TW201014816A - Synthesis of hydrofluoroalkanols and hydrofluoroalkenes - Google Patents

Synthesis of hydrofluoroalkanols and hydrofluoroalkenes Download PDF

Info

Publication number
TW201014816A
TW201014816A TW97145015A TW97145015A TW201014816A TW 201014816 A TW201014816 A TW 201014816A TW 97145015 A TW97145015 A TW 97145015A TW 97145015 A TW97145015 A TW 97145015A TW 201014816 A TW201014816 A TW 201014816A
Authority
TW
Taiwan
Prior art keywords
group
metal
reactive metal
reaction
anhydride
Prior art date
Application number
TW97145015A
Other languages
Chinese (zh)
Inventor
Mario Joseph Nappa
Xuehui Sun
Lev Moiseevich Yagupolskii
Andrey Anatolievich Filatov
Vladimir Nikolaevich Boiko
Yurii Lvovich Yagupolskii
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of TW201014816A publication Critical patent/TW201014816A/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Described herein is a process for the manufacture of hydrofluoroalkanols of the structure RfCFClCHROH, comprising reacting a halofluorocarbon of the structure RfCFX2, wherein each X is independently selected from Cl, Br, and I, with an aldehyde and a reactive metal in a reaction solvent to generate a reaction product comprising a metal hydrofluoroalkoxide, neutralizing said metal hydrofluoroalkoxide to produce a hydrofluoroalkanol, and recovering the hydrofluoroalkanol. Also described herein are methods of manufacturing hydrofluoroalkenes of the structure RfCF=CHR from halofluorocarbons of the structure RfCFX2, wherein each X is independently selected from Cl, Br, and I, comprising (1) reacting halofluorocarbons of the structure RfCFX2, wherein each X is independently selected from Cl, Br, and I, with an aldehyde and a reactive metal to generate a reaction product comprising a metal hydrofluoroalkoxide, and reductively dehydroxyhalogenating said metal hydrofluoroalkoxide to produce a hydrofluoroalkene or (2) reacting a hydrofluoroalkanol of the structure RfCFXCHROH or a hydrofluoroalkoxide of the structure RfCFXCHROMX, wherein M is a reactive metal in the +2 oxidation state, with a carboxylic acid anhydride and a reactive metal in a reaction solvent to form a hydrofluoroalkene and isolating the hydrofluoroalkene. In particular, 2, 3, 3, 3, -tetrafluoro-1-propene may be manufactured with this process. Also described are compounds of the formula RfCFClCHROC(=O)R'.

Description

201014816 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於一種製備氫氟烷醇之方法及一 種製備氫氟烯之方法,且特定而言—種自氫減醇及氣氣 烷醇酯製備2,3,3,3-四氟-1_丙稀之方法。 【先前技術】201014816 IX. INSTRUCTIONS: [Technical field to which the invention pertains] The present disclosure relates generally to a method for preparing a hydrofluoroalkanol and a method for producing a hydrofluoroolefin, and in particular, a hydrogen-reduced alcohol and gas A method for preparing 2,3,3,3-tetrafluoro-1-propylene by a stanol ester. [Prior Art]

致冷工業在過去數十年中—直致力於尋找由於蒙特利爾 協定(Mo—al Protocol)而逐步停止使用之消耗臭氧之氣 氟碳化物(CFC)及氫氣氟碳化物(HCFC)的替代致冷劑。大 多數致冷劑製造者之解決方法為氫氟碳化物(HFC)致冷劑 之商業化。然而,由於與全球變暖相關之顧慮,目前正管 制HFC之使用。 始終需要新穎且較優良之製備齒烴之方法,該等鹵烴可 適用作致冷劑,或適用於其他應用,諸如泡沫膨脹劑、氣 溶膠推進劑、火灸撲滅劑或滅火劑、溶劑及滅菌劑。 【發明内容】 本發明k供風氟烧醇及風氟稀之製造。本文中描述一種 製造結構11心?又(:111101·!之氫氟烷醇之方法,其包含使結構 RfCFXz之鹵氟碳化物(其中各X獨立地選自a、仏及^與搭 及反應性金屬在反應溶劑中反應以產生包含金屬氫氟醇鹽 之反應產物;中和該金屬氫氟醇鹽以產生氫氟烷醇;及視 情況回收氩氟烷醇。 本文中亦描述自結構RfCFX2之鹵氟碳化物(其中各X獨立 地選自C1、ΒΓ及I)製造氫氟烯之方法,其包含使結構 136295.doc 201014816In the past few decades, the refrigeration industry has been working hard to find alternative refrigerants for ozone-depleting fluorocarbons (CFCs) and hydrogen fluorocarbons (HCFCs) that are phased out due to the Montreal Protocol (Mo-al Protocol). Agent. The solution for most refrigerant manufacturers is the commercialization of hydrofluorocarbon (HFC) refrigerants. However, due to concerns related to global warming, the use of HFC is currently being regulated. There is always a need for a novel and superior method of preparing dental hydrocarbons which may be suitable as a refrigerant or for other applications such as foam expansion agents, aerosol propellants, fire moulticides or fire extinguishing agents, solvents and Sterilizer. SUMMARY OF THE INVENTION The present invention provides for the manufacture of fluoroalcohol and wind fluorocarbon. This article describes a manufacturing structure 11 heart? A method of hydrofluoroalkanol of (111101), which comprises reacting a halofluorocarbon of the structure RfCFXz (wherein each X is independently selected from the group consisting of a, ruthenium and ruthenium and a reactive metal in a reaction solvent to produce a reaction product comprising a metal hydrofluoroalkoxide; neutralizing the metal hydrofluoroalkoxide to produce a hydrofluoroalkanol; and optionally recovering the argon fluoroalkanol. Also described herein are halofluorocarbons from the structure RfCFX2 (wherein each X A method of independently producing a hydrofluoroolefin selected from the group consisting of C1, hydrazine, and I), comprising the structure 136295.doc 201014816

RfCFX2之鹵氟碳化物(其中各χ獨立地選自c卜以及^與醛 及反應性金屬在反應溶劑中反應以產生包含金屬氫氟醇鹽 之反應產物,及使金屬氫氟醇鹽還原性脫羥基_化以產生 氫氟烯,以及視情況回收氩氟烯。在一實施例中,該還原 性脫羥基齒化作用包含使金屬氫氟醇鹽與羧酸酐及反應性 金屬反應以形成氫氟烯。在另一實施例中,還原性脫羥基 i化作用包含中和金屬氫氟醇鹽以產生氫氟烷醇,將脫水 劑與該氫氟烷醇混合從而形成氣態混合物且使催化劑與該 氣態混合物接觸從而形成氫氟烯。 本文中亦描述製造2,3,3,3 -四氟-1-丙稀之方法。該方法 包含如上文所述之製造氫氟稀之步驟,其中&為Cf3。 本文中亦揭示式RfCFXCH2〇C(=0)R之新穎氫氟烷醇 SI ’其中Rf為具有1至4個碳原子之全氟烧基,r為ch3、 CH3CH2、CH3CH2CH2、(CH3)2CH或 Η,X係選自 α、Br 及 I ’ 且 R’ 係選自由 _CH3、-C2H5、_CH2CH2CH3、 ch2ch2co2h、ch2ch2ch2co2h、ch2ch2ch2ch2co2h& H組成之群;及式環+CF(Rf)CHRCF(Rf)CilR_)之新穎氫氟 碳化物。 亦揭示一種製造結構RfCF = CHR之氫氟烯之方法,其包 含使結構RfCFXCHROH之氫氟烷醇或結構RfCFXCHROMX 之氫氟醇鹽(其中Μ為呈+2氧化態之反應性金屬且其中X係 選自C卜Br及I)與羧酸酐及反應性金屬在反應溶劑中反應 以形成氫氟烯及分離氫氟烯。 本文中亦揭示一種具有式RfCFXCHRO-Zn-X之化合物, 136295.doc 201014816 其中Rf為具有1至4個碳原子之全氟烷基,χ係選自Cl、Br 及 I ’ 且 R為 CH3、CH3CH2、CH3CH2CH2、(CH3)2CH或 Η。 上文已描述許多態樣及實施例且其僅為例示性而非限制 性的。在閱讀本說明書之後,熟習此項技術者應瞭解,在 不脫離本發明之範疇之情況下,其他態樣及實施例亦為可 •能。 任一個或多個實施例之其他特徵及益處將自以下實施方 式及申請專利範圍而變得明顯。 ® 【實施方式】 在陳述下文所述之實施例之細節之前,將定義或闡明某 些術語。 如本文中所用’曱醛係指具有結構H2C=〇之化合物,亦 已知其係以環狀三聚體13 5-三噁烷形式存在且亦以三聚 甲酸(paraformaldehyde)或聚甲搭(p〇iyOXymethylene)形式 存在。 籲 如本文中所用,反應性金屬係指諸如以下之反應性金 屬:鎂屑、活性鋅粉、鋁及下列金屬中任一種之粉末: 鎂、約、鈦、鐵、銘、鎳、銅、鋅及姻,以及辞(π)鹽。 鎂屑為鎂之碎片,其經切割以產生具有較高表面積及通常 . 較低表面氧化物(其降低反應性)量之小塊。鎮、約、鈦、 鐵、錄、鎖、銅、辞及銦之反應性金屬粉末為瑞克金屬 (ke metal),其係由產生在反應(諸如本發明之彼等反 應)中極具反應性之高表面積金屬粉末的特定程序製備。 希望又任何特疋理論限制’認為瑞克金屬由於具有高表 136295.doc 201014816 面積且缺乏鈍化表面之氧化物而具有高反應性β 如本文中所用,脫水劑為含有至少一種選自由下列氣體 組成之群之氣體的氣體或氣態混合物:甲烷、乙烷、丙 烧、丁院、天然氣、醇、搭及一氧化碳。如本文中所用, 天然氣係指具有甲烷作為主要組分且亦包含大量乙烷、丁 烷、丙烷、二氧化碳、氮氣之氣態混合物。 如本文中所用’脫羥基鹵化作用係指自氫氟烷醇之相鄰 碳原子移除羥基及選自Cl、Br及I之鹵素原子以形成氫氟 稀。 在一實施例中,製備式RfCFXCHR〇H之氫氟烷醇,諸如 1,1,1,2-四氟-;2-氣丙醇(一種可轉化為2,3,3,3-四氟-1-丙烯 (HFC-1234yf)之中間物)。在一實施例中,r係選自由 CH3、CH3CH2、CH3CH2CH2、(CH3)2CH或 Η組成之群。在 一實施例中’ Rf為具有1至4個碳原子之全氟烷基。在另一 實施例中’ Rf選自由全氟甲基、全氟乙基、全氟正丙基、 全氟異丙基、全氟正丁基及全氟異丁基(亦即,分別為 CF3-、CF3CF2-、CF3CF2CF2-、(CF3)2CF-、CF3CF2CF2CF2-及CF3CF(CF3)CF2_)組成之群。在一實施例中,化為cf3且 R為Η。在一實施例中’ X係選自Cl、Br及I。在另一實施 例中,X為C1。 在一實施例中,式RfCFX2之鹵氟碳化物(其中各X獨立地 選自Cl、Br及I)與醛及反應性金屬在反應溶劑中反應以產 生金屬氫氟醇鹽。在一實施例中,中和金屬氫氟醇鹽以提 供可分離之風> 氟烧醇。在某些實施例中,中和包含用有機 136295.doc -10- 201014816 溶劑稀釋及與酸之稀水溶液(包括(不限於)稀鹽酸水溶液或 稀硫酸水溶液)反應。在某些實施例中,當將有機溶劑相 與水相分離後,用鹽水溶液進一步沖洗有機溶劑相。接著 將有機溶劑相乾燥且藉由蒸發或蒸餾移除溶劑以提供氫氟 烷醇產物。在其他實施例中,金屬氫氟酵鹽可用於如下文 所述之其他反應中以在不經中和之情況下產生氫氟烯。在 實施例中,鹵氟碳化物為1,1_二氣四氟乙烧且氫氟烧醇 為2-氣-2,3,3,3-四氟-1-丙醇。 式RfCFXs之鹵氟碳化物(其中各χ獨立地選自α、玢及工) 可藉由使相應氫氟故化物RfCFH;2鹵化來製備β舉例而言, 在Rf為CF3且X為C1之一實施例中,使m2·四氟乙烷 (HFC-134a)氣化以製備l,i,;!,2_四敗_2,2_二氣乙烷(CFC_ 114a) 〇 在某些實施例中,除反應性金屬外,亦將鋅鹽添加至包 含鹵氟碳化物反應物之混合物中。合適鋅鹽包括乙酸鋅、 漬化鋅、氣化鋅、檸檬酸鋅、硫酸鋅及其混合物。在一實 施例中,鋅鹽為乙酸鋅。在一實施例中,每莫耳_氟碳化 物所添加鋅鹽之量為0.1莫耳至】.〇莫耳,在另一實施例 中’每莫耳鹵氟碳化物所添加鋅鹽之量為〇_25莫耳至〇.7莫 耳。在另一實施例中,每莫耳^氟碳化物所添加鋅鹽之量 為0.5莫耳至〇.6莫耳。 在一實施例中’醛係選自由甲醛、乙醛、丙醛、丁醛及 異丁醛組成之群。在一實施例中,反應性金屬與鹵氟碳化 物之莫耳比為約1 :1。在另一實施例中,反應性金屬與鹵 136295.doc -11 · 201014816 氟蜂化物之莫耳比為約2:丨。在另一實施例中,反應性金 屬與鹵氟碳化物之莫耳比為約25:1。在一實施例中,醛與 齒氣碳化物之莫耳比為約1:1。在另一實施例中,醛與鹵 氟碳化物之莫耳比為約2:1。在另一實施例中,醛與鹵氟 碳化物之莫耳比為約3: i。a halofluorocarbon of RfCFX2 (wherein each oxime is independently selected from the group consisting of c and aldehydes and a reactive metal in a reaction solvent to produce a reaction product containing a metal hydrofluoroalkoxide, and a metal hydrofluoroalkoxide reducing property Dehydroxylation to produce hydrofluoroolefins, and optionally recovery of argon fluoride. In one embodiment, the reductive dehydroxylation comprises reacting a metal hydrofluoroalkoxide with a carboxylic anhydride and a reactive metal to form hydrogen. Fluorocarbon. In another embodiment, the reductive dehydroxylation comprises neutralizing the metal hydrofluoroalkoxide to produce a hydrofluoroalkanol, mixing the dehydrating agent with the hydrofluoroalkanol to form a gaseous mixture and causing the catalyst to The gaseous mixture is contacted to form a hydrofluoroolefin. A method of making 2,3,3,3-tetrafluoro-1-propene is also described herein. The method comprises the steps of producing hydrofluorocarbon as described above, wherein &; is Cf3. Also disclosed herein is a novel hydrofluoroalkanol SI of the formula RfCFXCH2〇C(=0)R where Rf is a perfluoroalkyl group having 1 to 4 carbon atoms, and r is ch3, CH3CH2, CH3CH2CH2, CH3) 2CH or Η, X is selected from α, Br and I ' and R' is selected a novel hydrofluorocarbon of free _CH3, -C2H5, _CH2CH2CH3, ch2ch2co2h, ch2ch2ch2co2h, ch2ch2ch2ch2co2h&H; and a novel hydrofluorocarbon of the formula +CF(Rf)CHRCF(Rf)CilR_). Also disclosed is a method of making a hydrofluoroolefin of the structure RfCF = CHR comprising a hydrofluoroalkanol of the structure RfCFXCHROH or a hydrofluoroalkoxide of the structure RfCFXCHROMX (wherein the ruthenium is a reactive metal in the +2 oxidation state and wherein the X system It is selected from C and Br and I) to react with a carboxylic anhydride and a reactive metal in a reaction solvent to form a hydrofluoroolefin and to separate a hydrofluoroolefin. Also disclosed herein is a compound of the formula RfCFXCHRO-Zn-X, 136295. doc 201014816 wherein Rf is a perfluoroalkyl group having from 1 to 4 carbon atoms, the lanthanide is selected from the group consisting of Cl, Br and I' and R is CH3, CH3CH2, CH3CH2CH2, (CH3)2CH or hydrazine. Many of the aspects and embodiments have been described above and are merely illustrative and not limiting. After reading this specification, those skilled in the art will appreciate that other aspects and embodiments are possible without departing from the scope of the invention. Other features and benefits of any one or more embodiments will become apparent from the following description and claims. ® [Embodiment] Certain terms will be defined or clarified before the details of the embodiments described below are set forth. As used herein, 'furfural refers to a compound having the structure H2C=〇, which is also known to exist as a cyclic trimer 13 5-trioxane and also as a paraformaldehyde or a polymethylated ( The p〇iyOXymethylene) form exists. As used herein, a reactive metal refers to a reactive metal such as magnesium turnings, activated zinc powder, aluminum, and any of the following metals: magnesium, about, titanium, iron, indium, nickel, copper, zinc. And marriage, and the word (π) salt. Magnesium is a piece of magnesium that is cut to produce small pieces having a relatively high surface area and generally a lower surface oxide (which reduces reactivity). The reactive metal powders of the towns, about, titanium, iron, magnet, lock, copper, and indium are ke metals which are highly reactive in the reaction, such as the reactions of the present invention. Specific procedure for the preparation of high surface area metal powders. It is hoped that any special theory limits 'considered that Rick metal has high reactivity due to the high surface 136295.doc 201014816 area and lacks the oxide of the passivated surface. As used herein, the dehydrating agent is at least one selected from the group consisting of the following gases. a gas or gaseous mixture of gases: methane, ethane, propane, difenium, natural gas, alcohol, and carbon monoxide. As used herein, natural gas refers to a gaseous mixture having methane as a main component and also containing a large amount of ethane, butane, propane, carbon dioxide, nitrogen. "Dehydroxyhalogenation" as used herein refers to the removal of a hydroxyl group from a carbon atom adjacent to a hydrofluoroalkanol and a halogen atom selected from the group consisting of Cl, Br and I to form hydrofluorocarbon. In one embodiment, a hydrofluoroalkanol of the formula RfCFXCHR〇H, such as 1,1,1,2-tetrafluoro-; 2-propanol (a type which can be converted to 2,3,3,3-tetrafluoro) is prepared. -1-propene (HFC-1234yf) intermediate). In one embodiment, r is selected from the group consisting of CH3, CH3CH2, CH3CH2CH2, (CH3)2CH or hydrazine. In one embodiment, 'Rf is a perfluoroalkyl group having 1 to 4 carbon atoms. In another embodiment 'Rf is selected from the group consisting of perfluoromethyl, perfluoroethyl, perfluoro-n-propyl, perfluoroisopropyl, perfluoro-n-butyl and perfluoroisobutyl (ie, CF3, respectively) - A group consisting of CF3CF2-, CF3CF2CF2-, (CF3)2CF-, CF3CF2CF2CF2-, and CF3CF(CF3)CF2_). In one embodiment, it is cf3 and R is Η. In one embodiment, the 'X is selected from the group consisting of Cl, Br, and I. In another embodiment, X is C1. In one embodiment, halofluorocarbons of the formula RfCFX2 wherein each X is independently selected from the group consisting of Cl, Br and I are reacted with an aldehyde and a reactive metal in a reaction solvent to produce a metal hydrofluoroalkoxide. In one embodiment, the metal hydrofluoroalkoxide is neutralized to provide a separable wind > fluoroalcohol. In certain embodiments, the neutralization comprises dilution with an organic 136295.doc -10- 201014816 solvent and reaction with a dilute aqueous acid solution including, without limitation, dilute aqueous hydrochloric acid or aqueous dilute sulfuric acid. In certain embodiments, when the organic solvent phase is separated from the aqueous phase, the organic solvent phase is further rinsed with a saline solution. The organic solvent phase is then dried and the solvent is removed by evaporation or distillation to provide the hydrofluoroalkanol product. In other embodiments, the metal hydrofluoronate salt can be used in other reactions as described below to produce hydrofluoroolefins without neutralization. In the examples, the halofluorocarbon is 1,1_di-gas tetrafluoroethylene and the hydrofluoroanilan is 2-gas-2,3,3,3-tetrafluoro-1-propanol. The halofluorocarbon of the formula RfCFXs (wherein each of the rhodium is independently selected from the group consisting of α, hydrazine, and the work) can be prepared by halogenating the corresponding hydrofluorinated compound RfCFH; 2, for example, where Rf is CF3 and X is C1. In one embodiment, m2·tetrafluoroethane (HFC-134a) is gasified to produce l,i,;!, 2_tetrapox-2,2_dioxaethane (CFC_114a) in some implementations In the example, in addition to the reactive metal, a zinc salt is also added to the mixture comprising the halofluorocarbon reactant. Suitable zinc salts include zinc acetate, zinc oxide, zinc vapor, zinc citrate, zinc sulfate, and mixtures thereof. In one embodiment, the zinc salt is zinc acetate. In one embodiment, the amount of zinc salt added per mole of fluorocarbon is from 0.1 moles to gram. In another embodiment, the amount of zinc salt added per mole of halofluorocarbon. For 〇 _25 Moer to 〇. 7 Mo Er. In another embodiment, the amount of zinc salt added per mole of fluorocarbon is from 0.5 moles to 〇.6 moles. In one embodiment, the 'aldehyde' is selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and isobutyraldehyde. In one embodiment, the molar ratio of reactive metal to halofluorocarbon is about 1:1. In another embodiment, the molar ratio of reactive metal to halogen 136295.doc -11 · 201014816 fluorobee is about 2: 丨. In another embodiment, the molar ratio of reactive metal to halofluorocarbon is about 25:1. In one embodiment, the molar ratio of aldehyde to chiral carbide is about 1:1. In another embodiment, the molar ratio of aldehyde to halofluorocarbon is about 2:1. In another embodiment, the molar ratio of aldehyde to halofluorocarbon is about 3: i.

在將二聚甲路用作醛之某些實施例中,將第四銨鹽添加 至反應中。在一實施例中,第四銨鹽為雙烷基二甲基乙酸 銨。不希望受任何特定理論限制,咸信該等第四銨鹽促進 二聚甲搭分解為甲醛。在某些實施例中,所添加之第四銨 鹽之量為三聚曱醛之量之約!重量%至約2〇重量%。在其他 實施例中,所添加之第四銨鹽之量為三聚甲醛之量之約$ 重量%至約10重量%。 鹵氟碳化物與醛及反應性金屬之反應係在反應溶劑中進 行。在一實施例中,該反應溶劑係選自由烷基、二烷基及 三烷基直鏈或環狀胺、N_曱基吡咯啶、沁甲基哌啶、亞 砜、醚、吡啶或經烷基取代之吡啶、吡嗪或嘧啶、烷基腈 及芳腈、六甲基磷醯胺、醇、酯及其混合物組成之群。在 一實施例中,醇溶劑為甲醇。在一實施例中,酯溶劑為甲 酸甲酯。在一實施例中,亞砜溶劑為二甲亞砜。在一實施 例中,院基腈溶劑為乙腈H施例中,芳腈溶劑為笨 甲腈。在另一實施例中,反應溶劑係選自 叫一祝基胺、N- 曱基0比咯啶、N-甲基哌啶、吡啶、經烷基取代之吼咬 甲基曱醯胺、吡嗪或嘧啶及其混合物組成之群。在 施例中,反應溶劑係選自由二曱基甲醯胺、四氫呋喃: 136295.doc -12- 201014816 啶、一甲基乙醯胺、1,4-二噁烷、N_曱基吡咯啶酮、二乙 鹎及其混合物組成之群。在另一實施例中,反應溶劑為吡 啶或經烷基取代之吡啶,或其混合物。在另一實施例中, 反應溶劑為吼咬或經烷基取代之吡啶與二甲基甲醯胺之混 合物。 在一實施例中’在_氟碳化物與醛及反應性金屬之反應 中存在之水量小於1000 ppm。在另一實施例中,在鹵氟碳 化物與搭及反應性金屬之反應中存在之水量為約5〇〇 ppm °在另一實施例中,在鹵氟碳化物與醛及反應性金屬 之反應中存在之水量為約1〇〇 ppm至約3〇〇 ppm。 在一實施例中,函氟碳化物與醛及反應性金屬之反應係 在約30°C至約100°C之溫度下執行。在另一實施例中,鹵 氟碳化物與醛及反應性金屬之反應係在約5〇。(:至約80°C之 溫度下進行。在一實施例中,該反應進行約3小時至約1 〇 小時。在另一實施例中,画氟碳化物與醛及反應性金屬之 反應進行約4小時至約8小時。在另一實施例中,鹵氟碳化 物與醛及反應性金屬之反應進行約4小時至約6小時。 在一實施例中,在反應之前用反應溶劑將醛預處理一段 時間。在一實施例中,在與_氟碳化物及反應性金屬反應 之前,在60°C下將三聚甲醛在吡啶中預處理4小時。在一 實施例中’預處理發生2小時。在另一實施例中,預處理 發生6小時。在其他實施例中,不存在預處理,且當將所 有反應物及反應溶劑相繼裝入反應容器後開始反應。 在一實施例中,鹵氟碳化物與醛及反應性金屬之反應係 136295.doc •13- 201014816 在密閉容器或其他反應器中執行。在一實施例中,齒氟碳 化物與醛及反應性金屬之反應係在自生壓力下執行。在另 一實施例中,齒氟碳化物與醛及反應性金屬之反應係在裝 備有防止未反應之由氟碳化物逸散之合適冷凝器的開放容 器或反應器中執行。 根據本發明之另一態樣,提供一種製造結構RfCF = CHR 之氫氟烯之方法。此方法包含使結構RfCFX2之鹵氟碳化物 與路及反應性金屬反應以產生金屬氫氟醇鹽;在第二步驟 中使該反應產物還原性脫經基自化以產生氫氟蝉;及接著 分離氫氟烯。 在一實施例中’ Rf為具有1至4個碳原子之全氟烷基。在 一特定實施例中,1為CF3且R為Η。 在一實施例中’製備氫氟烯之方法包含中和反應產物以 產生氫氟烷醇;將脫水劑與氫氟烷醇混合從而形成氣態混 合物;及使催化劑與該氣態混合物接觸從而形成氫氟烯。 在一實施例中’藉由使用溶劑、冰與酸水溶液之混合物 稀釋反應產物混合物來中和氣氟烷、醛及反應性金屬之反 應產物。在一實施例中,該溶劑可為任何常用有機溶劑, 諸如二***。在一實施例中’酸水溶液為常見無機酸之水 溶液,諸如鹽酸。在將所得混合物攪拌一段時間之後,分 離包含有機溶劑之層。在一實施例中,隨後可用酸之稀水 =液繼而鹽水溶液沖洗該有機溶劑層。接著將有機層乾 燥。在某些實施例中’藉由攪拌有機層及無水鹽(諸如無 水硫酸鎂或無水硫酸鈉)來實現乾燥。在某些實施例中, 136295.doc • 14_ 201014816 可接著蒸發有機溶劑以提供氫氟烷醇。 在此實施例甲,氫氟烷醇為至少一種選自由具有通式 Rf CH2〇H之氟烷醇組成之群之氫氟烷醇,其中w係選自 由 CF3CFC1-、CF3CF2CFC1-、CF3CF2CF2CFC1-及 CF3CF2CF2CF2CFC1- 組成之群。在一實施例中,氫氟烷醇為2,3,3,3_四氟·2_氣_ 1-丙醇。 在一實施例中,催化劑為至少一種過渡金屬。該金屬係 選自由鎳(Ni)、鈀(Pd)及鉑(Pt)組成之群。在一實施例中, 催化劑為包含過渡金屬及載體材料之載體催化劑。該載體 材料為至少一種選自由活性碳及氧化鋁組成之群之載體 材料。 脫水劑為至少一種選自由甲烷、乙烷、丙烷、丁烷、天 然氣、醇、醛及一氧化碳組成之群之氣體。 混合步驟在介於約65。(:至80°c之間範圍内之溫度下進 行。 •該方法進一步包含在接觸步驟之前,將氣態混合物預 熱。該預熱在介於約25(TC至約450°C之間範圍内之溫度下 進行。 接觸步驟較佳在介於約400。(:至約70(TC之間範圍内之溫 • 度下進行。接觸步驟亦較佳進行介於約20秒至約25秒之間 之時間。 該方法進一步包含中和氫氟烯產物中所含之任何剩餘 HF的步驟’其中藉由使氫氟烯產物經過koh溶液來中和 HF。 136295.doc -15· 201014816 氫敗烯產物包含至少一種選自由下列化合物組成之群之 氫氟烯:2,3,3,3-四氟-1-丙烯或選自由藉由式:RfCF=CH2 所表示之化合物組成之群之任何氫氟烯,其中化係選自由 CF3、CF3CF2、CF3CF2CF2、(CF3)2CF-、CF3CF2CF2CF2·及 CF3CF(CF3)CF2-組成之群。 氣態混合物可進一步包含至少一種選自由氣氣、氛氣及 氬氣組成之群之稀釋劑惰性氣體。 氫氟烷醇成為氫氟烯之轉化率在約50%至約100%之間之 範圍内。氫氟烷醇對氫氟烯之選擇率在約29%至約100%之 間之範圍内。 在接觸步驟期間,壓力在約1 psig至約100 psig之間之範 圍内。 根據本發明,進一步提供一種製造結構RfCF=CHR之氫 氟烯之方法,其包含使結構RfCFXCHROH之氫氟烷醇或結 構RfCFXCHROMX之氫氟醇鹽(其中Μ為呈+2氧化態之反應 性金屬)與羧酸酐及反應性金屬在反應溶劑中反應以形成 氫氟烯,及分離氫氟烯。 在另一實施例中,還原性脫羥基鹵化作用包含使金屬氫 氟醇鹽與羧酸酐及反應性金屬反應。在此實施例中,藉由 使結構RfCFXCHROH之氫氟烷醇或結構RfCFXCHROMX之 氫氟醇鹽(其中Μ為呈+2氧化態之反應性金屬)與羧酸酐及 反應性金屬在反應溶劑中反應以形成氫氟烯及視情況分離 氫氟烯來製造結構RfCF=CHR之氫氟烯。在此實施例中, 結構RfCFXCHROH之氫氟烷醇或結構RfCFXCHROMX之氫 136295.doc -16· 201014816 氟醇鹽(其中Μ為呈+2氧化態之反應性金屬)首先與羧酸酐 反應’形成如下文所述之酯。此酯接著與反應性金屬反 應,形成氫氟烯。在此方法中,Rf係選自由全氟甲基、全 氟乙基、全氟正丙基、全氟異丙基、全氟正丁基及全氟異 丁基組成之群,X係選自Cl、Br及I,且R係選自由Η、 CH3、C2Hs、n_c3H7及i-C3H7組成之群,且特定而言,1為 CF3’ X為ci且R為H。在此方法中,羧酸酐係選自由乙酸 野、丙酸酐、丁酸酐、琥珀酸酐、戊二酸酐、己二酸酐及 曱酸酐組成之群。反應性金屬粉末係如上文所述。在此方 法之某些實施例中,可在不中和画氟碳化物與反應性金屬 及链之反應之產物混合物的情況下進行還原性脫羥基鹵化 作用。在其他實施例中,在首先分離氫氟烷醇且接著使其 與羧酸酐及反應性金屬反應之後’進行還原性脫羥基鹵化 作用。在某些實施例中,還原性脫羥基豳化作用係在不分 離酯之情況下進行。在其他實施例中,還原性脫羥基鹵化 作用係在自溶劑及金屬鹽分離酯且接著與反應性金屬反應 之情況下進行。 在某些實施例中,還原性脫經基齒化作用之產物進一步 包含式環-(-CF(Rf)CHRCF(Rf)CHR·)之經取代環丁烷,其 中Rf為具有1至4個碳原子之全氟烧基且R為ch3、 CH3CH2、CH3CH2CH2、(CH3)2CH 或 Η。在一特定實施例 中,Rf為CF3且R為Η。 在一實施例中’羧酸酐係選自由乙酸酐、丙酸奸、丁酸 酐、琥珀酸酐、戊二酸酐、己二酸酐及曱酸酐組成之群。 136295.doc -17- 201014816 在另一實施例中,羧酸酐為乙酸酐。在一實施例中,羧酸 針與氮敗燒醇之莫耳比為約1:1至約2:1。在另一實施例 中,羧酸酐與氫氟烷醇之莫耳比為約1.4:1至約h8:1。在一 實施例中,反應性金屬與氫氟烷醇之莫耳比為約1:1。在 另一實施例中,反應性金屬與氫氟烷醇之莫耳比為約 2:1。在另一實施例中,反應性金屬與氫氟烷醇之莫耳比 為約2.5:1。金屬氫氟醇鹽與羧酸酸之間之反應產生式 RfCFXCHR〇C(=〇)R·之酯,其中心係如上文所述,r係如 上文所述’ X係如上文所述’且R,為上文所述之叛酸酐之 殘基且其係選自由-CH3、-c2h5、_CH2CH2CH3、 ch2ch2co2h、ch2ch2ch2co2h、ch2ch2ch2ch2co2h& H組成之群。在一實施例中,R^cf3,R為h,X為a,且 R'為 CH3。 在一實施例中,還原性脫羥基鹵化作用係在與進行齒瓦 碳化物與反應性金屬及醛之反應之溶劑相同之反應溶劑中 進行。在另一實施例中’還原性脫羥基函化作用係在與進 行鹵氟碳化物與反應性金屬及醛之反應之溶劑不同之反應 溶劑中進行。在另一實施例中,還原性脫羥基函化作用係 在吡啶或經烷基取代之吡啶與二甲基甲醯胺之混合物中進 行。 . 在一實施例中,氫氟烷醇之酯化產物為具有式 RfCFXCHROC〇=0)R,之化合物,其中Rf為具有1至4個碳原 子之全氟烷基,R為 ch3、ch3ch2、ch3ch2ch2、 (CH3)2CH或Η,X係選自Cl、Br及I,且R,係選自*_ch3、 136295.doc 201014816 -C2H5、-ch2ch2ch3、ch2ch2co2h、ch2ch2ch2co2h、 CH2CH2CH2CH2C02H及H組成之群。 如本文中所用,術語"包含"、"包括"、"具有"或其任何 其他變體意欲涵蓋非獨占性包括。舉例而言,包含一系列 要素之製程、方法、物品或裝置未必僅侷限於彼等要素, 而可包括該製程、方法、物品或裝置中未明確列出或固有 之其他要素❶此外,除非明確作相反說明,否則"或"係指 包括性之或而非獨占性之或。舉例而言,條件A或B係由 下列情況中之任一者滿足:A為真(或存在)且B為假(或不 存在);A為假(或不存在)且8為真(或存在);及a與b兩者 均為真(或存在)。 此外,"一"之使用係用於描述本文中所述之要素及組 份。此僅為方便起見使用且用於提供本發明範疇之一般含 義。此描述應視作包括一個或至少一個,且除非顯然其另 有所指,否則單數亦包括複數。 對應於元素週期表中各行之族數使用如見於CRC物理化 學手冊//⑽V c/jewzi外仍¢/户如心),第81版 (2000-2001)中之"新符號(New N〇tation)"慣例。 除非另外定義,否則本文中所用之所有科技術語具有與 一般熟習本發明所屬領域技術者通常所瞭解相同之意義。 儘管在本發明之實施例之實踐或測試中可使用與本文中所 述之彼等方法及材料類似或等效之方法及材料,但下文描 述合適之方法及材料。除非引用特定章節,否則本文中^ 提及之所有公開案、專利申請案、專利及其他參考文獻皆 136295.doc -19- 201014816 以全文引用之方式併入本文中。若出現矛盾,則以本說明 書(包括定義)為主。另外,材料、方法及實例僅為說明性 的而非意欲限制。 實例 在以下實例中將進一步描述本文中所述之概念,該等實 例並不限制申請專利範圍中所述之本發明之範嘴。 實例1In certain embodiments where the dimerization pathway is used as an aldehyde, a fourth ammonium salt is added to the reaction. In one embodiment, the fourth ammonium salt is dialkyldimethylammonium acetate. Without wishing to be bound by any particular theory, it is believed that such fourth ammonium salts promote the decomposition of dimerization to formaldehyde. In certain embodiments, the amount of the fourth ammonium salt added is about the amount of trimeraldehyde; % by weight to about 2% by weight. In other embodiments, the amount of the fourth ammonium salt added is from about $% by weight to about 10% by weight of the amount of the paraformaldehyde. The reaction of the halofluorocarbon with the aldehyde and the reactive metal is carried out in a reaction solvent. In one embodiment, the reaction solvent is selected from the group consisting of alkyl, dialkyl, and trialkyl straight or cyclic amines, N-decyl pyrrolidine, hydrazine methyl piperidine, sulfoxide, ether, pyridine or A group of alkyl substituted pyridine, pyrazine or pyrimidine, alkyl nitrile and aramid, hexamethylphosphoniumamine, alcohol, ester, and mixtures thereof. In one embodiment, the alcohol solvent is methanol. In one embodiment, the ester solvent is methyl formate. In one embodiment, the sulfoxide solvent is dimethyl sulfoxide. In one embodiment, the labile nitrile solvent is in the acetonitrile H embodiment and the aramid solvent is stupid carbonitrile. In another embodiment, the reaction solvent is selected from the group consisting of monoamine, N-decyl 0-pyridyl, N-methylpiperidine, pyridine, alkyl-substituted guanidine methyl guanamine, and pyridyl a group of azines or pyrimidines and mixtures thereof. In the embodiment, the reaction solvent is selected from the group consisting of dimercaptocaramine, tetrahydrofuran: 136295.doc -12- 201014816 pyridine, monomethyl acetamide, 1,4-dioxane, N-decyl pyrrolidone , a group of diacetyl and their mixtures. In another embodiment, the reaction solvent is pyridine or an alkyl substituted pyridine, or a mixture thereof. In another embodiment, the reaction solvent is a bite or a mixture of an alkyl substituted pyridine and dimethylformamide. In one embodiment, the amount of water present in the reaction of the fluorocarbon with the aldehyde and the reactive metal is less than 1000 ppm. In another embodiment, the amount of water present in the reaction of the halofluorocarbon with the reactive metal is about 5 ppm ppm. In another embodiment, in the halofluorocarbon with an aldehyde and a reactive metal The amount of water present in the reaction is from about 1 ppm to about 3 ppm. In one embodiment, the reaction of the functional fluorocarbon with the aldehyde and the reactive metal is carried out at a temperature of from about 30 ° C to about 100 ° C. In another embodiment, the reaction of the halofluorocarbon with the aldehyde and the reactive metal is about 5 Torr. (: is carried out at a temperature of about 80 ° C. In one embodiment, the reaction is carried out for about 3 hours to about 1 hour. In another embodiment, the reaction of the fluorocarbon with the aldehyde and the reactive metal is carried out. In about another embodiment, the reaction of the halofluorocarbon with the aldehyde and the reactive metal is carried out for about 4 hours to about 6 hours. In one embodiment, the aldehyde is reacted with a reaction solvent prior to the reaction. Pretreatment for a period of time. In one embodiment, the paraformaldehyde is pretreated in pyridine for 4 hours at 60 ° C prior to reaction with the fluorocarbon and the reactive metal. In one embodiment, 'pretreatment occurs. 2 hours. In another embodiment, the pretreatment occurs for 6 hours. In other embodiments, there is no pretreatment, and the reaction begins when all of the reactants and reaction solvent are sequentially loaded into the reaction vessel. In one embodiment The reaction of a halofluorocarbon with an aldehyde and a reactive metal 136295.doc • 13- 201014816 is carried out in a closed vessel or other reactor. In one embodiment, the reaction of the tooth fluorocarbon with an aldehyde and a reactive metal Execute under self-generated pressure. In another embodiment, the reaction of the tooth fluorocarbon with the aldehyde and the reactive metal is carried out in an open vessel or reactor equipped with a suitable condenser to prevent unreacted fluorocarbons from escaping. In one aspect, a method of making a hydrofluoroolefin having the structure RfCF = CHR is provided. The method comprises reacting a halofluorocarbon of the structure RfCFX2 with a pathway and a reactive metal to produce a metal hydrofluoroalkoxide; The reaction product is reductively deprotected to produce hydrofluoroquinone; and then the hydrofluoroolefin is separated. In one embodiment 'Rf is a perfluoroalkyl group having from 1 to 4 carbon atoms. In a particular embodiment 1 is CF3 and R is Η. In one embodiment, the method of preparing a hydrofluoroolefin comprises neutralizing a reaction product to produce a hydrofluoroalkanol; mixing the dehydrating agent with a hydrofluoroalkanol to form a gaseous mixture; and allowing the catalyst The gaseous mixture is contacted to form a hydrofluoroolefin. In one embodiment, the reaction product of the fluorocarbon, the aldehyde, and the reactive metal is neutralized by diluting the reaction product mixture using a solvent, a mixture of ice and an aqueous acid solution. In one embodiment, the solvent may be any common organic solvent such as diethyl ether. In one embodiment, the aqueous acid solution is an aqueous solution of a common mineral acid, such as hydrochloric acid. After stirring the resulting mixture for a period of time, the separation comprises an organic solvent. In one embodiment, the organic solvent layer can then be rinsed with a dilute acid = liquid followed by a saline solution. The organic layer is then dried. In some embodiments 'by stirring the organic layer and the anhydrous salt (such as anhydrous) Drying is achieved by magnesium sulfate or anhydrous sodium sulfate. In certain embodiments, 136295.doc • 14_ 201014816 may then be evaporated to provide a hydrofluoroalkanol. In this example, a hydrofluoroalkanol is at least one selected. A hydrofluoroalkanol having a group of fluoroalkanols of the formula Rf CH2〇H, wherein w is selected from the group consisting of CF3CFC1-, CF3CF2CFC1-, CF3CF2CF2CFC1-, and CF3CF2CF2CF2CFC1-. In one embodiment, the hydrofluoroalkanol is 2,3,3,3_tetrafluoro.2_gas-1-propanol. In an embodiment, the catalyst is at least one transition metal. The metal is selected from the group consisting of nickel (Ni), palladium (Pd) and platinum (Pt). In one embodiment, the catalyst is a supported catalyst comprising a transition metal and a support material. The carrier material is at least one carrier material selected from the group consisting of activated carbon and alumina. The dehydrating agent is at least one selected from the group consisting of methane, ethane, propane, butane, natural gas, alcohol, aldehyde and carbon monoxide. The mixing step is between about 65. (: is carried out at a temperature in the range between 80 ° C. • The method further comprises preheating the gaseous mixture prior to the contacting step. The preheating is in the range between about 25 (TC to about 450 ° C) The contacting step is preferably carried out at a temperature of between about 400 and about 70 (the temperature between the TCs. The contacting step is preferably carried out between about 20 seconds and about 25 seconds). The method further comprises the step of neutralizing any remaining HF contained in the hydrofluoroolefin product 'wherein the HF is neutralized by passing the hydrofluoroolefin product through the koh solution. 136295.doc -15· 201014816 Hydrogen olefin product a hydrofluoroolefin comprising at least one selected from the group consisting of 2,3,3,3-tetrafluoro-1-propene or any hydrofluorocarbon selected from the group consisting of compounds represented by the formula: RfCF=CH2 a olefin, wherein the chemistry is selected from the group consisting of CF3, CF3CF2, CF3CF2CF2, (CF3)2CF-, CF3CF2CF2CF2, and CF3CF(CF3)CF2-. The gaseous mixture may further comprise at least one member selected from the group consisting of gas, atmosphere and argon. a group of diluent inert gases. Hydrofluoroalkanols become hydrofluoroolefins The rate is in the range of between about 50% and about 100%. The selectivity of the hydrofluoroalkane to hydrofluoroolefin is in the range of between about 29% and about 100%. During the contacting step, the pressure is about 1 psig. Further in the range between about 100 psig. According to the present invention, there is further provided a process for producing a hydrofluoroolefin having the structure RfCF=CHR, which comprises a hydrofluoroalkanol of the structure RfCFXCHROH or a hydrofluoroalkoxide of the structure RfCFXCHROMX (wherein The reactive metal in the +2 oxidation state is reacted with a carboxylic acid anhydride and a reactive metal in a reaction solvent to form a hydrofluoroolefin, and the hydrofluoroolefin is separated. In another embodiment, the reductive dehydroxyhalogenation comprises The metal hydrofluoroalkoxide is reacted with a carboxylic anhydride and a reactive metal. In this embodiment, the hydrofluoroalkanol of the structure RfCFXCHROH or the hydrofluoroalkoxide of the structure RfCFXCHROMX (wherein the ruthenium is in a +2 oxidation state) The metal) is reacted with a carboxylic anhydride and a reactive metal in a reaction solvent to form a hydrofluoroolefin and, optionally, a hydrofluoroolefin to produce a hydrofluoroolefin having the structure RfCF=CHR. In this embodiment, the hydrofluoroalkanol of the structure RfCFXCHROH Or hydrogen of structure RfCFXCHROMX 136295.doc -16· 201014816 A fluoroalkoxide (wherein ruthenium is a reactive metal in the +2 oxidation state) is first reacted with a carboxylic anhydride to form an ester as described below. This ester is then reacted with a reactive metal to form a hydrofluoric acid. In this method, Rf is selected from the group consisting of perfluoromethyl, perfluoroethyl, perfluoro-n-propyl, perfluoroisopropyl, perfluoro-n-butyl and perfluoroisobutyl, X-system It is selected from the group consisting of Cl, Br, and I, and R is selected from the group consisting of ruthenium, CH3, C2Hs, n_c3H7, and i-C3H7, and specifically, 1 is CF3' X is ci and R is H. In this method, the carboxylic anhydride is selected from the group consisting of acetic acid, propionic anhydride, butyric anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, and decanoic anhydride. The reactive metal powder is as described above. In certain embodiments of this method, the reductive dehydroxyhalogenation can be carried out without neutralizing the product mixture of the reaction of the fluorocarbon with the reactive metal and the chain. In other embodiments, the reductive dehydroxyhalogenation is carried out after first separating the hydrofluoroalkanol and then reacting it with the carboxylic anhydride and the reactive metal. In certain embodiments, the reductive dehydroxylation is carried out without isolation of the ester. In other embodiments, the reductive dehydroxyhalogenation is carried out by separating the ester from the solvent and the metal salt and then reacting with the reactive metal. In certain embodiments, the product of the reductive decellularization toothing further comprises a substituted cyclobutane of the formula -(-CF(Rf)CHRCF(Rf)CHR.), wherein Rf has from 1 to 4 a perfluoroalkyl group of a carbon atom and R is ch3, CH3CH2, CH3CH2CH2, (CH3)2CH or ruthenium. In a particular embodiment, Rf is CF3 and R is Η. In one embodiment, the 'carboxylic acid anhydride' is selected from the group consisting of acetic anhydride, propionic acid, butyric anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, and decanoic anhydride. 136295.doc -17- 201014816 In another embodiment, the carboxylic anhydride is acetic anhydride. In one embodiment, the molar ratio of carboxylic acid needle to nitrofurfuryl alcohol is from about 1:1 to about 2:1. In another embodiment, the molar ratio of carboxylic anhydride to hydrofluoroalkanol is from about 1.4:1 to about h8:1. In one embodiment, the molar ratio of reactive metal to hydrofluoroalkanol is about 1:1. In another embodiment, the molar ratio of reactive metal to hydrofluoroalkanol is about 2:1. In another embodiment, the molar ratio of reactive metal to hydrofluoroalkanol is about 2.5:1. The reaction between the metal hydrofluoroalkoxide and the carboxylic acid produces an ester of the formula RfCFXCHR〇C(=〇)R·, the center of which is as described above, and the r is as described above, 'X is as described above' and R is a residue of the above-mentioned tungstic anhydride and is selected from the group consisting of -CH3, -c2h5, _CH2CH2CH3, ch2ch2co2h, ch2ch2ch2co2h, ch2ch2ch2ch2co2h&H. In one embodiment, R^cf3, R is h, X is a, and R' is CH3. In one embodiment, the reductive dehydroxyhalogenation is carried out in the same reaction solvent as the solvent for the reaction of the coke carbide with the reactive metal and the aldehyde. In another embodiment, the reductive dehydroxylation function is carried out in a reaction solvent different from the solvent in which the halofluorocarbon is reacted with the reactive metal and the aldehyde. In another embodiment, the reductive dehydroxylation is carried out in pyridine or a mixture of alkyl substituted pyridine and dimethylformamide. In one embodiment, the esterified product of the hydrofluoroalkanol is a compound having the formula RfCFXCHROC〇=0)R, wherein Rf is a perfluoroalkyl group having 1 to 4 carbon atoms, and R is ch3, ch3ch2. Ch3ch2ch2, (CH3)2CH or oxime, X is selected from the group consisting of Cl, Br and I, and R is selected from the group consisting of *_ch3, 136295.doc 201014816-C2H5, -ch2ch2ch3, ch2ch2co2h, ch2ch2ch2co2h, CH2CH2CH2CH2C02H and H. As used herein, the term "include", "including ", "with" or any other variation thereof is intended to cover non-exclusiveness. For example, a process, method, article, or device that comprises a plurality of elements is not necessarily limited to the elements, but may include other elements not specifically listed or inherent in the process, method, article, or device. To the contrary, otherwise " or " means either sexual or non-exclusive. For example, Condition A or B is satisfied by either: A is true (or exists) and B is false (or non-existent); A is false (or non-existent) and 8 is true (or Exist); and both a and b are true (or exist). In addition, the use of "one" is used to describe the elements and components described herein. This is for convenience only and is intended to provide a general sense of the scope of the invention. This description is to be considered as inclusive of one or the The number of families corresponding to each row in the periodic table is used as described in the CRC Handbook of Physical Chemistry //(10)V c/jewzi, and the new symbol (New N〇) in the 81st edition (2000-2001). Ttation)" convention. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains, unless otherwise defined. Although methods and materials similar or equivalent to those of the methods and materials described herein can be used in the practice or testing of the embodiments of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are hereby incorporated by reference in their entirety in their entirety in the entireties in In the event of a conflict, this specification (including definitions) is the main one. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. EXAMPLES The concepts described herein are further described in the following examples, which do not limit the scope of the invention described in the claims. Example 1

實例1說明由1,1,1,2-四氟_2,2_二氣乙烷製備2_氣_3 3 3_ 三氟丙醇。 在乂下,將32.8 g(0.5莫耳)活性鋅粉、12 g(〇.5莫耳)三 聚甲路及180 ml無水DMF裝入400 ml赫史特合金 C(HasteUoy C)震盪管中。將該管冷卻至-15°C且添加644 g(〇.2莫耳)Μ-二氣四氟乙烷。接著在5(TC下將反應混合物 授拌6小時。該反應之氣相層析分析結果總結於表1中。將 反應混合物冷卻至室溫後’在攪拌下,將其傾入冰、 HC1水溶液及2〇〇 mi二***之2〇〇 mi混合物中。再攪拌3〇 min之後,分離有機層且用1〇〇 mL 2% Ηα水溶液且繼而 1〇〇 mL鹽水沖洗。用MgS〇4將其乾燥後,藉由真空移除乙 謎’得到13.36 g產物(產率8%)。 表1 2-氣-2,3,3,3-四 氟丙醇 2-氣-1,1,1,2-四^· GC面積百分比(〇/0) 7.076Example 1 illustrates the preparation of 2_gas_3 3 3 -trifluoropropanol from 1,1,1,2-tetrafluoro-2,2-dioxaethane. In the armpit, 32.8 g (0.5 mol) of active zinc powder, 12 g (〇.5 mol) of trimeric road and 180 ml of anhydrous DMF were placed in a 400 ml HasteUoy C shock tube. . The tube was cooled to -15 ° C and 644 g (〇. 2 mol) of Μ-difluorotetrafluoroethane was added. The reaction mixture was then stirred at 5 (TC) for 6 hours. The results of the gas chromatographic analysis of the reaction are summarized in Table 1. After the reaction mixture was cooled to room temperature, it was poured into ice, an aqueous solution of HCl under stirring. And 2 〇〇mi diethyl ether in 2 〇〇mi mixture. After stirring for 3 〇 min, the organic layer was separated and washed with 1 〇〇 mL 2% Ηα aqueous solution and then 1 〇〇 mL of brine. After drying, 13.36 g of product (yield 8%) was obtained by vacuum removal of the mystery. Table 1 2-Gas-2,3,3,3-tetrafluoropropanol 2-gas-1,1,1, 2-four^· GC area percentage (〇/0) 7.076

實例2 136295.doc -20- 201014816 實例2說明2-氣-2,3,3,3_四氟丙醇向2,3,3,3-四氟·1·丙烯 之轉化β 在Ν2下’將26 g(0.4莫耳)活性鋅粉、33 3 g(〇 2莫耳)2· 氣-2,3,3,3-四氟丙醇、30.6 g(0.3莫耳)乙酸酐及18〇 mi無水 DMF裝入400 ml赫史特合金C震盪管中。接著在5〇它下將 反應混合物挽拌6小時。將反應混合物冷卻至室溫後,在 由乾冰冷卻之冷阱中收集產物,產生181 g 2,3,3,3_四氟丙 烯。 ’實例3 實例3說明由1,1,1,2-四氟-2,2_二氣乙烷合成2,3,3,3-四 氟-1 -丙婦。 在N2下,將20 g(〇.315莫耳)活性鋅粉、7 5 g(〇 25莫耳) 二聚甲搭及130 ml無水DMF裝入400 ml赫史特合金C震盈 管中。將該管冷卻至-15°C且添加43 g(0.25莫耳)1,1-二氣 四氟乙炫。接著將反應混合物在6〇°c下攪拌6小時。將反 • 應混合物冷卻至室溫後,將3〇 g(〇.46莫耳)活性鋅粉及5〇 g(0.5莫耳)乙酸酐添加至反應器中。將反應混合物在5〇它 下攪拌6小時且接著冷卻至室溫。藉由GC MS分析氣相及 液相。結果總結於表2中。 表2 組分(液相) GC面積百分比(%) 2,3,3,3-四氟丙烯 5.50 2-氣-1,1,1,2-四氟乙烷 ~ 16.93 3,4,4,4·四氟-2-丁酮 3.7 " 乙酿ΙΪ~~ "' 4.57 乙酸曱8Ϊ 一 ~ 4.72 136295.doc 201014816 乙酸 52.7 乙酸酐 4.88 組分(氣相) GC面積百分比(%) 2,3,3,3-四氟丙稀 83.42 四氟乙烯 0.75 1,1-二氟乙烯 0.28 三氟乙烯 1.69 2-氣-1,1,1,2-四乳乙烧 11.62 實例4. 實例4說明在吡啶中合成2-氯-2,3,3,3-四氟丙醇 (CF3CClFCH2OH)。Example 2 136295.doc -20- 201014816 Example 2 illustrates the conversion of 2-gas-2,3,3,3-tetrafluoropropanol to 2,3,3,3-tetrafluoro·1·propene β under Ν2 26 g (0.4 mol) active zinc powder, 33 3 g (〇 2 mol) 2 · gas-2,3,3,3-tetrafluoropropanol, 30.6 g (0.3 mol) acetic anhydride and 18 〇 The mi-free DMF was charged into a 400 ml Hearst C shock tube. The reaction mixture was then stirred for 6 hours under 5 Torr. After cooling the reaction mixture to room temperature, the product was collected in a cold trap cooled with dry ice to yield 181 g of 2,3,3,3-tetrafluoropropene. Example 3 Example 3 illustrates the synthesis of 2,3,3,3-tetrafluoro-1-propene from 1,1,1,2-tetrafluoro-2,2-dioxaethane. Under N2, 20 g (〇.315 mol) active zinc powder, 75 g (〇 25 mol) dimerization and 130 ml of anhydrous DMF were placed in a 400 ml Hearst C shock tube. The tube was cooled to -15 ° C and 43 g (0.25 mol) of 1,1-difluorotetrafluoroethylene was added. The reaction mixture was then stirred at 6 ° C for 6 hours. After cooling the reaction mixture to room temperature, 3 〇 g (〇.46 mol) of active zinc powder and 5 〇 g (0.5 mol) of acetic anhydride were added to the reactor. The reaction mixture was stirred at 5 Torr for 6 hours and then cooled to room temperature. The gas phase and the liquid phase were analyzed by GC MS. The results are summarized in Table 2. Table 2 Component (liquid phase) GC area percentage (%) 2,3,3,3-tetrafluoropropene 5.50 2-gas-1,1,1,2-tetrafluoroethane~ 16.93 3,4,4, 4·tetrafluoro-2-butanone 3.7 " B brewing ΙΪ~~ "' 4.57 曱8曱 1~ 4.72 136295.doc 201014816 acetic acid 52.7 acetic anhydride 4.88 component (gas phase) GC area percentage (%) 2, 3,3,3-tetrafluoropropane 83.42 tetrafluoroethylene 0.75 1,1-difluoroethylene 0.28 trifluoroethylene 1.69 2-gas-1,1,1,2-tetramilion 11.62 Example 4. Example 4 2-Chloro-2,3,3,3-tetrafluoropropanol (CF3CClFCH2OH) was synthesized in pyridine.

在 Ν2τ,將 2.24 g(0.034莫耳)活性鋅粉、1·24 g(0,041 莫 耳)三聚曱醛及30 ml無水吡啶裝入80 ml費希爾波特管 (Fisher Porter tube)中。將該管冷卻至-15°C且添加5 g(0.029莫耳)1,1-二氯四氟乙烷。接著將反應混合物在50°C 下攪拌8小時。在反應結束時反應器壓力自25 psig下降至8 psig。將反應混合物冷卻至室溫後,藉由GC-MS對其進行 分析。使用HC1於丙酮中之10%溶液將一部分反應混合物 酸化以供GC-MS分析。資料藉由GC-MS面積百分比報導於 表3中。 表3 組分 GC-MS面積百分比(%) 2-氣-2,3,3,3-四氟丙醇 8.586 2_氣-1,1,1,2-四氣乙烧 2.887 甲酸曱酯 0.420 三氟氣乙烯 0.637 三氟乙烯 0.0140 甲醇 0.135 〇比咬 87.194 實例5 136295.doc •22- 201014816 實例5說明在二甲基乙醢胺中合成2_氣_2,3,3,3_四氟丙醇 cf3ccifch2oh。 在N2下’將2.23 g(0.034莫耳)活性辞粉、1.21 g(0.040莫 耳)三聚甲醛及30 ml無水二甲基乙醯胺裝入8〇 m丨費希爾波 特管中。將該管冷卻至-151且添加5.2 g(0.030莫耳)1,1-二 氣四氟乙烷。接著將反應混合物在6〇°c下攪拌4.5小時。在 反應結束時反應器壓力自30 psig下降至9 psig。將反應混 合物冷卻至室溫後,藉由GC-MS對其進行分析。使用HC1 於丙酮中之10%溶液將一部分反應混合物酸化以供gc_ms 分析。資料藉由GC-MS面積百分比報導於表4中。 表4 組分 GC-MS面積百分比 2-氣-2,3,3,3-四氟丙醇 5.750 2-氣-1,1,1,2-四氟乙烷 zm 甲酸甲酯 _ 0.181 三氟氣乙烯 — 2.634 三氟乙烯 0.029 二曱基乙醢胺 _ 88.463 實例6 實例6說明在預處理曱醛之情況下,在吡啶中合成2_氣_ 2,3,3,3_四氟丙醇CF3CC1FCH20H。 在A下’將1.82 g(〇.〇6莫耳)三聚曱醛及3〇 ml無水吡啶 裝入80 ml費希爾波特管中。將該管加熱直至6(rc且在6(rc 下攪拌4小時。接著將其冷卻至室溫且添加2 24 g(〇 〇34莫 耳)活性鋅粉《在使用Ns淨化15 min後,將該管冷卻至 -15°C且添加5 g(〇.〇29莫耳)M_二氣四氟乙烷。接著將反 136295.doc •23· 201014816 應混合物在50°C下攪拌8小時。在反應結束時反應器壓力 自25 psig下降至9 psig。將反應混合物冷卻至室溫後,藉 由GC-MS對其進行分析。使用HC1於丙酮中之10%溶液將 一部分反應混合物酸化以供GC-MS分析。資料藉由GC-MS 面積百分比報導於表5中。114a對CF3CClFCH2OZnCl(以 CF3CClFCH2OH形式分析)之選擇率增加至78.7%。 表5(液相) 組分 GC-MS面積百分比f〇/n、 2,3,3,3-四氟-2-氣丙醇 12.06 2-氣-1,1,1,2·四氣乙貌 Ϊ07 - 曱酸甲酯 L02 -- 曱醇 0.102 三氟乙烯 0.18 〇比咬 83.55 ' 實例7 實例7說明用乙酸酐使2,3,3,3-四氟-2-氣丙醇酯化以產生 乙酸2,3,3,3-四氟-2-氣丙酯》 將 2 g(0.012 莫耳)CF3CC1FCH20H(其含有約 15% 二乙 籲醚)、1.35 g(0.0132莫耳)乙酸酐及0·25 g濃硫酸裝入8〇 ml 費希爾波特管中。將混合物在60°C下攪拌6小時。將反應 混合物冷卻至室溫後,藉由GC-MS對其進行分析。資料藉 由GC-MS面積百分比報導於表6中。此結果展示大於99% . 之 CF3CC1FCH20H 已轉化為 CF3CC1FCH2OAc。 136295.doc •24- 201014816 表6 組分 GC-MS面積百分比(%) 乙酸2,3,3,3-四氟-2-氣丙酯 72.55 2,3,3,3-四氟-2-氣丙醇 0.198 乙酸乙酯 3.12 乙酸 17.24 二*** 6.19 實例8 實例8說明將CF3CClFCH2OZnCl直接酯化為 CF3CC1FCH2OAc。At Ν2τ, 2.24 g (0.034 mol) of active zinc powder, 1.24 g (0,041 mol) of trimeric furfural and 30 ml of anhydrous pyridine were placed in an 80 ml Fisher Porter tube. The tube was cooled to -15 ° C and 5 g (0.029 mol) of 1,1-dichlorotetrafluoroethane was added. The reaction mixture was then stirred at 50 ° C for 8 hours. At the end of the reaction, the reactor pressure dropped from 25 psig to 8 psig. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified using a 10% solution of HCl in acetone for GC-MS analysis. The data is reported in Table 3 by the percentage of GC-MS area. Table 3 Component GC-MS Area Percent (%) 2-Gas-2,3,3,3-Tetrafluoropropanol 8.586 2_Gas-1,1,1,2-Tetra-ethane Ethylene 2.875 Formic Acid Ester 0.420 Trifluoroethylene 0.637 Trifluoroethylene 0.0140 Methanol 0.135 〇Bite 87.194 Example 5 136295.doc •22- 201014816 Example 5 illustrates the synthesis of 2_gas_2,3,3,3_tetrafluoro in dimethylacetamide Propanol cf3ccifch2oh. Under N2, 2.23 g (0.034 mol) of active powder, 1.21 g (0.040 mol) of paraformaldehyde and 30 ml of anhydrous dimethylacetamide were placed in a 8 〇 m丨 Fisher Burt tube. The tube was cooled to -151 and 5.2 g (0.030 mol) of 1,1-dihydrotetrafluoroethane was added. The reaction mixture was then stirred at 6 ° C for 4.5 hours. At the end of the reaction, the reactor pressure dropped from 30 psig to 9 psig. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified using a 10% solution of HCl in acetone for gc_ms analysis. The data is reported in Table 4 by GC-MS area percentage. Table 4 Component GC-MS area percentage 2-gas-2,3,3,3-tetrafluoropropanol 5.750 2-gas-1,1,1,2-tetrafluoroethane zm methyl formate _ 0.181 trifluoro Gas ethylene - 2.634 trifluoroethylene 0.029 dimercaptoacetamide _ 88.463 Example 6 Example 6 illustrates the synthesis of 2_gas_2,3,3,3_tetrafluoropropanol in pyridine in the presence of pretreatment of furfural CF3CC1FCH20H. Under A, 1.82 g (〇.〇6 mol) trimeric furfural and 3 ml ml of anhydrous pyridine were placed in an 80 ml Fisher port tube. The tube was heated to 6 (rc and stirred at 6 (rc for 4 hours). It was then cooled to room temperature and 2 24 g (〇〇34 mol) of activated zinc powder was added. After purging for 15 min with Ns, The tube was cooled to -15 ° C and 5 g (〇.〇29 mol) M_di-gas tetrafluoroethane was added. The reverse 136295.doc •23· 201014816 mixture was then stirred at 50 ° C for 8 hours. At the end of the reaction, the reactor pressure was reduced from 25 psig to 9 psig. After cooling the reaction mixture to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified using a 10% solution of HCl in acetone. GC-MS analysis. The data is reported in Table 5 by GC-MS area percentage. The selectivity of 114a for CF3CClFCH2OZnCl (analyzed as CF3CClFCH2OH) is increased to 78.7%. Table 5 (liquid phase) Component GC-MS area percentage f 〇/n, 2,3,3,3-tetrafluoro-2-propanol 12.06 2-gas-1,1,1,2·tetragas, Ϊ07 - methyl decanoate L02 - sterol 0.102 Fluoroethylene 0.18 〇 ratio biting 83.55 'Example 7 Example 7 illustrates esterification of 2,3,3,3-tetrafluoro-2-propanol with acetic anhydride to produce 2,3,3,3-tetrafluoroacetic acid acetate - alkyl propyl ester will be 2 g (0.012 mol) CF3CC1FCH20H (containing about 15% diethylene ether), 1.35 g (0.0132 mol) acetic anhydride and 0. 25 g concentrated sulfuric acid were charged into a 8 〇ml Fisher tube. Stir at 60 ° C for 6 hours. After cooling the reaction mixture to room temperature, it was analyzed by GC-MS. The data is reported in Table 6 by GC-MS area percentage. This result shows more than 99%. CF3CC1FCH20H It has been converted to CF3CC1FCH2OAc. 136295.doc •24- 201014816 Table 6 Component GC-MS Area Percent (%) Acetic Acid 2,3,3,3-Tetrafluoro-2-Actyl Ester 72.55 2,3,3,3- Tetrafluoro-2-propanol 0.198 Ethyl acetate 3.12 Acetic acid 17.24 Diethyl ether 6.19 Example 8 Example 8 illustrates the direct esterification of CF3CClFCH2OZnCl to CF3CC1FCH2OAc.

在室溫下真空蒸發含有約14% CF3CClFCH2OZnCl之10 ml吡啶溶液以移除大部分吡啶。接著將2.0 g乙酸酐及1 ml DMF添加至所得固體中《將混合物在60°C下攪拌7小時。 將反應混合物冷卻至室溫後,藉由GC-MS對其進行分析。 資料藉由GC-MS面積百分比報導於表7中。 表7 組分 GC-MS面積百分比(%) 乙酸2,3,3,3-四氟-2-氣丙酯 71.8 甲酸2,3,3,3-四氟-2-氣丙酯 2.01 2,3,3,3-四氣-2-氣丙醇 0.115 乙酸酐 2.61 乙酸 2.58 DMF/吡啶(溶劑) 13.22 實例9 實例9說明CF3CClFCH2OAe向2,3,3,3-四氟丙烯之轉化。 將來自上述實例8之反應混合物與1 g Na2C03—起攪拌 以移除在酯化步驟中所產生之酸。接著添加3莫耳DMF及 1.3 g Zn«在攪拌下,在80 ml費希爾波特管中使反應在 50°C下進行2小時且在60°C下再進行2小時。反應器壓力自 136295.doc -25- 201014816 〇 psig增加至13 psig。將反應混合物冷卻至室溫後,藉由 GC-MS對其進行分析。資料藉由GC_MS面積百分比報導於 表8中。在反應器之液相中不能偵測到CF3CCiFCH2〇Ac。 此結果展示CF3CClFCH2〇AC在上述條件下已定量轉化為 2,3,3,3-四氟丙稀。 表8 組分(氣相) GC-MS面積百分比(〇/〇) 2,3,3,3-四氟丙稀 94.48 2,3,3,3-四氟-2-氣丙酵 0.115 乙酸酐 1.62 乙酸甲酯 0.815 DMF 1.05 吡咬 2.05 (液相) 2,3,3,3-四氟丙烯 1.61 乙酸酐 1.45 乙酸甲醋 ~ — 0.61 DMF 86.24 吡啶 9.98A solution of about 14% CF3CClFCH2OZnCl in 10 ml of pyridine was evaporated in vacuo at room temperature to remove most of the pyridine. Next, 2.0 g of acetic anhydride and 1 ml of DMF were added to the obtained solid. The mixture was stirred at 60 ° C for 7 hours. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. The data is reported in Table 7 by GC-MS area percentage. Table 7 Component GC-MS area percentage (%) acetic acid 2,3,3,3-tetrafluoro-2-apropyl propyl ester 71.8 formic acid 2,3,3,3-tetrafluoro-2-apropyl propyl ester 2.01 2, 3,3,3-tetraqi-2-propanol 0.115 acetic anhydride 2.61 acetic acid 2.58 DMF/pyridine (solvent) 13.22 Example 9 Example 9 illustrates the conversion of CF3CClFCH2OAe to 2,3,3,3-tetrafluoropropene. The reaction mixture from Example 8 above was stirred with 1 g of Na2CO3 to remove the acid which was produced in the esterification step. Then, 3 moles of DMF and 1.3 g of Zn were added, and the reaction was carried out in an 80 ml Fisher tube for 2 hours at 50 ° C and at 60 ° C for 2 hours while stirring. The reactor pressure was increased from 136295.doc -25- 201014816 〇 psig to 13 psig. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. The data is reported in Table 8 by GC_MS area percentage. CF3CCiFCH2〇Ac could not be detected in the liquid phase of the reactor. This result shows that CF3CClFCH2〇AC has been quantitatively converted to 2,3,3,3-tetrafluoropropene under the above conditions. Table 8 Component (gas phase) GC-MS area percentage (〇 / 〇) 2,3,3,3-tetrafluoropropene 94.48 2,3,3,3-tetrafluoro-2-alcoholic acid 0.115 acetic anhydride 1.62 Methyl acetate 0.815 DMF 1.05 Pyridine 2.05 (liquid phase) 2,3,3,3-tetrafluoropropene 1.61 Acetic anhydride 1.45 Acetate toluene ~ — 0.61 DMF 86.24 Pyridine 9.98

實例10 實例10說明1,1-二氣四氟乙烷與三聚曱醛在二曱基甲醯 胺及0比啶之混合溶劑中反應產生CF3cciFCH2〇ZnCl。 在 N2下,將 2.2 g(0.037 莫耳)Zn、0.3 g(0.0016 莫耳)乙酸 鋅、2 g(0.067莫耳)三聚甲醛、15 g無水吡啶及15 g二甲基 曱醯胺裝入80 ml費希爾波特管中。n2淨化15 min後,將該 管冷卻至-15°C且添加5 g(〇.〇29莫耳)ι,ΐ-二氣四氟乙烷。 接著將反應混合物在50°C下授拌2小時。在反應結束時反 應器壓力自25 psig下降至5 pSig。將反應混合物冷卻至室 溫後’藉由GC-MS對其進行分析。使用HC1於丙酮中之 136295.doc •26· 201014816 10%溶液將一部分反應混合物酸化以供GC-MS分析。積分 排除溶劑DMF及吡啶。藉由GC-MS面積百分比報導資料。 根據 GC-MS 分析,114a 對 CF3CClFCH2OZnCl(以 CF3CC1FCH20H形式分析)之選擇率為83%。 表9(液相) 三氟 乙稀 乙酸 曱酸 曱酯 乙酸 甲酯 2-氣-1,1,1,2-四氟乙烷 2,3,3,3-四 氟-丙烯 2,3,3,3_ 四氟-2-氣丙醇 乙酸2,3,3,3-四 氣-2-氣丙酯 0.18% 3.1% 0.24% 0.68% 5.18% 4.61% 80.1% 3.744% 實例11 實例11說明在溶劑混合物中使用乙酸酐將 CF3CClFCH2OZnCl直接酯化為 CF3CC1FCH2OAc。 自實例1 0之反應混合物中濾出過量Zn,接著將反應混合 物裝入80 ml費希爾波特管中。亦將4·4 g(0.043莫耳)乙酸 酐添加至反應器中。將混合物在60°C下攪拌6小時。將反 應混合物冷卻至室溫後,藉由GC-MS對其進行分析《資料 藉由GC-MS面積百分比報導於表10中。積分排除溶劑 • DMF、吡啶及乙酸酐。此結果展示大於94%之 $ CF3CClFCH2OZnCl在上述條件下已轉化為CF3CC1FCH2OAc。 表10 « 液相 三氟乙烯 2-氣-1,1,1,2-四氟乙烷 3- |L -3,4,4,4- 三氟-2-丁明 乙基曱 基醚 乙酸 甲酯 乙酸2-氣-2,3,3,3-四氟 丙酯 _未知物 0.477% 5.97% 2.57% 0.83% 0.92% 85.3% 2.46% 實例12 實例12說明在3:1之吡啶:DMF溶劑中由1,1,1,2-四氟- 136295.doc -27· 201014816 2,2-一氣乙烧合成2,3,3,3-四氟_1·丙稀。 在 Ν2下,將 2.1 g(〇_〇32 莫耳)Ζη、0.3 g(〇.〇〇16 莫耳)乙酸 鋅、2 g(0.067莫耳)三聚甲醛、3〇 g無水吡啶裝入go mi費 希爾波特管中。使用N2淨化15 min後,將該管冷卻至_15。〇 且添加5 g(0.029莫耳)ΐ,ι_二氣四氟乙烷。接著將反應混合 物在50 C下攪拌3小時。在反應結束時反應器壓力自25 psig下降至5.5 psig ^將反應混合物冷卻至室溫後,藉由 GC-MS對其進行分析。使用HCi於丙酮中之1〇%溶液將一 部分反應混合物酸化以供GC_MS分析。積分排除溶劑吡 啶。資料藉由GC-MS面積百分比報導於表丨丨中。根據gC_ MS分析’ 1,1_二氣四氟乙烷對CF3CC1FCH2〇ZnCi(以 cf3ccifch2oh形式分析)之選擇率為81%。 接著自反應混合物中濾出過量Zn且將反應混合物裝入8〇 ml費希爾波特管中。亦將1〇 〇11無水1)1^及3 5以〇 〇34莫 耳)乙酸酐添加至反應器中。將混合物在6〇t:下攪拌4小 時。將反應混合物冷卻至室溫後,藉由GC MS對其進行分 析。資料藉由GC-MS面積百分比報導於表12中。積分排除 溶劑DMF及吼咬。此結果展示大於慨之❿⑽職观⑽ 已經轉化且對 CF3CC1FCH2〇Ac及 CF3CFC1CH2OCH2OAc 之 選擇率為89%。 將10 ml上述反應混合物留在8〇 w費希爾波特管中亦 添加活性鋅粉(1 g,〇.〇15莫耳)。在授拌下,使反應在8〇 如費希爾波特管中於60tT進行4小時。反應器遷力自6 P Ig增加至1 5.5 psig。將反應混合物冷卻至室溫後藉由 136295.doc -28- 201014816 GC-MS對其進行分析。藉由GC-MS面積百分比報導資料。 氣相結果列於表13中且液相結果報導於表14中(積分排除 溶劑DMF及吡啶)。在反應器之液相中不能偵測到 CF3CC1FCH2OAc。分析展示對2,3,3,3-四氟-1-丙烯之選擇 率為約94%且對1,3-雙-三氟甲基-1,3-二氟環丁烷(C6H4F8) 之選擇率為約5%。 表11 化合物 GC-MS面積% 三氟乙烯 1.93 三氟乙醛 1.05 2-氣-1,1,1,2-四氟乙烷 12.77 1,1-二氣-1,2,2,2·四氣乙炫( 0.378 2,3,3,3_四氣-2-氣丙醇 74.68 乙酸2,3,3,3-四氟-2-氣丙酯 1.648 未知物 6.39 表12 化合物 。(:摘面積% 三氣乙稀 0.68 2,3,3,3-四氟丙稀 0.04 2-氣·1,1,1,2-四氣乙烧 8.74 1,1-二氣-1,2,2,2-四氟乙烧 1.03 3-氣-3,4,4,4-四氟-2-丁酮 1.445 乙酸2,3,3,3-四氟丙酯 0.31 2,3,3,3-四氟-2-氣丙醇 1.67 乙酸2,3,3,3-四氟-2-氣丙酯 65.39 乙酸酐 3.33 乙酸2-氣-2,3,3,3-四氟丙氧基甲酯 6.47 未知物 7.42 136295.doc 29- 201014816 表13 化合物 GC-MS面積% 四氟乙烯 0.08 三氟乙烯 5.84 1,1,1-二氣乙院 0.02 2,3,3,3-四氟丙烯 79.93 二氟氯乙烯 0.06 氣-1,1,1,2-四氟乙烧 9.10 C6H4F8 4.00 乙酸2,3,3,3·四氟丙酯 0.1 未知物 0.85 實例13Example 10 Example 10 illustrates the reaction of 1,1-dioxatetrafluoroethane with terpolymerized furfural in a mixed solvent of dimercaptocarboxamide and 0-pyridine to give CF3cciFCH2〇ZnCl. Under N2, 2.2 g (0.037 mol) Zn, 0.3 g (0.0016 mol) zinc acetate, 2 g (0.067 mol) trioxane, 15 g anhydrous pyridine and 15 g dimethyl decylamine were charged. 80 ml in the Fisher Port. After purging n2 for 15 min, the tube was cooled to -15 ° C and 5 g (〇.〇29 mol), ΐ, ΐ-difluorotetrafluoroethane was added. The reaction mixture was then stirred at 50 ° C for 2 hours. At the end of the reaction, the reactor pressure dropped from 25 psig to 5 pSig. The reaction mixture was cooled to room temperature and analyzed by GC-MS. Using HC1 in acetone 136295.doc •26· 201014816 10% solution A portion of the reaction mixture was acidified for GC-MS analysis. Integration Exclude solvent DMF and pyridine. The data is reported by the percentage of GC-MS area. According to GC-MS analysis, the selectivity of 114a for CF3CClFCH2OZnCl (analyzed as CF3CC1FCH20H) was 83%. Table 9 (liquid phase) trifluoroethylene acetate decyl phthalate methyl acetate 2-gas-1,1,1,2-tetrafluoroethane 2,3,3,3-tetrafluoro-propene 2,3, 3,3_tetrafluoro-2-propanol acetic acid 2,3,3,3-tetraqi-2-isopropyl ester 0.18% 3.1% 0.24% 0.68% 5.18% 4.61% 80.1% 3.744% Example 11 Example 11 illustrates Directly esterification of CF3CClFCH2OZnCl to CF3CC1FCH2OAc using acetic anhydride in the solvent mixture. Excess Zn was filtered off from the reaction mixture of Example 10, and then the reaction mixture was placed in an 80 ml Fisher tube. 4·4 g (0.043 mol) of acetic anhydride was also added to the reactor. The mixture was stirred at 60 ° C for 6 hours. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. The data is reported in Table 10 by GC-MS area percentage. Integral exclusion solvent • DMF, pyridine and acetic anhydride. This result shows that greater than 94% of $CF3CClFCH2OZnCl has been converted to CF3CC1FCH2OAc under the above conditions. Table 10 « Liquid phase trifluoroethylene 2-gas-1,1,1,2-tetrafluoroethane 3- |L -3,4,4,4-trifluoro-2-butenyl ethyl decyl ether acetate methyl ester 2-Gas-2,3,3,3-tetrafluoropropyl acetate_Unknown 0.477% 5.97% 2.57% 0.83% 0.92% 85.3% 2.46% Example 12 Example 12 illustrates the use of 3:1 in pyridine:DMF solvent 1,1,1,2-tetrafluoro- 136295.doc -27· 201014816 2,2-one gas and ethylene to synthesize 2,3,3,3-tetrafluoro-1-propene. Under Ν2, 2.1 g (〇_〇32 mol) Ζη, 0.3 g (〇.〇〇16 摩尔) zinc acetate, 2 g (0.067 mol) trioxane, 3 〇g anhydrous pyridine were charged to go Mi Fisher in the tube. After purging with N2 for 15 min, the tube was cooled to _15.且 Add 5 g (0.029 mol) ΐ, ι_ di-tetrafluoroethane. The reaction mixture was then stirred at 50 C for 3 hours. At the end of the reaction, the reactor pressure was lowered from 25 psig to 5.5 psig. After cooling the reaction mixture to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified for GC_MS analysis using a 1% solution of HCi in acetone. The integral excludes the solvent pyridine. The data is reported in the table by the percentage of GC-MS area. According to gC_MS analysis, the selectivity of 1,1_dioxatetrafluoroethane to CF3CC1FCH2〇ZnCi (analyzed in the form of cf3ccifch2oh) was 81%. Excess Zn was then filtered from the reaction mixture and the reaction mixture was charged to a 8 〇 ml Fisher tube. 1〇 无水11 anhydrous 1) 1^ and 3 5 were added to the reactor with 乙 莫 34 mol) acetic anhydride. The mixture was stirred at 6 ° t: for 4 hours. After the reaction mixture was cooled to room temperature, it was analyzed by GC MS. The data is reported in Table 12 by GC-MS area percentage. Integral exclusion solvent DMF and bite. This result shows that the ratio of CF3CC1FCH2〇Ac and CF3CFC1CH2OCH2OAc has been converted to 89%. 10 ml of the above reaction mixture was left in an 8 〇W Fisher port tube and activated zinc powder (1 g, 〇.〇15 mol) was also added. The reaction was allowed to proceed for 4 hours at 60 tT in 8 Torr, such as a Fisher tube. The reactor shift was increased from 6 P Ig to 1 5.5 psig. After cooling the reaction mixture to room temperature, it was analyzed by 136295.doc -28-201014816 GC-MS. The data is reported by the percentage of GC-MS area. The gas phase results are listed in Table 13 and the liquid phase results are reported in Table 14 (integration exclusion solvent DMF and pyridine). CF3CC1FCH2OAc could not be detected in the liquid phase of the reactor. The analysis showed a selectivity to 2,3,3,3-tetrafluoro-1-propene of about 94% and for 1,3-bis-trifluoromethyl-1,3-difluorocyclobutane (C6H4F8) The selection rate is about 5%. Table 11 Compound GC-MS area % Trifluoroethylene 1.93 Trifluoroacetaldehyde 1.05 2-Gas-1,1,1,2-tetrafluoroethane 12.77 1,1-digas-1,2,2,2·4 Qi Bing (0.378 2,3,3,3_tetraqi-2-propanol 74.68 acetic acid 2,3,3,3-tetrafluoro-2-propanol 1.648 unknown 6.39 Table 12 compound. (: pick Area% Triethylene Ethylene 0.68 2,3,3,3-Tetrafluoropropene 0.04 2-Gas·1,1,1,2-Four Ethylene Burning 8.74 1,1-Two Gas-1,2,2, 2-tetrafluoroethylene oxide 1.03 3-gas-3,4,4,4-tetrafluoro-2-butanone 1.445 acetic acid 2,3,3,3-tetrafluoropropyl ester 0.31 2,3,3,3-four Fluoro-2-propanol 1.67 acetic acid 2,3,3,3-tetrafluoro-2-propanol 65.39 acetic anhydride 3.33 acetic acid 2-gas-2,3,3,3-tetrafluoropropoxymethyl ester 6.47 Unknown 7.42 136295.doc 29- 201014816 Table 13 Compound GC-MS Area % Tetrafluoroethylene 0.08 Trifluoroethylene 5.84 1,1,1- Erqi Yiyuan 0.02 2,3,3,3-Tetrafluoropropene 79.93 Difluoro Vinyl chloride 0.06 gas-1,1,1,2-tetrafluoroethane 9.10 C6H4F8 4.00 acetic acid 2,3,3,3·tetrafluoropropyl ester 0.1 unknown 0.85 Example 13

實例13說明在1:1之吡啶:DMF溶劑中由1,1,1,2-四氟· 2,2-二氣乙貌合成2,3,3,3-四氟-1-丙締。 在 Ν2下’將 2.1 g(0.032 莫耳)Ζη、0.3 g(0.0016 莫耳)乙酸 鋅、2 g(〇.〇67莫耳)三聚甲醛、0.2 g雙(氫化烷基)二甲基乙 酸錄及30 g無水吼咬裝入80 ml費希爾波特管中。使用n2淨 化15 min後,將該管冷卻至_15。(:且添加5 g(0.029莫耳)1,1_ 二氯四氟乙烷。接著將反應混合物在50°C下攪拌3小時。 在反應結束時反應器壓力自23 psig降至5.5 psig。將反應 混合物冷卻至室溫後,藉由GC-MS對其進行分析。使用 HC1於丙酮中之1 〇%溶液將一部分反應混合物酸化以供gc_ MS分析》積分排除溶劑DMF及"比咬。資料藉由GC-MS面 積百分比報導於表15中。根據GC-MS分析,U4a對 CF3CClFCH2OZnCl(以 CF3CC1FCH20H形式分析)之選擇率 為約85%。 接著過遽10 ml反應混合物且將其裝入80 ml費希爾波特 管中。亦將10 ml無水DMF及3_5 g(0.034莫耳)乙酸肝添加 136295.doc -30· 201014816 至反應器中。將混合物在60°C下攪拌4小時。將反應混合 物冷卻至室溫後,藉由GC-MS對其進行分析。資料藉由 GC-MS面積百分比報導於表16中。積分排除溶劑DMF及吡 啶。此結果展示大於98%之CF3CClFCH2OZnCl已經轉化且 對 CF3CC1FCH2OAc 及 CF3CFC1CH2OCH2OAc之選擇率為約 95%。 在8〇1111費希爾波特管中用2§\&2(:03處理上述反應混合 物。濾出Na2C03之後,添加活性鋅粉(1 g,0.015莫耳)》 瘳 在攪拌下,使反應在80 ml費希爾波特管中於60°C下進行4 小時。反應器壓力自5 psig增加至1 8 psig。將反應混合物 冷卻至室溫後,藉由GC-MS對其進行分析。藉由GC-MS面 積百分比報導資料。氣相結果列於表1 7中且液相結果報導 於表1 8中(積分排除溶劑DMF及吡啶)。大於99%之 CF3CC1FCH2OAc 及大於 95% 之 CF3CFC1CH2OCH2OAc 已經 轉化。分析展示對1234yf之選擇率為約98%且對1,3-雙-三 氟甲基-1,3-二氟環丁烷(c6H4F8)之選擇率為約0.1%。 表14 化合物 GC-MS面積% 三氟乙烯 1.06 三氟乙醛 0.09 2,3,3,3-四氟丙烯 0.03 2·氣-1,1,1,2-四故乙炫 8.33 1,1-二氣-1,2,2,2-四氟乙烷 1.55 2,3,3,3-四氟_2-氣丙醇 85.70 乙酸2,3,3,3-四氟-2-氣丙酯 0.285 未知物 0.656 I36295.doc -31- 201014816 表15 化合物 GC-MS面積% 2-氣-1,1,1,2-四氣乙院 3.17 1,1 -二氯-1,2,2,2-四氣乙院 0.62 3-氣-3,4,4,4-四氟-2-丁酮 0.32 2,3,3,3-四氟-2-氣丙醇 1.74 乙酸2,3,3,3-四氟-2-氣丙酯 68.00 乙酸2-氣-2,3,3,3-四氟丙氧基甲酯 7.63 未知物 1.32 表16 化合物 0(:-1^18面積% 三氟乙烯 0.72 2,3,3,3-四氟丙烯 97.46 三氟氣乙烯 0.06 c6h4f8 0.1 未知物 0.1 表17 化合物 GC-MS面積% 三氟乙院 0.03 2,3,3,3-四氟丙稀 35.26 2-氣· 1,1,1,2-四氣乙烧 5.89 C6H4F8 0.25 2,3,3,3_四氣-2·氣丙醇 0.22 2,3,3-三氟-2-丙-1-醇乙酸酯 1.04 乙酸2,3,3,3-四氟-2-氣丙酯 0.7 乙酸2,3,3,3-四氟丙酯 0.42 乙酸2-氣-2,3,3,3-四氟丙氧基甲酯 2.27 未知物 7.49Example 13 illustrates the synthesis of 2,3,3,3-tetrafluoro-1-propanoid from 1,1,1,2-tetrafluoro-2,2-dialdehyde in a 1:1 pyridine:DMF solvent. Under Ν2 '2.1 g (0.032 mol) Ζη, 0.3 g (0.0016 mol) zinc acetate, 2 g (〇.〇67 mol) trioxane, 0.2 g bis(hydrogenated alkyl) dimethylacetic acid Record and place a 30 g waterless bite into an 80 ml Fisher tube. After purging with n2 for 15 min, the tube was cooled to _15. (: and 5 g (0.029 mol) 1,1 - dichlorotetrafluoroethane was added. The reaction mixture was then stirred at 50 ° C for 3 hours. At the end of the reaction the reactor pressure was reduced from 23 psig to 5.5 psig. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified using a 1% solution of HCl in acetone for gc_MS analysis. Integral exclusion solvent DMF and "bite. The percentage of GC-MS area is reported in Table 15. According to GC-MS analysis, the selectivity of U4a to CF3CClFCH2OZnCl (analyzed as CF3CC1FCH20H) was about 85%. Next, 10 ml of the reaction mixture was passed and loaded into 80 ml. In the Fisher tube, 10 ml of anhydrous DMF and 3_5 g (0.034 mol) of acetic acid liver were also added to the reactor at 136295.doc -30· 201014816. The mixture was stirred at 60 ° C for 4 hours. After the mixture was cooled to room temperature, it was analyzed by GC-MS. The data is reported by GC-MS area percentage in Table 16. The integration excludes solvent DMF and pyridine. This result shows that more than 98% of CF3CClFCH2OZnCl has been converted and CF3CC1FCH2OAc and CF3CFC1CH2OCH2O The selectivity of Ac was about 95%. The above reaction mixture was treated with 2§\&2 (:03) in a 8〇1111 Fisherport tube. After filtering Na2C03, active zinc powder (1 g, 0.015 mo was added) The reaction was carried out in an 80 ml Fisher's tube at 60 ° C for 4 hours with stirring. The reactor pressure was increased from 5 psig to 18 psig. After cooling the reaction mixture to room temperature, It was analyzed by GC-MS. The data were reported by GC-MS area percentage. The gas phase results are listed in Table 17 and the liquid phase results are reported in Table 18 (integration exclusion solvent DMF and pyridine). % of CF3CC1FCH2OAc and greater than 95% of CF3CFC1CH2OCH2OAc have been converted. The analysis shows a selectivity of about 98% for 1234yf and a choice of 1,3-bis-trifluoromethyl-1,3-difluorocyclobutane (c6H4F8) The rate is about 0.1%. Table 14 Compound GC-MS area % Trifluoroethylene 1.06 Trifluoroacetaldehyde 0.09 2,3,3,3-tetrafluoropropene 0.03 2·Gas-1,1,1,2-Four B Hyun 8.33 1,1-di gas-1,2,2,2-tetrafluoroethane 1.55 2,3,3,3-tetrafluoro-2-propanol 85.70 acetic acid 2,3,3,3-tetrafluoro 2-isopropyl propyl ester 0.285 unknown 0.656 I362 95.doc -31- 201014816 Table 15 Compound GC-MS area % 2-gas-1,1,1,2-four gas hospital 3.17 1,1 -dichloro-1,2,2,2-four gas B House 0.62 3-gas-3,4,4,4-tetrafluoro-2-butanone 0.32 2,3,3,3-tetrafluoro-2-propanol 1.74 acetic acid 2,3,3,3-tetrafluoro 2-Axyl propyl ester 68.00 Acetic acid 2-Gas-2,3,3,3-tetrafluoropropoxymethyl ester 7.63 Unknown substance 1.32 Table 16 Compound 0 (: -1^18 area% trifluoroethylene 0.72 2,3 ,3,3-tetrafluoropropene 97.46 trifluoroethylene ethylene 0.06 c6h4f8 0.1 unknown 0.1 Table 17 Compound GC-MS area % Trifluoroethylene 0.03 2,3,3,3-tetrafluoropropene 35.26 2-gas · 1 1,1,2-four gas, ethylene burning 5.89 C6H4F8 0.25 2,3,3,3_four gas-2·propanol 0.22 2,3,3-trifluoro-2-propan-1-ol acetate 1.04 acetic acid 2,3,3,3-tetrafluoro-2-propanol 0.7 acetic acid 2,3,3,3-tetrafluoropropyl ester 0.42 acetic acid 2-gas-2,3,3,3-tetrafluoropropoxy Methyl ester 2.27 unknown 7.49

實例14 實例14說明在1:1之吡啶:DMF溶劑中由1,1,1,2,2,3-六 氟-3,3-二氯丙烷合成2,3,3,4,4,4-六氟-1-丁烯。 在 N2下,將 2.1 g(0.032 莫耳)Zn、0.3 g(0.0016 莫耳)乙酸 鋅、2 g(0.067莫耳)三聚甲醛、0.2 g雙(氫化烷基)二曱基乙 136295.doc -32- 201014816 酸敍及30 g無水吡咬裝入80 ml費希爾波特管中。使用乂淨 化15 min後,將該管冷卻至-15。〇且添加64 g(〇〇29莫 耳)1’1,1,2,2,3-六氟-3,3-二氣丙烷。接著將反應混合物在 5 〇°C下攪拌3小時》在反應結束時反應器壓力自23 psig下 降至5.5 Psig。將反應混合物冷卻至室溫後,藉由GC-MS 對其進行分析。使用HC1於丙酮中之1 〇〇/0溶液將一部分反 應混合物酸化以供GC-MS分析®積分排除溶劑DMF及吡 咬。資料藉由GC-MS面積百分比報導於表18中。根據GC-Example 14 Example 14 illustrates the synthesis of 2,3,3,4,4,4 from 1,1,1,2,2,3-hexafluoro-3,3-dichloropropane in a 1:1 pyridine:DMF solvent. - hexafluoro-1-butene. Under N2, 2.1 g (0.032 mol) Zn, 0.3 g (0.0016 mol) zinc acetate, 2 g (0.067 mol) trioxane, 0.2 g bis(hydrogenated alkyl) dimethyl 136295.doc -32- 201014816 Acidic and 30 g anhydrous sodium bite was placed in an 80 ml Fisher tube. After purging for 15 min, the tube was cooled to -15. Further, 64 g (〇〇29 mol) of 1'1,1,2,2,3-hexafluoro-3,3-dipropane was added. The reaction mixture was then stirred at 5 ° C for 3 hours. At the end of the reaction, the reactor pressure was reduced from 23 psig to 5.5 Psig. After the reaction mixture was cooled to room temperature, it was analyzed by GC-MS. A portion of the reaction mixture was acidified using a 1 〇〇/0 solution of HCl in acetone for GC-MS analysis® integration to exclude solvent DMF and pyridine. The data is reported in Table 18 by GC-MS area percentage. According to GC-

MS分析 ’ 216cb對 CF3CF2CClFCH2OZnCl(以 CF3CF2CC1FCH20H 形式分析)之選擇率為約85%。 接著過濾10 ml反應混合物且將其裝入8〇 mi費希爾波特 管中。將10 ml無水DMF及3.5 g(〇.〇34莫耳)乙酸酐亦添加 至反應器中。將混合物在60。(:下攪拌4小時。將反應混合 物冷卻至室溫後’藉由GC-MS對其進行分析。資料藉由 GC-MS面積百分比報導於表19中。積分排除溶劑DMF及吡 咬。此結果展示大於98°/。之CF3CF2CClFCH2OZnCl經轉化 且對 CF3CF2CC1FCH2OAc 及 CF3CF2CFC1CH2OCH2OAc 之選 擇率為約95°/〇。 接著在8〇1111費希爾波特管中用2§1^2(:〇3處理上述反應 混合物。濾、出Na2C〇3後,添加活性鋅粉(1 g , ο·。。莫 耳)。在授拌下,使反應在80 ml費希爾波特管中於6〇。〇下 進行4小時《反應器壓力自5 psig增加至18 psig ^將反應混 合物冷卻至室溫後,藉由GC-MS對其進行分析。藉由GC_ MS面積百分比報導資料。氣相結果列於表2〇中且液相結 I36295.doc -33· 201014816 果報導於表21中(積分排除溶劑DMF及吡啶)。大於99%之 CF3CF2CC1FCH2OAc 及大於 95% 之 CF3CF2CFC1CH2OCH2OAc 經轉化。分析展示對2,3,3,4,4,4-六氟-1-丁烯之選擇率為約 98%且對1,3-雙-五氟乙基-1,3-二氟環丁烷(C8H4F12)之選擇 率為約0.1%。 表18 化合物 GC-MS面積% 1,2,3,3,3-五敗-1-丙烯 0.9 1,1,1,2,2,3-六氟-3-氣丙烷 7.1 1,1,1,2,2,3-六氟-3,3-二氣丙烷 1.5 CF3CF2CFC1CH20H 84 CF3CF2CFC1CH2OAc 0.3 未知物 0.9 表19 化合物 0(:-1^8面積% 1,1,1,2,2,3-六氣-3-氣丙院 2.5 CF3CF2CFC1CH20H 1.2 CF3CF2CFC1CH2OAc 73 乙酸2-氣-2,3,3,4,4,4-六氟丁氧基曱酯 5.2 未知物 17 表20The selectivity of MS analysis '216cb for CF3CF2CClFCH2OZnCl (analyzed as CF3CF2CC1FCH20H) was about 85%. 10 ml of the reaction mixture was then filtered and loaded into a 8 〇 mi Fisher tube. 10 ml of anhydrous DMF and 3.5 g of (〇. 〇34 mol) acetic anhydride were also added to the reactor. The mixture was at 60. (: stirring for 4 hours. After cooling the reaction mixture to room temperature, it was analyzed by GC-MS. The data is reported in Table 19 by GC-MS area percentage. The integration excludes solvent DMF and pyridine bit. The CF3CF2CClFCH2OZnCl exhibiting greater than 98°/? is converted and the selectivity to CF3CF2CC1FCH2OAc and CF3CF2CFC1CH2OCH2OAc is about 95°/〇. Then the above reaction is treated with 2§1^2(:〇3 in the 8〇1111 Fisherport tube. The mixture was filtered and Na2C〇3 was added, and activated zinc powder (1 g, ο··mol) was added. The reaction was carried out in an 80 ml Fisher tube at 6 Torr under stirring. The reactor pressure was increased from 5 psig to 18 psig for 4 hours. After cooling the reaction mixture to room temperature, it was analyzed by GC-MS. The data were reported by GC_MS area percentage. The gas phase results are shown in Table 2. The liquid phase phase I36295.doc -33· 201014816 is reported in Table 21 (integration exclusion solvent DMF and pyridine). More than 99% of CF3CF2CC1FCH2OAc and more than 95% of CF3CF2CFC1CH2OCH2OAc were converted. The analysis showed 2,3,3, The selectivity of 4,4,4-hexafluoro-1-butene is about 98% and The selectivity of 1,3-bis-pentafluoroethyl-1,3-difluorocyclobutane (C8H4F12) was about 0.1%. Table 18 Compound GC-MS area % 1,2,3,3,3-five Acene-1-propene 0.9 1,1,1,2,2,3-hexafluoro-3-propane 7.1 1,1,1,2,2,3-hexafluoro-3,3-dipropane 1.5 CF3CF2CFC1CH20H 84 CF3CF2CFC1CH2OAc 0.3 Unknown 0.9 Table 19 Compound 0 (: -1^8 area% 1,1,1,2,2,3-hexa-3--3-propanol 2.5 CF3CF2CFC1CH20H 1.2 CF3CF2CFC1CH2OAc 73 acetic acid 2-gas-2, 3,3,4,4,4-hexafluorobutoxydecyl 5.2 Unknown 17 Table 20

化合物 GC-MS 面積 °/〇 1,2,3,3,3-五氟-1-丙烯 0.5 2,3,3,4,4,4-六氟-1-丁烯 96.5 C8H4F12 0.1 未知物 0.1 136295.doc -34- 201014816 表21 GC-MS面積% 2,3,3,4,4,4-✓、故-i-丁缔 35.26 3-氣-1,1,1,2,2,3-六齓丙饮 ~63 U8H4^ 12 0.6 0 λ Α Α X ^ . O JC. 1 -r* 一- Τ4 CF3CF2CFClCH?〇Ac ----— ~06 '~~ 乙酸2-卷-2,3,;3,5,4,4-六氟兩氩篡曱啼 -- 去 4σ 物 ——--—------- 1.8 Τ8 應注意,並不需要上文一般描述或實例中所述之所有活 動’可能*需要m動之—部分且可執行除彼等所述 舌動之外%或多個其他活動。另外,所列舉之活動之順 序未必為執行該等活動之順序。Compound GC-MS Area °/〇1,2,3,3,3-pentafluoro-1-propene 0.5 2,3,3,4,4,4-hexafluoro-1-butene 96.5 C8H4F12 0.1 Unknown 0.1 136295.doc -34- 201014816 Table 21 GC-MS area% 2,3,3,4,4,4-✓, so-i-butan 35.26 3-gas-1,1,1,2,2,3 - 六齓丙饮~63 U8H4^ 12 0.6 0 λ Α Α X ^ . O JC. 1 -r* I - Τ4 CF3CF2CFClCH?〇Ac ----- ~06 '~~ Acetic acid 2-volume-2,3 ,; 3,5,4,4-hexafluoro-argon-argon--to 4σ substance----------- 1.8 Τ8 It should be noted that the above general description or examples are not required. All activities described are 'possibly* need to be moved' - and can perform % or more other activities in addition to their tongue movements. In addition, the order in which the activities are listed is not necessarily the order in which the activities are performed.

在前述說明書中,已參考特定實施例描述概念。然而, 一般熟習此項技術者應瞭解,在不脫離如下文申請專利範 圍中所闡明之本發明㈣的情況下,可進行多種修改及變 化。因此,應以說明性而非限制性意義來看待本說明書, 且意欲將所有此等修改均包括於本發明之範嘴内。 已在上文中關於特定實施例來描述益處、其他優點及問 、方法然而,不應將該等益處、優點、問題解決 方法及可使任何益處、優點或解決方法產生或變 之任何特徵解釋為中請專利範圍中任—項或全部的關鍵、 必需或本質特徵。 應瞭解’亦可在單個實施例中以組合形式提供為清楚起 見而在本文中之單獨實施例之内容中描述的某些特徵。反 之,亦可單獨或以任何子組合形式提供為簡潔起見而在單 136295.doc -35- 201014816 個實施例之内容中描述之多種特徵。此外,參考以範圍形 式陳述之值包括在該範圍内之各個及每一個值。In the foregoing specification, the concepts have been described with reference to the specific embodiments. However, it will be understood by those skilled in the art that various modifications and changes can be made without departing from the invention (s) as set forth in the appended claims. Accordingly, the specification is to be considered in all respects as illustrative The benefits, other advantages, and methods, methods, have been described above with respect to particular embodiments. However, such benefits, advantages, problems solving methods, and any features that may result in, or vary from, any benefit, advantage, or The key, required or essential characteristics of any or all of the patent scope. It will be appreciated that certain features that are described in the context of separate embodiments herein for clarity may also be provided in a single embodiment. Conversely, various features described in the context of the single 136295.doc-35-201014816 embodiment may be provided separately or in any sub-combination. Further, the values stated in the form of ranges are included in each and every value within the range.

136295.doc -36-136295.doc -36-

Claims (1)

201014816 十、申請專利範圍: L 一種製造結構RfCFXCHR0H之氫氟烷醇之方法,其包含 使結構RfCFX2之鹵氟碳化物與醛及反應性金屬在反應溶 劑中反應以產生包含金屬氫氟醇鹽之反應產物,其中各 X獨立地選自Cb以及1;及中和該金屬氫氟醇鹽以產生 氫氟貌醇。 2. 如請求項丨之方法,其進一步包含回收該氫氟烷醇。 3. 如請求項1之方法,其中Rf為具有1至4個碳原子之全氟烷 基。 4. 如請求項3之方法’其中Rf係選自由全氟甲基、全氟乙 基全氟正丙基、全氟異丙基、全氟正丁基及全氟異丁 基組成之群。 5. 如請求項3之方法,其中Rf為全氟曱基。 如°青求項1之方法’其中該搭係選自由甲搭乙路丙 齡、丁醛及異丁醛組成之群。 | 7.如清求項1之方法,其中該醛為曱醛。 8’如*青求項1之方法,其中該反應性金屬係選自由鎂屑、 活性辞粉、鋁及下列金屬中之任一者之粉末:鎂、鈣、 、鈦、鐵、鈷、鎳、銅、辞銦及其組合。 .9·如β青求項1之方法,其中該方法進一步包含除該反應性 金屬以外亦添加鋅鹽。 1〇.如δ青求項9之方法,其中該鋅鹽為乙酸鋅。 U·如相求項9之方法,其中該方法進一步包含第四銨鹽。 1 2·如请求項1之方法,其中該反應溶劑係選自由烷基、二 136295.doc 201014816 烧基及三烷基直鏈或環狀胺、N_甲基吡咯啶、N_甲基旅 啶、吡啶、經烷基取代之吡啶、二甲基甲醯胺、吡唤或 喂啶及其混合物組成之群。 13. 如請求項12之方法’其中該反應溶劑為β比啶、經烷基取 代之吡啶或其混合物〇 14. 如請求項丨之方法,其中該鹵氟碳化物係藉由使相應氫 氟碳化物RfCFH2鹵化來製備。 1 5 · —種製造結構RfcF=CHR之氫氟稀之方法,其包含使結 ® 構RfCFX2之鹵氟碳化物與醛及反應性金屬在反應溶劑中 反應以產生包含金屬氫氟醇鹽之反應產物,其中各又獨 立地選自Cl、Br及I ;及在第二步驟中使該金屬氫氟醇鹽 還原性脫羥基鹵化以產生氫氟烯。 16. 如請求項15之方法,其進一步包含分離該氫氟烯產物。 17. 如請求項15之方法,其中該醛係選自由曱醛、乙醛、丙 搭、丁醛及異丁醛組成之群。 • 18.如凊求項15之方法,其中該反應性金屬係選自由鎂屑、 活性鋅粉、鋁及下列金屬中之任一者之粉末··鎂、鈣、 欽、鐵、钻、鎳、銅、鋅銦及其組合。 ‘ I9.如凊求項15之方法,其進一步包含除該反應性金屬以外 亦添加鋅鹽。 20.如請求項19之方法,其中該鋅鹽為 乙酸鋅。 21·如叫求項19之方法,其中該方法進一步包含第 四銨鹽。 22.如請求項15之方法,其中該還原性脫經基鹵化作用包含 使該金屬A敗醇鹽與幾酸軒及反應性金屬反應,該反應 136295.doc 201014816 性金屬與如請求項15中之反應性金屬相同或不同。 23·如叫求項22之方法,其中該反應性金屬係選自由鎂屑、 活性鋅粉、鋁及下列金屬中之任一者之粉末:鎂、鈣、 欽、鐵、鈷、鎳、銅、鋅銦及其組合。 24. 如請求項22之方法,其中該羧酸酐係選自由乙酸酐丙 酸軒丁酸針、號拍酸肝、戊二酸酐、己二酸酐及甲酸 酐組成之群。 25. 如請求項15之方法,其中該氫氟烯之R基團係選自由η、 CH3及c2H5組成之群。 26. 如請求項15之方法,其中Rf為具有1至4個碳原子之全氟 烧基 27. 如請求項26之方法,其中1為CF3。 28·如請求項15之方法,其中心為(:1?3且r為η。 9如明求項15之方法,其中該鹵氟碳化物係藉由使相應氫 氟碳化物RfCFH2鹵化來製備。 30. 如請求項15之方法,其中該還原性脫羥基鹵化作用包含 中和該金屬氫氟醇鹽以產生氫氟烷醇;將脫水劑與該氫 氟烷醇混合’從而形成氣態混合物;及使催化劑與該氣 態混合物接觸,從而形成該氫氟烯。 31. 如請求項3〇之方法,其中該脫水劑為至少一種選自由甲 烷、乙烷、丙烷、丁烷、天然氣、醇、醛及一氧化碳組 成之群之氣體。 32. 如請求項3〇之方法’其中該催化劑為過渡金屬。 33. 如請求項32之方法,其中該過渡金屬為至少一種選自由 136295.doc 201014816 鎳、鈀及鉑組成之群之金屬。 如明求項30之方法,其中該催化劑為載體催化劑。 如吻求項34之方法,其中該載體催化劑包含過渡金屬及 載體材科。 .如明求項35之方法,其中該載體材料為至少一種選自由 活性碳及γ-氧化鋁組成之群之載體材料。 37. —種具有下式之化合物: RfCFXCHR〇C(=〇)R,, 其中Rf為具有1至4個碳原子之全氟烷基,r為ch3、 CH3CH2、CH3CH2CH2、(Ch3)2CH 或 Η,X係選自 Ch Br 及 ϊ ’ 且 R,係選自由 _ch3、-C2H5、-CH2CH2CH3、 CH2CH2C〇2H、ch2ch2ch2co2h、ch2ch2ch2ch2co2h 及η組成之群。 38. 如請求項37之化合物,其中Rf係選自cf3_、CF3CF2-、 CF3CF2CF2-、(cf3)2cf-、cf3cf2cf2cf2-及 cf3cf(cf3) cf2“ 39. 如請求項37之化合物,其中心為cf3,X為Cl且R,為 CH3。 40. —種製造結構RfCF=CHR之氫氟烯之方法,其包含使結 構RfCFXCHROH之氫氟烷醇或結構RfCFXCHROMX之氩 氟醇鹽與羧酸酐及反應性金屬在反應溶劑中反應以形成 氫氟烯,其中Μ為呈+2氧化態之反應性金屬。 41. 如請求項4〇之方法,其進一步包含分離該氫氟烯之步 驟。 136295.doc 201014816 42. 如請求項4〇之方法,其中Rf係選自由全氟曱基全氟乙 基全氟正丙基、全氟異丙基、全氟正丁基及全氟異丁 基組成之群,X係選自α、价及!,且R係選自由H、 CH3、C2H5、n-C3H7&amp;i-C3H7組成之群。 43. 如請求項42之方法,其中RfgCF3且R為H。 44. 如請求項4〇之方法,其中該羧酸酐係選自由乙酸酐、丙 酸肝丁酸肝、琥拍酸肝、戊二酸肝、己二酸肝及甲酸 酐組成之群。 鲁45.如請求項40之方法,其中該反應性金屬係選自由鎮屬、 活性鋅粉、鋁及下列金屬中之任一者之粉末:鎂、弼、 欽、鐵、鈷、鎳、銅、鋅銦及其組合。 46. —種具有下式之化合物: RfCFClCHRO-Zn-Cl » 其中Rf為具有1至4個碳原子之全氟烷基且r為ch3、 CH3CH2、CH3CH2CH2、(CH3)2CH或 Η 〇 · 0 47.如請求項46之化合物’其中Rf係選自由CF3-、CF3CF2-、 cf3cf2cf2·、(CF3)2CF-、cf3cf2cf2cf2-及 cf3cf(cf3) CF2·組成之群。 • 48·如請求項46之化合物,其中R^CF3且R為H。 ν 49· —種具有下式之化合物: -(-CF(Rf)CHRCF(Rf)CHR-) * 其中Rf為具有!至4個碳原子之全氟烷基且R為CH3、 CH3CH2、CH3CH2CH2、(CH3)2CH或 Η。 50.如請求項49之化合物,其中RfgCF3且R為Η。 136295.doc 201014816 , 51. -種製造氫氟醋之方法’其包含使結構Μ%之齒氣碳 化物與醛及反應性金屬在反應溶劑中反應以產生包含金 屬氫氟醇鹽之反應產物,其中各又獨立地選自α、价及 I’進一步使該金屬氮氟醇鹽與羧酸酐反應以提供式 RfCFXCHROC(=〇)R’之酯,其中Rf為具有j至4個碳原子 之全氟烷基’ R為H、CH3或C2H5且R,係選自由_ch3、 -C2H5 ' -CH2CH2CH3 ' CH2CH2C02H ' CH2CH2CH2CO2H ' CH2CH2CH2CH2C02H及Η組成之群。 ® 52.如請求項51之方法,其中Rf為CF3,R為Η且R,為CH3。 ❹ 136295.doc 201014816 七、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: RfCFXCHR0C(=0)R' RfCFClCHRO-Zn-Cl 環-(-CF(Rf)CHRCF(Rf)CHR-)201014816 X. Patent Application Range: L A method for producing a hydrofluoroalkanol of the structure RfCFXCHR0H, comprising reacting a halofluorocarbon of the structure RfCFX2 with an aldehyde and a reactive metal in a reaction solvent to produce a metal hydrofluoroalkoxide. a reaction product wherein each X is independently selected from the group consisting of Cb and 1; and neutralizing the metal hydrofluoroalkoxide to produce hydrofluoroalcohol. 2. The method of claim </ RTI> further comprising recovering the hydrofluoroalkanol. 3. The method of claim 1, wherein Rf is a perfluoroalkyl group having 1 to 4 carbon atoms. 4. The method of claim 3 wherein Rf is selected from the group consisting of perfluoromethyl, perfluoroethyl perfluoro-n-propyl, perfluoroisopropyl, perfluoro-n-butyl and perfluoroisobutyl. 5. The method of claim 3, wherein Rf is perfluorodecyl. For example, the method of claim 1 wherein the ligature is selected from the group consisting of acetaminophen, butyraldehyde and isobutyraldehyde. 7. The method of claim 1, wherein the aldehyde is furfural. 8' The method of claim 1, wherein the reactive metal is selected from the group consisting of magnesium chips, activated powder, aluminum, and a powder of the following metals: magnesium, calcium, titanium, iron, cobalt, nickel , copper, indium and combinations thereof. 9. The method of claim 1, wherein the method further comprises adding a zinc salt in addition to the reactive metal. The method of claim 9, wherein the zinc salt is zinc acetate. U. The method of claim 9, wherein the method further comprises a fourth ammonium salt. The method of claim 1, wherein the reaction solvent is selected from the group consisting of alkyl, 136295.doc 201014816 alkyl and trialkyl straight or cyclic amine, N-methylpyrrolidine, N-methyl bunk a group consisting of pyridine, pyridine, alkyl substituted pyridine, dimethylformamide, piroxime or agidine and mixtures thereof. 13. The method of claim 12, wherein the reaction solvent is beta-pyridyl, alkyl-substituted pyridine or a mixture thereof. 14. The method of claim 1, wherein the halofluorocarbon is obtained by reacting the corresponding hydrofluoride The carbide RfCFH2 is halogenated to prepare. A method for producing a hydrofluorination structure of RfcF=CHR, which comprises reacting a halofluorocarbon of a RfCFX2 with an aldehyde and a reactive metal in a reaction solvent to produce a reaction comprising a metal hydrofluoroalkoxide The product, each of which is independently selected from the group consisting of Cl, Br, and I; and in the second step, the metal hydrofluoroalkoxide is reductively dehydroxylated to produce a hydrofluoroolefin. 16. The method of claim 15, further comprising isolating the hydrofluoroolefin product. 17. The method of claim 15, wherein the aldehyde is selected from the group consisting of furfural, acetaldehyde, propylene, butyraldehyde, and isobutyraldehyde. 18. The method of claim 15, wherein the reactive metal is selected from the group consisting of magnesium turnings, activated zinc powder, aluminum, and powders of the following metals: magnesium, calcium, chin, iron, diamond, nickel , copper, zinc indium and combinations thereof. The method of claim 15, which further comprises adding a zinc salt in addition to the reactive metal. 20. The method of claim 19, wherein the zinc salt is zinc acetate. 21. The method of claim 19, wherein the method further comprises a fourth ammonium salt. 22. The method of claim 15, wherein the reductive deamination group halogenation comprises reacting the metal A sulphate with a sulphuric acid and a reactive metal, the reaction 136295.doc 201014816 ferrous metal and as in claim 15 The reactive metals are the same or different. The method of claim 22, wherein the reactive metal is selected from the group consisting of magnesium dust, activated zinc powder, aluminum, and a powder of the following metals: magnesium, calcium, chin, iron, cobalt, nickel, copper , zinc indium and combinations thereof. 24. The method of claim 22, wherein the carboxylic anhydride is selected from the group consisting of acetic anhydride propionate needles, liver acid, glutaric anhydride, adipic anhydride, and formic anhydride. 25. The method of claim 15, wherein the R group of the hydrofluoroolefin is selected from the group consisting of η, CH3, and c2H5. 26. The method of claim 15, wherein Rf is a perfluoroalkyl group having from 1 to 4 carbon atoms. 27. The method of claim 26, wherein 1 is CF3. 28. The method of claim 15, wherein the center is (:1?3 and r is η. 9. The method of claim 15, wherein the halofluorocarbon is prepared by halogenating the corresponding hydrofluorocarbon RfCFH2 30. The method of claim 15, wherein the reductive dehydroxyhalogenation comprises neutralizing the metal hydrofluoroalkoxide to produce a hydrofluoroalkanol; mixing the dehydrating agent with the hydrofluoroalkanol to form a gaseous mixture; And contacting the catalyst with the gaseous mixture to form the hydrofluoroolefin. The method of claim 3, wherein the dehydrating agent is at least one selected from the group consisting of methane, ethane, propane, butane, natural gas, alcohol, aldehyde And a gas of the group consisting of carbon monoxide. 32. The method of claim 3, wherein the catalyst is a transition metal. 33. The method of claim 32, wherein the transition metal is at least one selected from the group consisting of 136295.doc 201014816 nickel, palladium The method of claim 30, wherein the catalyst is a supported catalyst, such as the method of claim 34, wherein the supported catalyst comprises a transition metal and a carrier material. The method of item 35, wherein the carrier material is at least one carrier material selected from the group consisting of activated carbon and gamma-alumina. 37. A compound having the formula: RfCFXCHR〇C(=〇)R, wherein Rf Is a perfluoroalkyl group having 1 to 4 carbon atoms, r is ch3, CH3CH2, CH3CH2CH2, (Ch3)2CH or oxime, and X is selected from Ch Br and ϊ ' and R is selected from _ch3, -C2H5, a group of -CH2CH2CH3, CH2CH2C〇2H, ch2ch2ch2co2h, ch2ch2ch2ch2co2h, and η. 38. The compound of claim 37, wherein Rf is selected from the group consisting of cf3_, CF3CF2-, CF3CF2CF2-, (cf3)2cf-, cf3cf2cf2cf2-, and cf3cf (cf3 Cf2" 39. The compound of claim 37, wherein the center is cf3, X is Cl and R is CH3. 40. A method for producing a hydrofluoroolefin of the structure RfCF=CHR, which comprises hydrofluorinating the structure RfCFXCHROH The alkanol or argon fluoride alkoxide of the structure RfCFXCHROMX is reacted with a carboxylic acid anhydride and a reactive metal in a reaction solvent to form a hydrofluoroolefin, wherein the ruthenium is a reactive metal in the +2 oxidation state. 41. The method of claim 4 And further comprising the step of isolating the hydrofluoroolefin. 136295.doc 201014816 42. The method of claim 4, wherein the Rf is selected from the group consisting of perfluorodecyl perfluoroethyl perfluoro-n-propyl, perfluoroisopropyl, perfluoro-n-butyl, and perfluoroisobutyl , X is selected from α, price and! And R is selected from the group consisting of H, CH3, C2H5, n-C3H7 &amp; i-C3H7. 43. The method of claim 42, wherein RfgCF3 and R is H. 44. The method of claim 4, wherein the carboxylic anhydride is selected from the group consisting of acetic anhydride, hepatic acid butanobutyrate, humic acid liver, glutaric acid liver, adipate liver, and formic anhydride. The method of claim 40, wherein the reactive metal is selected from the group consisting of: a genus, an active zinc powder, aluminum, and a powder of the following metals: magnesium, strontium, chin, iron, cobalt, nickel, copper , zinc indium and combinations thereof. 46. A compound having the formula: RfCFClCHRO-Zn-Cl » wherein Rf is a perfluoroalkyl group having 1 to 4 carbon atoms and r is ch3, CH3CH2, CH3CH2CH2, (CH3)2CH or Η 〇· 0 47 The compound of claim 46, wherein the Rf is selected from the group consisting of CF3-, CF3CF2-, cf3cf2cf2, (CF3)2CF-, cf3cf2cf2cf2-, and cf3cf(cf3)CF2. • 48. The compound of claim 46, wherein R^CF3 and R is H. ν 49· A compound having the formula: -(-CF(Rf)CHRCF(Rf)CHR-) * wherein Rf is possessed! A perfluoroalkyl group to 4 carbon atoms and R is CH3, CH3CH2, CH3CH2CH2, (CH3)2CH or hydrazine. 50. The compound of claim 49, wherein RfgCF3 and R is deuterium. 136295.doc 201014816, 51. A method for producing hydrofluoroacetic acid, which comprises reacting a structural gas % carbide with an aldehyde and a reactive metal in a reaction solvent to produce a reaction product comprising a metal hydrofluoroalkoxide, Each of these is independently selected from the group consisting of alpha, valence and I' to further react the metal nitrofluoroalkoxide with a carboxylic acid anhydride to provide an ester of the formula RfCFXCHROC(=〇)R' wherein Rf is a total of from j to 4 carbon atoms The fluoroalkyl group 'R is H, CH3 or C2H5 and R is selected from the group consisting of _ch3, -C2H5'-CH2CH2CH3'CH2CH2C02H'CH2CH2CH2CO2H'CH2CH2CH2CH2C02H and hydrazine. The method of claim 51, wherein Rf is CF3, R is Η and R is CH3. 136 136295.doc 201014816 VII. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbolic symbol of the representative figure is simple: 8. If there is a chemical formula in this case, please reveal the characteristics that can best show the invention. Chemical formula: RfCFXCHR0C(=0)R' RfCFClCHRO-Zn-Cl ring-(-CF(Rf)CHRCF(Rf)CHR-) 136295.doc136295.doc
TW97145015A 2008-10-10 2008-11-20 Synthesis of hydrofluoroalkanols and hydrofluoroalkenes TW201014816A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10433408P 2008-10-10 2008-10-10
UA2008012034 2008-10-10

Publications (1)

Publication Number Publication Date
TW201014816A true TW201014816A (en) 2010-04-16

Family

ID=44829794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145015A TW201014816A (en) 2008-10-10 2008-11-20 Synthesis of hydrofluoroalkanols and hydrofluoroalkenes

Country Status (1)

Country Link
TW (1) TW201014816A (en)

Similar Documents

Publication Publication Date Title
JP2011522772A (en) Synthesis of hydrofluoroalkanols and hydrofluoroalkenes.
US8299309B2 (en) Synthesis of hydrofluoroalkanols and hydrofluoroalkenes
US7981312B2 (en) Processes for producing and compositions comprising 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
JP5570219B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
ES2542306T5 (en) Procedures for the production of fluoropropanes and halopropenes
JP5341978B2 (en) Method for producing 1,1,1,4,4,4-hexafluoro-2-butene
JP6272350B2 (en) Synthesis of 3,3,3-trifluoropropyne
TW200920722A (en) Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with HF
KR20110084910A (en) Compositions comprising 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoro-propyl acetate or zinc (2-chloro-2,3,3,3-tetrafluoropropoxy) chloride
TW200920720A (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
TW200844075A (en) Processes for the production of fluoropropanes and halopropenes
TW201209017A (en) Process for producing 1,1-dichloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene
JP2015505302A (en) Process for cis-1-chloro-3,3,3-trifluoropropene
TW200838835A (en) Processes for producing pentafluoropropenes and azeotropes comprising HF and certain halopropenes of the formula C3CI2F4, C3CIF5, or C3HF5
JP2010513517A (en) Process for the synthesis and separation of hydrofluoroolefins
EP2646402A1 (en) Synthesis of 1,1,3-trichloro-1-propene
TW200938516A (en) Processes for the synthesis of 2-chloro-1,1,1,3,4,4,4-heptafluoro-2-butene and hexafluoro-2-butyne
JP5859659B2 (en) Process for preparing 2,3,3,3-tetrafluoropropene
JP5713015B2 (en) Method for producing 1,1-dichloro-2,2,3,3,3-pentafluoropropane
TW201014816A (en) Synthesis of hydrofluoroalkanols and hydrofluoroalkenes
JP2024102281A (en) Synthesis of 1,1,3-trichloro-1-propene
EP2049457A2 (en) Catalytic processes for making hydrohalopropanes and hydrofluorobutanes
TW201319012A (en) Process for making hydrohalocarbons and selected compound