的化 -12- 201015022 合物、與產生藉由UV照射使該含有反應性基之化合物反 應所得的自由基或陽離子的活性種之化合物混合者。 就硬化的速度而言,以組合含有(甲基)丙烯醯基、 乙烯基等之不飽和基的反應性基之化合物(單體)、與藉 由UV光產生自由基之光自由基聚合引發劑較佳。(甲基 )丙烯醯基化合物,例如(甲基)丙烯酸苯氧基乙酯、( 甲基)丙烯酸苯氧基-2-甲基乙酯、(甲基)丙烯酸苯氧基 φ 乙氧基乙酯、(甲基)丙烯酸3-苯氧基-2-羥基丙酯、( 甲基)丙烯酸2-苯基苯氧基乙酯、(甲基)丙烯酸4-苯基 苯氧基乙酯、(甲基)丙烯酸3-(2-苯基苯基)-2-羥基 丙酯、使氧化乙烯反應的P-枯烯基苯酚之(甲基)丙烯酸 酯、氧化乙烯加成的雙酚A (甲基)丙烯酸酯、氧化丙烯 加成的雙酚A (甲基)丙烯酸酯、雙酚A二環氧丙醚與( 甲基)丙烯酸之以環氧基開環所得的雙酚A (甲基)丙烯 酸環氧酯、雙酚F二環氧丙醚與(甲基)丙烯酸之以環氧 φ 基開環反應所得的雙酚F(甲基)丙烯酸環氧酯。 由透明粒子所成之突起 本發明之照明裝置用反射薄膜中的透明突起,較佳者 爲承載於白色薄膜之表面上,被覆白色薄膜表面之透明粒 子所形成。換言之,本發明之照明裝置用反射薄膜,較佳 者係由白色薄膜及被覆該白色薄膜表面之透明粒子所形成 〇 透明粒子爲使光集光時,使用以曲面所構成、或以曲 -13- 201015022 面與平面所構成的形狀者。該形狀例如可使用球狀、橄欖 球狀、凸透鏡形狀者。爲有效地提高亮度時,以縱橫比爲 3以下者較佳,以縱橫比爲1.2以下者更佳。更佳的形狀 爲球狀粒子。而且,縱橫比爲長徑/短徑。其次,透明粒 子之粒徑,於透明粒子不爲球狀時,求取長徑與短徑之平 均値。 形成透明突起之透明粒子的大小,係藉由電子顯微鏡 測定之平均粒徑,例如3〜50μπι、較佳者爲5〜50μπι、更 _ 佳者爲 7〜45μηι、尤佳者爲 8〜40μπι、最佳者爲 10〜 3 0 μιη。藉由使用該範圍之平均粒徑的透明粒子,可形成高 度3〜50μιη的透明突起,可容易控制光之指向性,且不易 產生粒子脫落的情形,於塗佈時不易產生條狀的塗佈_陷 ,製得反射薄膜。 該透明粒子係藉由粒度分布計測定,體積 50%粒徑 D50爲3〜50μιη,且體積10%粒徑D10與體積90%粒徑 D90 之比 D10/D90 爲 0.30 〜0.98,較佳者爲 0.30 〜0.70。 _ 藉由使比D10/D90在該範圍內,粒徑小的粒子不會被埋入 黏合劑中,可賦予亮度提高性,且可防止粒徑大的粒子脫 落。比D 1 0/D9 0愈大時,粒度分布愈爲明顯,由於不易得 到單一粒徑之粒子,故比D10/D90之上限値例如爲0.98。 有關以透明粒子形成透明的突起時,突起高度與透明 粒子之粒徑的關係,例如使用平均粒徑20μηι之透明粒子 形成透明突起時,透明粒子以一半被埋入黏合劑的狀態承 載於白色薄膜上時,透明突起的高度爲10 μπι。在幾乎完 -14- 201015022 全沒有被埋入黏合劑中,承載於白色薄膜上時,透明突起 之高度爲20μιη。 以透明粒子形成透明突起時,藉由透明粒子所形成的 透明突起以50〜100%、較佳者爲60〜100%、更佳者爲70 〜1〇〇%、最佳者爲80〜100%之被覆率被覆白色薄膜表面 。換言之,本發明之反射薄膜係由白色薄膜及被覆該白色 薄膜表面之透明粒子所形成的反射薄膜,於該反射薄膜之 φ 表面上5〜100 %之露出率的透明粒子,以50〜100 %之被 覆率被覆白色薄膜表面。藉由透明粒子所成的被覆率未達 5 0%時,光之指向性受損,無法期待亮度提高。 於本發明中,白色薄膜之由透明粒子所成的被覆率, 係以觀察有關薄膜面內垂直的二方向之各長度3mm的測 定範圍之合計長度爲6mm的測定範圍,於測定範圍內使 白色薄膜被覆透明粒子之比例予以定義。 具體而言,有關使用薄片切片機,以薄膜面內任意選 φ 擇一個方向與薄膜之厚度方向作爲切斷面,切取切片試樣 1,在切片試樣1中任意選擇與一方向垂直的方向、及以 薄膜之厚度方向作爲切斷面,切取切片試樣2,切片試樣 1之黏合劑的塗膜面之長度3mm的範圍、與切片試樣2之 黏合劑的塗膜面之長度3xnm的範圍之合計長度爲6mm的 測定範圍,使用日立製作所製S-4700形電場放出形掃描 電子顯微鏡’以倍率3000倍觀察,於切片試樣之切斷面 內的測定範圍中,累積沒有被透明粒子被覆的薄膜表面之 部分的長度,以下述式求取(參照第7圖)。 -15- 201015022 由透明粒子所成的被覆率 =(6mm-(沒有被透明粒子被覆的部分之累積長度 (mm)) ) /6mmxl00(°/〇) 而且,於切斷面上透明粒子之最大直徑部分自塗膜表 面露出於外側時,將透明粒子之最大直徑被覆的部分視爲 透明粒子所被覆的部分,且透明粒子之最大直徑部分自塗 膜表面露於內側時、即沉於塗膜中時,製作透明粒子中自 塗膜露出於外部的部分之圓頂形狀突起的最大直徑視爲粒 _ 子所被覆的部分。 由透明粒子求取被覆率時,被覆於白色薄膜表面所使 用的透明粒子,係在反射薄膜表面上部分或全部露出的透 明粒子。該露出係指以本發明所定義的露出率爲5〜1 00% 、較佳者爲10〜100%、更佳者爲20〜100%之露出率露出 。如此不以露出率未達5%之透明粒子處理作爲被覆的粒 子,係因露出率未達5 %時,無法得到本發明目的之由露 出粒子所成的集光效果之故。 _ 於較佳的形態中,透明粒子係藉由設置於白色薄膜表 面之黏合劑的塗膜,承載於白色薄膜的表面上。因此,部 分的透明粒子連接或沉入於黏合劑之塗膜中。而且,露出 率1 00%,係於切斷面上以連接白色薄膜表面與透明粒子 表面的形態,藉由黏合劑承載於白色薄膜表面的狀況;露 出率0%,係於切斷面上透明粒子完全沉入白色薄膜表面 上所設置的黏合劑之塗膜中的狀態;露出率50%,係於切 斷面上一半的透明粒子埋於白色薄膜表面上所設置的黏合 -16- 201015022 劑之塗膜中,一半的殘餘成分突出於塗膜外部的狀態。 定義更爲正確的露出率時,露出率係以通過切片試樣 之切斷面內透明粒子之截面中心,引出垂直於薄膜之塗膜 面的直線時,該直線於薄膜切片之切斷面內、與透明粒子 表面相交的2點中,露出側之表面上的點爲S,沒有露出 側之表面上的點爲T,前述直線與黏合劑之塗膜面相交的 點爲B時,以(S與B間之距離)/ ( S與T間之距離)表 ❹ 示。 換言之,露出率(%)以下述式予以定義。 露出率 =(S與B間之距離)/ ( S與T間之距離)X1 00 ( % ) 而且,切斷面內透明粒子之截面中心,粒子爲球狀時 爲該截面之圓中心;粒子爲非球狀時爲該截面之重心。 透明粒子可使用無機透明粒子及有機透明粒子中之任 何一種。此等亦可倂用數種粒子。透明粒子係構成該物之 φ 原料本身的光線透過率爲50%以上,較佳者爲60%以上, 更佳者爲70%以上,以在可見光範圍內沒有吸收光者較佳 〇 有機透明粒子例如可使用丙烯酸粒子、聚矽氧烷粒子 、苯乙烯粒子。由於在可見光範圍內幾乎完全沒有吸收光 的情形,故以丙烯酸粒子、苯乙烯粒子較佳。而且,無機 透明粒子例如可使用玻璃粒子。 形成透明突起之透明粒子,可在白色薄膜上於薄膜之 垂直方向、粒子沒有重疊下被承載,透明粒子亦可於白色 -17- 201015022 薄膜之垂直方向多數重疊下被承載。爲後者時’在垂直於 自白色薄膜表面至透明粒子層之表面間的薄膜面的方向可 含有2〜30個粒徑爲5〜ΙΟΟμιη之透明粒子。此時’透明 粒子層係使透明粒子藉由黏合劑互相黏合’被承載於白色 薄膜上。 此時,透明突起之高度,係藉由特定位於透明粒子層 最表面之透明粒子的頂點、與承載該物之黏合劑的基準面 ,測定自基準面至頂點的高度予以求取。此時之黏合劑的 基準面係使最表面之透明粒子自下側(即接近白色薄膜之 側)被覆承載其他透明粒子的黏合劑表面予以平均化之面 黏合劑 使透明粒子承載於白色薄膜表面之黏合劑塗膜之黏合 劑,可使用丙烯酸、聚酯樹脂、聚胺基甲酸酯、聚酯醯胺 樹脂、聚烯烴樹脂、此等之共聚物或混合物。黏合劑係除 @ 上述黏合劑之外,亦可配合異氰酸酯系、蜜胺系、環氧系 交聯劑予以交聯。 黏合劑之塗膜中不含螢光物時,相對於100重量份透 明粒子之黏合劑的量,例如爲5〜200重量份,較佳者爲 10〜100重量份,更佳者爲10〜70重量份。藉由爲該範圍 之比例,可使粒子沒有脫落情形,可得藉由透明粒子之集 光效果。而且,市售的黏合劑,係以使丙烯酸樹脂等之黏 合劑固成分溶解於溶劑的形態予以販賣,惟本發明之塗膜 -18- 201015022 的黏合劑之量,爲乾燥後之塗膜中黏合劑固成分的量。 黏合劑之塗膜,以含有螢光物較佳。換言之,於本發 明中透明粒子以藉由含有黏合劑及螢光物之黏合劑組成物 的塗膜承載於白色薄膜上較佳。黏合劑組成物中含有螢光 物時,爲可有效地提高亮度且製得沒有粒子脫落情形的薄 膜時,薄膜表面上所承載的透明粒子與塗膜之黏合劑組成 物的比例,較佳者相對於透明粒子爲30〜70重量份,黏 Q 合劑組成物爲70〜30重量份。而且,黏合劑組成物爲除 溶劑之外的固成分重量。 黏合劑組成物含有螢光物時,螢光物之含量係以使C 光源所測定的XYZ表色系之反射薄膜色度,x= 0.290〜 0.330、y=0.300〜0.340之範圍較佳。因此,黏合劑組成 物中螢光物之含量,以黏合劑組成物之重量爲基準時,較 佳者爲1〜2 0 %、5〜2 0重量%,更佳者爲1 0〜2 0重量%。 未達1重量%時,無法得到高反射率之效果。大於20重量 Φ %時,因螢光物導致薄膜的著色情形大,使用作爲液晶顯 示裝置之反射板時,引起顏色不吻合的情形。 螢光物 藉由含有螢光物之黏合劑組成物形成塗膜時,螢光物 係使用以400〜450nm之波長光激勵,使500〜600nm之 波長發光的螢光物。此係指本發明之螢光物的激勵波長爲 400〜450nm之範圍,且發光波長爲500〜60〇nm,惟激勵 波長不在該範圍內時,或發光波長不在該範圍內時,無法 -19 - 201015022 製得沒有著色情形且具備高反射率之反射薄膜。激勵波長 不在400〜450nm之範圍內,未達400nm之範圍時,使用 作爲反射板時,無法得到高的反射率;大於450nm之範圍 時’會有因吸收可見光而導致著色的情形,無法製得白色 的反射薄膜。發光波長不在500〜600nm之範圍內時,未 達500nm或大於600nm時’使用作爲液晶顯示裝置之反 射板時,無法得到反射率之提高效果,無法得到藉由螢光 物之亮度提高的效果。 本發明之螢光物’可爲由無機物質所形成的無機螢光 物,亦可爲由有機物質所形成的有機螢光物。本發明之螢 光物必須在經過長時間後仍可安定地進行螢光發光,必須 不會因紫外線而導致變質或分解的情形。螢光物變質或分 解時,會有薄膜變黃的情形’使用作爲液晶顯示裝置之反 射板時,變得無法正確地進行色再現。此外,螢光物變質 或分解時’螢光物變得不會發光,使用作爲液晶顯示裝置 之反射板時,會有因螢光物而導致亮度降低的情形。因此 ’本發明之螢光物’對有機螢光物而言以不易引起變質或 分解、且安定的無機螢光物較佳。 滿足有關上述激勵波長及發光波長之要件的無機營光 物,可使用具有岩鹽型結晶構造之鹼土類金屬硫化物,例 如以硫化鋅(ZnS)、硫化緦(SrS)、氧化紀(γ2〇2)爲 母體,且含有作爲賦活劑之鈾(Eu)或銅(Cu)的登光物 。此外’可使用以鋇•鎂·銘複合氧化物(Ba3MgAl1()017 )爲母體,含有作爲賦活劑之鈾(Eu)或鍤(Μη)之螢 •20- 201015022 光物。另外,可使用以磷酸鑭(LaP04 )作爲母體,含有 作爲賦活劑之Ce、Tb之螢光物。 無機螢光物之市售品,例如可使用綠色發光無機螢光 物2210(Kasei Optonix公司製,以ZnS爲母體,以Cu爲 賦活物質所形成)、紅色無機螢光物D1110 (根本特殊化 學(股)製’以Y2〇3爲母體,以Eu爲賦活物質所形成) 、藍色無機螢光物D1230(根本特殊化學(股)製,以 φ SrS爲母體,以Eu爲賦活物質所形成)、綠色無機螢光 物KX732A(Kasei Optonix公司製,以鋇•鎂•鋁複合氧 化物(Ba3MgAl1G017)爲母體,以Eu或Μη爲賦活物質所 形成)。 滿足有關上述激勵波長及發光波長之要件的有機螢光 物’例如可使用苠系螢光劑、二芪系螢光劑、苯并噁唑系 螢光劑、苯乙烯基·噁唑系螢光劑、吡喃•噁唑系螢光劑 、香豆素系螢光劑、咪唑系螢光劑、苯并咪唑系螢光劑、 〇 吡唑啉系螢光劑、胺基香豆素系螢光劑、二苯乙烯基-聯 苯系螢光劑、萘醯亞胺系螢光劑。於此等之中,就耐久性 高、反射率之提高效果高而言,以苯并噁唑系螢光劑、苯 乙烯基•噁唑系螢光劑、萘醯亞胺系螢光劑較佳,.具體而 言,以使用Eastbrite OB-1 ( Eastman公司製苯并噁哇系 螢光劑)、Uvitex-OB ( Ciba-Geigy公司製苯乙烯基•噁 哇系蛮光劑)、Lumogen green 850 (BASF公司製萘醯 亞胺系螢光劑)較佳。 -21 - 201015022 光線反射率及色度 本發明之照明裝置用反射薄膜的光線反射率、於塗膜 之黏合劑組成物中不含螢光物時,有關波長55 Onm之光, 較佳者亦爲96%以上。藉由反射率爲96%以上,可得高的 亮度。 本發明之照明裝置用反射薄膜,於塗膜之黏合劑組成 物中含有螢光物時,以C光源所測定的XYZ表色系的色 度,以x = 0.290〜0.3 30、y = 0.3 00〜0.340較佳。藉由該範 圍之色度,可製得含有螢光物且色再現性優異的照明裝置 用反射板、特別是液晶顯示裝置用反射板。 紫外線吸收劑 塗膜之黏合劑組成物,爲防止因紫外線產生惡化情形 時’以含有紫外線吸收劑較佳。本發明之紫外線吸收劑, 係使用具有紫外線吸收能力之物質。該物可爲有機化合物 ,亦可爲無機化合物;爲有機化合物時,例如二苯甲酮系 紫外線吸收劑、苯并***系紫外線吸收劑、三嗪系紫外線 吸收劑、丙烯酸氰酯系紫外線吸收劑、水楊酸系紫外線吸 收劑、苯甲酸酯系紫外線吸收劑、草酸醯替苯胺系紫外線 吸收劑。爲無機化合物時,例如可使用烷氧基甲矽烷基或 院醯基甲砍院基之院基胺甲醯基加成物的甲砍院基化改性 物、或2,4-二羥基二苯甲酮等之芳香族系紫外線吸收劑的 含羥基與環氧基之矽烷化合物的環氧基進行反應之甲砂院 基化改性的紫外線吸收劑。 -22- 201015022 塗膜之黏合劑組成物含有紫外線吸收劑時,其含量只 要是可防止有機螢光物惡化的量即可,因此含有必要量之 紫外線吸收劑。該量於紫外線吸收劑爲低分子型者時,以 黏合劑組成物之重量爲基準,較佳者爲1〜15重量%,更 佳者爲2〜5重量%。藉由含有該範圍,可有效地防止有機 螢光物因紫外線所導致惡化的情形,可製得沒有著色的塗 膜。 ^ 紫外線吸收劑亦可使用高分子型者。此時,例如可使 用具有具紫外線吸收能力之取代基的單體成分與其他單體 成分進行共聚合的共聚合聚合物。該共聚合聚合物例如以 使用藉由使苯并***系反應性單體與丙烯酸系單體共聚合 所製得的聚合物較佳。 紫外線吸收劑爲高分子型者時,具有具紫外線吸收能 力之取代基的單體之共聚合量,以構成共聚合聚合物之全 部單體的合計量爲基準,較佳者爲1 0重量%以上,更佳者 φ 爲2〇重量%以上,最佳者爲35重量%以上。當然,亦可 爲具有具紫外線吸收能力之取代基的單體之均聚物。未達 10重量%時’無法防止有機螢光物因紫外線所導致的惡化 情形。就製得強韌的塗膜而言,共聚合聚合物之分子量, 較佳者爲5000以上,更佳者爲10000以上,最佳者爲 20000以上。此等之共聚合聚合物,可以溶解或分散於有 機溶劑或水之狀態作爲塗液使用。而且,除此等以外,市 售的混合系紫外線吸收聚合物例如可使用UWR (日本觸 媒公司製)作爲紫外線吸收劑。 -23- 201015022 光安定劑 於塗膜之黏合劑組成物中,除紫外線吸收劑之外,更 可倂用光安定劑,就製得優異的耐久性而言較佳。此時, 光安定劑之配合量,以黏合劑組成物之重量爲基準,例如 爲0.1〜5重量%、較佳者爲〇.5〜3重量%。 光安定劑以受阻胺系光安定劑較佳。具體例如可使用 雙(2,2,6,6-四甲基-4-哌啶基)癸酸酯、琥珀酸二甲酯 • 1-(2-羥基乙基)-4-羥基-2,2,6,6-四甲基哌啶聚縮合物 由 。 藉估 , 評 3 中及 式述定 方下測 施於行 實進 [ ^ 方 述 下 以 且 而 ο 明 說 地 細 詳 例 施 〔實施例〕 (1 )相對亮度 Θ 評估於液晶顯示裝置中作爲反射板使用時之顯示裝置 的亮度。取出 Sony (股)製32吋電視(Bravia KDL-3 2V25 00 )之背光的反射薄膜,設置取代評估對象之薄膜 ,使用亮度計(大塚電子製Model MC_940 ) ’使背光之 中心自正面、以測定距離500mm測定亮度。以下述式求 取相對亮度。 相對亮度[Technical Field] The present invention relates to a reflective film used in a lighting device, which is a reflective film for an illumination device used as a reflective film of a backlight unit as a liquid crystal display device. . [Prior Art] The φ liquid crystal display device has a backlight method in which a light source is placed on the back surface of the backlight unit, and a backlight method in which a light source is placed on the side surface. In either case, in order to prevent light from the light source from escaping to the back side of the screen, a reflective film is provided on the back surface of the backlight unit. The reflective film is required to have a thin and high reflectance. In the past, the reflective film is a white film in which a white pigment is added to the polyester (Japanese Unexamined Patent Publication No. 2004-050479, No. 2004-330727), or a white film containing fine bubbles inside. Japanese Patent Publication No. 6-322153, JP-A-7-118433). In the liquid crystal display device of the backlight type, the improvement of the brightness can be achieved by increasing the reflectance of the reflective film to a certain extent, but there is a certain critical threshold when only the reflectance is increased. In addition to improving the reflectance of the film itself, the method of improving the brightness is to review the fluorescent whitening agent in the reaction film, and it is proposed to apply a fluorescent whitening agent on the surface of the reflective film (JP-A-2002-40214) . However, in general, since the backlight unit uses a cold cathode tube as a light source, when a fluorescent whitening agent is coated on the surface of a white film, the violet brightener can be caused by the purple -5-201015022 external line emitted from the self-cooling cathode line tube. Deteriorating 'loss of the effect of improving the temporal reflectivity. When the ultraviolet light absorber is used to prevent deterioration of the fluorescent whitening agent due to ultraviolet rays, the red fluorescent agent is not excited by the ultraviolet light absorber. Fluorescent whitening agent to improve the effect of reflectivity. SUMMARY OF THE INVENTION The present inventors focused on the fact that when the specular reflection of the reflective film is strong, the light source itself disposed in the backlight unit and in front of the reflective film, that is, between the reflective film and the display surface, returns to form reflected light, which causes the light to fail. When the display surface is reached, light loss occurs, which causes a decrease in brightness. The present invention provides a method of suppressing specular reflection by a reflective film, and reflecting the reflected light to avoid directivity of the front light source, and is used as a reflective film in a backlight unit of a liquid crystal display device of a backlight type. A reflective film for a luminance illumination device is a problem. A second object of the present invention is to provide a reflective film for an illumination device which is excellent in processability when used as a reflective film in a backlight unit of a liquid crystal display device of a backlight type. A third object of the present invention is to provide a reflective film for an illuminating device which can be used in a backlight unit of a liquid crystal display device of a backlight type, which is high in brightness and which has a small color mismatch, and which is yellowish over time. In other words, the reflective film for an illumination device of the present invention is characterized in that it is formed of a white film and a transparent protrusion having a height of 3 to 50 μm 201015022 provided on the surface of the white film, by the transparent protrusion of the surface of the white film. The coverage rate is 50~100%. In a preferred embodiment of the present invention, the transparent protrusions are formed of transparent particles, and the transparent particles having an exposure ratio of 5 to 100% on the surface of the reflective film are coated on the surface of the white film at a coverage of 50 to 100%. In other words, it is formed by a transparent protrusion having a height of 3 to 50 μm by a white film and a transparent particle covering the surface of the white film, and a transparent particle having an exposure ratio of 5 to 100% on the surface of the white film is 50 to 100%. A reflective film for an illumination device coated with a white film surface is preferably a preferred embodiment. [Effect of the Invention] According to the present invention, it is possible to provide a reflective film for an illumination device which can obtain high luminance when used as a reflective film in a backlight unit of a liquid crystal display device of a backlight type. According to the present invention, it is possible to provide a reflective film for an illumination device which is excellent in processability when used as a reflective film in a backlight unit of a liquid crystal display device of a backlight type. According to the third aspect of the present invention, when a reflective film is used in a backlight unit of a liquid crystal display device of a backlight type, a reflective film for a illuminating device which is high in brightness and inconsistent in color, and which is yellowish over time is suppressed. . [Best Mode for Carrying Out the Invention] Hereinafter, the present invention will be described in detail. 201015022 White film The white film of the present invention is formed of a thermoplastic resin and is a white film by containing a white coloring agent or a void forming material in the film. The thermoplastic resin constituting the film, such as polyester, polyolefin, or polystyrene, is preferably a polyester in terms of both mechanical properties and thermal stability. When polyester is used as the thermoplastic resin of the white film, the polyester is a polyester formed of a dicarboxylic acid component and a diol component. Examples of the dicarboxylic acid component are Φ such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4,-diphenyldicarboxylic acid, adipic acid, and sebacic acid. The diol component is, for example, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol or 1,6-hexanediol. Among the polyesters mentioned above, aromatic polyesters are preferred, and polyethylene terephthalate is more preferred. Polyethylene terephthalate may also be a homopolymer, but a copolymerized polymer is preferred. The white film may be formed of a single layer or may be formed of a plurality of layers. When the white film is formed of a plurality of layers, it is preferable to form a laminated film formed of a white reflective layer that reflects light and a support layer that carries the layer. In the laminated film, the white reflective layer is a layer containing a large number of voids, and the support layer is preferably a layer containing less or no voids. The polyester used in the white reflective layer is preferably a copolymerized polyester, and the ratio of the copolymerized component is based on the total dicarboxylic acid component, for example, 3 to 20% by mole, preferably 4 to 1 5 Moer%, and the better is 5 to 13 mol%. When the ratio of the copolymerization component is within this range, the white reflective layer containing a large number of voids can also have excellent film forming properties, and a white film excellent in thermal dimensional stability can be obtained. -8 - 201015022 When the white film is formed of a plurality of layers, the white reflective layer preferably contains a fluorescent material. In this case, the content of the phosphor is preferably from 0.1 to 7 % by weight based on the white reflective layer. By including the amount in the range, the white reflective layer is not colored by the light-emitting material, the brightness can be improved, and when a reflective film as an illumination device is used, a reflective film which can be reproduced in a correct color can be obtained. As the phosphor, any of inorganic phosphors and organic phosphors can be used. In order to maintain a stable fluorescent function after a long period of time, it is preferred to use inorganic fluorescent material. For the fluorescent substance, for example, the following description can be used. As the white colorant or the void-forming material used in the white film, for example, inorganic particles or organic particles can be used. The white colorant is preferably a white inorganic particle. When inorganic particles are used as the void-forming material, it is preferred to use white inorganic particles. White inorganic particles such as barium sulfate, titanium dioxide, cerium oxide, calcium carbonate particles. The average particle diameter of the inorganic particles is, for example, 0.2 to 3.0 μm, preferably 0.3 to 2.5 μm, and more preferably 0.4 to 2.0 μm. By using inorganic particles having a flat φ average particle diameter within the range, it can be appropriately dispersed in the polyester without causing aggregation of the particles, and a film having no coarse protrusions can be obtained, and the surface of the film is not too rough. The gloss can be controlled within an appropriate range. Further, the inorganic particles may be in any particle shape such as a plate shape or a spherical shape. The inorganic particles may also be subjected to a surface treatment for improving the dispersibility. When organic particles are used as the void-forming material, incompatible resin particles are used as the organic particles in the polyester. The organic particles are preferably polyaphthalene resin particles or polytetrafluoroethylene particles. The average particle diameter of the organic particles is, for example, 0.2 to ίο μπι, preferably 0.3 to 8.0 μηη, and more preferably 0.4 201015022 to 6. Ομιη. By using the organic particles in this range, it can be suitably dispersed in the polyester without causing aggregation of the particles, and a film having no coarse protrusions can be obtained. In terms of high luminance, the reflectance of the light reflectance of the white film at a wavelength of 550 nm is preferably 95% or more, more preferably 96% or more, and most preferably 97% or more. Transparent projection The reflective film for an illumination device of the present invention is formed of a white film and a transparent protrusion having a height of 3 to 50 μm provided on the surface of the film. The transparent projections may be provided continuously or discontinuously. In the present invention, the coverage of the surface of the white film by the transparent protrusions is 50 to 100%, preferably 60 to 100%, preferably 70 to 100%, and more preferably 8 0 to 0. 1 0 0 %. When the coverage rate is less than 50%, the directivity of the light from the front light source is impaired, and the brightness cannot be expected. In the present invention, the coverage ratio is a measurement range in which the total length of the measurement range of 3 mm for each wavelength in the vertical direction of the film is 6 mm, and the ratio of the surface of the white film to the transparent protrusion is defined in the measurement range. Specifically, a sheet slicing device was used, and a sliced surface was cut into a sliced surface in the thickness direction of the film, and an S-4700-shaped electric field discharge scanning electron microscope manufactured by Hitachi, Ltd. was used, and the sample and the sliced sample were observed at a magnification of 3000 times. The measurement range in which the total length of the measurement range of 3 mm in the vertical direction of the film in the film plane was 6 mm was observed, and the length of the portion in the cumulative measurement field 201015022 which was not covered by the transparent protrusion was obtained by the following formula. Coverage ratio = (6mm - (accumulated length of the portion without the transparent protrusion (mm))) / 6mmx 100 (%) and the 'largest diameter portion of the transparent protrusion is exposed to the outside from the surface of the coating film' is the largest of the transparent particles The portion covered by the diameter is covered with a transparent protrusion. Φ Transparent protrusions can be formed from transparent substances, and can also be formed from any substance of organic matter and inorganic matter. Further, 'a mixture of an organic substance and an inorganic substance can be formed' or a composite of an organic substance and an inorganic substance can be formed. The light transmittance of the substance forming the transparent projection is, for example, 50% or more, preferably 60% or more, and more preferably 70% or more. The transparent protrusions can absorb light in the visible light range to prevent coloration. The shape of the transparent protrusion, such as a dome shape or a pyramid shape, a pyramid shape other than the pyramid shape, such as a triangular pyramid shape, a hexagonal φ cone shape, an octagonal hammer shape, preferably a dome shape or a pyramid shape, and more preferably The best is the shape of the dome. The protrusion of the dome shape may be a protrusion having a convex convex surface, and it is preferable to have a hemispherical surface, a partial spherical surface or a spheroidal ellipsoidal surface, and a hemispherical surface is more preferable. The hemispherical surface does not necessarily have to be half of the ball, as long as a part of the spherical surface protrudes convexly from the surface, which is equivalent to a dome-shaped protrusion. The pyramid shape means that the quadrangular pyramid-shaped transparent protrusion has a pyramid shape, and the length of one side of each pyramid bottom surface is preferably 5 to 50 μm. By forming the length of one side of the range, it is possible to prevent the protrusion from falling off, without impairing the effect of imparting the -11 - 201015022 property to the reflected light. The shape of the pyramid is preferably a full quadrangular pyramid, but one of the quadrangular pyramids may also have a shape in which the apex is cut off, for example. In the present invention, the height of the transparent protrusions is 3 to 50 μm. When the height is less than 3 μm, the directivity of light cannot be obtained. When the height exceeds 50 μm, the protrusions are detached, and the effect of imparting directivity to the reflected light is significantly changed by the design of the backlight (i.e., the position of the light source). When the transparent protrusion has a dome shape, the average diameter of each of the dome-shaped bottom surfaces is preferably 5 to 50 μm. By forming the average diameter of the range, it is preferable to prevent the protrusion from falling off without impairing the directivity imparted to the reflected light. When it is in the shape of a dome, the optimum shape is hemispherical. As the organic substance forming the transparent protrusion, for example, a UV curable resin, a thermosetting resin, an acrylic resin, a polysiloxane resin, a styrene resin, or a urethane resin can be used. Acrylic resin and styrene resin are preferred because there is almost no light absorption in the visible light range. The inorganic material forming the transparent protrusion is preferably glass. For example, the transparent protrusion may be formed by disposing a thermosetting resin or a UV curable resin in a mold conforming to the shape of the protrusion on the film, and forming it by thermal curing or UV curing, for example, by bonding the transparent particles. The agent is formed on the surface of the white film. The former method is a preferred method for forming the protrusions in the shape of a pyramid; the latter method is a preferred method for forming a dome-shaped projection as described in detail below. When a UV curable resin is used as the curable resin, a -12-201015022 compound containing a reactive group such as a (meth) acrylonitrile group, a vinyl group or an epoxy group can be used, and UV irradiation can be used. A compound of a reactive species of a radical or a cation obtained by reacting the reactive group-containing compound. In terms of the rate of hardening, a compound (monomer) which combines a reactive group containing an unsaturated group such as a (meth) acrylonitrile group or a vinyl group, and a photo radical polymerization which generates a radical by UV light are used. The agent is preferred. (Meth)acrylonitrile compound, such as phenoxyethyl (meth)acrylate, phenoxy-2-methylethyl (meth)acrylate, phenoxy φ ethoxylate (meth)acrylate Ester, 3-phenoxy-2-hydroxypropyl (meth)acrylate, 2-phenylphenoxyethyl (meth)acrylate, 4-phenylphenoxyethyl (meth)acrylate, ( 3-(2-phenylphenyl)-2-hydroxypropyl methacrylate, (meth) acrylate of P- cumenylphenol reacted with ethylene oxide, bisphenol A with ethylene oxide addition Bisphenol A (meth) acrylate, propylene oxide addition bisphenol A (meth) acrylate, bisphenol A diglycidyl ether and (meth)acrylic acid bisphenol A (methyl) A bisphenol F (meth)acrylic acid epoxy ester obtained by ring-opening reaction of an epoxy acrylate, bisphenol F diglycidyl ether and (meth)acrylic acid with an epoxy φ group. The projection formed by the transparent particles The transparent projection in the reflective film for an illumination device of the present invention is preferably formed by a transparent particle coated on the surface of the white film and coated on the surface of the white film. In other words, the reflective film for an illumination device of the present invention is preferably formed of a white film and transparent particles coated on the surface of the white film. The transparent particles are formed by curved surfaces when the light is collected. - 201015022 The shape of the face and the plane. For the shape, for example, a spherical shape, an olive spherical shape, or a convex lens shape can be used. In order to effectively increase the luminance, it is preferable that the aspect ratio is 3 or less, and it is more preferable that the aspect ratio is 1.2 or less. A more preferred shape is a spherical particle. Moreover, the aspect ratio is a long diameter/short diameter. Next, the particle size of the transparent particles is determined to be an average of the long diameter and the short diameter when the transparent particles are not spherical. The size of the transparent particles forming the transparent protrusions is an average particle diameter measured by an electron microscope, for example, 3 to 50 μm, preferably 5 to 50 μm, more preferably 7 to 45 μm, and particularly preferably 8 to 40 μm. The best one is 10~3 0 μιη. By using transparent particles having an average particle diameter in this range, a transparent protrusion having a height of 3 to 50 μm can be formed, and directivity of light can be easily controlled, and particles are less likely to fall off, and strip coating is less likely to occur during coating. _ trapping, made a reflective film. The transparent particles are determined by a particle size distribution meter, and the volume 50% particle diameter D50 is 3 to 50 μm, and the ratio of the volume 10% particle diameter D10 to the volume 90% particle diameter D90 is D10/D90 of 0.30 to 0.98, preferably 0.30 to 0.70. _ By setting the ratio D10/D90 within this range, particles having a small particle size are not embedded in the binder, and brightness enhancement can be imparted, and particles having a large particle diameter can be prevented from falling off. The larger the ratio of D 1 0/D9 0 , the more pronounced the particle size distribution, and since the particles having a single particle diameter are not easily obtained, the upper limit 比 of D10/D90 is, for example, 0.98. When the transparent protrusions are formed into transparent protrusions, the relationship between the height of the protrusions and the particle diameter of the transparent particles, for example, when transparent protrusions are formed using transparent particles having an average particle diameter of 20 μm, the transparent particles are carried in a white film in a state in which half of the particles are buried in the binder. When it is above, the height of the transparent protrusion is 10 μm. At almost the end -14-201015022, it was not embedded in the adhesive, and when carried on a white film, the height of the transparent protrusion was 20 μm. When the transparent protrusion is formed of transparent particles, the transparent protrusion formed by the transparent particles is 50 to 100%, preferably 60 to 100%, more preferably 70 to 1%, and most preferably 80 to 100. The coverage of % is covered with a white film surface. In other words, the reflective film of the present invention is a reflective film formed of a white film and transparent particles coated on the surface of the white film, and a transparent particle having an exposure ratio of 5 to 100% on the surface of the φ of the reflective film is 50 to 100%. The coverage is covered with a white film surface. When the coverage ratio by the transparent particles is less than 50%, the directivity of light is impaired, and improvement in luminance cannot be expected. In the present invention, the coverage of the white film by the transparent particles is such that the total length of the measurement range of 3 mm in each of the two perpendicular directions in the film plane is 6 mm, and white is measured within the measurement range. The ratio of the film-coated transparent particles is defined. Specifically, regarding the use of the slicer, the slice direction sample 1 is cut out by arbitrarily selecting one direction of the film surface and the thickness direction of the film as the cut surface, and the direction perpendicular to one direction is arbitrarily selected in the slice sample 1. And the thickness of the film is used as the cut surface, and the sliced sample 2 is cut out, and the length of the coated surface of the adhesive of the sliced sample 1 is 3 mm, and the length of the coated surface of the adhesive of the sliced sample 2 is 3xnm. The measurement range of the total length of the range of 6 mm was observed at a magnification of 3000 times using an S-4700 electric field discharge scanning electron microscope manufactured by Hitachi, Ltd., and the accumulation was not transparent in the measurement range in the cut surface of the sliced sample. The length of the portion of the surface of the film covered with the particles is obtained by the following formula (see Fig. 7). -15- 201015022 Coverage ratio by transparent particles = (6mm - (accumulated length of the portion not covered by transparent particles (mm))) /6mmxl00 (° / 〇) Moreover, the maximum of transparent particles on the cut surface When the diameter portion is exposed to the outside from the surface of the coating film, the portion covered with the largest diameter of the transparent particles is regarded as a portion covered by the transparent particles, and the largest diameter portion of the transparent particles is exposed to the coating film when the surface of the coating film is exposed to the inside. In the middle, the maximum diameter of the dome-shaped projection in the portion where the self-coating film is exposed to the outside in the transparent particles is formed as a portion covered by the particles. When the coverage is obtained from the transparent particles, the transparent particles used for coating the surface of the white film are transparent particles partially or entirely exposed on the surface of the reflective film. The exposure means that the exposure ratio defined by the present invention is 5 to 100%, preferably 10 to 100%, and more preferably 20 to 100%. When the transparent particles are not treated with the transparent particles having an exposure rate of less than 5% as described above, when the exposure rate is less than 5%, the light collecting effect by the exposed particles of the object of the present invention cannot be obtained. In a preferred embodiment, the transparent particles are carried on the surface of the white film by a coating film of a binder disposed on the surface of the white film. Therefore, some of the transparent particles are attached or sunk into the coating film of the binder. Further, the exposure rate is 100%, which is attached to the cut surface to connect the surface of the white film and the surface of the transparent particles, and is carried by the adhesive on the surface of the white film; the exposure rate is 0%, which is transparent on the cut surface. The state in which the particles completely sink into the coating film of the adhesive provided on the surface of the white film; the exposure rate is 50%, and the adhesion of half of the transparent particles on the cut surface is buried on the surface of the white film - 16-201015022 In the coating film, half of the residual component protrudes from the outside of the coating film. When a more accurate exposure ratio is defined, the exposure ratio is such that when a straight line perpendicular to the coating film surface of the film is drawn through the center of the cross section of the transparent particles in the cut surface of the sliced sample, the straight line is in the cut surface of the film slice Among the two points intersecting the surface of the transparent particle, the point on the surface on the exposed side is S, and the point on the surface on the unexposed side is T, and the point at which the straight line intersects the coating surface of the adhesive is B, The distance between S and B) / (the distance between S and T) is shown. In other words, the exposure rate (%) is defined by the following formula. Exposure rate = (distance between S and B) / (distance between S and T) X1 00 (%) Further, the center of the cross section of the transparent particles in the plane is cut, and the center of the circle is the particle when the particle is spherical; When it is non-spherical, it is the center of gravity of the section. As the transparent particles, any one of inorganic transparent particles and organic transparent particles can be used. These can also use several kinds of particles. The transparent particles are φ. The light transmittance of the raw material itself is 50% or more, preferably 60% or more, more preferably 70% or more, and it is preferable that the organic transparent particles are not absorbed in the visible light range. For example, acrylic particles, polyoxyalkylene particles, or styrene particles can be used. Since there is almost no absorption of light in the visible light range, acrylic particles and styrene particles are preferred. Further, as the inorganic transparent particles, for example, glass particles can be used. The transparent particles forming the transparent protrusions can be carried on the white film in the vertical direction of the film, without overlapping of the particles, and the transparent particles can be carried under the overlap of the white -17-201015022 film in the vertical direction. In the latter case, 2 to 30 transparent particles having a particle diameter of 5 to ΙΟΟ μη may be contained in a direction perpendicular to the film surface from the surface of the white film to the surface of the transparent particle layer. At this time, the 'transparent particle layer is such that the transparent particles are bonded to each other by the binder' to be carried on the white film. At this time, the height of the transparent projection is determined by measuring the height from the reference surface to the apex by the apex of the transparent particle located on the outermost surface of the transparent particle layer and the reference surface of the adhesive supporting the object. At this time, the reference surface of the adhesive is such that the transparent particles on the outermost surface are coated from the lower side (ie, near the side of the white film) to the surface of the adhesive carrying the other transparent particles, and the surface adhesive is averaged to carry the transparent particles on the surface of the white film. As the binder of the adhesive coating film, acrylic acid, polyester resin, polyurethane, polyester amide resin, polyolefin resin, copolymer or mixture of these may be used. The binder may be crosslinked by an isocyanate-based, melamine-based or epoxy-based crosslinking agent in addition to the above-mentioned binder. When the coating film of the binder does not contain the fluorescent material, the amount of the binder relative to 100 parts by weight of the transparent particles is, for example, 5 to 200 parts by weight, preferably 10 to 100 parts by weight, more preferably 10 to 10 parts by weight. 70 parts by weight. By the ratio of the range, the particles can be prevented from falling off, and the light collecting effect by the transparent particles can be obtained. Further, the commercially available adhesive is sold in a form in which a solid component of an adhesive such as an acrylic resin is dissolved in a solvent, but the amount of the adhesive of the coating film of the present invention -18-201015022 is in the dried coating film. The amount of solid component of the binder. The coating film of the adhesive preferably contains a fluorescent material. In other words, in the present invention, the transparent particles are preferably supported on the white film by a coating film comprising a binder composition containing a binder and a phosphor. When the phosphor composition contains a fluorescent material, the ratio of the transparent particles carried on the surface of the film to the adhesive composition of the coating film is preferably a film which can effectively increase the brightness and obtain a film having no particles falling off. The composition of the Q-bonding agent is 70 to 30 parts by weight based on 30 to 70 parts by weight of the transparent particles. Further, the binder composition is a solid component weight other than the solvent. When the binder composition contains a phosphor, the content of the phosphor is preferably in the range of x = 0.290 to 0.330 and y = 0.30 to 0.340 of the XYZ color system of the reflective film measured by the C light source. Therefore, the content of the phosphor in the binder composition is preferably from 1 to 20%, from 5 to 20% by weight, more preferably from 10 to 2%, based on the weight of the binder composition. weight%. When it is less than 1% by weight, the effect of high reflectance cannot be obtained. When it is more than 20% by weight Φ%, the coloring of the film is caused by the phosphor, and when the reflector is used as a liquid crystal display device, color mismatch is caused. Fluorescent material When a coating film is formed by a binder composition containing a fluorescent material, the fluorescent material is a fluorescent material which is excited by light having a wavelength of 400 to 450 nm to emit light at a wavelength of 500 to 600 nm. This means that the excitation wavelength of the phosphor of the present invention is in the range of 400 to 450 nm, and the emission wavelength is 500 to 60 nm, but when the excitation wavelength is out of the range, or the emission wavelength is out of the range, it is impossible to - 201015022 A reflective film with high reflectivity and no high reflectivity is produced. When the excitation wavelength is not in the range of 400 to 450 nm, when it is less than 400 nm, when it is used as a reflector, high reflectance cannot be obtained. When it is larger than 450 nm, it may be colored due to absorption of visible light, and it cannot be obtained. White reflective film. When the emission wavelength is not in the range of 500 to 600 nm, when it is less than 500 nm or more than 600 nm, when the reflector is used as a liquid crystal display device, the effect of improving the reflectance cannot be obtained, and the effect of improving the luminance of the phosphor cannot be obtained. The phosphor ' of the present invention may be an inorganic phosphor formed of an inorganic substance or an organic phosphor formed of an organic substance. The fluorescent material of the present invention must be stable in fluorescence emission after a long period of time, and must not be deteriorated or decomposed by ultraviolet rays. When the phosphor is deteriorated or decomposed, the film may become yellow. When using a reflector as a liquid crystal display device, color reproduction cannot be performed accurately. Further, when the phosphor is deteriorated or decomposed, the phosphor does not emit light, and when the reflector is used as a liquid crystal display device, the luminance may be lowered due to the phosphor. Therefore, the fluorescent material of the present invention is preferably an inorganic fluorescent material which is less likely to cause deterioration or decomposition of the organic fluorescent material and which is stable. An inorganic campsite having a rock salt type crystal structure, such as zinc sulfide (ZnS), strontium sulfide (SrS), or oxidized (γ2〇2), may be used for the inorganic campsite that satisfies the requirements of the excitation wavelength and the emission wavelength. ) is a parent and contains a luminal (Eu) or copper (Cu) as an activator. In addition, it is possible to use a bismuth-magnesium-containing composite oxide (Ba3MgAl1()017) as a precursor, and contains uranium (Eu) or strontium (Μη) as an activator. Further, a phosphor having lanthanum phosphate (LaP04) as a precursor and containing Ce and Tb as an activator can be used. For the commercially available product of the inorganic phosphor, for example, a green light-emitting inorganic phosphor 2210 (manufactured by Kasei Optonix Co., Ltd., ZnS as a precursor, Cu as an active material), and a red inorganic phosphor D1110 (a fundamental special chemical ( The stock system is made up of Y2〇3 as the parent body and Eu as the active material.) Blue inorganic phosphor D1230 (manufactured by the special chemical system) with φ SrS as the parent and Eu as the active material. , Green inorganic phosphor KX732A (Kasei Optonix company, made of 钡•Magnesium·Aluminum composite oxide (Ba3MgAl1G017) as the parent, Eu or Μη as the active material). An organic phosphor that satisfies requirements for the excitation wavelength and the emission wavelength can be, for example, a lanthanum-based phosphor, a dioxon-based fluorescer, a benzoxazole-based fluorescer, or a styryl-oxazole-based fluorescing agent. Agent, pyran-oxazole-based fluorescent agent, coumarin-based fluorescent agent, imidazole-based fluorescent agent, benzimidazole-based fluorescent agent, pyridazole-based fluorescent agent, and amino-based coumarin-based fluorescent agent A light agent, a distyryl-biphenyl type fluorescent agent, and a naphthoquinone imide type fluorescent agent. Among these, benzoxazole-based fluorescent agents, styryl-oxazole-based fluorescent agents, and naphthoquinone-based fluorescent agents are more excellent in durability and high improvement in reflectance. Preferably, in particular, use Eastbrite OB-1 (Benzene-based fluorescing agent manufactured by Eastman Co., Ltd.), Uvitex-OB (styrene-based odorant based on Ciba-Geigy), Lumogen green 850 (a naphthylimine-based fluorescent agent manufactured by BASF Corporation) is preferred. -21 - 201015022 Light reflectance and chromaticity The light reflectance of the reflective film for illuminating device of the present invention, when the adhesive composition of the coating film does not contain the fluorescent material, the light having a wavelength of 55 Onm is preferably More than 96%. By having a reflectance of 96% or more, high luminance can be obtained. In the reflective film for an illumination device of the present invention, when the fluorescent material is contained in the adhesive composition of the coating film, the chromaticity of the XYZ color system measured by the C light source is x = 0.290 to 0.330, y = 0.3 00. ~0.340 is preferred. By the chromaticity of the range, it is possible to obtain a reflector for an illumination device which contains a fluorescent material and which is excellent in color reproducibility, in particular, a reflector for a liquid crystal display device. UV absorber The binder composition of the coating film is preferably contained in order to prevent deterioration due to ultraviolet rays. The ultraviolet absorber of the present invention is a substance having an ultraviolet absorbing ability. The material may be an organic compound or an inorganic compound; in the case of an organic compound, for example, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, a triazine-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber. Agent, salicylic acid-based ultraviolet absorber, benzoate-based ultraviolet absorber, oxalic acid anilide-based ultraviolet absorber. In the case of an inorganic compound, for example, an alkoxymethyl sulfonyl group or a sulfhydryl-based hydrazino group-based modified product of a sulfhydryl-based carbaryl group or a 2,4-dihydroxy group can be used. An ultraviolet absorber containing a hydroxyl group and an epoxy group of an epoxy group-containing decane compound of an aromatic ultraviolet absorber such as benzophenone. -22- 201015022 When the binder composition of the coating film contains an ultraviolet absorber, the content thereof is only an amount which prevents deterioration of the organic phosphor, and therefore contains a necessary amount of the ultraviolet absorber. When the amount is such that the ultraviolet absorber is a low molecular weight, it is preferably from 1 to 15% by weight, more preferably from 2 to 5% by weight based on the total mass of the binder composition. By including this range, it is possible to effectively prevent the organic phosphor from being deteriorated by ultraviolet rays, and a coating film which is not colored can be obtained. ^ UV absorbers can also be used in high molecular weight. In this case, for example, a copolymerized polymer obtained by copolymerizing a monomer component having a substituent having an ultraviolet absorbing ability with another monomer component can be used. The copolymerized polymer is preferably used, for example, by using a polymer obtained by copolymerizing a benzotriazole-based reactive monomer with an acrylic monomer. When the ultraviolet absorber is a polymer type, the copolymerization amount of the monomer having a substituent having an ultraviolet absorbing ability is preferably 10% by weight based on the total amount of all monomers constituting the copolymerized polymer. More preferably, φ is 2% by weight or more, and most preferably 35% by weight or more. Of course, it may also be a homopolymer of a monomer having a substituent having ultraviolet absorbing ability. When it is less than 10% by weight, it is impossible to prevent the deterioration of the organic fluorescent material due to ultraviolet rays. In the case of producing a strong coating film, the molecular weight of the copolymerized polymer is preferably 5,000 or more, more preferably 10,000 or more, and most preferably 20,000 or more. These copolymerized polymers can be used as a coating liquid in a state of being dissolved or dispersed in an organic solvent or water. In addition, a commercially available mixed ultraviolet absorbing polymer, for example, UWR (manufactured by Nippon Shokubai Co., Ltd.) can be used as the ultraviolet absorbing agent. -23- 201015022 Light stabilizer In the binder composition of the coating film, in addition to the ultraviolet absorber, the light stabilizer can be used, and it is preferable to obtain excellent durability. In this case, the blending amount of the photosensitizer is, for example, 0.1 to 5% by weight, preferably 5% to 3% by weight based on the weight of the binder composition. The light stabilizer is preferably a hindered amine light stabilizer. Specifically, for example, bis(2,2,6,6-tetramethyl-4-piperidyl) phthalate, dimethyl succinate, 1-(2-hydroxyethyl)-4-hydroxy-2, 2,6,6-tetramethylpiperidine polycondensate. By means of the evaluation, the evaluation of the method of 3 and the formula is applied to the implementation of the method [^, and the details of the example are given [1] relative brightness Θ evaluated in the liquid crystal display device. The brightness of the display device when the reflector is in use. Remove the reflective film of the backlight of the 32-inch TV (Bravia KDL-3 2V25 00) made by Sony, and set the film to replace the evaluation object. Use the luminance meter (Model MC_940 from Otsuka Electronics) to make the center of the backlight from the front. The brightness was measured at a distance of 500 mm. The relative brightness is obtained by the following formula. Relative brightness

=(評估對象之薄膜的亮度)/(基準薄膜之亮度)X -24- 201015022 10 0 ( % ) 作爲基準薄膜所使用的薄膜,係評估結果所記載的表 而不同。使用下述薄膜作爲基準薄膜。 表1:沒有設置透明突起的比較例1-1之薄膜。 表2:沒有設置由透明粒子所成之突起的比較例2-1 之薄膜。 表3:沒有設置由透明粒子所成之突起的比較例3d 0 之薄膜。 表4:塗膜之黏合劑中不含螢光物之參考例1_丨之薄 膜。 表5 :沒有設置由透明粒子所成之突起的比較例5 _ i 之薄膜。 (2 )透明的突起 (2-1)由透明突起所成之薄膜的被覆率 〇 使用薄膜切片機、以薄膜之厚度方向爲切斷面切成切 片作爲試樣。使用日立製作所製S-4700形電場放出形掃 描電子顯微鏡以倍率3000倍觀察該切片試樣。進行觀察 有關薄膜面內垂直的兩方向之各長度3mm的測定範圍之 合計長度爲6mm之測定範圍,於測定範圍內累積沒有被 透明突起所被覆的部分之長度,以下述式求取。 被覆率 =(6mm-(沒有被覆透明粒子的部分之累積長度( mm) ) ) /6mmxl00(%) -25- 201015022 (2-2)透明突起之高度 以薄膜表面爲基準面,有關20個任意的透明突起, 測定頂點之高度,以此等之平均値作爲透明突起之高度。 而且’透明突起以透明粒子所形成,且透明粒子埋於黏合 劑時’以黏合劑之表面爲基準面。高度之測定,係使用薄 片切片機’自薄膜切出切片試樣,有關該試樣係使用光學 顯微鏡以300倍進行觀察且照相。 (3)形成突起之透明粒子 (3-1)透明粒子之平均粒徑 使用日立製作所製S-4700形電場放出形掃描電子顯 微鏡以倍率1 000倍測定任意1 00個添加於樹脂前(原料 )之粒子,求取平均粒徑。粒子不爲球狀時,以(長徑+ 短徑)/2作爲平均粒徑。 (3-2)透明粒子之縱橫比 使用日立製作所製S-4700形電場放出形掃描電子顯 微鏡以倍率500倍觀察任意30個露出的粒子,由長徑、 短徑計算以下述式求取的平均値。 縱橫比=長徑/短徑 (3-3)透明粒子之D50 以粒度分布計(堀場製作所製LA-950 ),求取原料 -26- 201015022 之透明粒子的粒度分布,以形成過篩物累計百分比爲5〇 重量%之粒徑爲D50。 (3-4)透明粒子之D10/D90 以粒度分布計(堀場製作所製LA-950 ),求取原料 之透明粒子的粒度分布,以形成過篩物累計百分比爲1〇 重量%之粒徑爲D10,以形成過篩物累計百分比爲90重量 _ %之粒徑爲D90,求取D10/D90。 (4)白色薄膜之無機粒子及有機粒子的平均粒徑 白色薄膜之無機粒子及有機粒子的平均粒徑,以粒度 分布計(堀場製作所製LA-950 ),求取原料之粒子的粒 度分布,以d50之粒徑作爲平均粒徑。 (5 )塗膜之厚度 φ 使薄膜試樣之截面使用數位顯微鏡(HIROX Co. Ltd., HI-SCOPE Advanced KH-3000 )、以倍率 5 倍觀察、照相 ,由照片判斷黏合劑之厚度,測定任意的1 〇點,求取此 等之平均値。 (6)薄膜之厚度 (6-1 )薄膜之厚度 使薄膜試樣以電子顯微鏡測定器(Anritsu製K-402B ),測定1 0點之厚度,以平均値作爲薄膜之厚度。 -27- 201015022 (6-2)薄膜之各層厚度 使試樣切成三角形,固定於包埋膠囊後,以環氧樹脂 包埋。然後,經包埋的試樣以薄片切片機(ULTRACUT-S )朝縱方向進行薄膜切片形成平行截面後,使用光學顯微 鏡進行觀察、照相,由照片測定各層之厚度比例,自薄膜 全體之厚度計算,求取各層之厚度。 (7 )透明粒子之露出率 使用薄片切片機,自薄膜切出切片試樣1與切片試樣 2。切片試樣1係在薄膜內面任意選擇一方向、與以薄膜 之厚度方向爲切斷面下所切出的切片試樣;切片試樣2係 與在切片試樣1中任意選擇與一方向垂直的方向、及以薄 膜之厚度方向爲切斷面下所切出的切片試樣。 有關切片試樣1之黏合劑的塗膜面之長度3mm的範 圍、與切片試樣2之黏合劑的塗膜面之長度3mm的範圍 的合計長度爲6mm之測定範圍,使用日立製作所製 S-4700形電場放出形掃描電子顯微鏡以倍率3000倍進行觀 察。 露出率係於通過切片試樣之切斷面內透明粒子之截面 的中心,引出垂直於薄膜之塗膜面的直線時,該直線於薄 膜切片之切斷面內、與透明粒子之表面相交的2點中,以 露出側之表面上的點爲S,以沒有露出側之表面上的點爲 T,前述之直線與黏合劑之塗膜面相交的點爲B時,以(S 與B間之距離)/ (S與T間之距離)表示。 -28- 201015022 換言之,露出率(%)係以下述式予以定義。 露出率 =(S與B間之距離)/(S與T間之距離)χίοο ( %) 而且,切斷面內透明粒子之截面的中心,粒子爲球狀 時’爲其截面之圓中心;粒子爲非球狀時,爲其截面之重 心。 Φ (8)薄膜表面上由透明粒子所成的被覆率 有關以上述(7 )所得的切片試樣1及2進行評估。 有關切片試樣1之黏合劑的塗膜面之長度3mm的範 圍、與切片試樣2之黏合劑的塗膜面之長度3mm的範圍 之合計長度爲6mm的測定範圍,使用日立製作所製S-4700形電場放出形掃描電子顯微鏡,以倍率3〇〇〇倍進行 觀察。 被覆率係於切片試樣之切斷面內測定範圍內,累計沒 Ο 有被透明粒子被覆之薄膜表面的部分之長度,以下述式求 取(參照第1圖)。 被覆率 =(6mm~ (沒有被透明粒子被覆的部分之累計長度 (mm ) ) ) /6mmxl 00 ( % ) (9 )延伸性 以縱方向2.5〜3.4倍、縱方向3.5〜3.7倍進行延伸 製作薄膜時’觀察是否可安定地進行製膜,且以下述基 -29 - 201015022 準進行評估。 〇:可安定地進行製膜1小時以上 X :在1小時以內產生切斷情形,無法安定地製膜 (1 0 )經時變黃性 在薄膜之試樣上照射高壓水銀燈(Harrison Toshiba Lighting製「T〇scure401」:附有玻璃過濾器),評估試 樣之顏色變化。以該評估之照射時間爲50小時,且評估 _ 照射前後之顏色變化。照射之放射照度爲1 8mW/cm2。而 且,薄膜之構成爲在支持層之一側上設置反射層者時,自 反射層側進行測定。 各以色差計(日本電色工業製 SZS-S90 COLOR MEAEURING SYSTEM )測定初期之薄膜色相(L! *、a, * 、b,)、與照射後之薄膜色相(L2*、a2*、b2* ),且計 算以下述式所示之色相變化dE*,以下述基準進行評估。 dE* ⑩ = {(L,*-L2*) 2+ (a,*-a2*) 2+ (bi*-b2*) 2}1/2 ◎ : dE* ^ 5 〇:5 < dE* ^ 1 0 Δ : 10 < dE* ^ 1 5 X : 1 5 < d E * (11)是否有藉由400〜5 OOnm之光的激勵發光與發 光波峰波長 -30- 201015022 在塗佈有螢光物之面上入射光,測定螢光光譜。測定 係使用螢光光度計F-45 00 (日立製),進行有關激勵波長 400〜450nm、發光波長3 8 0〜7 8 Onm之範圍,觀察是否有 藉由激勵之螢光發光情形,有螢光發光情形時,求取來自 發光光譜之發光波峰波長。 (12) 是否有粒子脫落的情形 φ 使具有厚度2mm、寬度20mm之直角邊的丙稀酸板以 荷重300g垂直押附於薄膜試樣之反射面上,以30mm之 距離來回10次。以目視確認此時是否有粉體附著於丙烯 酸板的情形,且以下述之基準進行評估。 〇:確認幾乎完全沒有粉體產生 X :可確認有粉體產生 (13) 亮度提高率及亮度維持率 φ (13-1)作爲反射板之亮度提高率 在背光中組裝薄膜進行測定及評估。使用的背光係於 評估使用的液晶電視(SHARP公司製AQUOS-20V)時所 使用的正下方型背光(對角線2 0吋)單元,取代原有組 裝的光反射薄片,組裝測定對象之薄膜。測定係使背光面 分成2x2之4個區域,藉由求取點燈1小時後之正面亮度 予以進行。 亮度係使用T 〇 p c ο η公司製之B Μ - 7進行測定。測定角 爲1°’亮度計與背光之距離爲50cm。使背光面以通過背 -31 - 201015022 光面之中心、平行於背光面之寬度方向的直線,與通過背 光面之中心、平行於背光面之縱方向的直線分割成4份, 以經分割的各範圍之中心爲測定點。 各測定4個測定點之亮度且求取單純平均値,作爲平 均亮度。亮度提高率係使用以螢光材料塗佈前後之薄膜所 求取的平均亮度,以下述式計算。 亮度提高率 =(螢光材料塗佈後之平均亮度)/(螢光材料塗佈 _ 前之平均亮度)χίοο ( %) (13-2)藉由耐久性試驗之亮度維持率 在組裝有評估對象之薄膜的狀態下,進行使上述之背 光於點燈下經時3 000小時的耐久性試驗。以下述式求取 亮度維持率。 亮度維持率 =(耐久性試驗後之平均亮度)/(耐久性試驗前之 @ 亮度)X 1 0 0 ( % ) (14)色度 (14-1 )作爲反射板之色度差 測定及評估組裝有薄膜之背光。所使用的背光,係於 評估使用的液晶電視(SHARP公司製AQUOS-20V )時所 使用的正下方型背光(對角線20吋)單元,取代原有組 裝的光反射薄片,組裝測定對象之薄膜。測定係使背光面 -32- 201015022 分成2x2之4個區域,藉由求取點燈1小時後之正面亮度 予以進行。 色度係使用Topcon公司製之BM-7進行測定。測定角 爲1°,亮度計與背光之距離爲5 0cm。使背光面以通過背 光面之中心、平行於背光面之寬度方向的直線,與通過背 光面之中心、平行於背光面之縱方向的直線分割成4份, 以經分割的各範圍之中心爲測定點。 φ 各測定4個測定點之色度(x、y),且求取單純平均 値,作爲平均色度(x、y)。求取平均色度(x、y)與基 準色(x=0.300、y=0.310)之距離,且求取色度差Axy 〇 △ x=基準座標(χ=0·300 ) _測定座標(X) △ y=基準座標(y=0.310)—測定座標(y) △ xy= ( Δ x2 + Ay2 ) 1/2 以下述之基準評估所求得的Axy。 φ © : Δχγ< 0.005 〇 : 0.005 ^Axy < 0.010 x : 0.010^ Δχγ (Μ-2)藉由耐久性試驗之色度差 在組裝有評估對象之薄膜的狀態下,進行使上述之背 光點燈下經時3 000小時的耐久性試驗。耐久性試驗前之 平均色度(X、y)與耐久性試驗後之平均色度(X、y)的 距離以下述式求取且進行評估。 -33- 201015022 △ 耐久性試驗前座標(X) -耐久性試驗後座標(X) △ y=耐久性試驗前座標(y) -耐久性試驗後座標(y) Δχγ = ( Δχ2 + Ay2) 1/2 以下述之基準評估所求得的Axy。 :Axy < 0.005 〇:0.005 ^ Δχγ < 0.010 X : Ο.ΟΙΟ^Δχγ (14-3 )藉由C光源之色度 以色差計(日本電飾製SZS-S90 COLOR MEAEURING SYSTEM ),使用C光源進行測定。 (1 5 )光線反射率 在分光光度計(島津製作所製UV-3101PC)中設置積 分球,以波長550nm測定以BaS04白板爲100%時之光線 反射率。 @ (16)塗膜成分與白色薄膜 塗膜之成分如下所述。表中,「重量%」記載爲 wt%」〇 <透明粒子•突起形成物質> MBX-50SS : 積水化成品工業公司製平均粒徑50μιη之透明丙 -34- 201015022 烯酸粒子 MBX-30SS : 積水化成品工業公司製平均粒徑3 0μπι之透明丙 烯酸粒子 MBX-20SS : 積水化成品工業公司製平均粒徑20μιη之透明丙 烯酸粒子 ®MBX*15SS - 積水化成品工業公司製平均粒徑1 5 μιη之透明丙 烯酸粒子 ΜΒΧ-1 2SS : 積水化成品工業公司製平均粒徑12μπι之透明丙 烯酸粒子 MBX-10SS : 積水化成品工業公司製平均粒徑ΙΟμιη之透明丙 0 稀酸粒子 ΜΒΧ-50 : 積水化成品工業公司製平均粒徑50μιη之透明丙 烯酸粒子 ΜΒΧ-30 : 積水化成品工業公司製平均粒徑3 0 μιη之透明丙 烯酸粒子 ΜΒΧ-20 : 之透明丙 積水化成品工業公司製平均粒徑20μιη -35- 201015022 烯酸粒子 MBX-1 5 : 積水化成品工業公司製平均粒徑15μΠ1之透明丙 烯酸粒子 ΜΒΧ-12 : 積水化成品工業公司製平均粒徑12μιη之透明丙 烯酸粒子 ΜΒΧ'8 : ⑩ 積水化成品工業公司製平均粒徑8μηι之透明丙烯 酸粒子 ΜΒΧ-5 : 積水化成品工業公司製平均粒徑5μιη之透明丙烯 酸粒子 J-120 := (brightness of the film to be evaluated) / (brightness of the reference film) X - 24 - 201015022 10 0 ( % ) The film used as the reference film differs depending on the table described in the evaluation results. The following film was used as the reference film. Table 1: Film of Comparative Example 1-1 in which no transparent protrusions were provided. Table 2: Film of Comparative Example 2-1 in which no protrusions made of transparent particles were provided. Table 3: Film of Comparative Example 3d 0 in which no protrusions made of transparent particles were provided. Table 4: Reference film 1_丨 thin film containing no fluorescent material in the adhesive of the coating film. Table 5: Film of Comparative Example 5_i which was not provided with protrusions made of transparent particles. (2) Transparent protrusion (2-1) Covering ratio of film formed by transparent protrusion 〇 A slice was cut into a cut piece using a film slicer in the thickness direction of the film as a sample. The sliced sample was observed at a magnification of 3000 times using an S-4700 electric field discharge scanning electron microscope manufactured by Hitachi. Observation The measurement range in which the total length of the measurement range of 3 mm in each of the two perpendicular directions in the film surface was 6 mm was measured, and the length of the portion which was not covered by the transparent projection was accumulated in the measurement range, and was obtained by the following formula. Coverage ratio = (6mm - (accumulated length of the portion without the transparent particles (mm))) /6mmxl00(%) -25- 201015022 (2-2) The height of the transparent protrusion is based on the surface of the film, about 20 arbitrary The transparent protrusions measure the height of the apex, and the average 値 is used as the height of the transparent protrusion. Further, when the transparent protrusion is formed of transparent particles and the transparent particles are buried in the adhesive, the surface of the adhesive is used as a reference surface. For the measurement of the height, a sliced sample was cut out from the film using a thin slicer, and the sample was observed and photographed at 300 times using an optical microscope. (3) The transparent particles forming the protrusions (3-1) The average particle diameter of the transparent particles was measured by using an S-4700 electric field emission-type scanning electron microscope manufactured by Hitachi, Ltd., at a magnification of 1,000 times, and any one of them was added before the resin (raw material). The particles are taken to obtain an average particle diameter. When the particles are not spherical, (long diameter + short diameter) / 2 is used as the average particle diameter. (3-2) The aspect ratio of the transparent particles was observed by using an S-4700 electric field discharge scanning electron microscope manufactured by Hitachi, Ltd., to observe any 30 exposed particles at a magnification of 500 times, and the average value obtained by the following formula was calculated from the long diameter and the short diameter. value. Aspect ratio = long diameter / short diameter (3-3) D50 of transparent particles. The particle size distribution (LA-950, manufactured by Horiba, Ltd.) was used to determine the particle size distribution of the transparent particles of the raw material -26-201015022 to form a cumulative sieve. The particle size as a percentage of 5% by weight is D50. (3-4) D10/D90 of transparent particles The particle size distribution of the transparent particles of the raw material was determined by the particle size distribution (LA-950, manufactured by Horiba, Ltd.) to form a particle size of 1% by weight of the cumulative percentage of the sieve. D10, to form a sieve with a cumulative percentage of 90% by weight, the particle size is D90, and D10/D90 is obtained. (4) Average particle diameter of the inorganic particles and the organic particles of the white film The average particle diameter of the inorganic particles and the organic particles of the white film is determined by the particle size distribution (LA-950, manufactured by Horiba, Ltd.), and the particle size distribution of the particles of the raw material is determined. The particle diameter of d50 is taken as the average particle diameter. (5) Thickness of coating film φ The cross section of the film sample was observed by a digital microscope (HIROX Co. Ltd., HI-SCOPE Advanced KH-3000) at a magnification of 5 times, and the thickness of the adhesive was determined from the photograph. For any 1 point, ask for the average 値. (6) Thickness of film (6-1) Thickness of film The film sample was measured by an electron microscope measuring instrument (K-402B manufactured by Anritsu), and the thickness of 10 points was measured, and the average 値 was used as the thickness of the film. -27- 201015022 (6-2) Thickness of each layer of the film The sample was cut into triangles, fixed in an embedding capsule, and embedded in epoxy resin. Then, the embedded sample was sliced in a longitudinal direction by a slicer (ULTRACUT-S) to form a parallel cross section, and then observed and photographed using an optical microscope, and the thickness ratio of each layer was measured from the photograph, and the thickness was calculated from the thickness of the entire film. , to determine the thickness of each layer. (7) Exposure rate of transparent particles The sliced sample 1 and the sliced sample 2 were cut out from the film using a sheet slicer. The sliced sample 1 is arbitrarily selected in one direction on the inner surface of the film, and a sliced sample cut out under the cut surface in the thickness direction of the film; the sliced sample 2 is arbitrarily selected and one direction in the sliced sample 1. The vertical direction and the sliced sample cut out under the cut surface in the thickness direction of the film. The measurement range of the range of 3 mm in length of the coating film surface of the adhesive of the sliced sample 1 and the total length of the coating film surface of the sliced sample 2 in the range of 3 mm was 6 mm, and the S-made by Hitachi, Ltd. was used. The 4700-shaped electric field emission scanning electron microscope was observed at a magnification of 3000 times. The exposure rate is obtained by passing the line perpendicular to the coating film surface of the film through the center of the cross section of the transparent particle in the cut surface of the sliced sample, and the straight line intersects the surface of the transparent particle in the cut surface of the film slice. In the two points, the point on the surface on the exposed side is S, and the point on the surface on the unexposed side is T, and the point where the straight line intersects the coating surface of the adhesive is B, (between S and B) The distance) / (distance between S and T) is expressed. -28- 201015022 In other words, the exposure rate (%) is defined by the following formula. Exposure rate = (distance between S and B) / (distance between S and T) χίοο (%) Further, the center of the cross section of the transparent particle in the plane is cut, and when the particle is spherical, it is the center of the circle of the cross section; When the particle is non-spherical, it is the center of gravity of its cross section. Φ (8) Coverage ratio of transparent particles on the surface of the film The evaluation was carried out on the sliced samples 1 and 2 obtained in the above (7). The measurement range of the length of the coating film surface of the adhesive sample of the sliced sample 1 of 3 mm and the total length of the coating film surface of the sliced sample 2 of 3 mm was 6 mm, and the S-made by Hitachi, Ltd. was used. A 4700-shaped electric field emission scanning electron microscope was observed at a magnification of 3 〇〇〇. The coverage ratio is within the measurement range of the cut surface of the sliced sample, and the length of the portion of the surface of the film covered with the transparent particles is accumulated, and is obtained by the following formula (see Fig. 1). Coverage ratio = (6mm~ (accumulated length of the portion not covered by the transparent particles (mm))) /6mmxl 00 ( % ) (9) The elongation is extended by 2.5 to 3.4 times in the longitudinal direction and 3.5 to 3.7 times in the longitudinal direction. In the case of the film, it was observed whether or not the film formation was carried out stably, and it was evaluated in the following basis -29 - 201015022. 〇: The film can be stably set for 1 hour or more. X: The cutting is caused within 1 hour, and the film cannot be stably formed. (10) Yellowing over time. High-pressure mercury lamp is irradiated on the sample of the film (made by Harrison Toshiba Lighting) "T〇scure401": with a glass filter) to evaluate the color change of the sample. The irradiation time for this evaluation was 50 hours, and the color change before and after the irradiation was evaluated. The illuminance of the irradiation was 18 mW/cm2. Further, when the film is formed such that a reflective layer is provided on one side of the support layer, the measurement is performed from the side of the reflective layer. The initial film hue (L!*, a, *, b,) and the film hue after irradiation (L2*, a2*, b2*) were measured by a color difference meter (SZS-S90 COLOR MEAEURING SYSTEM, manufactured by Nippon Denshoku Industries Co., Ltd.). And, the hue change dE* shown by the following formula was calculated and evaluated based on the following criteria. dE* 10 = {(L,*-L2*) 2+ (a,*-a2*) 2+ (bi*-b2*) 2}1/2 ◎ : dE* ^ 5 〇:5 < dE* ^ 1 0 Δ : 10 < dE* ^ 1 5 X : 1 5 < d E * (11) Whether there is excitation light and luminescence wavelength of -30-201015022 by light of 400~500 nm The light is incident on the surface of the phosphor, and the fluorescence spectrum is measured. The measurement system uses a fluorescence photometer F-45 00 (manufactured by Hitachi Ltd.) to perform a range of excitation wavelengths of 400 to 450 nm and an emission wavelength of 380 to 7 8 Onm, and observe whether or not there is a fluorescent light by excitation. In the case of light illumination, the wavelength of the luminescence peak from the luminescence spectrum is obtained. (12) Whether or not particles are detached φ An acrylic plate having a right-angled side having a thickness of 2 mm and a width of 20 mm is vertically attached to the reflecting surface of the film sample at a load of 300 g, and is fed back and forth 10 times at a distance of 30 mm. It was visually confirmed whether or not powder adhered to the acrylic plate at this time, and was evaluated on the basis of the following criteria. 〇: It is confirmed that almost no powder is produced. X: Powder formation is confirmed. (13) Brightness improvement rate and brightness retention rate φ (13-1) Brightness improvement rate of the reflection plate The film is assembled and evaluated in the backlight. The backlight used is a direct-type backlight (diagonal 20 吋) unit used in the evaluation of the liquid crystal television (AQUOS-20V manufactured by SHARP), and the film of the measurement object is assembled instead of the originally assembled light-reflecting sheet. . The measurement was performed by dividing the backlight surface into 4 regions of 2x2, and performing the front luminance after one hour of lighting. The brightness was measured using B Μ - 7 manufactured by T 〇 p c ο η. The measurement angle was 1°' and the distance between the luminance meter and the backlight was 50 cm. The backlight surface is divided into four lines by a straight line passing through the center of the back-31 - 201015022 smooth surface parallel to the width direction of the backlight surface, and a straight line passing through the center of the backlight surface and parallel to the longitudinal direction of the backlight surface, to be divided into four. The center of each range is the measurement point. The brightness of the four measurement points was measured for each and a simple average 値 was obtained as the average luminance. The brightness improvement rate is calculated by the following formula using the average brightness obtained by the film before and after coating with the fluorescent material. Brightness improvement rate = (average brightness after coating of fluorescent material) / (average brightness before coating of fluorescent material) χίοο ( %) (13-2) Evaluation of brightness retention by durability test in assembly In the state of the film of the object, the above-mentioned backlight was subjected to a durability test for 3,000 hours under lighting. The brightness maintenance ratio was obtained by the following formula. Brightness maintenance rate = (average brightness after durability test) / (@ brightness before durability test) X 1 0 0 ( % ) (14) Chromaticity (14-1) as chromaticity difference measurement and evaluation of reflector A backlight with a film assembled. The backlight used is a direct-back type backlight (diagonal 20 吋) unit used for evaluation of a liquid crystal television (AQUOS-20V manufactured by SHARP), and the measurement object is assembled instead of the originally assembled light-reflecting sheet. film. In the measurement system, the backlight surface -32 - 201015022 was divided into four regions of 2x2, and the front luminance after one hour of lighting was determined. The chromaticity was measured using BM-7 manufactured by Topcon Corporation. The measurement angle is 1°, and the distance between the luminance meter and the backlight is 50 cm. The backlight surface is divided into four lines by a straight line passing through the center of the backlight surface and parallel to the width direction of the backlight surface, and a line passing through the center of the backlight surface and parallel to the longitudinal direction of the backlight surface, and the center of each divided range is Measuring point. φ The chromaticity (x, y) of each of the four measurement points was measured, and a simple average 値 was obtained as the average chromaticity (x, y). Find the distance between the average chromaticity (x, y) and the reference color (x = 0.300, y = 0.310), and find the chromaticity difference Axy 〇 △ x = the reference coordinate (χ = 0.300) _ measurement coordinates (X △ y = reference coordinate (y = 0.310) - measurement coordinate (y) Δ xy = ( Δ x2 + Ay2 ) 1/2 The obtained Axy is evaluated on the basis of the following. φ © : Δχγ < 0.005 〇: 0.005 ^Axy < 0.010 x : 0.010^ Δχγ (Μ-2) By the chromaticity difference of the durability test, in the state in which the film to be evaluated is assembled, the above-mentioned backlight point is performed. Durability test of 3,000 hours under the lamp. The distance between the average chromaticity (X, y) before the durability test and the average chromaticity (X, y) after the durability test was determined by the following formula and evaluated. -33- 201015022 △ Durability test front coordinate (X) - Durability test coordinate (X) △ y = Durability test front coordinate (y) - Durability test coordinates (y) Δχγ = ( Δχ2 + Ay2) 1 /2 The Axy obtained is evaluated on the basis of the following. :Axy < 0.005 〇: 0.005 ^ Δχγ < 0.010 X : Ο.ΟΙΟ^Δχγ (14-3) By using the color of the C light source as a color difference meter (SZS-S90 COLOR MEAEURING SYSTEM), use C The light source is measured. (1 5 ) Light reflectance An integrating sphere was placed in a spectrophotometer (UV-3101PC manufactured by Shimadzu Corporation), and the light reflectance at a wavelength of 550 nm when the BaS04 whiteboard was 100% was measured. @ (16) Coating composition and white film The composition of the coating film is as follows. In the table, "% by weight" is described as wt%"〇<transparent particles•protrusion forming material> MBX-50SS: Transparent propylene-34-201015022 olefinic acid particle MBX-30SS having an average particle diameter of 50 μm : Sekisui Chemicals Co., Ltd. Transparent acrylic particles MBX-20SS with an average particle size of 30 μπι: Transparent acrylic particles with an average particle size of 20 μιη manufactured by Sekisui Chemicals Co., Ltd. MBX*15SS - Sekisui Chemicals Co., Ltd. Transparent acrylic particles of ιιηΜΒΧ1 2SS : Transparent acrylic granules of average particle size of 12μπι MBX-10SS manufactured by Sekisui Chemicals Co., Ltd.: Transparent granules of average particle size ΙΟμιη made by Sekisui Chemicals Co., Ltd. 稀-50: Hydrogenated water Transparent Acrylic Particles 平均-30 with an average particle size of 50μιη 化 : : : : : : : : : : : : : 透明 透明 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : -35- 201015022 Ethyl acid particle MBX-1 5 : Transparent film with an average particle size of 15μΠ1 manufactured by Sekisui Chemicals Co., Ltd. Acrylic acid ΜΒΧ-12 : Transparent acrylic granules with an average particle size of 12μηη produced by Sekisui Kogyo Shogi Co., Ltd. 88: 10 Transparent acryl particle ΜΒΧ-5 of average particle size 8μηι manufactured by Sekisui Kogyo Shogi Co., Ltd.: Sekisui Chemicals Co., Ltd. Transparent acrylic particles J-120 having an average particle diameter of 5 μm:

Potters-Ballotini公司製平均粒徑 1〇5μιη之透明 玻璃粒子 _ ΜΧ- 1 000 : 綜硏化學公司製平均粒徑1 Ομιη之透明丙烯酸粒 子 ΜΧ-1 50 : 綜硏化學公司製平均粒徑2μπι之透明丙烯酸粒子 MR-20G : 綜硏化學公司製平均粒徑20μηι之透明交聯丙烯 酸粒子 -36- 201015022 MR-10G : 綜硏化學公司製平均粒徑ΙΟμιη之透明交聯丙烯 酸粒子 <黏合劑> S2740 :日本觸媒公司製UWR S2740 由固成分之丙烯酸樹脂50重量%與揮發性有機溶劑 φ 50重量%所形成的丙烯酸黏合劑Transparent glass particles with an average particle size of 1〇5μιη manufactured by Potters-Ballotini _ ΜΧ - 1 000 : Transparent acrylic particles with an average particle size of 1 Ομιη manufactured by Kyoritsu Chemical Co., Ltd. ΜΧ-1 50 : Average particle size of 2μπι Transparent Acrylic Particles MR-20G : Transparent Crosslinked Acrylic Particles with Average Particle Size of 20μηι, manufactured by Lianhe Chemical Co., Ltd. -36- 201015022 MR-10G : Transparent Crosslinked Acrylic Particles with Average Particle Diameter ΙΟμιη, <Adhesives> S2740: UWR S2740 made by Nippon Shokubai Co., Ltd. Acrylic adhesive formed from 50% by weight of solid acrylic resin and 50% by weight of volatile organic solvent

Α807ΒΑ : DIC 公司製 AcrydicA807BA 由固成分之丙烯酸樹脂50重量%與揮發性有機溶劑 50重量%所形成的丙烯酸黏合劑 <交聯劑>Α807ΒΑ : Acrydic A807BA made by DIC Corporation Acrylic adhesive formed from 50% by weight of solid acrylic resin and 50% by weight of volatile organic solvent < Crosslinking agent>

HL:日本聚胺基甲酸酯工業公司Coronate HL 由固成分之交聯劑75重量%與揮發性有機溶劑25 φ 重量%所形成的交聯劑 <螢光物>HL: Coronate HL of Japan Polyurethane Industry Co., Ltd. Crosslinking agent formed by solid content crosslinking agent 75 wt% and volatile organic solvent 25 φ wt% <fluorescent matter>

OB-1 : Eastman 公司製 Eastbrite OB-1 Green8 50 : BASF 公司製 Lumogen Green 850 Uvitex-OB: Ciba-Geigy 公司製 Uvitex-OB <溶劑> MEK :甲基乙酮 -37- 201015022 實施例及比較例中沒有特別限制者,使用由含有空隙 形成劑之硫酸鋇粒子的聚酯組成物所形成的反射層、與由 聚酯所形成的支持層等合計2層所構成的薄膜總厚度 225μιη 之白色薄膜(帝人 Dupont film 製 Teijintex UX02-225反射層之反射率98.5% )作爲白色薄膜。OB-1: Eastbrite OB-1 Green8 50 manufactured by Eastman Co., Ltd.: Lumogen Green 850 manufactured by BASF Corporation Uvitex-OB: Uvitex-OB <solvent> manufactured by Ciba-Geigy Co., Ltd. MEK: methyl ethyl ketone-37-201015022 Example and In the comparative example, the total thickness of the film formed by using two layers of a reflective layer formed of a polyester composition containing barium sulfate particles containing a void-forming agent and a support layer formed of polyester or the like is 225 μm. A white film (reflectance of 98.5% of the reflection layer of Teijintex UX02-225 made by Teijin Dupont film) was used as a white film.

實施例1 -1 在白色薄膜之反射層上,在塑模塗佈裝置中以wet厚 度20g/m2之塗佈量塗佈由下述之調液配方所示之組成所 形成的塗液後,在烤箱內進行乾燥,製得反射薄膜。 調液配方1 - η •突起形成物質:積水化成品工業公司MBX-20SS ( 38重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 20重量%) •交聯劑:Β本聚胺基甲酸酯工業公司Coronate HL ( 2重量% ) Q •有機溶劑:醋酸丁酯 (40重量% ) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 實施例1-2 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度10g/m2之塗佈量塗佈之外,與實施 例1 -1相同地,製得反射薄膜。 -38- 201015022 調液配方1-2 ) •突起形成物質:積水化成品工業公司MBX-1 OSS ( 30重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 28重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量% ) •有機溶劑:醋酸乙醋 (40重量% ) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 參 實施例1-3 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度25g/m2之塗佈量塗佈之外,與實施 例1 -1相同地,製得反射薄膜。 調液配方1 - 3 ) •突起形成物質:積水化成品工業公司MBX-30SS ( 32重量%) φ •丙烯酸黏合劑:DIC公司Acrydic A807BA (25重量% ) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:甲基乙酮 (40重量% ) 所得的反射薄膜之組成如表1 - 2所示,評估結果如表 1 - 3所示。 實施例1-4 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度30g/m2之塗佈量塗佈之外,與實施 -39- 201015022 例1 -1相同地,製得反射薄膜。 調液配方1 -4 ) •突起形成物質:積水化成品工業公司MBX-50SS ( 25重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 38重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸乙酯 (34重量%) 所得的反射薄膜之組成如表1-2所示,評估結果如表 1 - 3所示。 實施例1 - 5 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度15g/m2之塗佈量塗佈之外,與實施 例1 -1相同地,製得反射薄膜。 調液配方1_5 ) •突起形成物質:積水化成品工業公司MBX-15SS ( 19重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 37重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 4重量% ) •有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 實施例1 - 6 -40- 201015022 在白色薄膜之反射層全面上完全沒有空隙下,形成四 角錐型之突起。換言之,使由下述之調液配方所示之組成 所形成的塗液流入於四角錐形狀的SUS製模具中,於其上 密著白色薄膜,以高壓水銀燈(Harrsion Toshiba Lighting 製 Toscure)照射UV光,使塗液予以硬化,在l〇〇°C之 烤箱中進行乾燥,在白色薄膜之反射面全面上形成四角錐 ,製得反射薄膜。反射薄膜之大小,符合評估相對亮度時 參所使用的Sony (股)製32吋電視(Bravia KDL-32V2500 )之背光的反射薄膜之大小。形成四角錐型之突起時所使 用的模具之四角錐部分的典型圖如第1圖所示。 調液配方1-6) 紫外線硬化樹脂 • Daicel UC 公司 EB3700 (雙酚A型丙烯酸環氧酯) (25重量%) •新中村化學公司BPE200 φ (環氧乙烯加成雙酚A甲基丙烯酸酯)(8重量% ) •第一製藥工業公司BR-3 1 (丙烯酸三溴化苯氧基乙酯) (42重量% ) •東.亞合成公司Μ -1 1 0 (使環氧乙烯反應的Ρ-枯烯基苯酚之(甲基)丙烯 酸酯) (8重量% ) •BASF製LR8893C自由基產生劑) (1重量%) •甲基乙酮 (1 6重量%) 評估結果如表1-3所不。 -41 - 201015022 實施例1-7 在白色薄膜上、於塑模塗佈裝置中以wet 15g/m2之塗 佈量塗佈於實施例1-6中調液配方6之組成的塗液後,在 薄膜之塗佈面上使用如第2圖所示之設有稜鏡狀凹凸的乳 輥,在塗佈層上形成凹凸的狀態下,以高壓水銀燈( Harrsion Toshiba Lighting 製 Toscure)照射 UV 光予以硬 化,在100°c之烤箱中進行乾燥,作成稜鏡形狀。 而且,於該實施例之相對亮度的測定中,在稜鏡之流 動方向與背光之光源的冷陰極管平行下,設置反射薄膜。 評估結果如表1 - 3所示。 實施例1 - 8 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度15g/m2之塗佈量塗佈之外,與實施 例1 -1相同地,製得反射薄膜。 調液配方1 - 8 ) •突起形成物質:積水化成品工業公司MBX-20SS ( 38重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 20重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL (2重量。/〇) •螢光物:Eastman 公司 Eastbrit OB-1 ( 3.4 重量 %) •有機溶劑··醋酸丁酯 (36.6重量% ) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1-3所示。 •42- 201015022 實施例1-9 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度15g/m2之塗佈量塗佈之外’與實施 例1 -1相同地,製得反射薄膜。 調液配方1-9) •突起形成物質:積水化成品工業公司MBX-20SS ( 38重量%) U ·丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 20重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量%) •螢光物:BASF 公司 Lumogen Green 850 ( 2.3 重量%) •有機溶劑:醋酸丁酯 (37.7重量%) 所得的反射薄膜之組成如表1-2所示,評估結果如表 1 - 3所示。 實施例1 -1 〇 ❹ 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度15g/m2之塗佈量塗佈之外,與實施 例1 -1相同地,製得反射薄膜。 調液配方1 -1 0 ) •突起形成物質:積水化成品工業公司MBX-20SS ( 38重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 20重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量%) •登光物:Ciba-Geigy 公司 Uvitex-OB ( 2.3 重量% ) -43- 201015022 •有機溶劑:醋酸丁酯 (37·7重量%) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 比較例1 -1 沒有在白色薄膜上塗佈塗液外,評估薄膜。評估結果 如表1 - 3所示。 比較例1 - 2 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以 wet厚度40g/m2之塗佈量塗佈外,與實施例 1 -1相同地,製得反射薄膜。 調液配方1 -7 ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 57重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量%) .有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 卜3所示。 比較例1-3 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液,且以wet厚度2g/m2之塗佈量塗佈外’與實施例1 · 1相同地,製得反射薄膜。 -44 - 201015022 調液配方1 - 8 ) •突起形成物質:綜硏化學公司MX-150 ( 30重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 27重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL (3重量% ) •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 比較例1-4 除使塗液改爲由下述之調液配方所示之組成所形成的 塗液’且以wet厚度80g/m2之塗佈量塗佈外,與實施例 1 -1相同地,製得反射薄膜。 調液配方1 - 8 ) φ •突起形成物質:Potters-Ballotini公司J-120 ( 30重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 27重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量%) •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表1 -2所示,評估結果如表 1 - 3所示。 比較例1 - 5 除使塗 '液改爲由下述之調液配方所示之組成所形成的 -45- 201015022 塗液,且以wet厚度40g/m2之塗佈量塗佈外,與實施例 1-1相同地,製得反射薄膜。 調液配方1-9 ) •突起形成物質:積水化成品工業公司MBX-50 ( 3重量%) •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 50重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (44重量%) 所得的反射薄膜之組成如表1 - 2所示,評估結果如表 1-3所示。 比較例1-6 除在白色薄膜之反射層上設置的稜鏡形狀改爲如第3 圖所示之形狀外’與實施例1-6相同地製得在反射層上設 置有稜鏡之反射薄膜。評估結果如表1-3所示。 比較例1-7 除在白色薄膜之反射層上設置的稜鏡形狀改爲如第4 圖所示之形狀外’與實施例1 -7相同地製得表面經加工的 薄膜。評估結果如表1-3所示。 -46- 201015022Example 1-1 On a reflective layer of a white film, after applying a coating liquid having a composition shown by the following formulation, a coating thickness of 20 g/m 2 in a mold coating apparatus was applied. Drying in an oven produces a reflective film. Liquid adjustment formula 1 - η • Protrusion forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-20SS (38% by weight) • Acrylic adhesive: Nikon S2740 (20% by weight) of Japan Catalyst • Crosslinking agent: Polyamine Formate Coronate HL (2% by weight) Q • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Example 1-2 Except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of wet thickness of 10 g/m 2 , and Example 1-1. Similarly, a reflective film was produced. -38- 201015022 Liquid adjustment formula 1-2) • Protrusion forming substance: MBX-1 OSS (30% by weight) of Sekisui Chemicals Co., Ltd. • Acrylic adhesive: UWR S2740 (28% by weight) of Japan Catalyst Co., Ltd. • Crosslinking agent : Japan Polyurethane Co., Ltd. Coronate HL (2% by weight) • Organic solvent: ethyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Shown. Reference Example 1-3 In addition to the coating liquid formed by changing the coating liquid to the composition shown by the following liquid preparation formula, and coating with a coating thickness of wet thickness of 25 g/m 2 , and Example 1 - In the same manner, a reflective film was produced. Liquid adjustment formula 1 - 3 ) • Protrusion forming substance: Sekisui finished product company MBX-30SS (32% by weight) φ • Acrylic adhesive: DIC company Acrydic A807BA (25% by weight) • Crosslinking agent: Japanese polyamine Acid ester industry company Coronate HL (3% by weight) • Organic solvent: methyl ethyl ketone (40% by weight) The composition of the obtained reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Example 1-4 Except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of wet thickness of 30 g/m 2 , and -39-201015022 was carried out. In the same manner as in Example 1-1, a reflective film was obtained. Liquid adjustment formula 1 -4 ) • Protrusion forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-50SS (25% by weight) • Acrylic adhesive: Nippon Catalyst UWR S2740 (38% by weight) • Crosslinking agent: Japanese polyamine Formate Coronate HL (3% by weight) • Organic solvent: ethyl acetate (34% by weight) The composition of the resulting reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Example 1 - 5 Example 1 - 5 except that the coating liquid was changed to a coating liquid formed of the composition shown by the following liquid preparation formula, and coated with a coating thickness of wet thickness of 15 g/m 2 , and Example 1-1. Similarly, a reflective film was produced. Liquid adjustment formula 1_5) • Protrusion forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-15SS (19% by weight) • Acrylic adhesive: Nikon S2740 (37% by weight) from Japan Catalyst • Crosslinking agent: Japanese polyurethane Ester industry company Coronate HL (4% by weight) • Organic solvent: butyl acetate (4% by weight) The composition of the resulting reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Example 1 - 6 -40 - 201015022 A quadrangular pyramid-shaped projection was formed on the entire reflective layer of the white film without any void at all. In other words, the coating liquid formed by the composition shown in the liquid preparation formulation described below was poured into a SUS mold having a quadrangular pyramid shape, and a white film was adhered thereto, and UV was irradiated with a high pressure mercury lamp (Toscure manufactured by Harrsion Toshiba Lighting). Light, the coating liquid is hardened, dried in an oven at 10 ° C, and a quadrangular pyramid is formed on the reflective surface of the white film to obtain a reflective film. The size of the reflective film is the size of the reflective film of the backlight of the 32-inch TV (Bravia KDL-32V2500) made by Sony. A typical view of the quadrangular pyramid portion of the mold used to form the quadrangular pyramid type projection is shown in Fig. 1. Formulation 1-6) UV Curing Resin • Daicel UC EB3700 (bisphenol A acrylate epoxy) (25% by weight) • New Nakamura Chemical Co., Ltd. BPE200 φ (epoxyethylene addition bisphenol A methacrylate) ) (8 wt%) • First pharmaceutical industry company BR-3 1 (phenoxyethyl bromoethyl bromide) (42% by weight) • East. Synthetic Company Μ -1 1 0 (Reactive ethylene oxide) (Methyl acrylate of Ρ-cumenylphenol) (8% by weight) • LR8893C free radical generator manufactured by BASF) (1% by weight) • Methyl ethyl ketone (16% by weight) Evaluation results are shown in Table 1- 3 no. -41 - 201015022 Example 1-7 After applying a coating liquid of the composition of the liquid preparation formula 6 of Example 1-6 on a white film in a mold coating apparatus at a coating amount of wet 15 g/m 2 , On the coated surface of the film, a latex roll having a ridge-like unevenness as shown in FIG. 2 was used, and UV light was irradiated with a high-pressure mercury lamp (Toscure manufactured by Harrsion Toshiba Lighting) in a state where irregularities were formed on the coating layer. It is hardened and dried in an oven at 100 ° C to form a crucible shape. Further, in the measurement of the relative luminance of this embodiment, a reflective film was provided in parallel with the cold cathode tube of the light source of the backlight in the flow direction of the crucible. The evaluation results are shown in Table 1-3. Example 1 - 8 Example 1 - 1 except that the coating liquid was changed to a coating liquid formed of the composition shown by the following liquid preparation formula, and coated with a coating thickness of wet thickness of 15 g/m 2 , and Example 1-1. Similarly, a reflective film was produced. Liquid adjustment formula 1 - 8 ) • Protrusion forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-20SS (38% by weight) • Acrylic adhesive: Nikon S2740 (20% by weight) from Japan Catalyst • Crosslinker: Japanese polyamine Formate Coronate HL (2 wt./〇) • Fluorescent: Eastman Company Eastbrit OB-1 (3.4% by weight) • Organic solvent · Butyl acetate (36.6 wt%) The composition of the resulting reflective film is as follows Table 1-2 shows the evaluation results as shown in Table 1-3. • 42- 201015022 Example 1-9 In addition to changing the coating liquid to a coating liquid formed by the composition shown in the following liquid preparation formula, and coating with a coating thickness of 15 g/m 2 of wet thickness, In the same manner as in Example 1-1, a reflective film was obtained. Liquid-Reducing Formulation 1-9) • Protrusion-forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-20SS (38% by weight) U · Acrylic Adhesive: Nippon Catalyst Company UWR S2740 (20% by weight) • Crosslinking agent: Japanese polyamine Coronate HL (2% by weight) • Fluorescent: BASF Lumogen Green 850 (2.3% by weight) • Organic solvent: butyl acetate (37.7 wt%) The composition of the resulting reflective film is shown in Table 1- As shown in 2, the evaluation results are shown in Table 1-3. Example 1 -1 〇❹ In addition to the coating liquid formed by changing the coating liquid to the composition shown by the following liquid preparation formula, and coating with a coating thickness of wet thickness of 15 g/m 2 , and Example 1 Similarly, a reflective film was produced. Liquid adjustment formula 1 -1 0 ) • Protrusion forming substance: Sekisui Chemicals Industrial Co., Ltd. MBX-20SS (38% by weight) • Acrylic adhesive: Nippon Catalyst UWR S2740 (20% by weight) • Crosslinking agent: Japanese polyamine Coronate HL (2% by weight) • Dengguang: Ciba-Geigy Uvitex-OB (2.3% by weight) -43- 201015022 • Organic solvent: butyl acetate (37.7% by weight) The composition of the reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Comparative Example 1-1 A film was evaluated without applying a coating liquid on a white film. The evaluation results are shown in Table 1-3. Comparative Example 1 - 2 The same as Example 1-1 except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of 40 g/m 2 of wet thickness. A reflective film is produced. Formulation 1 -7 ) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (57% by weight) • Crosslinker: Japanese Polyurethane Industry Coronate HL (3% by weight). Organic Solvent: Acetic Acid The composition of the resulting reflective film of the ester (4% by weight) is shown in Table 1-2, and the evaluation results are shown in Table 3. Comparative Example 1-3 except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of 2 g/m 2 of wet thickness, which was the same as in Example 1 ·1 A reflective film is produced. -44 - 201015022 Liquid adjustment formula 1 - 8 ) • Protrusion forming substance: Synthetic Chemical Company MX-150 (30% by weight) • Acrylic adhesive: Japanese catalyst company UWR S2740 (27% by weight) • Crosslinking agent: Japan Polyurethane industrial company Coronate HL (3% by weight) • Organic solvent: butyl acetate (40% by weight) The composition of the obtained reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. . Comparative Example 1-4 The same as Example 1-1 except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula and coated with a coating thickness of wet thickness of 80 g/m 2 . A reflective film is produced. Liquid adjustment formula 1 - 8 ) φ • Protrusion forming substance: Potters-Ballotini J-120 (30% by weight) • Acrylic adhesive: Nippon Catalyst UWR S2740 (27% by weight) • Crosslinking agent: Japanese polyamine Formate Coronate HL (3% by weight) • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Comparative Examples 1 - 5 Except that the coating liquid was changed to the -45-201015022 coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of 40 g/m 2 of wet thickness, and implemented. In the same manner as in Example 1-1, a reflective film was obtained. Liquid-Reducing Formulation 1-9) • Protrusion-forming substance: MBX-50 (3% by weight) of Sekisui Chemicals Co., Ltd. • Acrylic adhesive: DIC Acrydic A807BA (50% by weight) • Crosslinking agent: Japanese polyaminocarboxylic acid Ester industry company Coronate HL (3% by weight) • Organic solvent: butyl acetate (44% by weight) The composition of the obtained reflective film is shown in Table 1-2, and the evaluation results are shown in Table 1-3. Comparative Example 1-6 A reflection of a ruthenium on the reflective layer was prepared in the same manner as in Example 1-6 except that the shape of the ruthenium provided on the reflective layer of the white film was changed to the shape as shown in Fig. 3 film. The evaluation results are shown in Table 1-3. Comparative Example 1-7 A surface-processed film was produced in the same manner as in Example 1-7 except that the shape of the crucible provided on the reflective layer of the white film was changed to the shape as shown in Fig. 4. The evaluation results are shown in Table 1-3. -46- 201015022

表1-1 塗液組成 突起形成1 黏合劑 交聯劑 螢光物 溶劑 種類 平均 粒徑 μτη 縱橫 比 配合 量 wt% 種類 配合 量 wt% mm 配合 量 wt% 種類 配合 量 wt% mm 配合 量 wt% 寅施例1-1 MBX-20SS 20 1.0 38 S2740 20 HL 2 一 0 醋酸丁酯 40 實施例1-2 MBX-IOSS 10 1.0 30 S2740 28 HL 2 一 0 醋酸乙酯 40 實施例1-3 MBX-30SS 30 1.0 32 A807BA 25 HL 3 一 0 MEK 40 實施例Μ MBX-50SS 50 1.0 25 S2740 38 HL 3 一 0 醋酸乙酯 34 實施例1-5 MBX-15SS 15 1.0 19 S2740 37 HL 4 一 0 醋酸丁酯 40 實施例1-6 紫外線硬化樹脂 MEK 16 實施例1-7 紫外線硬化樹脂 MEK 16 實施例1-8 MBX-20SS 20 1.0 38 S2740 20 HL 2 OB-1 3.4 醋酸丁酯 36.6 實施例1-9 MBX-20SS 20 1.0 38 S2740 20 HL 2 Green850 2.3 醋酸丁酯 37.7 實施例1-10 MBX-20SS 20 1.0 38 S2740 20 HL 2 UvitexOB 2.3 醋酸丁酯 37.7 比較例卜1 比較例1-2 S2740 57 HL 3 — 0 醋酸丁酯 40 比較例1-3 ΜΧ-150 2 1.0 30 S2740 27 HL 3 _ 0 醋酸丁酯 40 比較例 J-120 105 1.0 30 S2740 27 HL 3 一 0 醋酸丁酯 40 比較例1-5 ΜΒΧ-50 50 1.0 3 A807BA 50 HL 3 一 0 醋酸丁酯 44 比較例卜6 紫外線硬化樹脂 MEK 16 比較例1-7 紫外線硬化樹脂 MEK 16 黏合劑配合量係包含在S2740或A807BA中所含的溶劑重量之配合量。 交聯劑配合量係包含在HL中所含的溶劑之重量的配合量。 -47- 201015022 表 塗膜組成 突起形成 物質 黏合劑 交聯劑 螢光物 種類 平均 粒徑 μηι 縱橫 比 含量 wt% 種類 固成分 含量 wt% 麵 固成分 含量 wt% 種類 含量 wt% 實施例l-l MBX-20SS 20 1.0 77 S2740 20 HL 3 — 0 實施例1-2 MBX-10SS 10 1.0 66 S2740 31 HL 3 — 0 實施例1-3 MBX-30SS 30 1.0 68 A807BA 27 HL 5 — 0 實施例1*4 MBX-50SS 50 1.0 54 S2740 41 HL 5 — 0 實施例1-5 MBX-15SS 15 1.0 47 S2740 46 HL 7 — 0 實施例1-6 紫外線硬化樹脂 實施例1-7 紫外線硬化樹脂 實施例1-8 MBX-20SS 20 1.0 72 S2740 19 HL 3 OB-1 6 實施例1-9 MBX-20SS 20 1.0 74 S2740 19 HL 3 Green850 4 實施例丨-10 MBX-20SS 20 1.0 74 S2740 19 HL 3 UvitexOB 4 比較例1-1 比較例1-2 S2740 93 HL 7 — 0 比較例1-3 ΜΧ-150 2 1.0 65 S2740 30 HL 5 — 0 比較例Μ J-I20 105 1.0 65 S2740 30 HL 5 — 0 比較例1·5 ΜΒΧ-50 50 1.0 10 A807BA 83 HL 7 — 0 比較例1-6 紫外線硬化樹脂 比較例1-7 紫外線硬化樹脂Table 1-1 Coating composition protrusion formation 1 Adhesive agent crosslinking agent Fluoride solvent type Average particle size μτη Aspect ratio compounding amount wt% Type compounding amount wt% mm Compounding amount wt% Type compounding amount wt% mm Compounding amount wt% EXAMPLE 1-1 MBX-20SS 20 1.0 38 S2740 20 HL 2 - 0 Butyl Acetate 40 Example 1-2 MBX-IOSS 10 1.0 30 S2740 28 HL 2 - 0 Ethyl Acetate 40 Example 1-3 MBX- 30SS 30 1.0 32 A807BA 25 HL 3 - 0 MEK 40 Example Μ MBX-50SS 50 1.0 25 S2740 38 HL 3 - 0 ethyl acetate 34 Example 1-5 MBX-15SS 15 1.0 19 S2740 37 HL 4 A 0 acetate Ester 40 Example 1-6 UV curable resin MEK 16 Example 1-7 UV curable resin MEK 16 Example 1-8 MBX-20SS 20 1.0 38 S2740 20 HL 2 OB-1 3.4 Butyl acetate 36.6 Example 1-9 MBX-20SS 20 1.0 38 S2740 20 HL 2 Green850 2.3 Butyl Acetate 37.7 Example 1-10 MBX-20SS 20 1.0 38 S2740 20 HL 2 UvitexOB 2.3 Butyl Acetate 37.7 Comparative Example 1 Comparative Example 1-2 S2740 57 HL 3 — 0 Butyl acetate 40 Comparative Example 1-3 ΜΧ-150 2 1.0 30 S2740 27 HL 3 _ 0 Vinegar Butyl ester 40 Comparative Example J-120 105 1.0 30 S2740 27 HL 3 - 0 Butyl acetate 40 Comparative Example 1-5 ΜΒΧ-50 50 1.0 3 A807BA 50 HL 3 - 0 Butyl acetate 44 Comparative Example 6 UV Curable Resin MEK 16 Comparative Example 1-7 UV Curing Resin MEK 16 The amount of the binder blended contains the blending amount of the solvent contained in S2740 or A807BA. The blending amount of the crosslinking agent is a compounding amount of the solvent contained in the HL. -47- 201015022 Surface coating film composition Protrusion forming substance binder crosslinking agent Fluorescent species average particle size μηι Aspect ratio content wt% Type solid content content wt% Surface solid content content wt% Species content wt% Example ll MBX- 20SS 20 1.0 77 S2740 20 HL 3 — 0 Example 1-2 MBX-10SS 10 1.0 66 S2740 31 HL 3 — 0 Example 1-3 MBX-30SS 30 1.0 68 A807BA 27 HL 5 — 0 Example 1*4 MBX -50SS 50 1.0 54 S2740 41 HL 5 — 0 Example 1-5 MBX-15SS 15 1.0 47 S2740 46 HL 7 — 0 Example 1-6 UV Curing Resin Example 1-7 UV Curing Resin Example 1-8 MBX -20SS 20 1.0 72 S2740 19 HL 3 OB-1 6 Example 1-9 MBX-20SS 20 1.0 74 S2740 19 HL 3 Green850 4 Example 丨-10 MBX-20SS 20 1.0 74 S2740 19 HL 3 UvitexOB 4 Comparative Example 1 -1 Comparative Example 1-2 S2740 93 HL 7 — 0 Comparative Example 1-3 ΜΧ-150 2 1.0 65 S2740 30 HL 5 — 0 Comparative Example Μ J-I20 105 1.0 65 S2740 30 HL 5 — 0 Comparative Example 1·5 ΜΒΧ-50 50 1.0 10 A807BA 83 HL 7 — 0 Comparative Example 1-6 UV Curing Resin Comparative Example 1-7 UV Hard Resin

W -48- 201015022 表卜3 塗膜厚度 μπι 薄目 莫上之透明突起 薄膜物性 被覆率 % 高度 μπι 形狀 亮度 cd/m2 相對亮度 實施例1-1 5 95 15.0 圓頂形狀 5575 103.1% 實施例1-2 5 90 5.0 圓頂形狀 5540 102.5% 實施例1-3 5 75 25.0 圓頂形狀 5510 101.9% 實施例1-4 10 90 40.0 圓頂形狀 5560 102.9% 實施例1-5 5 55 10.0 圓頂形狀 5495 101.7% 實施例1-6 100 4.2 金字塔形狀 5500 101.8% 實施例1-7 100 22.0 稜鏡形狀 5510 101.9% 實施例1-8 5 95 15.0 圓頂形狀 5590 103.4% 實施例1-9 5 95 15.0 圓頂形狀 5600 103.6% 實施例1-10 5 95 15.0 圓頂形狀 5595 103.5% 比較例1-1 0 0.0 5405 100.0% 比較例1-2 15 0 0.0 圓頂形狀 5380 99.6% 比較例1-3 1 45 65.0 圓頂形狀 5370 99.4% 比較例1-4 35 25 70.0 圓頂形狀 5290 98.0% 比較例1-5 45 35 95.0 圓頂形狀 5345 99.0% 比較例1-6 100 1.4 金字塔形狀 5405 100.1% 比較例1-7 100 2.0 稜鏡形狀 5410 100.2% 實施例2 - 1 在白色薄膜上、於塑模塗佈裝置中以wet厚度2 5 g/m2 之塗佈量塗佈由下述之調液配方所示之組成所形成的塗液 後,在烤箱中進行乾燥,製得反射薄膜。 調液配方2-1 ) •透明粒子:積水化成品工業公司MBX-30SS ( 35重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 23重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量% ) -49- 201015022 •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表2-2所示, 2 - 3所示。 (40重量%) 評估結果如表 實施例2-2 使塗液改爲由下述之調液配方所示之組 液,且以wet厚度12 g/m2之塗佈量進行塗 例2-1相同地,製得反射薄膜。 調液配方2 - 2 ) •透明粒子:積水化成品工業公司MBX-15SS •丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表2-2所示, 2 - 3所示。 成所形成的塗 佈外,與實施 (35重量%) (23重量%) HL ( 2重量%) (40重量%) 評估結果如表 實施例2 - 3 使塗液改爲由下述之調液配方所示之組 液,且以wet厚度40 g/m2之塗佈量進行塗 例2 -1相同地,製得反射薄膜。 成所形成的塗 佈外,與實施W -48- 201015022 表卜3 Coating film thickness μπι Thin transparent film texture Coverability % Height μπι Shape brightness cd/m2 Relative brightness Example 1-1 5 95 15.0 Dome shape 5575 103.1% Example 1- 2 5 90 5.0 Dome shape 5540 102.5% Example 1-3 5 75 25.0 Dome shape 5510 101.9% Example 1-4 10 90 40.0 Dome shape 5560 102.9% Example 1-5 5 55 10.0 Dome shape 5495 101.7% Examples 1-6 100 4.2 Pyramid shape 5500 101.8% Example 1-7 100 22.0 稜鏡 shape 5510 101.9% Example 1-8 5 95 15.0 Dome shape 5590 103.4% Example 1-9 5 95 15.0 Round Top shape 5600 103.6% Example 1-10 5 95 15.0 Dome shape 5595 103.5% Comparative example 1-1 0 0.0 5405 100.0% Comparative example 1-2 15 0 0.0 Dome shape 5380 99.6% Comparative example 1-3 1 45 65.0 Dome shape 5370 99.4% Comparative example 1-4 35 25 70.0 Dome shape 5290 98.0% Comparative example 1-5 45 35 95.0 Dome shape 5345 99.0% Comparative example 1-6 100 1.4 Pyramid shape 5405 100.1% Comparative example 1 -7 100 2.0 稜鏡 shape 5410 100.2% Example 2 - 1 in white film Applying a coating liquid formed by the composition shown in the following liquid preparation formulation to a mold coating apparatus at a coating thickness of 2 5 g/m 2 , and drying in an oven to obtain a reflective film. . Liquid adjustment formula 2-1) • Transparent particles: Sekisui Chemicals Industrial Co., Ltd. MBX-30SS (35 wt%) • Acrylic adhesive: U.S. catalyst company UWR S2740 (23 wt%) • Crosslinker: Japanese polyamine Acid ester industry company Coronate HL (2% by weight) -49- 201015022 • Organic solvent: The composition of the reflective film obtained from butyl acetate is shown in Table 2-2, 2-3. (40% by weight) Evaluation results As shown in Table 2-2, the coating liquid was changed to the liquid solution shown by the following liquid preparation formula, and the coating amount was applied at a coating thickness of 12 g/m 2 of wet thickness. Similarly, a reflective film was produced. Liquid Conditioning Formulation 2 - 2) • Transparent Particles: Sekisui Chemicals Industrial Co., Ltd. MBX-15SS • Acrylic Adhesive: Nippon Catalyst Company UWR S2740 • Crosslinking Agent: Japanese Polyurethane Industrial Company Coronate • Organic Solvent: Acetic Acid The composition of the reflective film obtained from butyl ester is shown in Table 2-2, which is shown in 2-3. In addition to the coating formed, and the implementation (35 wt%) (23 wt%) HL (2 wt%) (40 wt%) evaluation results as shown in Tables 2 - 3 to change the coating liquid to the following The liquid phase shown in the liquid formulation was applied in the same manner as in Coating Example 2 -1 at a coating thickness of 40 g/m 2 of wet thickness to obtain a reflective film. In addition to the formation of the coating, and implementation

調液配方2-3 ) •透明粒子:積水化成品工業公司MBX_50SS (32重量%) 201015022 •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 25重量%) •交聯劑··日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑··醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表2-2所示,評估結果如表 2 - 3所示》 實施例2 - 4 φ 使塗液改爲由下述之調液配方所示之組成所形成的塗 液,且以wet厚度10g/m2之塗佈量進行塗佈外,與實施 例2-1相同地,製得反射薄膜。 調液配方2-4) •透明粒子:積水化成品工業公司MBX-12SS ( 38重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 25重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) 〇 •有機溶劑:醋酸乙酯 (34重量%) 所得的反射薄膜之組成如表2-2所示,評估結果如表 2 - 3所示。 實施例2-5 使塗液改爲由下述之調液配方所示之組成所形成的塗 液,且以wet厚度7g/m2之塗佈量進行塗佈外,與實施例 2-1相同地,製得反射薄膜。 -51 - 201015022 調液配方2-5 ) •透明粒子:積水化成品工業公司MBX-1 OSS ( 19重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 37重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 4重量。/〇 •有機溶劑:醋酸乙酯 (40重量%) 所得的反射薄膜之組成如表2-2所示,評估結果如表 2-3所示。 實施例2 - 6 使塗液改爲由下述之調液配方所示之組成所形成的塗 液’且以wet厚度8g/m2之塗佈量進行塗佈外,與實施例 2-1相同地,製得反射薄膜。 調液配方2-6 ) •透明粒子:綜硏化學公司MX-1 000 ( 40重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 25重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量% ) •有機溶劑:甲基乙酮 (3 3重量。/〇) 所得的反射薄膜之組成如表2-2所示,評估結果如表 2-3所示。 比較例2 -1 沒有在白色薄膜上塗佈塗液下,進行評估薄膜。評估 結果如表2 - 3所示。 •52- 201015022 比較例2-2 使塗液改爲由下述之調液配方所示之組 液,且以wet厚度40g/m2之塗佈量進行塗 例2-1相同地,製得反射薄膜。 調液配方2-7 ) .丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表2-2所示, 2 - 3所示。 比較例2-3 使塗液改爲由下述之調液配方所示之組 液,且以wet厚度’ 2g/m2之塗佈量進行塗佈 Q 2-1相同地,製得反射薄膜。 調液配方2-8 ) •粒子:綜硏化學公司MX-150 •丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表2-2所示, 2 - 3所示。 成所形成的塗 佈外,與實施 (57重量%) HL ( 3重量%) (40重量%) 評估結果如表 成所形成的塗 外,與實施例 (30重量%) (27重量%) HL ( 3重量%) (40重量%) 評估結果如表 -53- 201015022 比較例2 - 4 使塗液改爲由下述之調液配方所示之組成所形成的塗 液’且以wet厚度80g/m2之塗佈量進行塗佈外,與實施 例2-1相同地,製得反射薄膜。 調液配方2-9) •粒子:Potters-Ballotini 公司 J-120 ( 30 重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 27重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量%) •有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表2 - 2所示,評估結果如表 2-3所示。 比較例2 - 5 使塗液改爲由下述之調液配方所示之組成所形成的塗 液,且以wet厚度4〇g/m2之塗佈量進行塗佈外,與實施 例2-1相同地,製得反射薄膜。 調液配方2-10) •粒子:積水化成品工業公司MBX-50 ( 3重量%) •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 50重量%) .交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量%) •有機溶劑:醋酸丁酯 (44重量%) 所得的反射薄膜之組成如表2-2所示,評估結果如表 -54- 201015022 2-3所示。 比較例2 - 6 使塗液改爲由下述之調液配方所示之組成所形成的塗 液,且以wet厚度8g/m2之塗佈量進行塗佈外’與實施例 2 - 1相同地,製得反射薄膜。 調液配方2-1 1 ) •粒子:積水化成品工業公司MBX-8 (1重量%) •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 56重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表2 - 2所示,評估結果如表 2-3所示。Liquid adjustment formula 2-3) • Transparent particles: Sekisui finished product company MBX_50SS (32% by weight) 201015022 • Acrylic adhesive: DIC company Acrydic A807BA (25% by weight) • Crosslinking agent · Japanese polyurethane Industrial company Coronate HL (3% by weight) • Organic solvent · Butyl acetate (4% by weight) The composition of the resulting reflective film is shown in Table 2-2, and the evaluation results are shown in Table 2-3. Example 2 - 4 φ In the same manner as in Example 2-1, the coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formula, and coated with a coating thickness of 10 g/m 2 of wet thickness. A reflective film was produced. Liquid adjustment formula 2-4) • Transparent particles: Sekisui finished product company MBX-12SS (38% by weight) • Acrylic adhesive: Japanese catalyst company UWR S2740 (25% by weight) • Crosslinking agent: Japanese polyamine Acid ester industry company Coronate HL (3% by weight) 〇•Organic solvent: ethyl acetate (34% by weight) The composition of the obtained reflective film is shown in Table 2-2, and the evaluation results are shown in Table 2-3. Example 2-5 The coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formula, and coated with a coating thickness of 7 g/m 2 of wet thickness, which was the same as in Example 2-1. A reflective film is produced. -51 - 201015022 Liquid-Reducing Formula 2-5) • Transparent Particles: Sekisui Chemicals, Inc. MBX-1 OSS (19% by weight) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (37% by weight) • Crosslinking agent: Japanese Polyurethane Industry Co. Coronate HL (4 wt. / 〇 • Organic Solvent: Ethyl Acetate (40% by weight) The composition of the reflective film is shown in Table 2-2. The evaluation results are shown in Table 2-3. Example 2 - 6 The coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula and coated with a coating thickness of 8 g/m 2 of wet thickness, and Example 2 In the same manner, a reflective film was obtained. Liquid-Liquid Formula 2-6) • Transparent Particles: Integrated Chemical Company MX-1 000 (40% by weight) • Acrylic Adhesive: Nippon Catalyst UWR S2740 (25% by weight) • Crosslinking agent: Coronate HL (2% by weight) of Japan Polyurethane Industry Co., Ltd. • Organic solvent: methyl ethyl ketone (3 3 wt./〇) The composition of the obtained reflective film is shown in Table 2-2. The evaluation results are shown in Table 2-3. Comparative Example 2 - 1 Evaluation film was carried out without applying a coating liquid on a white film. The evaluation results are shown in Table 2 - 3. • 52- 201015022 Comparative Example 2-2 The coating liquid was changed to the liquid solution shown by the following liquid preparation formula, and the coating amount of the wet thickness of 40 g/m 2 was applied in the same manner as in the coating example 2-1 to obtain a reflection. film. Formulation 2-7) Acrylic Adhesive: U.S. Catalyst UWR S2740 • Crosslinking agent: Coronate, Japan Polyurethane Industry Co., Ltd. • Organic solvent: The composition of the reflective film obtained from butyl acetate is shown in Table 2 2, shown in 2 - 3. Comparative Example 2-3 The coating liquid was changed to the composition shown by the following liquid preparation formula, and the coating film was applied in the same manner as the coating thickness of the thickness of 2 g/m 2 to form a reflective film. Formulation 2-8) • Particles: Synthetic Chemical Company MX-150 • Acrylic Adhesive: U.S. Catalyst UWR S2740 • Crosslinker: Japanese Polyurethane Industry Coronate • Organic Solvent: Butyl Acetate The composition of the obtained reflective film is shown in Table 2-2, and 2-3 is shown. In addition to the coating formed, the evaluation results of the evaluation (57% by weight) HL (3% by weight) (40% by weight) were as shown in the figure, and the examples (30% by weight) (27% by weight) HL (3% by weight) (40% by weight) The evaluation results are shown in Table-53-201015022 Comparative Example 2 - 4 The coating liquid was changed to the coating liquid formed by the composition shown in the following formulation, and the thickness was wet. A reflective film was obtained in the same manner as in Example 2-1 except that the coating amount of 80 g/m 2 was applied. Formulation 2-9) • Particles: Potters-Ballotini J-120 (30% by weight) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (27% by weight) • Crosslinker: Japanese Polyurethane Industrial company Coronate HL (3% by weight) • Organic solvent: butyl acetate (4% by weight) The composition of the resulting reflective film is shown in Table 2-2, and the evaluation results are shown in Table 2-3. Comparative Example 2 - 5 The coating liquid was changed to a coating liquid formed of the composition shown by the following liquid preparation formula, and coated with a coating thickness of 4 〇 g/m 2 of wet thickness, and Example 2 In the same manner, a reflective film was produced. Formulation 2-10) • Particles: MBX-50 (3% by weight) of Synthetic Products Industries Ltd. • Acrylic Adhesive: DIC Acrydic A807BA (50% by weight). Crosslinker: Japanese Polyurethane Industry Company Coronate HL (3% by weight) • Organic solvent: butyl acetate (44% by weight) The composition of the resulting reflective film is shown in Table 2-2. The evaluation results are shown in Table-54-201015022 2-3. Comparative Example 2 - 6 The coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and coated with a coating thickness of 8 g/m 2 of wet thickness, which was the same as in Example 2-1. A reflective film is produced. Liquid Conditioning Formulation 2-1 1) • Particles: Sekisui Chemicals Industrial Co., Ltd. MBX-8 (1% by weight) • Acrylic Adhesive: DIC Acrydic A807BA (56% by weight) • Crosslinking agent: Japanese polyurethane Industrial company Coronate HL (3% by weight) • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 2-2, and the evaluation results are shown in Table 2-3.

-55- 201015022 表2-1 塗劑組成 透明粒子 黏合劑 交! _ 溶劑 mm 平均 粒徑 μιη 縱橫 比 配合量 wt% 種類 配合量 wt% 種類 配合量 wt% mm 配合量 wt% 實施例2-1 MBX-30SS 30 1.0 35 S2740 23 HL 2 醋酸丁酯 40 實施例2-2 MBX-15SS 15 1.0 35 S2740 23 HL 2 醋酸丁酯 40 實施例2-3 MBX-50SS 50 1.0 32 A807BA 25 HL 3 醋酸丁酯 40 ' 實施例24 MBX-12SS 12 1.0 38 S2740 25 HL 3 醋酸乙酯 34 實施例2-5 MBX-10SS 10 1.0 19 S2740 37 HL 4 醋酸乙酯 40 實施例2-6 MX-1000 10 1.0 40 S2740 25 HL 2 甲基乙酮 比較例2-1 膠 比較例2-2 — — — — S2740 57 HL 3 醋酸丁酯 40 比較例2-3 MX-150 2 1.0 30 S2740 27 HL 3 醋酸丁酯 40 比較例2·4 J-120 105 1.0 30 S2740 27 HL 3 醋酸丁酯 40 比較例2-5 MBX-50 50 1.0 3 A807BA 50 HL 3 醋酸丁酯 44 比較例2-6 MBX-8 8 1.0 1 A807BA 56 HL 3 醋酸丁酯 40 黏合劑配合量係包含在S2740或A807BA中所含的溶劑重量之配合量。 交聯劑配合量係包含在HL中所含的溶劑之重量的配合量。-55- 201015022 Table 2-1 Paint composition transparent particle adhesive agent! _ Solvent mm Average particle size μιη Aspect ratio compounding amount wt% Type compounding amount wt% Type compounding amount wt% mm Compounding amount wt% Example 2-1 MBX-30SS 30 1.0 35 S2740 23 HL 2 butyl acetate 40 Example 2-2 MBX-15SS 15 1.0 35 S2740 23 HL 2 butyl acetate 40 Example 2-3 MBX-50SS 50 1.0 32 A807BA 25 HL 3 butyl acetate Ester 40 'Example 24 MBX-12SS 12 1.0 38 S2740 25 HL 3 Ethyl acetate 34 Example 2-5 MBX-10SS 10 1.0 19 S2740 37 HL 4 Ethyl acetate 40 Example 2-6 MX-1000 10 1.0 40 S2740 25 HL 2 methyl ethyl ketone Comparative Example 2-1 Glue Comparative Example 2-2 — — — — S2740 57 HL 3 Butyl Acetate 40 Comparative Example 2-3 MX-150 2 1.0 30 S2740 27 HL 3 Butyl Acetate 40 Comparative Example 2·4 J-120 105 1.0 30 S2740 27 HL 3 butyl acetate 40 Comparative Example 2-5 MBX-50 50 1.0 3 A807BA 50 HL 3 Butyl acetate 44 Comparative Example 2-6 MBX-8 8 1.0 1 A807BA 56 HL 3 butyl acetate 40 The amount of the binder is the amount of the solvent contained in S2740 or A807BA. The blending amount of the crosslinking agent is a compounding amount of the solvent contained in the HL.

-56- 201015022-56- 201015022

表2-2 塗膜組成 透明粒子 黏合劑 交聯劑 種類 平均 粒徑 μπι 縱橫比 含量 wt% 種類 固成分 含量 wt% 種類 固成分 含量 wt% 實施例2-1 MBX-30SS 30 1.0 73 S2740 24 HL 3 實施例2-2 MBX-15SS 15 1.0 73 S2740 24 HL 3 實施例2-3 MBX-50SS 50 1.0 68 A807BA 27 HL 5 實施例2-4 MBX-12SS 12 1.0 72 S2740 24 HL 4 實施例2-5 MBX-10SS 10 1.0 47 S2740 46 HL 7 實施例2-6 MX-1000 10 1.0 74 S2740 23 HL 3 比較例2-1 比較例2-2 — — — — S2740 93 HL 7 比較例2-3 MX-150 2 1.0 65 S2740 30 HL 5 比較例2-4 J-120 105 1.0 65 S2740 30 HL 5 比較例2-5 MBX-50 50 1.0 10 A807BA 83 HL 7 比較例2-6 MBX-8 8 1.0 3 A807BA 90 HL 7 表2-3 反躬 •薄膜 由透明粒子所成 之突起高度 μιη 藉由粒子被覆 物性 被覆率 % 塗膜厚度 μπι 亮度 cd/m2 相對亮度 實施例2-1 90 7 5570 103.1% 25 實施例2-2 95 4 5525 102.3% 13 實施例2-3 75 8 5495 101.8% 45 實施例2-4 90 3 5580 103.3% 10 實施例2-5 55 9 5480 101.5% 3 實施例2-6 95 4 5525 102.3% 8 比較例2-1 0 — 5400 100.0% — 比較例2-2 0 15 5380 99.6% — 比較例2-3 45 1 5370 99.4% 1 比較例2-4 25 35 5290 98.0% 75 比較例2-5 35 45 5345 99.0% 10 比較例2-6 5 1 5405 100.1% 7 -57- 201015022 實施例3 -1 使對苯二甲酸二甲酯132重量份、異苯二甲酸二甲酯 18重量份(以聚酯之全部二羧酸成分爲基準爲12莫耳% )、乙二醇98重量份、二乙二乙醇1.〇重量份、醋酸錳 0.05重量份、醋酸鋰 0.012重量份加入具備有精餾塔、 餾出冷凝管之燒瓶中,一邊攪拌一邊在150〜235 °C下加熱 ,餾出甲醇,進行酯交換反應。餾出甲醇後’添加磷酸三 甲酯0.03重量份、二氧化鍺〇.〇4重量份,將反應物移至 反應器。然後,一邊攪拌一邊慢慢地使反應器內減壓至 0.5mmHg爲止且昇溫至290°C爲止,進行聚縮合反應,製 得聚酯。在該聚酯中添加平均粒徑1·2μιη之硫酸鋇粒子’ 製得含有4重量%硫酸鋇粒子之支持層用聚酯組成物。在 相同的聚酯中添加平均粒徑1.2μηι之硫酸鋇粒子及螢光物 ,製得含有47重量%硫酸鋇粒子及5.5重量%綠色發光無 機螢光物ΚΧ732Α ( Kasei Optonix公司製)之白色反射層 用聚酯組成物。 使用此等之聚酯組成物,供應給各在270 °C下加熱的 2台押出機,使支持層用聚酯組成物與白色反射層用聚酯 組成物使用反射層/支持層之層構成的2層塡料區裝置予 以合流,保持該積層狀態下,自塑模成形成薄片狀。另外 ,使該薄片以表面溫度2 5 t之冷卻桶予以冷卻硬化的未延 伸薄膜,在加熱成95 °C之環境中、朝長度方向(縱方向) 延伸2.9倍,且以25°C之輥群冷卻。然後,使經縱延伸的 薄膜兩端以夾子保持且導入拉幅器,在加熱成12 0 °C之環 201015022 境中、朝垂直於長度方向之方向(寬度方向)延伸3.6倍 。繼後,在拉幅器內、215 °C之溫度下進行熱固定處理, 然後,朝縱方向進行鬆驰0.5%,朝橫方向進行鬆弛2.0% ,冷卻至室溫,製得具有二軸延伸積層薄膜之白色基材薄 膜。該白色基材薄膜之厚度爲225 μιη,反射層之反射率爲 98.7%。 其次,在棒塗佈裝置中使由下述之調液配方所示之組 ❸ 成所形成的塗液於白色反射層側以wet塗佈量2 5g/m2進 行塗佈,然後,在烤箱中進行乾燥,製得反射薄膜。透明 粒子之粒徑與縱橫比如表3 -1所示。 調液配方3-1 ) •透明粒子:積水化成品工業公司MBX-30 ( 35重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 23重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate Η ( 2重量% ) φ •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表3-2所示,評估結果如表 3 - 3所示。 實施例3-2 使塗液改爲由下述之調液配方所示之組成所形成的塗 液外,與實施例3 -1相同地,製得反射薄膜。 調液配方3 - 2 ) -59- 201015022 •透明粒子:積水化成品工業公司MBX-l 5 ( 35重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 23重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量% ) •有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表3-2所示,評估結果如表 3 - 3所示。Table 2-2 Coating composition Transparent particle binder Crosslinking agent type Average particle size μπι Aspect ratio content wt% Type solid content content wt% Type solid content content wt% Example 2-1 MBX-30SS 30 1.0 73 S2740 24 HL 3 Example 2-2 MBX-15SS 15 1.0 73 S2740 24 HL 3 Example 2-3 MBX-50SS 50 1.0 68 A807BA 27 HL 5 Example 2-4 MBX-12SS 12 1.0 72 S2740 24 HL 4 Example 2 5 MBX-10SS 10 1.0 47 S2740 46 HL 7 Example 2-6 MX-1000 10 1.0 74 S2740 23 HL 3 Comparative Example 2-1 Comparative Example 2-2 — — — — S2740 93 HL 7 Comparative Example 2-3 MX -150 2 1.0 65 S2740 30 HL 5 Comparative Example 2-4 J-120 105 1.0 65 S2740 30 HL 5 Comparative Example 2-5 MBX-50 50 1.0 10 A807BA 83 HL 7 Comparative Example 2-6 MBX-8 8 1.0 3 A807BA 90 HL 7 Table 2-3 躬 薄膜 • Film height of protrusions made of transparent particles μιη By particle coating property coverage % Coating film thickness μπι Brightness cd/m2 Relative brightness Example 2-1 90 7 5570 103.1% 25 Example 2-2 95 4 5525 102.3% 13 Example 2-3 75 8 5495 101.8% 45 Example 2-4 90 3 5580 103.3% 10 Example 2-5 55 9 5480 101.5% 3 Example 2-6 95 4 5525 102.3% 8 Comparative Example 2-1 0 - 5400 100.0% - Comparative Example 2-2 0 15 5380 99.6% - Comparative Example 2-3 45 1 5370 99.4% 1 Comparative Example 2 -4 25 35 5290 98.0% 75 Comparative Example 2-5 35 45 5345 99.0% 10 Comparative Example 2-6 5 1 5405 100.1% 7 -57- 201015022 Example 3 -1 dimethyl terephthalate 132 parts by weight 18 parts by weight of dimethyl isophthalate (12 mol% based on the total dicarboxylic acid component of the polyester), 98 parts by weight of ethylene glycol, 1.2 parts by weight of diethylenediethanol, and 0.05 parts of manganese acetate In a flask containing a rectification column and a distillation condenser, the mixture was heated at 150 to 235 ° C while stirring, and methanol was distilled off to carry out a transesterification reaction. After distilling off the methanol, 0.03 part by weight of trimethyl phosphate and 4 parts by weight of cerium oxide were added, and the reactant was transferred to a reactor. Then, the inside of the reactor was gradually reduced to 0.5 mmHg while stirring, and the temperature was raised to 290 °C to carry out a polycondensation reaction to obtain a polyester. To the polyester, barium sulfate particles having an average particle diameter of 1·2 μη were added to obtain a polyester composition for a support layer containing 4% by weight of barium sulfate particles. To the same polyester, barium sulfate particles and phosphors having an average particle diameter of 1.2 μm were added to obtain a white reflection containing 47% by weight of barium sulfate particles and 5.5% by weight of green light-emitting inorganic phosphor ΚΧ732 (manufactured by Kasei Optonix Co., Ltd.). The layer is composed of a polyester composition. Using these polyester compositions, two extruders heated at 270 ° C were supplied, and the polyester composition for the support layer and the polyester composition for the white reflective layer were formed using a layer of a reflective layer/support layer. The two layers of the feeding zone device are joined together, and the mold is formed into a sheet shape while maintaining the laminated state. Further, the unstretched film in which the sheet was cooled and hardened by a cooling barrel having a surface temperature of 25 t was stretched 2.9 times in the longitudinal direction (longitudinal direction) in an environment of heating at 95 ° C, and was rolled at 25 ° C. Group cooling. Then, both ends of the longitudinally stretched film were held by a clip and introduced into a tenter, and in a ring of 201015022 heated to 120 °C, 3.6 times in a direction perpendicular to the longitudinal direction (width direction). Thereafter, heat setting treatment was carried out in a tenter at a temperature of 215 ° C, and then relaxation was carried out by 0.5% in the longitudinal direction, relaxation by 2.0% in the transverse direction, and cooling to room temperature to obtain a biaxial extension. A white substrate film of a laminated film. The thickness of the white base film was 225 μm, and the reflectance of the reflective layer was 98.7%. Next, in the bar coating apparatus, the coating liquid formed by the group shown by the following liquid preparation formula was coated on the white reflective layer side with a wet coating amount of 25 g/m2, and then, in an oven. Drying was carried out to obtain a reflective film. The particle size and aspect of the transparent particles are shown in Table 3-1. Liquid adjustment formula 3-1) • Transparent particles: Sekisui finished product company MBX-30 (35 wt%) • Acrylic adhesive: Nikon S2740 (23% by weight) from Japan Catalyst • Crosslinker: Japanese polyamine Acid ester industry company Coronate Η (2% by weight) φ • Organic solvent: butyl acetate (40% by weight) The composition of the obtained reflective film is shown in Table 3-2, and the evaluation results are shown in Table 3-1. Example 3-2 A reflective film was obtained in the same manner as in Example 3-1 except that the coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formulation. Liquid-Reducing Formula 3 - 2 ) -59- 201015022 • Transparent Particles: Sekisui Chemicals Industrial Co., Ltd. MBX-l 5 (35 wt%) • Acrylic Adhesive: Nippon Catalyst UWR S2740 (23% by weight) • Crosslinker: Japan Polyurethane Industry Co. Coronate HL (2% by weight) • Organic solvent: butyl acetate (4% by weight) The composition of the resulting reflective film is shown in Table 3-2. The evaluation results are shown in Table 3 - 3 Shown.

實施例3 - 3 使塗液改爲由下述之調液配方所示之組成所形成的塗 液外,與實施例3 -1相同地,製得反射薄膜。 調液配方3-3 ) •透明粒子:積水化成品工業公司MBX-50 ( 32重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 25重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表3 -2所示,評估結果如表 3-3所示。 實施例3-4 使塗液改爲由下述之調液配方所示之組成所形成的塗 液外,與實施例3-1相同地,製得反射薄膜。 調液配方3-4 ) -60- 201015022 •透明粒子:積水化成品工業公司MBX-12 ( 38重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 25重量%) •交聯劑:日本聚胺基甲酸酯工業公司CoronateHL ( 3重量%) •有機溶劑:醋酸乙酯 (34重量% ) 所得的反射薄膜之組成如表3-2所示,評估結果如表 3-3所示。 φ 實施例3 - 5 使塗液改爲由下述之調液配方所示之組成所形成的塗 液外,與實施例3-1相同地’製得反射薄膜。 調液配方3 - 5 ) •透明粒子:積水化成品工業公司MBX-5 ( 19重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 37重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 4重量%) _ •有機溶劑:醋酸乙酯 (40重量%) 所得的反射薄膜之組成如表3-2所示,評估結果如表 3 - 3所示。 實施例3-6 使將白色基材薄膜之白色反射層中添加的螢光物改爲 綠色發光無機螢光物2210(Kasei Optonix公司製)2.5重 量%外,與實施例3 -2相同地,製得反射薄膜。 所得的反射薄膜之組成如表3-2所示,評估結果如表 -61 - 201015022 3 - 3所示。 實施例3-7 使將白色基材薄膜之白色反射層中添加的螢光物改爲 有機螢光增白劑OB-1 (Eastman公司製)0.1重量%外, 與實施例3-2相同地,製得反射薄膜。 所得的反射薄膜之組成如表3-2所示,評估結果如表 比較例3 -1 除沒有在白色基材薄膜之白色反射層中添加螢光物外 ,與實施例3-1相同地,製得白色基材薄膜,沒有在白色 基材薄膜上塗佈塗液下,進行評估白色基材薄膜。評估結 果如表3-3所示。 比較例3 - 3 使沒有在白色基材薄膜之白色反射層中添加螢光物及 使塗液改爲由下述之調液配方所示之組成所形成的塗液外 ,與實施例3 -2相同地,製得反射薄膜。 調液配方3 -6 ) •透明粒子:積水化成品工業公司MBX-1 5 ( 1 0重量% ) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 48重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 2重量。/。) -62- 201015022 •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表3 -2所示’評估結果如表 3 - 3所示。因著色而導致顏色不吻合的情形雖小,惟亮度 之上昇小。 比較例3 - 4 使沒有在白色基材薄膜之白色反射層中添加螢光物及 φ 使塗液改爲由下述之調液配方所示之組成所形成的塗液外 ,與實施例3 -2相同地,製得反射薄膜。 •透明粒子:積水化成品工業公司MBX-15 ( 2重量%) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 56重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL (2重量%) •有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表3 -2所示,評估結果如表 3-3所示。因著色而導致顏色不吻合的情形雖小,惟亮度 ⑩ 之上昇小。 比較例3-5 於沒有在白色基材薄膜上塗佈塗液的狀態下,進行評 估實施例3-2之白色基材薄膜。評估結果如表3-3所示。 因著色而導致顏色不吻合的情形雖小,惟亮度之上昇小。 比較例3-6 於沒有在白色基材薄膜上塗佈塗液的狀態下,進行評 -63- 201015022 估實施例3-6之白色基材薄膜。評估結果如表3_3所示。 因著色而導致顏色不吻合的情形雖小,惟亮度之上昇小。 比較例3-7 於沒有在白色基材薄膜上塗佈塗液的狀態下,進行評 估實施例3-7之白色基材薄膜。評估結果如表3_3所示。 因著色而導致顏色不吻合的情形雖小,惟亮度之上昇小。 比較例3 - 8 除在白色基材薄膜之反射層中所添加的綠色發光無機 螢光物KX732A之添加量改爲1 7重量%外,與比較例3-5 相同地,製得反射薄膜。所得的反射薄膜塗膜之組成如表 3-2所示’評估結果如表3-3所示。亮度上昇雖大,惟因 著色而導致顏色不吻合的情形大,無法予以實用。 比較例3 - 9 除在白色基材薄膜之反射層中所添加的綠色發光無機 螢光物2210之添加量改爲8重量%外,與比較例3-5相同 地’製得反射薄膜。所得的反射薄膜塗膜之組成如表3 -2 所示,評估結果如表3-3所示。亮度上昇雖大,惟因著色 而導致顏色不吻合的情形大,無法予以實用。 -64- 201015022 表3-1 塗液組成 透明粒子 黏合劑 交 聯劑 溶劑 麵 配合量 wt% 平均 粒徑 μπι 縱橫 比 種類 配合量 wt% 種類 配合量 wt% 種類 配合量 wt% 實施例3-1 MBX-30 35 30 1.0 S2740 23 HL 2 醋酸丁酯 40 實施例3-2 MBX-15 35 15 1.0 S2740 23 HL 2 醋酸丁酯 40 實施例3-3 MBX-50 32 50 1.0 S2740 25 HL 3 醋酸丁酯 40 實施例34 MBX-12 38 12 1.0 S2740 25 HL 3 醋酸乙酯 34 實施例3-5 MBX-5 19 5 1.0 S2740 2Π HL 4 醋酸乙酯 40 實施例3-6 MBX-15 35 15 1.0 S2740 23 HL 2 醋酸丁酯 40 實施例3-7 MBX-15 35 15 1.0 S2740 23 HL 2 醋酸丁酯 40 比較例3-1 — 比較例3-3 MBX-15 10 15 1.0 S2740 48 HL 2 醋酸丁酯 40 比較例3-4 MBX-15 2 15 1.0 S2740 56 HL 2 醋酸丁酯 40 比較例3-5 — — — 比較例3-6 —— 比較例3-7 — 比較例3-8 — 比較例3-9Example 3 - 3 A reflective film was obtained in the same manner as in Example 3-1 except that the coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formulation. Liquid-Reducing Formula 3-3) • Transparent Particles: Sekisui Chemicals, Inc. MBX-50 (32% by weight) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (25% by weight) • Crosslinking Agent: Japanese Polyamine A Acid ester industry company Coronate HL (3% by weight) • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 2-3, and the evaluation results are shown in Table 3-3. Example 3-4 A reflective film was obtained in the same manner as in Example 3-1 except that the coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formulation. Liquid adjustment formula 3-4) -60- 201015022 • Transparent particles: Sekisui Chemicals Industrial Co., Ltd. MBX-12 (38% by weight) • Acrylic adhesive: Japanese catalyst company UWR S2740 (25% by weight) • Crosslinking agent: Japan Polyurethane Co., Ltd. Coonate HL (3% by weight) • Organic solvent: ethyl acetate (34% by weight) The composition of the resulting reflective film is shown in Table 3-2, and the evaluation results are shown in Table 3-3. φ Example 3 - 5 A reflective film was produced in the same manner as in Example 3-1 except that the coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formulation. Liquid-Reducing Formula 3 - 5 ) • Transparent Particles: Sekisui Chemicals, Inc. MBX-5 (19% by weight) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (37% by weight) • Crosslinking Agent: Japanese Polyamine A Acid ester industry company Coronate HL (4% by weight) _ • Organic solvent: ethyl acetate (40% by weight) The composition of the obtained reflective film is shown in Table 3-2, and the evaluation results are shown in Table 3-1. Example 3-6 The same procedure as in Example 2-3 was carried out except that the phosphor added to the white reflective layer of the white base film was changed to 2.5% by weight of the green light-emitting inorganic phosphor 2210 (manufactured by Kasei Optonix Co., Ltd.). A reflective film was produced. The composition of the obtained reflective film is shown in Table 3-2, and the evaluation results are shown in Table-61 - 201015022 3 - 3. Example 3-7 The same procedure as in Example 3-2 was carried out except that the phosphor added to the white reflective layer of the white base film was changed to 0.1% by weight of the organic fluorescent whitening agent OB-1 (manufactured by Eastman Co., Ltd.). , a reflective film is produced. The composition of the obtained reflective film is shown in Table 3-2, and the evaluation results are as shown in Table 3-1 except that the fluorescent material was not added to the white reflective layer of the white base film, and the same as Example 3-1. A white base film was obtained, and the white base film was evaluated without applying a coating liquid on the white base film. The evaluation results are shown in Table 3-3. Comparative Example 3 - 3 A coating liquid formed by adding a fluorescent material to a white reflective layer of a white base film and changing the coating liquid to a composition shown by the following liquid regulating formulation, and Example 3 - 2 Similarly, a reflective film was produced. Liquid-Reducing Formula 3 -6 ) • Transparent Particles: Sekisui Chemicals, Inc. MBX-1 5 (10% by weight) • Acrylic Adhesive: U.S. Catalyst UWR S2740 (48% by weight) • Crosslinking agent: Japanese polyamine Coronate HL (2% by weight) -62- 201015022 • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 3-1. - 3 is shown. The case where the color does not match due to coloring is small, but the rise in brightness is small. Comparative Example 3 - 4 A coating liquid formed by adding a phosphor to a white reflective layer of a white base film and φ to change the coating liquid to a composition shown by the following liquid preparation formulation, and Example 3 Similarly, a reflective film was produced. • Transparent particles: Sekisui Chemicals, Inc. MBX-15 (2% by weight) • Acrylic adhesive: U.S. catalyst company UWR S2740 (56% by weight) • Crosslinking agent: Japan Polyurethane Industry Co., Coronate HL ( 2% by weight) • Organic solvent: butyl acetate (4% by weight) The composition of the obtained reflective film is shown in Table 3-2, and the evaluation results are shown in Table 3-3. The color mismatch does not match, but the increase in brightness 10 is small. Comparative Example 3-5 The white base film of Example 3-2 was evaluated in the state where the coating liquid was not applied to the white base film. The evaluation results are shown in Table 3-3. The case where the color does not match due to coloring is small, but the increase in brightness is small. Comparative Example 3-6 A white base film of Example 3-6 was evaluated in a state where the coating liquid was not applied to the white base film. The evaluation results are shown in Table 3_3. The case where the color does not match due to coloring is small, but the increase in brightness is small. Comparative Example 3-7 The white base film of Example 3-7 was evaluated in the state where the coating liquid was not applied to the white base film. The evaluation results are shown in Table 3_3. The case where the color does not match due to coloring is small, but the increase in brightness is small. Comparative Example 3 - 8 A reflective film was obtained in the same manner as in Comparative Example 3-5 except that the amount of the green light-emitting inorganic phosphor KX732A added to the reflective layer of the white base film was changed to 17% by weight. The composition of the obtained reflective film coating film is shown in Table 3-2. The evaluation results are shown in Table 3-3. Although the brightness rises a lot, the color does not match due to coloring, and it cannot be practical. Comparative Example 3 - 9 A reflective film was produced in the same manner as in Comparative Example 3-5 except that the amount of the green light-emitting inorganic phosphor 2210 added to the reflective layer of the white base film was changed to 8% by weight. The composition of the obtained reflective film coating film is shown in Table 3-2, and the evaluation results are shown in Table 3-3. Although the brightness rises a lot, the color does not match due to coloring, and it cannot be practical. -64- 201015022 Table 3-1 Coating composition Transparent particle binder crosslinking agent Solvent surface compounding amount wt% Average particle size μπι Aspect ratio Type compounding amount wt% Type compounding amount wt% Type compounding amount wt% Example 3-1 MBX-30 35 30 1.0 S2740 23 HL 2 butyl acetate 40 Example 3-2 MBX-15 35 15 1.0 S2740 23 HL 2 butyl acetate 40 Example 3-3 MBX-50 32 50 1.0 S2740 25 HL 3 Ester 40 Example 34 MBX-12 38 12 1.0 S2740 25 HL 3 ethyl acetate 34 Example 3-5 MBX-5 19 5 1.0 S2740 2Π HL 4 ethyl acetate 40 Example 3-6 MBX-15 35 15 1.0 S2740 23 HL 2 butyl acetate 40 Example 3-7 MBX-15 35 15 1.0 S2740 23 HL 2 butyl acetate 40 Comparative Example 3-1 - Comparative Example 3-3 MBX-15 10 15 1.0 S2740 48 HL 2 butyl acetate 40 Comparative Example 3-4 MBX-15 2 15 1.0 S2740 56 HL 2 butyl acetate 40 Comparative Example 3-5 — — — Comparative Example 3-6 — Comparative Example 3-7 — Comparative Example 3-8 — Comparative Example 3 -9

黏合劑配合量係包含在S 2 740或A807BA中所含的溶劑重量之配合量。 交聯劑配合量係包含在HL中所含的溶劑之重量的配合量。 -65- 201015022The binder compounding amount is a compounding amount of the solvent contained in S 2 740 or A807BA. The blending amount of the crosslinking agent is a compounding amount of the solvent contained in the HL. -65- 201015022

表3-2 塗膜組成 透明粒子 黏合劑 交聯劑 種類 含量 wt% 平均粒徑 μηι 縱橫比 種類 固成分 含量 wt% 種類 固成分 含量 wt% 實施例3-1 MBX-30 73 30 1.0 S2740 24 HL 3 實施例3-2 MBX-15 73 15 1.0 S2740 24 HL 3 實施例3-3 MBX-50 68 50 1.0 S2740 27 HL 5 實施例3-4 MBX-12 72 12 1.0 S2740 24 HL 4 實施例3-5 MBX-5 47 5 1.0 S2740 46 HL 7 實施例3-6 MBX-15 73 15 1.0 S2740 24 HL 3 實施例3-7 MBX-15 73 15 1.0 S2740 24 HL 3 比較例3-1 — — — — — — — — 比較例3-3 MBX-15 28 15 1.0 S2740 68 HL 4 比較例3-4 MBX-15 6 15 1.0 S2740 89 HL 5 比較例3-5 — — — — — — — — 比較例3-6 — — — — — — — — 比較例3-7 — — — — — — — — 比較例3-8 比較例3-9 — — — — — — — —Table 3-2 Coating composition Transparent particle binder Crosslinking agent content content wt% Average particle size μηι Aspect ratio type Solid content content wt% Type solid content content wt% Example 3-1 MBX-30 73 30 1.0 S2740 24 HL 3 Example 3-2 MBX-15 73 15 1.0 S2740 24 HL 3 Example 3-3 MBX-50 68 50 1.0 S2740 27 HL 5 Example 3-4 MBX-12 72 12 1.0 S2740 24 HL 4 Example 3 5 MBX-5 47 5 1.0 S2740 46 HL 7 Example 3-6 MBX-15 73 15 1.0 S2740 24 HL 3 Example 3-7 MBX-15 73 15 1.0 S2740 24 HL 3 Comparative Example 3-1 — — — — — — — — Comparative Example 3-3 MBX-15 28 15 1.0 S2740 68 HL 4 Comparative Example 3-4 MBX-15 6 15 1.0 S2740 89 HL 5 Comparative Example 3-5 — — — — — — — — Comparative Example 3 -6 — — — — — — — — Comparative Example 3-7 — — — — — — — — Comparative Example 3-8 Comparative Example 3-9 — — — — — — — —

-66 - 201015022 表3-3-66 - 201015022 Table 3-3

基材薄膜 塗佈層 由透明 粒子所 成之突 起高度 μιη 薄膜物性 基材薄膜之反射層 中所含的螢光物 基材薄膜之由 透明粒子所成 之被覆率 % 塗膜 厚度 μιη 相對亮度 色度差 種類 濃度 wt% 實施例3-1 KX732A 5.5 90 19 13 104.1% ◎ 實施例3-2 KX732A 5.5 95 9 7 104.3% ◎ 實施例3-3 KX732A 5.5 75 28 25 103.8% ◎ 實施例3-4 KX732A 5.5 90 8 6 104.3% ◎ 實施例3-5 KX732A 5.5 55 4 3 103.2% ◎ 實施例3-6 2210 2.5 95 9 7 104.1% ◎ 實施例3-7 OB-1 0.1 95 9 8 103.3% 〇 比較例3-1 — — — — — 100.0% ◎ 比較例3-3 KX732A 5.5 45 9 8 102.7% ◎ 比較例3-4 KX732A 5.5 5 9 7 101.5% ◎ 比較例3-5 KX732A 5.5 — — — 100.9% ◎ 比較例3-6 2210 2.5 — — 一 101.1% ◎ 比較例3-7 OB-1 0.1 — — — 101.2% ◎ 比較例3-8 KX732A 17.0 — — — 103.1% X 比較例3-9 2210 8.0 — — — 103.5% XThe protrusion height of the base film coating layer formed by the transparent particles is μηη The coverage of the phosphor substrate film contained in the reflective layer of the film physical substrate film is made of transparent particles. Coating film thickness μιη Relative brightness color Degree difference type concentration wt% Example 3-1 KX732A 5.5 90 19 13 104.1% ◎ Example 3-2 KX732A 5.5 95 9 7 104.3% ◎ Example 3-3 KX732A 5.5 75 28 25 103.8% ◎ Example 3-4 KX732A 5.5 90 8 6 104.3% ◎ Example 3-5 KX732A 5.5 55 4 3 103.2% ◎ Example 3-6 2210 2.5 95 9 7 104.1% ◎ Example 3-7 OB-1 0.1 95 9 8 103.3% 〇Comparative Example 3-1 — — — — — 100.0% ◎ Comparative Example 3-3 KX732A 5.5 45 9 8 102.7% ◎ Comparative Example 3-4 KX732A 5.5 5 9 7 101.5% ◎ Comparative Example 3-5 KX732A 5.5 — — — 100.9% ◎ Comparative Example 3-6 2210 2.5 — — a 101.1% ◎ Comparative Example 3-7 OB-1 0.1 — — — 101.2% ◎ Comparative Example 3-8 KX732A 17.0 — — — 103.1% X Comparative Example 3-9 2210 8.0 — — — 103.5% X

® 實施例4-1 於塑模塗佈裝置中,在白色薄膜之反射層上、以乾燥 後黏合劑之厚度爲4μιη塗佈由下述之調液配方所示之組成 所形成的塗液後,在烤箱內進行乾燥,製得反射薄膜。 調液配方4-1 ) •透明粒子:積水化成品工業公司MBX-15SS ( 35重量%) •螢光物:Kasei Optonix 公司 ΚΧ-732Α ( 10 重量。/。) •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 23重量%) -67- 201015022 •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL (2重量% ) •有機溶劑:醋酸丁酯 (30重量%) 所得的反射薄膜之組成如表4-2所示,評估結果如表 4 - 3所示。 實施例4-2 使塗液改爲由下述之調液配方所示之組成所形成的塗 液,且以乾燥後的黏合劑厚度8 μπι進行塗佈外,與實施例 4-1相同地,製得反射薄膜。 調液配方4 - 2 ) •透明粒子:積水化成品工業公司MBX-50SS ( 32重量% ) .螢光物:Kasei Optonix 公司 ΚΧ-732Α ( 1〇 重量0/〇) •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 25重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (3 0重量% ) 所得的反射薄膜之組成如表4-2所示,評估結果如表 4-3所示* 實施例4-3 使塗液改爲由下述之調液配方所示之組成所形成的塗 液塗佈外,與實施例4_丨相同地,製得反射薄膜。 調液配方4-3 ) -68- 201015022 •透明粒子:綜硏化學公司MX-1000 •蛋光物:Kasei Optonix 公司 2210 •丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑:甲基乙酮 所得的反射薄膜之組成如表4-2所示, 4-3所示。 e 參考例4-1 使塗液改爲由下述之調液配方所示之組 液塗佈外,與實施例4- 1相同地,製得反射ί 調液配方4-4 ) •透明粒子:積水化成品工業公司MBX-15SS .丙烯酸黏合劑:日本觸媒公司UWR S2740 φ •交聯劑’·日本聚胺基甲酸酯工業公司Coronate •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表4-2所示, 4-3所示。 比較例4 - 4 使塗液改爲由下述之調液配方所示之組 液塗佈外,與實施例4- 1相同地,製得反射ί (40重量%) (5重量% ) (25重量%) HL ( 2重量%) (28重量%) 評估結果如表 成所形成的塗 奪膜。 (35重量%) (23重量%) HL ( 2重量%) (40重量%) 評估結果如表 成所形成的塗 孽膜。 -69- 201015022 調液配方4-5 ) •螢光物·· Kasei Optonix 公司 KX-732A ( 10 重量%) .丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 57重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (30重量%) 所得的反射薄膜之組成如表4-2所示,評估結果如表 4-3所示。 比較例4 - 5 使塗液改爲由下述之調液配方所示之組成所形成的塗 液塗佈外,與實施例4-1相同地,製得反射薄膜。 調液配方4-6 ) •透明粒子:積水化成品工業公司MBX-15SS ( 3重量%) •蛮光物:Kasei Optonix 公司 2210 (5重量%) •丙烯酸黏合劑:DIC公司Acrydic A807BA ( 50重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 3重量% ) •有機溶劑:醋酸丁酯 (39重量%) 所得的反射薄膜之組成如表4 - 2所示,評估結果如表 4 - 3所示。 比較例4 - 6 沒有在白色薄膜上塗佈塗液下,進行評估薄膜。評估 結果如表4 - 3所示。 -70- 201015022 表4 - 1 塗液組成 透明粒子 螢光物 黏合劑 交聯劑 溶劑 配合 平均 縱橫 比 配合 配合 配合 配合 種類 量 粒徑 種類 量 種類 量 種類 量 種類 量 wt% um wt% wt% wt% wt% 實施例4-1 MBX-15SS 35 15 1.0 KX-732A 10 S2740 23 HL 2 醋酸丁酯 30 實施例4-2 MBX-50SS 32 50 1.0 KX-732A 10 A807BA 25 HL 3 醋酸丁酯 30 實施例4-3 MX-1000 40 10 1.0 2210 5 S2740 25 HL 2 MEK 28 參考例4-1 MBX-15SS 35 15 1.0 _ — S2740 23 HL 2 醋酸丁酯 40 比較例4*4 _ _ 一 _ KX-732A 10 S2740 57 HL 3 醋酸丁酯 30 比較例4~5 MBX-15SS 3 15 1.0 2210 5 A807BA 50 HL 3 醋酸丁酯 39 比較例4-6® Example 4-1 In a mold coating apparatus, after applying a coating liquid formed of the composition shown in the following conditioning solution on a reflective layer of a white film with a thickness of 4 μm after drying. Drying in an oven produces a reflective film. Liquid Conditioning Formulation 4-1) • Transparent Particles: Sekisui Finished Products Industrial Company MBX-15SS (35 wt%) • Fluorescent: Kasei Optonix Company ΚΧ-732Α (10 wt./) • Acrylic Adhesive: Nippon Shokubai Company UWR S2740 (23% by weight) -67- 201015022 • Crosslinking agent: Coronate HL (2% by weight) of Japan Polyurethane Industry Co., Ltd. • Organic solvent: butyl acetate (30% by weight) The composition is shown in Table 4-2, and the evaluation results are shown in Table 4-3. Example 4-2 The coating liquid was changed to the coating liquid formed of the composition shown in the following liquid preparation formula, and coated with a thickness of 8 μm after the drying of the adhesive, in the same manner as in Example 4-1. , a reflective film is produced. Liquid Conditioning Formulation 4 - 2) • Transparent Particles: Sekisui Chemicals Industrial Co., Ltd. MBX-50SS (32% by weight). Fluorescent: Kasei Optonix Company ΚΧ-732Α (1〇 Weight 0/〇) • Acrylic Adhesive: DIC Acrydic A807BA (25% by weight) • Crosslinking agent: Coronate HL (3% by weight) of Japan Polyurethane Industry Co., Ltd. • Organic solvent: butyl acetate (30% by weight) The composition of the resulting reflective film is shown in Table 4. As shown in Fig. 2, the evaluation results are shown in Table 4-3. * Example 4-3 The coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formula, and Example 4_ Similarly, a reflective film was produced. Formulation 4-3) -68- 201015022 • Transparent Particles: Comprehensive Chemical Company MX-1000 • Egg Light: Kasei Optonix 2210 • Acrylic Adhesive: Nippon Catalyst UWR S2740 • Crosslinker: Japanese Polyamine Coronate Co., Ltd. Coronate • Organic solvent: The composition of the reflective film obtained from methyl ethyl ketone is shown in Table 4-2, 4-3. e Reference Example 4-1 A coating solution was prepared in the same manner as in Example 4-1 except that the coating liquid was changed to the coating liquid shown in the following liquid preparation formula. : Sekisui Chemicals Industrial Co., Ltd. MBX-15SS . Acrylic Adhesive: Nippon Catalyst Company UWR S2740 φ • Crosslinker '· Japan Polyurethane Industry Coronate • Organic Solvent: Composition of Reflective Film from Butyl Acetate As shown in Table 4-2, 4-3 is shown. Comparative Example 4 - 4 The coating liquid was changed to the composition liquid shown by the following liquid preparation formula, and the reflection ί (40% by weight) (5% by weight) was obtained in the same manner as in Example 4-1. 25 wt%) HL (2 wt%) (28 wt%) The evaluation results are shown as the formed film. (35 wt%) (23 wt%) HL (2 wt%) (40 wt%) The evaluation results are as shown to form the formed ruthenium film. -69- 201015022 Formulation 4-5) • Fluorescent·· Kasei Optonix KX-732A (10% by weight) Acrylic Adhesive: Nippon Catalyst UWR S2740 (57% by weight) • Crosslinking agent: Japan Polyurethane industry company Coronate HL (3% by weight) • Organic solvent: butyl acetate (30% by weight) The composition of the resulting reflective film is shown in Table 4-2. The evaluation results are shown in Table 4-3. . Comparative Example 4 - 5 A reflective film was obtained in the same manner as in Example 4-1 except that the coating liquid was changed to the coating liquid formed by the composition shown in the following liquid preparation formulation. Liquid Conditioning Formula 4-6) • Transparent Particles: Sekisui Finished Products Industrial Company MBX-15SS (3% by weight) • Manganese: Kasei Optonix Company 2210 (5 wt%) • Acrylic Adhesive: DIC Acrydic A807BA (50 Weight %) • Crosslinking agent: Coronate HL (3% by weight) of Japan Polyurethane Industry Co., Ltd. • Organic solvent: butyl acetate (39% by weight) The composition of the resulting reflective film is shown in Table 4-2. The results are shown in Table 4-3. Comparative Example 4 - 6 Evaluation films were carried out without applying a coating liquid on a white film. The evaluation results are shown in Table 4-3. -70- 201015022 Table 4 - 1 Coating composition Transparent particles Fluorescent binder Crosslinking solvent Mixing average aspect ratio Coordination and compounding Type of particle size Species Types Species Types Quantity wt% um wt% wt% wt % wt% Example 4-1 MBX-15SS 35 15 1.0 KX-732A 10 S2740 23 HL 2 butyl acetate 30 Example 4-2 MBX-50SS 32 50 1.0 KX-732A 10 A807BA 25 HL 3 butyl acetate 30 Example 4-3 MX-1000 40 10 1.0 2210 5 S2740 25 HL 2 MEK 28 Reference Example 4-1 MBX-15SS 35 15 1.0 _ — S2740 23 HL 2 Butyl Acetate 40 Comparative Example 4*4 _ _ A_ KX- 732A 10 S2740 57 HL 3 butyl acetate 30 Comparative Example 4~5 MBX-15SS 3 15 1.0 2210 5 A807BA 50 HL 3 Butyl Acetate 39 Comparative Example 4-6

黏合劑配合量係包含在S2740或A807BA中所含的溶劑重量之配合量。 交聯劑配合量係包含在HL中所含的溶劑之重量的配合量》 表4-2 塗膜組成 透明粒子 螢光物 交聯 劑 溶劑 種類 含量 wt% 平均 粒徑 μπι 縱橫 比 種類 含量 wt% 種類 固成分 含量 wt% 種類 固成分 含量 wt% 實施例4-1 MBX-15SS 60 15 1.0 ΚΧ-732Α 17 S2740 20 HL 3 實施例4-2 MBX-50SS 56 50 1.0 ΚΧ-732Α 18 A807BA 22 HL 4 實施例4-3 ΜΧ-1000 68 10 1.0 2210 8 S2740 21 HL 3 參考例4-1 MBX-15SS 73 15 1.0 — — S2740 24 HL 3 比較例“ — — —— — ΚΧ-732Α 25 S2740 69 HL 6 比較例4-5 MBX-15SS 9 15 1.0 2210 14 A807BA 71 HL 6 比較例4-6 -71 - 201015022 由透明粒子所 成之被覆率 % 塗膜厚度 μιη 由透明粒子所 成之突起高度 μιη 薄 膜評估 色度 亮度 cd/m2 相對亮度 X y 實施例4-1 95 4 11 0.311 0.318 5605 101.5% 實施例4-2 75 8 44 0.311 0.318 5578 101.0% 實施例4-3 95 4 8 0.312 0.319 5594 101.3% 參考例4-1 95 4 0.311 0.317 5524 100.0% 比較例4-4 0 4 — 0.311 0.319 5427 98.2% 比較例4-5 10 4 12 0.312 0.319 5421 98.1% 比較例4-6 — — — 0.311 0.317 5400 97.8% " 實施例5-1 於塑模塗佈裝置中’在白色薄膜之反射層上、以乾燥 後黏合劑之厚度爲8 μιη塗佈由下述之調液配方所示之組成 所形成的塗液後,在烤箱內進行乾燥,製得反射薄膜。 調液配方5-1 ) •透明粒子:積水化成品工業公司ΜΒΧ-12 ( 35重量%) •丙烯酸黏合劑··日本觸媒公司UWR S2740 ( 21重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL (4重量。/。) •有機溶劑:醋酸丁酯 (40重量%) 所得的反射薄膜之組成如表5 _ 2所示,評估結果如表 5-3所示。 實施例5 - 2 使塗液改爲由下述之調液配方所示之組成所形成的塗 -72- 201015022 液,且以乾燥後黏合劑之厚度爲ΙΟμιη塗佈 5 -1相同地,製得反射薄膜。 調液配方5-2 ) •透明粒子:積水化成品工業公司ΜΒΧ-1 5 •丙烯酸黏合劑:DIC公司Acrydic Α807ΒΑ •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑’·甲基乙酮 所得的反射薄膜之組成如表5-2所示, 5 - 3所示。 實施例5-3 使塗液改爲由下述之調液配方所示之組 液,且以乾燥後黏合劑之厚度爲1 4μπι塗佈 5-1相同地,製得反射薄膜。 ❹ 調液配方5-3 ) •透明粒子:積水化成品工業公司ΜΒΧ-20 •丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表5-2所示, 5 - 3所示。 外,與實施例 (3 5重量% ) (21重量% ) HL ( 4重量%) (40重量%) 評估結果如表 成所形成的塗 外,與實施例 (35重量%) (21重量%) HL ( 4重量%) (40重量%) 評估結果如表 -73- 201015022 比較例5 - 1 薄膜。評估 沒有在白色薄膜上塗佈塗液後,進行評估 結果如表5-3所示。 比較例5-3 所形成的塗 ,與實施例 使塗液改爲由下述之調液配方所示之組成 液,且以乾燥後黏合劑之厚度爲6μιη塗佈外 5-1相同地,製得反射薄膜。 調液配方5-4) (15重量% ) (37重量%) (8重量% ) (40重量%) 估結果如表 •透明粒子:綜硏化學公司MR-10G •丙烯酸黏合劑:日本觸媒公司UWR S2740 •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL •有機溶劑:醋酸丁酯 所得的反射薄膜之組成如表5-2所示,評 5-3所示。 比較例5-5 所形成的塗 ,與實施例 使塗液改爲由下述之調液配方所示之組成 液,且以乾燥後黏合劑之厚度爲14 μιη塗佈外 5-1相同地,製得反射薄膜。 調液配方5 - 5 ) (1 5重量% )The binder compounding amount is a compounding amount of the solvent contained in S2740 or A807BA. The amount of the crosslinking agent is the amount of the solvent contained in the HL. Table 4-2 Coating composition Transparent particles Fluorescent crosslinker Solvent type content wt% Average particle size μπι Aspect ratio type content wt% Type solid content content wt% type solid content content wt% Example 4-1 MBX-15SS 60 15 1.0 ΚΧ-732Α 17 S2740 20 HL 3 Example 4-2 MBX-50SS 56 50 1.0 ΚΧ-732Α 18 A807BA 22 HL 4 Example 4-3 ΜΧ-1000 68 10 1.0 2210 8 S2740 21 HL 3 Reference Example 4-1 MBX-15SS 73 15 1.0 — — S2740 24 HL 3 Comparative Example “ — — — — ΚΧ-732Α 25 S2740 69 HL 6 Comparative Example 4-5 MBX-15SS 9 15 1.0 2210 14 A807BA 71 HL 6 Comparative Example 4-6 -71 - 201015022 Coverage % by transparent particles Coating thickness μιη Projection height by transparent particles μιη Film evaluation Chromatic brightness cd/m2 Relative brightness X y Example 4-1 95 4 11 0.311 0.318 5605 101.5% Example 4-2 75 8 44 0.311 0.318 5578 101.0% Example 4-3 95 4 8 0.312 0.319 5594 101.3% Reference Example 4-1 95 4 0.311 0.317 5524 100.0% Comparative Example 4-4 0 4 — 0 .311 0.319 5427 98.2% Comparative Example 4-5 10 4 12 0.312 0.319 5421 98.1% Comparative Example 4-6 — — — 0.311 0.317 5400 97.8% " Example 5-1 'In a plastic coating apparatus' On the reflective layer, the coating liquid formed by the composition shown in the following liquid preparation formula was applied to a thickness of 8 μm after drying, and then dried in an oven to obtain a reflective film. -1 ) • Transparent Particles: Sekisui Chemicals Co., Ltd. ΜΒΧ-12 (35 wt%) • Acrylic Adhesive··Japan Catalyst Company UWR S2740 (21% by weight) • Crosslinking Agent: Japanese Polyurethane Industry Company Coronate HL (4 wt.) • Organic solvent: butyl acetate (40% by weight) The composition of the resulting reflective film is shown in Table 5-2, and the evaluation results are shown in Table 5-3. Example 5 - 2 The coating liquid was changed to the coating liquid-72-201015022 formed by the composition shown in the following liquid preparation formula, and the thickness of the adhesive after drying was ΙΟμιη coated 5-1. A reflective film is obtained. Liquid Adjustment Formula 5-2) • Transparent Particles: Sekisui Chemicals Co., Ltd. ΜΒΧ-1 5 • Acrylic Adhesive: DIC Acrydic Α807ΒΑ • Crosslinker: Japanese Polyurethane Industry Coronate • Organic Solvents The composition of the reflective film obtained from the ethyl ketone is shown in Table 5-2, which is shown in 5 - 3. Example 5-3 The coating liquid was changed to the composition shown by the following liquid preparation formula, and the reflective film was obtained by coating the same as the thickness of the adhesive after drying to a thickness of 1 4 μm. ❹ Formulation 5-3) • Transparent Particles: Sekisui Chemicals Co., Ltd. ΜΒΧ-20 • Acrylic Adhesive: U.S. Catalyst UWR S2740 • Crosslinker: Japanese Polyurethane Industry Coronate • Organic Solvent: The composition of the reflective film obtained from butyl acetate is shown in Table 5-2, and 5 - 3 is shown. Further, with respect to the examples (35 wt%) (21 wt%) HL (4 wt%) (40 wt%), the evaluation results were as shown in the figure, and the examples (35 wt%) (21 wt%) HL (4% by weight) (40% by weight) The evaluation results are shown in Table-73-201015022 Comparative Example 5 - 1 Film. Evaluation After the coating liquid was not applied to the white film, the evaluation results are shown in Table 5-3. The coating formed in Comparative Example 5-3 was changed to the composition liquid shown in the following formulation by the following example, and the thickness of the adhesive after drying was 6 μm. A reflective film was produced. Liquid adjustment formula 5-4) (15% by weight) (37% by weight) (8% by weight) (40% by weight) Estimated results as shown in the table • Transparent particles: Comprehensive chemical company MR-10G • Acrylic adhesive: Japanese catalyst Company UWR S2740 • Crosslinker: Coronate HL, Japan Polyurethane Industry Co. • Organic solvent: The composition of the reflective film obtained from butyl acetate is shown in Table 5-2, as shown in Figure 5-3. The coating formed in Comparative Example 5-5 was changed to the composition liquid shown in the following formulation by the following example, and the thickness of the adhesive after drying was 14 μm. , a reflective film is produced. Liquid adjustment formula 5 - 5 ) (1 5 wt%)

•透明粒子:綜硏化學公司MR-20G 201015022 •丙烯酸黏合劑:日本觸媒公司UWR S2740 ( 37重量%) •交聯劑:日本聚胺基甲酸酯工業公司Coronate HL ( 8重量%) •有機溶劑:醋酸丁酯 (4〇重量%) 所得的反射薄膜之組成如表5 -2所示,評估結果如表 5-3所示。 表5-1 塗液組成 透明粒子 黏合劑 交谭 绪劑 溶劑 觀 配合量 wt% D10 μπι D90 μιη D10/D90 D50 μπι mm 配合 量 wt% 種類 配合 量 wt% 種類 配合 量 wt% 實施例5-1 MBX-12 35 6.0 17.0 0.35 11.5 S2740 21 HL 4 醋酸丁酯 40 實施例5-2 MBX-15 35 8.0 20.0 0.40 14.5 A807BA 21 HL 4 MEK 40 實施例5-3 MBX-20 35 9.0 26.0 0.35 18.4 S2740 21 HL 4 醋酸丁酯 40 比較例5-1 比較例5-3 MR-10G 15 2.5 20.0 0.13 11.0 S2740 37 HL 8 醋酸丁酯 40 比較例5-5 MR-20G 15 8.5 35.0 0.24 19.6 S2740 37 HL 8 醋酸丁酯 40• Transparent Particles: Synthetic Chemical Company MR-20G 201015022 • Acrylic Adhesive: U.S. Catalyst Company UWR S2740 (37% by weight) • Crosslinking Agent: Japanese Polyurethane Industry Company Coronate HL (8% by weight) • Organic solvent: butyl acetate (4% by weight) The composition of the obtained reflective film is shown in Table 5-2, and the evaluation results are shown in Table 5-3. Table 5-1 Coating composition Transparent particle binder Crossing agent Solvent view Compounding amount wt% D10 μπι D90 μιη D10/D90 D50 μπι mm Compounding amount wt% Type compounding amount wt% Type compounding amount wt% Example 5-1 MBX-12 35 6.0 17.0 0.35 11.5 S2740 21 HL 4 butyl acetate 40 Example 5-2 MBX-15 35 8.0 20.0 0.40 14.5 A807BA 21 HL 4 MEK 40 Example 5-3 MBX-20 35 9.0 26.0 0.35 18.4 S2740 21 HL 4 butyl acetate 40 Comparative Example 5-1 Comparative Example 5-3 MR-10G 15 2.5 20.0 0.13 11.0 S2740 37 HL 8 Butyl acetate 40 Comparative Example 5-5 MR-20G 15 8.5 35.0 0.24 19.6 S2740 37 HL 8 Acetic acid Butyl ester 40

黏合劑配合量係包含在S2 740或A807B A中所含的溶劑重量之配合量。 交聯劑配合量係包含在HL中所含的溶劑之重量的配合量》 表5-2 塗膜組成 透明1 立子 黏合劑 交! _ 種類 配合 里 wt% D10 μπι D90 μπι D10/D90 μτη D50 μπι 種類 固成分 含量 wt% 麵 固成分 含量 wt% 實施例5-1 MBX-12 72 6.0 17.0 0.35 11.5 S2740 22 HL 6 實施例5-2 MBX-15 72 8.0 20.0 0.40 14.5 Α807ΒΑ 22 HL 6 實施例5-3 MBX-20 72 9.0 26.0 0.35 18.4 S2740 22 HL 6 比較例5-1 比較例5-3 MR-10G 38 2.5 20.0 0.13 11.0 S2740 47 HL 15 比較例5-5 MR-20G 38 8.5 35.0 0.24 19.6 S2740 47 HL 15 -75- 201015022 表5-3 被覆率 % 塗膜厚度 μτη 由透明粒子所 成之突起高度 μπι 薄膜之評估結果 亮度 cd/m2 相對亮度 粒子脫落 實施例5-1 95 8 5 5512 102.1% 〇 實施例5-2 90 10 7 5527 102.4% 〇 實施例5-3 95 14 8 5547 102.7% 〇 比較例5-1 — — — 5400 100.0% 〇 比較例5-3 35 6 6 5390 99.8% 〇 比較例5-5 20 14 8 5392 99.9% 〇 〔產業上之利用價値〕 本發明之照明裝置用反射薄膜,可使用作爲照明裝置 之反射板,而且,適合使用作爲液晶顯示裝置之背光單元 之反射薄膜,特別是於液晶電視等之顯示裝置的背面設置 光源之背光方式的液晶顯示裝置之背光單元時所使用的反 射薄膜。 【圖式簡單說明】 第1圖係於實施例1 -6中,形成四角錐形之突起時所 使用的模具之四角錐部分的模式圖。 第2圖係於實施例1 - 7中,使用設有稜鏡狀凹凸之軋 輥,在塗佈層上形成凹凸時,塗佈層上所形成的稜鏡狀凹 凸形狀。 第3圖係於比較例1 -6中,形成四角錐形之突起時所 使用的模具之四角錐部分的模式圖。 第4圖係於比較例1-7中,使用設有稜鏡狀凹凸之軋 -76- 201015022 輥,在塗佈層上形成凹凸時,塗佈層上所形成的稜鏡狀凹 凸形狀。 第5圖係於測定藉由透明突起所成的薄膜之被覆率時 ,使用薄片切片裝置所切斷的薄膜截面之模式圖。 第6圖係於測定藉由透明粒子形成的透明突起所成之 ' 薄膜的被覆率時,使用薄片切片裝置所切斷的薄膜截面之 模式圖。 φ 第7圖係於測定藉由透明粒子所形成的透明突起所成 之薄膜的被覆率時,使用薄片切片裝置所切斷的薄膜截面 之模式圖。 9 -77-The binder compounding amount is the compounding amount of the solvent contained in S2 740 or A807B A. The amount of the crosslinking agent is the amount of the solvent contained in the HL. Table 5-2 The composition of the film is transparent 1 The bonding agent is !! _ The type of the compound is wt% D10 μπι D90 μπι D10/D90 μτη D50 μπι Type solid content content wt% surface solid content content wt% Example 5-1 MBX-12 72 6.0 17.0 0.35 11.5 S2740 22 HL 6 Example 5-2 MBX-15 72 8.0 20.0 0.40 14.5 Α807ΒΑ 22 HL 6 Example 5 - 3 MBX-20 72 9.0 26.0 0.35 18.4 S2740 22 HL 6 Comparative Example 5-1 Comparative Example 5-3 MR-10G 38 2.5 20.0 0.13 11.0 S2740 47 HL 15 Comparative Example 5-5 MR-20G 38 8.5 35.0 0.24 19.6 S2740 47 HL 15 -75- 201015022 Table 5-3 Coverage % Coating film thickness μτη Protrusion height by transparent particles μπι Evaluation of film brightness cd/m2 Relative brightness particle shedding Example 5-1 95 8 5 5512 102.1% 〇 Example 5-2 90 10 7 5527 102.4% 〇Example 5-3 95 14 8 5547 102.7% 〇Comparative Example 5-1 ——— — 5400 100.0% 〇Comparative Example 5-3 35 6 6 5390 99.8% 〇Comparative Example 5-5 20 14 8 5392 99.9% 〇 [Industrial use price 値] The present invention A reflective film for a device can be used as a reflector for an illumination device, and a reflective film for a backlight unit of a liquid crystal display device can be used, and a liquid crystal display device having a backlight of a light source such as a liquid crystal television or the like is provided. A reflective film used in backlight units. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a quadrangular pyramid portion of a mold used in forming a quadrangular pyramid projection in the first to sixth embodiments. Fig. 2 is a plan view showing a meandering convex shape formed on the coating layer when the unevenness is formed on the coating layer by using a roll having a meandering unevenness in the first to seventh embodiments. Fig. 3 is a schematic view showing a quadrangular pyramid portion of a mold used in forming a quadrangular pyramid projection in Comparative Example 1-6. Fig. 4 is a view showing a meandering convex shape formed on the coating layer when the unevenness is formed on the coating layer by using a roll of -76-201015022 provided with a meandering unevenness in Comparative Example 1-7. Fig. 5 is a schematic view showing a cross section of a film cut by a sheet slicing apparatus when measuring the coverage of a film formed by a transparent projection. Fig. 6 is a schematic view showing a cross section of a film cut by a sheet slicing apparatus when measuring the coverage of a film formed by a transparent projection formed of transparent particles. φ Fig. 7 is a schematic view showing a cross section of a film cut by a sheet slicing apparatus when measuring the coverage of a film formed by transparent projections formed of transparent particles. 9 -77-

Claims (1)

201015022 七、申請專利範圓: 1. —種照明裝置用反射薄膜,其特徵爲由白色薄膜 及在該白色薄膜表面上設置的高度爲3〜50 μιη之透明突起 所形成,藉由該白色薄膜表面之由透明突起所成的被覆率 爲 50〜100% 。 2. 如申請專利範圍第1項之反射薄膜,其中透明突 起由透明粒子所形成,於反射薄膜表面上露出率爲5〜 10 0%之透明粒子以50〜100%的被覆率被覆於白色薄膜表 面。 3. 如申請專利範圍第2項之反射薄膜,其中透明粒 子係藉由黏合劑之塗膜被承載於白色薄膜表面上。 4. 如申請專利範圍第2項之反射薄膜,其中透明粒 子之平均粒徑爲3〜50μιη。 5. 如申請專利範圍第4項之反射薄膜,其中透明粒 子之體積50%粒徑D50爲3〜50μιη,且透明粒子之體積 10%粒徑D 10與體積90%粒徑D90之比D10/D90爲0.30〜 0.98。 6. 如申請專利範圍第3項之反射薄膜,其中黏合劑 之塗膜係由含有螢光物之黏合劑組成物所形成,該黏合劑 組成物中螢光物的含量,以黏合劑組成物之合計重量爲基 準時,爲1〜20重量%。 7. 如申請專利範圍第7項之反射薄膜,其中螢光物 係以400〜450nm之波長光激勵,且使500〜600nm之波 長光發光的有機螢光物。 -78- 201015022 8 .如申請專利範圍第1〜7項中任一項之反射薄膜 其中照明裝置爲液晶顯示裝置之背光單元。201015022 VII. Patent application: 1. A reflective film for a lighting device, characterized by a white film and a transparent protrusion having a height of 3 to 50 μm disposed on the surface of the white film, by the white film The coverage of the surface by the transparent protrusions is 50 to 100%. 2. The reflective film according to claim 1, wherein the transparent protrusion is formed of transparent particles, and the transparent particles having an exposure ratio of 5 to 100% on the surface of the reflective film are coated on the white film at a coverage of 50 to 100%. surface. 3. The reflective film of claim 2, wherein the transparent particles are carried on the surface of the white film by a coating film of the adhesive. 4. The reflective film of claim 2, wherein the transparent particles have an average particle diameter of from 3 to 50 μm. 5. The reflective film of claim 4, wherein the transparent particles have a volume 50% particle diameter D50 of 3 to 50 μm, and the ratio of the volume 10% particle diameter D 10 of the transparent particles to the volume 90% particle diameter D90 is D10/ D90 is 0.30~0.98. 6. The reflective film of claim 3, wherein the coating film of the adhesive is formed of a binder composition containing a phosphor, and the content of the phosphor in the binder composition is a binder composition. When the total weight is based on, it is 1 to 20% by weight. 7. The reflective film according to claim 7, wherein the fluorescent material is an organic fluorescent material which is excited by light of a wavelength of 400 to 450 nm and which emits light of a wavelength of 500 to 600 nm. The reflective film according to any one of claims 1 to 7 wherein the illumination device is a backlight unit of a liquid crystal display device. -79--79-
TW098127279A 2008-08-13 2009-08-13 Reflective film for lighting fixtures TWI500883B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008208531A JP2010044238A (en) 2008-08-13 2008-08-13 Reflection film for liquid crystal display device
JP2008208530 2008-08-13
JP2008208939 2008-08-14
JP2008208940 2008-08-14
JP2008209794A JP5388505B2 (en) 2008-08-18 2008-08-18 Reflective film for liquid crystal display

Publications (2)

Publication Number Publication Date
TW201015022A true TW201015022A (en) 2010-04-16
TWI500883B TWI500883B (en) 2015-09-21

Family

ID=41669013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127279A TWI500883B (en) 2008-08-13 2009-08-13 Reflective film for lighting fixtures

Country Status (4)

Country Link
KR (2) KR20160003894A (en)
CN (1) CN102124380A (en)
TW (1) TWI500883B (en)
WO (1) WO2010018878A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139661A (en) * 2015-10-08 2018-06-08 大日本印刷株式会社 Particle, optical sheet, screen, display device, pellet screening equipment and granules manufacturing apparatus and particle inspection method, method for making granules, screen inspection method and screen manufacturing method
CN109814187B (en) * 2019-03-22 2020-11-10 宁波东旭成新材料科技有限公司 Optical reflection film
CN112013623A (en) * 2019-05-30 2020-12-01 青岛海尔电冰箱有限公司 Method and device for displaying state of food in refrigerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816175B2 (en) * 1991-01-22 1996-02-21 東レ株式会社 White polyester film for LCD reflector
EP0496323B2 (en) * 1991-01-22 2002-12-11 Toray Industries, Inc. Reflector for a surface light source
JPH1158574A (en) * 1997-08-28 1999-03-02 Sekisui Chem Co Ltd Method for forming fine particle layer
JP4945032B2 (en) * 2001-05-08 2012-06-06 恵和株式会社 Reflective sheet and backlight unit using the same
CN1475814A (en) * 2002-08-16 2004-02-18 惠和株式会社 Reflecting sheet and poor light assembly using sheet
JP2006120406A (en) * 2004-10-20 2006-05-11 Sumitomo Rubber Ind Ltd Lighting device
TWI274901B (en) * 2006-03-13 2007-03-01 Exploit Technology Co Ltd Oriented diffusion reflection sheet
EP2447602B1 (en) * 2006-06-23 2015-05-27 Toray Industries, Inc. White reflection film
CN101118291B (en) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 Pervasion piece
US7905650B2 (en) * 2006-08-25 2011-03-15 3M Innovative Properties Company Backlight suitable for display devices
CN101529281B (en) * 2006-10-27 2011-09-07 东丽株式会社 White polyester film for light reflective plate
JP5098834B2 (en) * 2007-06-12 2012-12-12 東レ株式会社 White reflective film

Also Published As

Publication number Publication date
CN102124380A (en) 2011-07-13
TWI500883B (en) 2015-09-21
WO2010018878A1 (en) 2010-02-18
KR20160003894A (en) 2016-01-11
KR20110044730A (en) 2011-04-29

Similar Documents

Publication Publication Date Title
TWI354807B (en) Optical film
TWI374922B (en) Anti-uv coating composition and the use thereof
KR100915242B1 (en) Reflector having high light diffusion
TW200809137A (en) White reflective film
CN1924624A (en) Substrate film for optical sheet, optical sheet and backlight unit
TW200937043A (en) Brightness enhancement reflective film
TW201002523A (en) Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
TW200907422A (en) Optical sheets
TW200848770A (en) Optical film containing organic particles having narrow particle size distribution
TWI449624B (en) Laminated film
JP2007030284A (en) Reflective aliphatic polyester resin film
TW200948890A (en) Polyester film for reflector purposes and coated polyester film for reflectors purposes
TWI500883B (en) Reflective film for lighting fixtures
JP5330072B2 (en) Reflective film for liquid crystal display
JP2012199176A (en) Optical sheet and surface light source device
JP2008286907A (en) Laminate for reflection
JP2010108824A (en) Direct backlight
JP5405917B2 (en) Thermoplastic resin film used as a reflective film for LED lighting
JP2006078743A (en) Diffusion film
JP2006145568A (en) Aliphatic polyester resin reflection film and reflecting plate
JP4630642B2 (en) Aliphatic polyester resin reflective film and reflector
JP2010044238A (en) Reflection film for liquid crystal display device
JP4804741B2 (en) Aliphatic polyester resin reflective film and reflector
JP7327401B2 (en) Polarizer protective polyester film and liquid crystal display device
JP2010066760A (en) Reflective film for liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees