TW201006907A - Luminescent nanoscale particles with hydrophobic surface finish, process for production thereof and use thereof - Google Patents

Luminescent nanoscale particles with hydrophobic surface finish, process for production thereof and use thereof Download PDF

Info

Publication number
TW201006907A
TW201006907A TW98114635A TW98114635A TW201006907A TW 201006907 A TW201006907 A TW 201006907A TW 98114635 A TW98114635 A TW 98114635A TW 98114635 A TW98114635 A TW 98114635A TW 201006907 A TW201006907 A TW 201006907A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
group
aqueous solution
component
ligands
Prior art date
Application number
TW98114635A
Other languages
Chinese (zh)
Other versions
TWI502047B (en
Inventor
Anna Prodi-Schwab
Dieter Adam
Thomas Luethge
Michael Bredol
Katarzyna Matras
Adam Szatkowski
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of TW201006907A publication Critical patent/TW201006907A/en
Application granted granted Critical
Publication of TWI502047B publication Critical patent/TWI502047B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium

Abstract

The present invention relates to nanoparticles comprising a core of the formula XY and a ligand shell, where X = Zn, Cd, Hg or Pb, and Y = O, S, Se or Te, wherein the ligand shell comprises at least two ligands L1 and L2, where L1 is selected from the group consisting of aminoalkanethiols of the formula (1) in which R1 is a divalent, linear, branched or aromatic hydrocarbon radical having 1 to 4 carbons and L2 is selected (a) from the group of the sulphonic acids of the formulae (2a) and (2b) where R2 is a divalent, linear, branched or aromatic, unsubstituted or substituted, especially an unsubstituted or an F- or OH-substituted, hydrocarbon radical having 1 to 22 carbons, or (b) from the group of the alkylbenzoic acids of the formula (3) where R3 is a divalent, linear, branched or aromatic, unsubstituted or substituted, especially an unsubstituted or an F- or OH-substituted, hydrocarbon radical having 1 to 22 carbons, to processes for preparation thereof and to the use thereof.

Description

201006907 六、發明說明: 【發明所靥之技術領域】 本發明係關於新穎之經疏水性表面改質的發光奈米顆 粒,關於其之製法及關於其之用途。 【先前技術】 半導體奈米顆粒之新穎的光學性質、磁性質及電性質 φ 在近幾年來已受矚目,因爲彼能明顯地異於巨結晶變異體 之諸性質。因爲其良好之性質,通式XY (其中Χ = Ζη、 Cd、Hg、Pb且 Y = 0、S、Se、Te)之奈米顆粒可以是特 別令人感興趣的。 特別在用於光學材料及層時,奈米顆粒提供之優點是 :因爲與顆粒直徑之六次方相關,該等奈米顆粒之發散截 面相較於微結晶材料之發散截面是極小的。因此,當加工 期間奈米顆粒之附聚可以防止時,可能使用奈米顆粒以製 φ 造透明之混合材料。 然而,奈米顆粒通常不能以純且未受保護之形式被使 用;而是需要保護以不受化學作用的侵襲,例如氧化作用 及水解作用。附聚傾向之降低及對化學作用之侵襲安定性 的增加係經由適合之配合基殼體或基質之使用而達成。 特別對於光學應用而言,摻雜外來原子之奈米結晶是 特別重要的。特別地,摻雜錳之材料代表一種已滲入例如 以下應用中以作爲發光體之物質類:例如在發光二極體中 (Y. Horii et al., Materials Science and Engineering B, 201006907 200 1,85,92),在薄層電發光中(EP 1 241 713 Al), 在光生伏打中,在雷射中及在奈米範圍之電子開關中(J. Hu et al·,Science,200 1,292,2060 )。因爲二價錳離子 仍然具有強的磁矩,在電子及磁性質之偶合中漸增加之可 想到的應用也正被討論(所謂之”自旋電子學”)。201006907 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a novel hydrophobic surface-modified luminescent nanoparticle, a process for its preparation and use thereof. [Prior Art] The novel optical properties, magnetic properties, and electrical properties of semiconductor nanoparticles have been attracting attention in recent years because they are significantly different from those of giant crystalline variants. Because of its good properties, nanoparticles of the general formula XY (where Χ = Ζη, Cd, Hg, Pb and Y = 0, S, Se, Te) can be of particular interest. Particularly when used in optical materials and layers, nanoparticle provides the advantage that, due to the sixth power of the particle diameter, the divergent cross section of the nanoparticle is extremely small compared to the divergent cross section of the microcrystalline material. Therefore, when the agglomeration of the nanoparticles is prevented during the processing, it is possible to use the nanoparticles to make a transparent mixed material. However, nanoparticles are generally not used in pure and unprotected form; rather, they need to be protected from chemical attack, such as oxidation and hydrolysis. The reduction in the tendency to agglomerate and the increase in the aggressiveness of the chemical action are achieved by the use of a suitable mating matrix or matrix. Especially for optical applications, nanocrystallization with foreign atoms is particularly important. In particular, the manganese-doped material represents a substance that has penetrated into, for example, the following applications as an illuminant: for example, in a light-emitting diode (Y. Horii et al., Materials Science and Engineering B, 201006907 200 1,85) , 92), in thin-layer electroluminescence (EP 1 241 713 Al), in photovoltaics, in lasers and in electronic switches in the nanometer range (J. Hu et al., Science, 2001) 292,2060). Since divalent manganese ions still have strong magnetic moments, conceivable applications of increasing electron and magnetic coupling are also being discussed (so-called "spintronics").

摻雜或不摻雜Μη的ZnS奈米顆粒在以前已就其光學 激發、其發射及其經由外殻或基質之改質以控制其表面性 質,而被描述數次。 爲要改良其表面,已建議例如以下物質作爲配合基: 硫代甘油(M. Bredol et al., Solid State Phenomena, 2004,99- 1 00,19),丙烯酸(T. Toyoda et al., Thin solid films, 2003, 43 8, 1 32; H. Althues et al., Chem. Mater., 2006,18,1 068 ),聚乙烯基吡咯烷酮(N. Karara et al., J. App 1. Phy s., 2004,95,6 5 6 ) ,3-疏基丙酸(J. Zhuang et al., J. Mater. Chem.,2003,1 2, 1 85 3 ) > 脫乙醯殼多糖ZnS nanoparticles doped or undoped with Μ have been described several times before they have been optically excited, their emission and their modification via the outer shell or matrix to control their surface properties. In order to improve the surface, it has been suggested, for example, as a ligand: thioglycerol (M. Bredol et al., Solid State Phenomena, 2004, 99-100, 19), acrylic acid (T. Toyoda et al., Thin) Solid films, 2003, 43 8, 1 32; H. Althues et al., Chem. Mater., 2006, 18, 1 068 ), polyvinylpyrrolidone (N. Karara et al., J. App 1. Phy s ., 2004, 95, 6 5 6 ), 3-carbylpropionic acid (J. Zhuang et al., J. Mater. Chem., 2003, 1 2, 1 85 3 ) >

(H. Warad et al., Microsc., Microanal., 2005, 1 1, 1920 ) ,二辛基硫 丁酸鈉(A. Dinsmore et al·,J. Phys_ Chem·, 2000, 88,9),組胺酸(G. Yi et al·,J. Mater. Chem·, 200 1,11,2928 ),六偏磷酸鈉(H. Warad et al·,Adv. Mater. 2005, 6, 296 ),辛硫醇及半胱胺(=2-胺基硫乙醇 ;S. J. Cho et al., Langmuir, 2007, 23, 1 974 )。 配合基對這些材料之光發射可以具有影響:不適合之 配合基吸收來自發光顆粒之所有或部分的激發能量’且因 此導致發光之抑制(完全或部分地,所謂之”淬滅”)。此 -6- 201006907 外,配合基可以提供疏水性或親水性基團於新的粒子表面 上,而後與周圍基質有交互作用。 爲製造摻雜或不摻雜之親水性顆粒,特別地,半胱胺 (2-胺基硫乙醇)及其相對應之鹽類(例如氯化半胱銨) 是有利的,因爲彼因此可能製造極小顆粒(藉光散射計測 量之顆粒直徑小於1 〇mm ),這些顆粒不僅可容易離析的 且完全可再分散於水中,但也具有強烈的光致發光。 φ 經安定化之奈米顆粒可以藉沉澱而獲得;在合成時原 位使用配合基不僅導致相關改良之奈米顆粒,也導致結晶 成長之控制及限制。 然而,這些經半胱胺改質之親水性顆粒不能分散於有 機系統中。 疏水性發光奈米顆粒依照先前技術不能極令人滿意地 製造:已知系統顯現出極強的附聚傾向,發射之部分淬滅 及僅不令人滿意的配合基黏合。這使合倂於疏水性聚合物 • 或其單體的作用複雜化,或使該作用完全被防止。更成功 的方法是基於適合單體之吸收/表面反應(H. Althues et al·,Chem_ Mater., 2006,18,1 068 )或基於配合溶劑例如 己基癸胺之使用(US 3,780,242 );然而在此二情況中,配 合基可以困難地再次除去或改質以供其他目的之用。 【發明內容】 因此本發明之目的是要提供發光奈米顆粒,其已用配 合基來疏水性改質,且因此極適合加工成疏水性聚合物或 201006907 其單體(例如丙烯酸異冰酯)。此外,奈米顆粒應不易於 附聚,特別是在用於疏水性系統時,且不顯現出任何明顯 的發光淬滅。最後,配合基也應對核心顯現出良好但可逆 的黏合性,且在化學上可有效地改質。 此目的藉經改質之奈米顆粒而達成’該奈米顆粒包含 式XY之核心及配合基殼體’其中x = zn、cd、Hg或Pb ,且Y = 0、S、Se或Te,其中該配合基殼體包含至少二 個配合基L1及L2, φ 其中L1係選自式(1)之胺基烷硫醇(H. Warad et al., Microsc., Microanal., 2005, 1 1, 1920), sodium dioctyl thiobutyrate (A. Dinsmore et al., J. Phys_Chem., 2000, 88, 9), Histamine (G. Yi et al., J. Mater. Chem., 200 1,11, 2928), sodium hexametaphosphate (H. Warad et al., Adv. Mater. 2005, 6, 296), sim Mercaptan and cysteamine (=2-aminothioethanol; SJ Cho et al., Langmuir, 2007, 23, 1 974). The ligand may have an effect on the light emission of these materials: an unsuitable ligand absorbs all or part of the excitation energy' from the luminescent particles and thus causes inhibition of luminescence (completely or partially, so-called "quenching"). In addition to the -6-201006907, the ligand can provide a hydrophobic or hydrophilic group on the surface of the new particle and then interact with the surrounding matrix. In order to produce doped or undoped hydrophilic particles, in particular, cysteamine (2-aminothioethanol) and its corresponding salts (for example cysteine chloride) are advantageous because they are therefore possible Very small particles (particle diameters measured by light scatterometers of less than 1 〇mm) are produced, which are not only easily detachable but are completely redispersible in water, but also have strong photoluminescence. The φ stabilized nanoparticle can be obtained by precipitation; the use of a ligand in the original position not only leads to the related modified nanoparticle, but also leads to the control and limitation of crystal growth. However, these cysteamine-modified hydrophilic particles cannot be dispersed in an organic system. Hydrophobic luminescent nanoparticles cannot be manufactured very satisfactorily according to the prior art: known systems exhibit a strong tendency to agglomerate, partial quenching of the emission and only unsatisfactory ligand bonding. This complicates the action of the hydrophobic polymer or its monomer, or completely prevents the action. A more successful method is based on the absorption/surface reaction of a suitable monomer (H. Althues et al., Chem. Mater., 2006, 18, 1 068) or based on the use of a complexing solvent such as hexylguanamine (US 3,780,242); In both cases, the ligand can be removed or modified again for other purposes with difficulty. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide luminescent nanoparticles which have been hydrophobically modified with a ligand and are therefore highly suitable for processing into hydrophobic polymers or 201006907 monomers (eg iso-amyl acrylate) . In addition, the nanoparticles should not be susceptible to agglomeration, especially when used in hydrophobic systems, and do not exhibit any significant luminescence quenching. Finally, the ligand also exhibits a good but reversible bond to the core and is chemically effective for upgrading. For this purpose, it is achieved by the modified nanoparticle that the nanoparticle contains the core of the formula XY and the ligand shell 'where x = zn, cd, Hg or Pb, and Y = 0, S, Se or Te, Wherein the ligand base comprises at least two ligands L1 and L2, wherein φ is selected from the group consisting of amino alkanethiols of formula (1)

叫 ⑴, 其中Ri係選自具有1至4個碳之二價之直鏈型、支鏈型 或芳族烴基,例如伸甲基(所得之胺基烷硫醇則是半胱胺 )、伸乙基或伸丙基,且 © L2係選自a)式(2a)及(2b)之未取代或經取代之磺酸 類 R2-SO3H (2a) so3h (2b), 其中r2是具有1至22個碳之二價之直鏈型、支鏈型或芳 -8 - 201006907(1), wherein Ri is selected from a linear, branched or aromatic hydrocarbon group having a divalent of 1 to 4 carbons, such as a methyl group (the resulting amino alkanethiol is cysteamine), Ethyl or propyl, and © L2 is selected from the group consisting of a) unsubstituted or substituted sulfonic acids R2-SO3H (2a) so3h (2b) of formula (2a) and (2b), wherein r2 is from 1 to 22 Carbon bivalent linear, branched or aromatic-8 - 201006907

代之烴基,特別是未經取代或經 例如甲基、乙基、丙基、C8-栏iSubstituted hydrocarbyl group, especially unsubstituted or via, for example, methyl, ethyl, propyl, C8-column i

COOH (3), 其中R3是具有1至22個碳之二價之直鏈型、支鏈型或芳 族的未經取代或經取代之烴基,特別是未經取代或經F_ 或OH-取代之烴基,例如甲基、乙基或丙基。 本發明之顆粒顯現出強烈的發光(螢光及/或磷光) ,特別是具有高的量子產率之螢光。 本發明之奈米顆粒不僅顯現出所要之正面性質,另外 地也特別在於:當配合基L2選自式(2a)及(2b)之未 取代或經取代之磺酸類時,彼可以用極簡單之方式在水溶 液中製備。 較佳地,在顆粒中,在配合基殻體中之配合基L1及 L2不會互相分開並排地以獨立之配合基形式存在以形成 各層(例如單-及/或雙層)’而是至少部分地藉至少一化 學鍵來互相連接,以在形式上形成新的L3配合基° L1及 L2配合基較佳形成相對應之磺醯胺鍵或醯胺鍵° 奈米顆粒更佳是那些具有ZnS核心者’因爲這些特徵 -9 - 201006907 在於具有比較好的環境相容性與比較好的發光率及低的製 造成本。 配合基L1較佳是半胱胺(=2-胺基硫乙醇),因爲之 後達到特別堅固之配合基對核心的黏合性’且顆粒之發光 與不具有殻體之發光相比,幾乎一點也無降低。 當配合基L2是4-十二烷基苯磺酸時,結果獲得特別 適合使用於疏水性介質之奈米顆粒。 在配合基殼體中之LI: L2配合基的數値比例較佳是 >或=0.95,較佳地0.95-1.05。LI: L2配合基之數値比例 更佳是1.0。 較佳地,本發明之奈米顆粒在配合基殼體中除了配合 基L1及L2以外,不具有另外之配合基。 當本發明之奈米顆粒(包括配合基殻體),使用 Malvern奈米尺寸計且藉由動力光散射而測得具有1至 3 Onm »較佳地5至25nm,更佳地10至15nm尺寸時,彼 特別適合光學用途。當顆粒變爲大於30nm時,結果是令 人不滿意之發光率。在低於此値之範圍內,因此仍可能有 利地控制發光性質,特別是激發及最大發射及量子產率。 爲獲得特別強烈的發光奈米顆粒,且爲控制其之上述 發光性質,其核心可以摻雜外來原子;在統計平均上,以 合金爲基準計,對於過渡金屬而言,摻雜最多至10莫耳 %的程度,較佳地最多至2莫耳%的程度;對於金屬Au、 Ag及Cu而言,摻雜最多至1莫耳%的程度。外來原子可 以選自 Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Mo 201006907 、Tc、Ru、Pd、Ag、Ta、Re、Os、Ir、Pt、Au、Hg、Ce 、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm 及 Yb。 該金屬較隹是 Μη、Fe、Ni、Cu、Ag、Au、Sm、Eu、Tb 、Dy、Er、Tm及/或Yb。甚至更佳地,摻雜所用之外來 原子是Mn、Cu、Au、Ag、Eu及/或Dy。最適合是Μη。 本發明之顆粒可以用不同方式來合成。本發明之疏水 性奈米顆粒可以在水性介質中製造,是一項大的優點。 φ 本發明之奈米顆粒較佳可以藉由在水中或在有機溶劑 中之”捕獲沉澱”的方法來製造,其中配合基在其沉澱期間 被附加在ΧΥ核心之表面上且因此限制核心成長。 藉由在水性介質中之”捕獲沉澱”方法製造之本發明的 奈米顆粒,以獲得單分散之奈米顆粒’是特別簡單的:此 包含從成分X之鹽的水溶液中,藉添加成分Υ之化合物 的水溶液,在配合基L1及L2的存在下,沉澱本發明之 經配合基改質之奈米顆粒。 Φ 較佳地,在添加成分Υ之化合物的水溶液之前,在 成分X之鹽的存在或不存在下,配合基L1及L2在溶液 中互相反應》 在所述之製備方法中可被使用之X的適合鹽類包括X 之所有水溶性鹽類。彼較佳是X之可溶的乙酸鹽類、硝 酸鹽類、鹵化物、低碳羧酸之羧酸鹽類、及硫酸鹽類。 Υ之較佳化合物包括Υ之所有的水溶性化合物或釋出 Υ的化合物,特別是可溶的硫屬化合物及氫硫屬化合物, η2υ型之氣態化合物及Υ之分解先質,特別是硫醯胺類及 -11 - 201006907 硫脲類。特佳者是使用相關之鈉硫屬化合物。 製備經改質之χγ奈米顆粒之另外的方法係在逆膠質 粒子中進行。這些構成具有固定幾何形狀及量的水性沉澱 介質於奈米尺寸之經分散的水滴內。有利的是:顆粒尺寸 可以經由親兩性之選擇而反覆地控制,因爲膠質粒子之附 聚數是一平衡參數。只要顆粒仍然孤立於膠質粒子內部, 則另外可能進一步地例如藉由建構用於鈍化之殻體而將顆 粒改質。在逆膠質粒子中製造本發明之顆粒的典型的方法 使用成分X之鹽的水溶液及成分γ之化合物的水溶液, 此二者分別在不與水互溶的有機溶劑中與兩性物質(例如 聚氧伸乙基(5)壬基醚於己烷中)摻混,以形成微乳膠 ,然後二者在激烈攪拌下互相混合,配合基L1及L2在 成分X之鹽的水溶液及/或在第三水溶液(其同樣地與該 不與水互溶的有機溶劑摻混,以形成微乳膠,且在激烈攪 拌下與前二種微乳膠之混合物混合)被離析且之後例如用 丙酮來沉澱。 本發明之奈米顆粒適合很多最終用途。 A.因爲其發光性,彼適合多種光致發光應用及適於微 光學、光電子及感應器系統中的應用。例如,本發明之顆 粒可用於具有或不具有適合配合基改質(這使物質之標記 可被偵測)的螢光或磷光硏究。也可能使用本發明之顆粒 以供製造發光塗層於例如傳導性或非傳導性物質之上,例 如於玻璃、膜、箔片或ITO之上,或供製造發光基質(例 如塑膠、玻璃等,其在藉由太陽光、UV光、雷射光或類 201006907 似者激發之後顯出螢光或磷光),或適合與金屬/半導體 聚合物結合用於光生伏打應用中。 製造此種發光塗層之相關方法可以包含以下步驟: (ο提供發光奈米顆粒之分散液,然後 (2)將步驟(1)之後所得之分散液施加至基材上 且至少部分地除去溶劑或分散劑,然後 (3 )用光照射在步驟(2 )之後所得之塗層,以在 φ 光致發光應用中激發光。 此製造方法也能在生產線中操作,亦即彼可以用在具 有以本發明之發光奈米顆粒爲底質之層的基材的連續製造 方法中,例如用於滾筒對滾筒方法中。 本發明因此提供一種藉由依本發明之方法可得之發光 層。 在依本發明之方法的步驟(1)中可以有利地使用含 有發光奈米顆粒之分散液。 • 較佳地,在依本發明之方法的步驟(2)中,分散液 可以藉噴墨印刷、柔版印刷(flexographic printing )、移 印、旋轉塗覆、噴霧、浸漬、刀塗覆、平版印刷、網版印 刷、熱轉印刷、凹版印刷、流動塗覆、得自optomec ( optomec inc.,Albuquerque, New Mexico )之氣溶膠噴射 沉積方法或澆鑄,而施加至基材。 這使基材上有結構或部分結構。此分散液較佳可以施 加一次或多於一次及/或連續地施加或分批地施加。周圍 條件依照應用之需求而定且因此可以依照如何施加分散液 -13- 201006907 而不同。 有利地,在依本發明之方法的步驟(2)中,可能使 用含有或係爲玻璃或塑膠之基材。較佳可能使用(透明及 /或傳導性)材料’更佳是石英玻璃、硼矽酸鹽顯示器玻 璃、不含鹼之硼矽酸鹽顯示器玻璃、白玻璃、窗玻璃、浮 動玻璃、聚酯、聚酿胺、聚醯亞胺、聚丙烯酸酯、聚碳酸 酯(PC)、聚醚楓(PES)、聚醚醚酮(PEEK)、聚氯 乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚縮醛( ❹ POM)、聚對苯二甲酸乙二酯(PET)、聚萘酸乙二酯( PEN)、聚對苯二甲酸丁二酯(PBT)、聚羥基丁酸酯( PHB)、聚醯胺6、聚醢胺66、聚醯胺11、聚醯胺12、 kapton®、聚甲基丙烯酸甲酯(PMMA)、或這些材料之 組合。極特佳地,可能使用膜型及/或積層材型之這些材 料或這些材料之組合。 在依本發明之方法的步驟(3)之前,另外有利地可 以是:藉由在20°C至180°C,較佳地50°C至130°C,更佳 @ 地60 °C至120 °C之溫度下乾燥1秒至60分鐘,以從步驟 (2 )後所得之塗層中,除去溶劑或分散劑。溶劑及分散 劑可以更佳地在120°C溫度下在超過10分鐘之時間內從 分散液或溶液中除去。溶劑或分散劑可以例如藉電磁能量 的導入或藉基材與熱板之接觸而除去,或在滾筒對滾筒方 法中較佳藉由與至少一經加熱之滾筒或壓延機之接觸而除 去。另外較佳地,溶劑或分散劑可以藉IR、VIS、或UV 光照射,例如藉由在乾燥爐中於IR區中發射之鹵素輻射 -14- 201006907 器或雷射,或藉由使用經加熱之空氣或惰性氣體來清除而 除去。更佳地,溶劑或分散劑可以藉由可整合於滾筒對滾 筒方法中之至少一方法來除去。特別佳者可以是無接觸方 法,極特佳是IR輻射器。最多99%之溶劑或分散劑較佳 可以從步驟(2)之後所得的塗層中除去。藉乾燥所除去 之溶劑或分散劑的比例可以藉由精於此技藝者已知的測試 方法來測定,例如藉測重法。在乾燥後,可以獲得〇.〇5 至ΙΟΟμιη,較佳地0.1至75μιη,另外較佳地0.5至50μιη ,更佳地1至30μιη之層厚度。 包含本發明之奈米顆粒的發光基質可以在製造基質前 ,藉添加本發明之奈米顆粒至相關之單體或基質溶液而製 造。本發明之奈米顆粒因此可以在這些本質上是慣用的基 質(例如那些以丙烯酸酯、玻璃或塑膠爲底質者)的已知 製造時被合倂於這些基質中,或在其製造過程中被合倂於 合成的蛋白石中。 Φ Β.彼可以有利地被用在奈米材料之慣常應用中,其中 基於其小尺寸,奈米顆粒之正面性質,例如其硬度、其光 散射性、其對含彼之介質的折射率的影響(特別是爲要獲 得含彼而具有大的折射率的聚合物)、特別機械性之賦予 ,在例如製造塗層材料、模製品、合成蛋白石、印刷膏及 墨液時是特別重要的。本發明之奈米顆粒更佳在印刷時用 於印刷膏,特別是用於網版印刷膏。 C.再者,本發明之奈米顆粒極適於電發光應用。本發 明之奈米顆粒可極有效地用在AC及DC電發光領域中。 -15- 201006907 特別是在AC電發光的領域中’本發明奈米顆粒可以用在 電發光塗層中,特別是用在供具有高照明強度之膜燈或 LED之製造的電發光塗層中。彼特別適於製造具有高輻射 強度之屏蔽印刷膜燈。相對於用複雜方式製造以供薄膜電 發光應用之層合燈系統(其必須用複雜之CVD技術來製 造),這些燈可以藉相對較簡單及較不昂貴的厚膜技術來 製造。 這些電發光塗層可以藉包含以下步驟之方法而製造如 _ 下: (1) 提供發光奈米顆粒之分散液,然後 (2) 在步驟(1)之後所得之分散液施加至傳導性基 材或施加至塗覆傳導性物質之基材,且至少部分地除去溶 劑,然後 (3 )隨意地施加介電層, (4 )施加傳導性相對電極, (5)施加電壓至步驟(2)之後所得之塗層,以在電 @ 發光應用中獲得發光。 此方法也能在生產線中***作,亦即此方法可以用在 具有以發光奈米顆粒爲底質之層的基材的連續製造方法中 ,例如用在滾筒對滾筒方法中。 本發明因此同樣地提供一種藉由依本發明之方法所得 之電發光層。 本發明同樣地提供一種具有本發明之層的電子零組件 ,及本發明之零組件在電發光模組或顯示器中之用途。 -16- 201006907 較佳地,在依本發明之方法的步驟(2)中,分散液 可以藉噴墨印刷、柔版印刷(flexographic printing )、移 印、旋轉塗覆、噴霧、浸漬、刀塗覆、平版印刷、網版印 刷、熱轉印刷、凹版印刷、流動塗覆、得自optomec ( optomec inc.,Albuquerque,New Mexico)之氣溶膠噴射 沉積方法或澆鑄,而施加至基材。 這使基材上有結構或部分結構。此分散液較佳可以施 φ 加一次或多於一次及/或連續地施加或分批地施加。周圍 條件依照應用之需求而定且因此可以依照如何施加分散液 而不同。 有利地,在依本發明之方法的步驟(2)中,可能使 用含有或係爲玻璃或塑膠之基材。較佳可能使用(透明及 傳導性)材料,更佳是石英玻璃、硼矽酸鹽顯示器玻璃、 不含鹼之硼矽酸鹽顯示器玻璃、白玻璃、窗玻璃、浮動玻 璃、聚酯、聚醯胺、聚醯亞胺、聚丙烯酸酯、聚碳酸酯( Φ PC )、聚醚碾(PES )、聚醚醚酮(PEEK )、聚氯乙烯 (PVC)、聚乙烯(PE)、聚丙烯(PP)、聚縮醛(POM )、聚對苯二甲酸乙二酯(PET)、聚萘酸乙二酯(PEN )、聚對苯二甲酸丁二酯(PBT)、聚羥基丁酸酯(PHB )、聚醯胺6、聚醯胺66、聚醯胺11、聚醯胺12、 kapton®、聚甲基丙烯酸甲酯(PmMA)、或這些材料之 組合。極特佳地,可能使用膜型及/或積層材型之這些材 料或這些材料之組合。 在依本發明之方法的步驟(3)之前,另外有利地可 -17- 201006907 以是:藉由在20°C至180°C,較佳地50°C至130°C,更佳 地60°C至120°C之溫度下乾燥1秒至60分鐘,以從步驟 (2 )後所得之塗層中,除去溶劑或分散劑。溶劑及分散 劑可以更佳地在120 °C溫度下在超過10分鐘之時間內從 分散液或溶液中除去。溶劑或分散劑可以例如藉電磁能量 的導入或藉基材與熱板之接觸而除去,或在滾筒對滾筒方 法中較佳藉由與至少一經加熱之滾筒或壓延機之接觸而除 去。另外較佳地,溶劑或分散劑可以藉IR、VIS、或UV 光照射,例如藉由在乾燥爐中於IR區中發射之鹵素輻射 器或雷射,或藉由使用經加熱之空氣或惰性氣體來清除而 除去。更佳地,溶劑或分散劑可以藉由可整合於滾筒對滾 筒方法中之至少一方法來除去。特別佳者可以是無接觸方 法,極特佳是IR輻射器。最多99%之溶劑或分散劑較佳 可以從步驟(2)之後所得的塗層中除去。藉乾燥所除去 之溶劑或分散劑的比例可以藉由精於此技藝者已知的測試 方法來測定,例如藉測重法。在乾燥後,可以獲得0.05 至ΙΟΟμιη,較佳地0.1至75μιη,另外較佳地0.5至50μιη ,更佳地1至30μιη之層厚度。 【實施方式】 實施例 ZnS : Μη 藉以下合成法,將說明所提出之從半胱胺及十二烷基 苯磺酸(DBS )原位產生雙官能配合基的方法: 201006907 合成:1 Ommol (2_254g)乙酸鋅二水合物,1 · 9mmol (0.47 8 g )乙酸锰(II)四水合物及 7.0mmol( 0.859g) 氯化半胱銨被溶在125ml H20中(溶液I) 。7. Ommol ( 2.42g)之硫化鈉溶在25ml H20中(溶液II)。 溶液I而後在攪拌下緩慢而逐滴地與4-十二烷基苯磺 酸摻混(整個超過1 .5小時,0.02 5ml/分鐘)。爲沉澱奈 米顆粒,溶液II而後以0.08 3ml/分鐘之速率在超過5小 φ 時之時間內緩慢地添加。所形成之分散液在95 °C下迴流 加熱3.5小時,以完成結晶且孤立奈米顆粒。 形成透明奈米顆粒。爲分離顆粒,添加乙醇且藉離心 除去沉澱物。在60°C及低壓下進行顆粒之最終乾燥。 FTIR硏究清楚地顯示:至少部分地已形成(安定) 磺醯胺鍵,以致這些配合基可以結合半胱胺之優越且簡單 之吸附作用與DBS之強的疏水作用。這些效果不能用個 別之物質來達成。 • 由此所得之顆粒可以極容易地以高的質量比例(最高 達30重量%)再分散於聚合物溶液、疏水性單體等之中 :有效的顆粒尺寸(依照DLS)則是10至20nm。在光致 發光中,約30%之量子產率幾乎與經丙烯酸安定化之顆粒 之參考値一般高[Althues et al.,Chem. Mater.,2006,18, 168] ° 透明奈米複合材料之製造 經乾燥之疏水化奈米顆粒以粉末形式自發地分散於丙 -19- 201006907 烯酸異冰片酯中’成30質量%之比例。爲要固化,添加 光起始劑(Irgacure 369 )之後用UV光來照射。 經固化之奈米複合材料是透明的,雖然有高的奈米顆 粒含量。 【圖式簡單說明】 圖1 從所得顆粒之繞射作圖顯明:存在閃鋅礦改質(在約 29grd之最大散射對應於閃鋅礦之[ill]反射,在約47grd 之譜帶對應於[220]反射)。極寬之繞射線顯示:包含極 小的一級結晶。 (使用Philips X-ray粉末繞射計PW 1 1 30/00來記錄 由顆粒在紫外線激發下的激發及發射光譜顯明:顆粒 尺寸已導致激發譜帶移向較高之能量(與微結晶材料相比 ),此外,由於Μη摻雜,實際上全部在發射中(約 590nm)。由ZnS中之缺陷所引起之發射(約450nm)扮 演有限的角色,且因此可以假設及良好之結晶品質。 (使用 UV-Vis螢光分光光度計 RF-5 3 0 1 pcCOOH (3), wherein R3 is a linear, branched or aromatic unsubstituted or substituted hydrocarbon group having a divalent of 1 to 22 carbons, particularly unsubstituted or substituted by F_ or OH- A hydrocarbon group such as a methyl group, an ethyl group or a propyl group. The particles of the invention exhibit intense luminescence (fluorescence and/or phosphorescence), especially fluorescence with a high quantum yield. The nanoparticle of the present invention not only exhibits the desired positive properties, but also specifically: when the ligand L2 is selected from the unsubstituted or substituted sulfonic acids of the formulae (2a) and (2b), it can be extremely simple The manner is prepared in an aqueous solution. Preferably, in the particles, the ligands L1 and L2 in the ligand matrix are not separated from each other side by side in the form of separate ligands to form the layers (for example, single- and/or double-layer)' but at least Partially connected to each other by at least one chemical bond to form a new L3 ligand in the form. The L1 and L2 ligands preferably form a corresponding sulfonamide bond or a guanamine bond. Nanoparticles are more preferably those having ZnS. The core of the 'because these features -9 - 201006907 lie in having better environmental compatibility and better luminosity and lower manufacturing costs. The ligand L1 is preferably cysteamine (=2-aminothioethanol) because a particularly strong ligand is then bonded to the core' and the luminescence of the particles is almost the same as that without the shell. No reduction. When the ligand L2 is 4-dodecylbenzenesulfonic acid, as a result, a nanoparticle which is particularly suitable for use in a hydrophobic medium is obtained. The ratio of the number of LI:L2 ligands in the mating base is preferably > or = 0.95, preferably 0.95-1.05. LI: The ratio of the number of L2 ligand groups is preferably 1.0. Preferably, the nanoparticles of the present invention have no additional ligands in the ligand matrix other than the ligands L1 and L2. When the nanoparticle of the present invention (including a ligand base) is measured using a Malvern nanometer and measured by dynamic light scattering, it has a size of 1 to 3 Onm » preferably 5 to 25 nm, more preferably 10 to 15 nm. It is especially suitable for optical applications. When the particles become larger than 30 nm, the result is an unsatisfactory luminosity. Below this range, it is therefore still possible to advantageously control the luminescent properties, in particular the excitation and maximum emission and quantum yield. In order to obtain particularly strong luminescent nano-particles, and to control the above-mentioned luminescent properties, the core can be doped with foreign atoms; on a statistical average, based on the alloy, for the transition metal, doping up to 10 The degree of ear %, preferably up to 2 mol%; for metals Au, Ag and Cu, doping up to 1 mol%. The foreign atom may be selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo 201006907, Tc, Ru, Pd, Ag, Ta, Re, Os, Ir, Pt, Au, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb. The metal is Μη, Fe, Ni, Cu, Ag, Au, Sm, Eu, Tb, Dy, Er, Tm and/or Yb. Even more preferably, the atoms used for doping are Mn, Cu, Au, Ag, Eu and/or Dy. The most suitable is Μη. The particles of the invention can be synthesized in different ways. The hydrophobic nanoparticle of the present invention can be produced in an aqueous medium and is a great advantage. φ The nanoparticle of the present invention can preferably be produced by a method of "capture precipitation" in water or in an organic solvent, wherein a ligand is attached to the surface of the crucible core during its precipitation and thus limits core growth. The nanoparticle of the invention produced by the "capture precipitation" method in an aqueous medium to obtain monodisperse nanoparticles is particularly simple: this comprises the addition of a component from an aqueous solution of the salt of component X. The aqueous solution of the compound precipitates the ligand-modified nanoparticle of the present invention in the presence of the ligands L1 and L2. Φ Preferably, the ligands L1 and L2 are mutually reacted in solution in the presence or absence of a salt of the component X before the addition of the aqueous solution of the compound of the component 》. X which can be used in the preparation method described above Suitable salts include all water soluble salts of X. Preferably, it is a soluble acetate, a nitrate, a halide, a carboxylate of a low carbon carboxylic acid, and a sulfate. Preferred compounds of ruthenium include all water-soluble compounds or ruthenium-releasing compounds, especially soluble chalcogenides and hydrogen-sulfur compounds, gaseous compounds of η2υ type and decomposed precursors of ruthenium, especially sulphur Amines and -11 - 201006907 Thioureas. The most preferred is the use of related sodium chalcogenides. An additional method of preparing the modified χγ nanoparticles is carried out in the inverse colloidal particles. These constitute a fixed precipitation and amount of aqueous precipitation medium in the dispersed water droplets of nanometer size. Advantageously, the particle size can be controlled repeatedly by the choice of affinity, since the number of agglomerates of the colloidal particles is an equilibrium parameter. As long as the particles are still isolated inside the colloidal particles, it is additionally possible to further modify the particles, for example by constructing a shell for passivation. A typical method for producing the particles of the present invention in a reverse particle is to use an aqueous solution of a salt of the component X and an aqueous solution of a compound of the component γ, respectively, in an organic solvent which is not miscible with water and an amphoteric substance (for example, polyoxygen extension) Ethyl (5) mercapto ether is blended in hexane to form a microemulsion, and then the two are mixed with each other under vigorous stirring, and the base L1 and L2 are in an aqueous solution of the salt of the component X and/or in the third aqueous solution. (It is likewise blended with the water-immiscible organic solvent to form a microemulsion, and mixed with the mixture of the first two microemulsions under vigorous stirring) is isolated and then precipitated, for example, with acetone. The nanoparticles of the invention are suitable for many end uses. A. Because of its luminosity, it is suitable for a variety of photoluminescent applications and applications in micro-optics, optoelectronics and sensor systems. For example, the particles of the present invention can be used for fluorescent or phosphorescent studies with or without suitable ligand-based modifications which allow the labeling of the substance to be detected. It is also possible to use the particles of the invention for the manufacture of a luminescent coating on, for example, a conductive or non-conductive material, such as on a glass, film, foil or ITO, or for the manufacture of a luminescent substrate (eg plastic, glass, etc., It exhibits fluorescence or phosphorescence after being excited by sunlight, UV light, laser light or a type like 201006907, or is suitable for use in photovoltaic applications in combination with metal/semiconductor polymers. A related method of producing such a luminescent coating layer may comprise the steps of: (providing a dispersion of luminescent nanoparticle, and then (2) applying the dispersion obtained after the step (1) to the substrate and at least partially removing the solvent Or a dispersing agent, and then (3) irradiating the coating obtained after the step (2) with light to excite the light in the φ photoluminescence application. The manufacturing method can also be operated in a production line, that is, it can be used in In the continuous production method of the substrate of the layer of the light-emitting nanoparticle of the present invention as a substrate, for example, in the method of roller-to-roller. The present invention therefore provides a light-emitting layer obtainable by the method of the present invention. A dispersion containing luminescent nanoparticles may advantageously be used in step (1) of the process of the invention. • Preferably, in step (2) of the process according to the invention, the dispersion may be inkjet printed, flexible Flexographic printing, pad printing, spin coating, spray, dipping, knife coating, lithography, screen printing, thermal transfer printing, gravure printing, flow coating, available from optomec ( optomec inc. Albuquerque, New Mexico) is applied to the substrate by aerosol spray deposition or casting. This imparts a structural or partial structure to the substrate. The dispersion may preferably be applied one or more times and/or continuously or Applied in batches. The ambient conditions are dependent on the needs of the application and can therefore vary depending on how the dispersion is applied -13 - 201006907. Advantageously, in step (2) of the method according to the invention, it is possible to use or Glass or plastic substrate. It is better to use (transparent and / or conductive) materials 'better quartz glass, borosilicate display glass, alkali-free borosilicate display glass, white glass, window glass , Floating Glass, Polyester, Polyamide, Polyimide, Polyacrylate, Polycarbonate (PC), Polyether Maple (PES), Polyetheretherketone (PEEK), Polyvinyl Chloride (PVC), Poly Ethylene (PE), polypropylene (PP), polyacetal (❹ POM), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate ( PBT), polyhydroxybutyrate (PHB), polyamine 6, polyamine 6 6. Polyamide 11, polyamide 12, kapton®, polymethyl methacrylate (PMMA), or a combination of these materials. Very particularly well, it is possible to use these materials in the form of membranes and/or laminates or Combination of these materials. Before step (3) of the process according to the invention, it may additionally advantageously be: at 20 ° C to 180 ° C, preferably 50 ° C to 130 ° C, more preferably @地地Drying at a temperature of 60 ° C to 120 ° C for 1 second to 60 minutes to remove the solvent or dispersant from the coating obtained after the step (2). The solvent and dispersant may be more preferably at a temperature of 120 ° C. It is removed from the dispersion or solution over a period of 10 minutes. The solvent or dispersant may be removed, for example, by introduction of electromagnetic energy or by contact of the substrate with the hot plate, or preferably by contact with at least one heated roll or calender in a roll-to-roll process. Further preferably, the solvent or dispersant may be irradiated by IR, VIS, or UV light, for example by halogen radiation -14-201006907 or laser emitted in the IR zone in a drying oven, or by using heated The air or inert gas is removed and removed. More preferably, the solvent or dispersant can be removed by at least one of the methods that can be integrated into the drum-to-roller process. A particularly good one can be a contactless method, and an extremely good one is an IR radiator. Up to 99% of the solvent or dispersant is preferably removed from the coating obtained after the step (2). The ratio of solvent or dispersant removed by drying can be determined by a test method known to those skilled in the art, such as by weight measurement. After drying, a layer thickness of from 0.1 to 75 μm, preferably from 0.5 to 50 μm, more preferably from 1 to 30 μm can be obtained. The luminescent substrate comprising the nanoparticles of the present invention can be prepared by adding the nanoparticles of the present invention to the relevant monomer or matrix solution prior to the manufacture of the substrate. The nanoparticles of the present invention can thus be incorporated into these matrices in the known manufacture of these essentially conventional matrices (such as those based on acrylate, glass or plastic), or in the manufacture thereof. It is incorporated in the synthetic opal. Φ 彼. He can be advantageously used in the customary application of nanomaterials, based on its small size, the positive properties of the nanoparticle, such as its hardness, its light scattering, its refractive index to the medium containing it. The influence (especially for obtaining a polymer having a large refractive index), and the impartiality of the mechanical properties are particularly important, for example, in the production of coating materials, molded articles, synthetic opals, printing pastes, and inks. The nanoparticle of the present invention is more preferably used for printing pastes in printing, particularly for screen printing pastes. C. Further, the nanoparticles of the present invention are highly suitable for electroluminescent applications. The nanoparticle of the present invention can be used extremely effectively in the fields of AC and DC electroluminescence. -15- 201006907 In particular in the field of AC electroluminescence, the nanoparticles of the invention can be used in electroluminescent coatings, in particular in electroluminescent coatings for the manufacture of membrane lamps or LEDs with high illumination intensity. . It is particularly suitable for the manufacture of shielded printed film lamps with high radiation intensity. These lamps can be fabricated by relatively simple and less expensive thick film techniques relative to laminated lamp systems that are fabricated in complex ways for thin film electroluminescent applications, which must be fabricated using complex CVD techniques. These electroluminescent coatings can be produced by a method comprising the steps of: (1) providing a dispersion of luminescent nanoparticles, and then (2) applying the dispersion obtained after step (1) to a conductive substrate Or applied to the substrate coated with the conductive material, and at least partially removes the solvent, then (3) arbitrarily applies the dielectric layer, (4) applies a conductive opposite electrode, (5) applies a voltage to step (2) The resulting coating is used to achieve luminescence in electrical @luminescent applications. This method can also be operated in a production line, i.e., the method can be used in a continuous manufacturing process for a substrate having a layer of light-emitting nanoparticles as a substrate, for example, in a roll-to-roll method. The invention thus likewise provides an electroluminescent layer obtained by the process according to the invention. The present invention likewise provides an electronic component having the layer of the present invention, and the use of the component of the present invention in an electroluminescent module or display. -16- 201006907 Preferably, in step (2) of the method according to the invention, the dispersion can be applied by ink jet printing, flexographic printing, pad printing, spin coating, spraying, dipping, knife coating Overlay, lithography, screen printing, thermal transfer printing, gravure printing, flow coating, aerosol spray deposition methods or castings from optomec (optomec inc., Albuquerque, New Mexico) are applied to the substrate. This gives the structure a structural or partial structure. Preferably, the dispersion can be applied φ plus one or more times and/or continuously or in portions. The ambient conditions are dependent on the needs of the application and can therefore vary depending on how the dispersion is applied. Advantageously, in step (2) of the method according to the invention, it is possible to use a substrate containing or being glass or plastic. It is preferable to use (transparent and conductive) materials, more preferably quartz glass, borosilicate display glass, alkali-free borosilicate display glass, white glass, window glass, floating glass, polyester, polyfluorene Amine, polyimine, polyacrylate, polycarbonate (Φ PC ), polyether mill (PES), polyetheretherketone (PEEK), polyvinyl chloride (PVC), polyethylene (PE), polypropylene ( PP), polyacetal (POM), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyhydroxybutyrate ( PHB), Polyamide 6, Polyamide 66, Polyamide 11, Polyamide 12, Kapton®, Polymethyl Methacrylate (PmMA), or a combination of these materials. Very preferably, it is possible to use these materials of the film type and/or the laminated type or a combination of these materials. Before step (3) of the method according to the invention, it is additionally advantageously -17-201006907 to be: at 20 ° C to 180 ° C, preferably 50 ° C to 130 ° C, more preferably 60 Drying is carried out at a temperature of from ° C to 120 ° C for from 1 second to 60 minutes to remove the solvent or dispersant from the coating obtained after the step (2). The solvent and dispersant can be more preferably removed from the dispersion or solution over a period of 10 minutes at a temperature of 120 °C. The solvent or dispersant may be removed, for example, by introduction of electromagnetic energy or by contact of the substrate with the hot plate, or preferably by contact with at least one heated roll or calender in a roll-to-roll process. Further preferably, the solvent or dispersant may be irradiated by IR, VIS, or UV light, such as by a halogen radiator or laser that is emitted in the IR zone in a drying oven, or by using heated air or inert The gas is removed and removed. More preferably, the solvent or dispersant can be removed by at least one of the methods that can be integrated into the drum-to-roller process. A particularly good one can be a contactless method, and an extremely good one is an IR radiator. Up to 99% of the solvent or dispersant is preferably removed from the coating obtained after the step (2). The ratio of solvent or dispersant removed by drying can be determined by a test method known to those skilled in the art, such as by weight measurement. After drying, a layer thickness of from 0.05 to ΙΟΟμηη, preferably from 0.1 to 75 μηη, further preferably from 0.5 to 50 μηη, more preferably from 1 to 30 μηη, can be obtained. EXAMPLES Example ZnS: Μη The following synthesis method will be used to illustrate the proposed method for in situ generation of a bifunctional ligand from cysteamine and dodecylbenzenesulfonic acid (DBS): 201006907 Synthesis: 1 Ommol ( 2_254 g) zinc acetate dihydrate, 1 . 9 mmol (0.47 8 g) of manganese (II) acetate tetrahydrate and 7.0 mmol (0.859 g) of cysteam chloride were dissolved in 125 ml of H20 (solution I). 7. Ommol (2.42 g) of sodium sulfide was dissolved in 25 ml of H20 (solution II). Solution I was then slowly and dropwise blended with 4-dodecylbenzenesulfonic acid with stirring (entire over 1.5 hours, 0.02 5 ml/min). To precipitate the nanoparticles, solution II was slowly added at a rate of 0.08 3 ml/min over a period of more than 5 φ. The resulting dispersion was heated under reflux at 95 ° C for 3.5 hours to complete crystallization and to isolate the nanoparticles. Transparent nanoparticle is formed. To separate the particles, ethanol was added and the precipitate was removed by centrifugation. The final drying of the granules was carried out at 60 ° C and at a low pressure. The FTIR study clearly shows that at least partially (stabilized) sulfonamide bonds have been formed so that these ligands can combine the superior and simple adsorption of cysteamine with the hydrophobic interaction of DBS. These effects cannot be achieved with individual substances. • The particles thus obtained can be easily redispersed in polymer solutions, hydrophobic monomers, etc. at high mass ratios (up to 30% by weight): effective particle size (according to DLS) is 10 to 20 nm . In photoluminescence, about 30% of the quantum yield is almost as high as the reference enthalpy of the stabilized particles of acrylic acid [Althues et al., Chem. Mater., 2006, 18, 168] ° Transparent nanocomposite The dried hydrophobized nanoparticle was produced to be spontaneously dispersed in a powder form in a proportion of 30% by mass in C--19-201006907 isobornyl enoate. To be cured, a photoinitiator (Irgacure 369) was added and then irradiated with UV light. The cured nanocomposite is transparent, albeit with a high nanoparticle content. [Simple diagram of the diagram] Figure 1 shows the diffraction pattern of the obtained particles: there is a sphalerite modification (the maximum scattering at about 29 grd corresponds to the [ill] reflection of sphalerite, and the band at about 47 grd corresponds to [220] Reflection). Extremely wide ray display: Contains minimal primary crystals. (Using the Philips X-ray powder diffractometer PW 1 1 30/00 to record the excitation and emission spectra of the particles under UV excitation: the particle size has caused the excitation band to shift to higher energy (as opposed to the microcrystalline material) In addition, in addition, due to Μn doping, virtually all of the emission (about 590 nm). The emission caused by defects in ZnS (about 450 nm) plays a limited role, and thus can be assumed and good crystal quality. Use UV-Vis Fluorescence Spectrophotometer RF-5 3 0 1 pc

Shimadzu) 201006907 從經離析之粉末的IR光譜顯明新的配合基的本質, 其中半晄胺之特徵線(例如在3045(^1^1及832CHT1之胺基 )及十二烷基磺酸之特徵線(例如在llSOcuT1之颯基及 在2956cm·1之芳族CH)是可見的。一些新的譜帶指明磺 醯胺鍵之形成^ (使用 Perkin-Elmer FTIR 分光計) ❹ 圖4 在再分散之後,藉由動力光散射所測得之顆粒尺寸分 布顯示:在分散於THF之後,顆粒僅稍微大於l〇nm。 (高效顆粒尺寸計(動力光散射),Malvern) -21 -Shimadzu) 201006907 The IR spectrum of the isolated powder reveals the nature of the new ligand, the characteristic line of hemiamine (such as the amine group at 3045 (^1^1 and 832CHT1) and the characteristics of dodecyl sulfonic acid The line (for example, the thiol group at llSOcuT1 and the aromatic CH at 2956 cm·1) is visible. Some new bands indicate the formation of sulfonamide bonds ^ (using a Perkin-Elmer FTIR spectrometer) ❹ Figure 4 in redispersion Thereafter, the particle size distribution measured by dynamic light scattering showed that after dispersion in THF, the particles were only slightly larger than 10 nm. (Efficient particle size meter (power light scattering), Malvern) -21 -

Claims (1)

201006907 七、申請專利範团: ι·~種奈米顆粒,其包含式χγ之核心及配合基殻體 ’其中 X =Zn、Cd、Hg 或 Pb,且 Y = Ο、S、Se 或 Te, 其特徵爲該配合基殻體包含至少二個配合基LI及L2, 其中L1係選自式(1)之胺基烷硫醇 Ri. NH 2 (1), ❹ 其中Ri係選自具有1至4個碳之二價之直鏈型、支鏈型 或芳族烴基,且L2係選自 a)式(2〇及(2b)之磺酸類 (2a) R2-SO3H R2 參 (2), so3h 其中R2是具有1至22個碳之二價之直鏈型、支_型或芳 族的未經取代或經取代之烴基,特別是未經取代或經F_ 或OH-取代之烴基, 或15)式(3)之烷基苯甲酸類 -22- (3), (3),201006907 \^cooh 其中R·3是具有1至22個碳之二價之直鏈型、支鏈型或芳 族的未經取代或經取代之烴基,特別是未經取代或經F -或OH-取代之烴基。 2.如申請專利範圍第1項之奈米顆粒,其中L2係選 自式(2a)及(2b)之磺酸類。 3·如申請專利範圍第1或2項之奈米顆粒’其中配合 基L1及L2係經由至少一化學鍵彼此連接。 4. 如申請專利範圍第1至3項中任一項之奈米顆粒, 其中X = Zn且Y = S。 5. 如申請專利範圍第1至4項中任一項之奈米顆粒’ 其中L1 =半胱胺。 6. 如申請專利範圍第1至5項中任一項之奈米顆粒, 其中L2 =4-十二烷基苯磺酸。 7. 如申請專利範圍第1至6項中任一項之奈米顆粒’ 其中配合基L1:L2的比例是大於或等於0.95,較佳是 0.95 -1.05,更佳是 1.0。 8. 如申請專利範圍第1至7項中任一項之奈米顆粒’ 其中配合基殻體無其他配合基》 9·如申請專利範圍第1至8項中任一項之奈米顆粒, 其尺寸是1至30 nm,較佳是5至25 nm,更佳是10至 -23- 201006907 ίο.如申請專利範圍第1至9項中任—項之奈米顆粒 ,其中核心χγ在統計平均上摻雜至高達莫耳%濃度的 外來原子。 11. 如申請專利範圍第10項之奈米顆粒’其中該外來 原子係選自 Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Nb 、Mo、Tc、Ru、Pd、Ag、Ta、Re、Os、Ir、Pt、Au、Hg 、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm 及 Yb,較佳係選自 Μη、Fe、Ni、Cu、Ag、Au、Sm、Eu、 Tb、Dy、Er、Tm 及 Yb。 12. —種用於在逆膠質粒子中製造如申請專利範圍第1 至11項中任一項之奈米顆粒的方法,其特徵在於 成分X之鹽的水溶液及成分γ之化合物的水溶液, 分別與親兩性體於有機之與水不相容的溶劑中摻混以形成 微乳膠,然後,在激烈攪拌下相互混合,配合基L1及L2 於成分X之鹽的水溶液中及/或於第三水溶液中離析,該 第三水溶液同樣地與有機之與水不相容的溶劑摻混以形成 微乳膠且在激烈攪拌下與前二種微乳膠的混合物混合,及 然後沉澱。 13. —種用於製造如申請專利範圍第1至1 1項中任一 項的奈米顆粒的方法,其特徵於在配合基L1及L2之存 在下,藉添加成分Y之化合物的水溶液,自成分X之鹽 的水溶液中沉澱出奈米顆粒。 14_如申請專利範圍第13項之方法,其中在添加成分 201006907 γ之含水化合物之前,在成分χ之鹽的存在或不存在下, 配合基L1及L2於溶液中互相反應。 15· —種如申請專利範圍第1至11項中任一項之奈米 顆粒的用途,其係供光致發光應用或在微光學中、在光電 子中及偵測器系統中之應用,特別是供螢光及燐光硏究或 供發光塗料之製造。 16. —種如申請專利範圍第1至11項中任一項之奈米 • 顆粒的用途,其係供製造塗料、模製品、合成蛋白石、印 刷用膏或印刷用墨液。 17. —種如申請專利範圍第1至11項中任一項之奈米 顆粒的用途,其係供電發光應用,特別是供製造膜燈或 LED。 18. —種發光層’其包含如申請專利範圍第1至11項 中任一項之奈米顆粒。 19· 一種發光基質’其包含如申請專利範圍第1至11 Φ 項中任一項之奈米顆粒。 20_—種電發光層’其包含如申請專利範圍第1至11 項中任一項之奈米顆粒。 • 25 -201006907 VII. Patent application group: ι·~ kind of nanoparticle, which contains the core of the formula χγ and the ligand base shell 'where X = Zn, Cd, Hg or Pb, and Y = Ο, S, Se or Te, Characterizing that the ligand base comprises at least two ligands LI and L2, wherein L1 is selected from the group consisting of amino alkanethiols of formula (1) Ri. NH 2 (1), wherein Ri is selected from the group consisting of 1 to 4 carbon bivalent linear, branched or aromatic hydrocarbon groups, and L2 is selected from the group consisting of a) (2〇 and (2b) sulfonic acids (2a) R2-SO3H R2 ginseng (2), so3h Wherein R 2 is a straight-chain, branched- or aromatic unsubstituted or substituted hydrocarbon group having from 1 to 22 carbons, particularly unsubstituted or substituted with F_ or OH-, or 15 Alkylbenzoic acid of formula (3)-22- (3), (3), 201006907 \^cooh wherein R·3 is a linear, branched or aromatic having a divalent of 1 to 22 carbons An unsubstituted or substituted hydrocarbon group of a group, especially a hydrocarbon group which is unsubstituted or substituted with F- or OH-. 2. The nanoparticle according to item 1 of the patent application, wherein the L2 is selected from the group consisting of sulfonic acids of the formulae (2a) and (2b). 3. Nanoparticles as claimed in claim 1 or 2 wherein the ligands L1 and L2 are linked to each other via at least one chemical bond. 4. The nanoparticle of any one of claims 1 to 3, wherein X = Zn and Y = S. 5. Nanoparticles as claimed in any one of claims 1 to 4 wherein L1 = cysteamine. 6. The nanoparticle of any one of claims 1 to 5, wherein L2 = 4-dodecylbenzenesulfonic acid. 7. The nanoparticle of any one of claims 1 to 6 wherein the ratio of the ligand L1:L2 is greater than or equal to 0.95, preferably from 0.95 to 1.05, more preferably 1.0. 8. The nanoparticle of any one of claims 1 to 7 wherein the base shell has no other ligands. 9. The nanoparticle of any one of claims 1 to 8 The size is from 1 to 30 nm, preferably from 5 to 25 nm, more preferably from 10 to -23 to 201006907 ίο. The nanoparticle according to any one of claims 1 to 9 wherein the core χγ is in statistics Alias atoms doped on average up to a molar concentration of mol%. 11. The nanoparticle of claim 10, wherein the foreign atom is selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Pd, Ag , Ta, Re, Os, Ir, Pt, Au, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb, preferably selected from the group consisting of Μη, Fe, Ni, Cu, Ag, Au, Sm, Eu, Tb, Dy, Er, Tm and Yb. 12. A method for producing a nanoparticle according to any one of claims 1 to 11 in a reverse colloidal particle, characterized in that an aqueous solution of a salt of the component X and an aqueous solution of a compound of the component γ are respectively Blending with the amphiphile in an organic, water-incompatible solvent to form a microemulsion, then mixing with each other under vigorous agitation, compounding L1 and L2 in an aqueous solution of the salt of component X and/or third The aqueous solution is isolated in an aqueous solution which is likewise blended with an organic, water-incompatible solvent to form a microemulsion and mixed with the mixture of the first two microemulsions under vigorous agitation, and then precipitated. A method for producing a nanoparticle according to any one of claims 1 to 11, which is characterized in that an aqueous solution of a compound of the component Y is added in the presence of the ligands L1 and L2. Nanoparticles are precipitated from an aqueous solution of the salt of component X. The method of claim 13, wherein the ligands L1 and L2 are mutually reacted in the solution in the presence or absence of the salt of the component 之前 before the addition of the component 201006907 γ of the aqueous compound. 15. The use of nanoparticle as claimed in any one of claims 1 to 11 for photoluminescent applications or in micro-optics, in optoelectronics and in detector systems, in particular It is used for the production of fluorescent and luminescent materials or for luminescent coatings. 16. Use of a nanoparticle as claimed in any one of claims 1 to 11 for the manufacture of a coating, a molded article, a synthetic opal, a printing paste or a printing ink. 17. Use of a nanoparticle as claimed in any one of claims 1 to 11 which is a power illuminating application, in particular for the manufacture of a film lamp or LED. 18. A luminescent layer comprising the nanoparticle of any one of claims 1 to 11. A luminescent substrate comprising the nanoparticle of any one of claims 1 to 11 Φ. 20_-Electroluminescent layer' comprising the nanoparticle of any one of claims 1 to 11. • 25 -
TW098114635A 2008-05-02 2009-05-01 Luminescent nanoscale particles with hydrophobic surface finish, process for production thereof and use thereof TWI502047B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810001526 DE102008001526B4 (en) 2008-05-02 2008-05-02 Luminescent nanoscale particles with hydrophobic surface finish, process for their preparation and their use

Publications (2)

Publication Number Publication Date
TW201006907A true TW201006907A (en) 2010-02-16
TWI502047B TWI502047B (en) 2015-10-01

Family

ID=40933490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114635A TWI502047B (en) 2008-05-02 2009-05-01 Luminescent nanoscale particles with hydrophobic surface finish, process for production thereof and use thereof

Country Status (3)

Country Link
DE (1) DE102008001526B4 (en)
TW (1) TWI502047B (en)
WO (1) WO2009133138A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349145B (en) 2010-08-06 2019-01-22 免疫之光有限责任公司 Enhanced using the color of up-conversion and lower transition material
WO2013091604A1 (en) 2011-12-19 2013-06-27 Inoviscoat Gmbh Luminous elements with an electroluminescent arrangement and method for producing a luminous element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780242A (en) 1972-02-09 1973-12-18 Robbins And Bendror Ass Inc Safety device for industrial machines with improved mechanical sensor and associated circuit breaker assembly
DE19933104A1 (en) * 1999-07-15 2001-01-18 Ingo Klimant Phosphorescent micro- and nanoparticles as reference standards and phosphorescence markers
AU2001238447A1 (en) * 2000-02-16 2001-08-27 Quantum Dot Corporation Single target counting assays using semiconductor nanocrystals
EP1241713A1 (en) 2001-02-07 2002-09-18 Agfa-Gevaert Preparation of improved ZnS: Mn phosphors
US7043255B1 (en) * 2003-02-28 2006-05-09 At Road, Inc. Dynamic server managed profiles for mobile users
US20050112650A1 (en) * 2003-10-20 2005-05-26 Ciphergen Biosystems, Inc. Reactive polyurethane-based polymers
JP2005264187A (en) * 2004-03-16 2005-09-29 Nanosolutions Gmbh Colloidal gold solution with which writing and printing are possible

Also Published As

Publication number Publication date
DE102008001526A1 (en) 2009-11-05
TWI502047B (en) 2015-10-01
WO2009133138A1 (en) 2009-11-05
DE102008001526B4 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
Xiong Photoluminescent ZnO nanoparticles modified by polymers
JP5907544B2 (en) Method for producing nanoparticles
JP5763323B2 (en) Nanocomposite particles, method for producing the same, and device including nanocomposite particles
Karan et al. Controlled surface trap state photoluminescence from CdS QDs impregnated in poly (methyl methacrylate)
Hu et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission
Song et al. Tumor cell-targeted Zn 3 In 2 S 6 and Ag–Zn–In–S quantum dots for color adjustable luminophores
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
Mrad et al. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots
Kaur et al. Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments
Cholan et al. Effect of poly ethylene glycol (PEG) as surfactant on cerium doped ZnS nanoparticles
JP4604246B2 (en) Phosphor in which semiconductor nanoparticles are dispersed at high concentration and method for producing the same
Zhang et al. Hot-injection synthesis of highly luminescent and monodisperse CdS nanocrystals using thioacetamide and cadmium source with proper reactivity
Deng et al. Interactions in fluorescent-magnetic heterodimer nanocomposites
Gugula et al. Facile surface engineering of CuInS 2/ZnS quantum dots for LED down-converters
KR101575396B1 (en) Quantum dot contained nanocomposite particles and method of fabrication thereof
JP2006291175A (en) Blue luminescent phsphor with dispersed semiconductor nanoparticles
Osman et al. One-step hot injection synthesis of gradient alloy CdxZn1-xSySe1-y quantum dots with large-span self-regulating ability
Xu et al. Seed-mediated growth approach for rapid synthesis of high-performance red-emitting CdTe quantum dots in aqueous phase and their application in detection of highly reactive oxygen species
Shen et al. Blue-emitting InP/GaP/ZnS quantum dots with enhanced stability by siloxane capping: Implication for electroluminescent devices
Jiang et al. Cd-free Cu–Zn–In–S/ZnS quantum dots@ SiO2 multiple cores nanostructure: Preparation and application for white LEDs
TWI502047B (en) Luminescent nanoscale particles with hydrophobic surface finish, process for production thereof and use thereof
Wang et al. Optimizing the aqueous phase synthesis of CdTe quantum dots using mixed-ligands system and their applications for imaging of live cancer cells and tumors in vivo
Jia et al. A facile method for the synthesis of CuInS 2–ZnS quantum dots with tunable photoluminescent properties
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
Gao et al. Synthesis of N-acetyl-L-cysteine-capped ZnCdSe quantum dots via hydrothermal method and their characterization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees