TW201006660A - Curable composition for nanoimprint, pattern formation method - Google Patents

Curable composition for nanoimprint, pattern formation method Download PDF

Info

Publication number
TW201006660A
TW201006660A TW098120195A TW98120195A TW201006660A TW 201006660 A TW201006660 A TW 201006660A TW 098120195 A TW098120195 A TW 098120195A TW 98120195 A TW98120195 A TW 98120195A TW 201006660 A TW201006660 A TW 201006660A
Authority
TW
Taiwan
Prior art keywords
composition
nanoimprinting
curable composition
pattern
nanoimprint
Prior art date
Application number
TW098120195A
Other languages
Chinese (zh)
Inventor
Takashi Takayanagi
Akinori Fujita
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201006660A publication Critical patent/TW201006660A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polymerisation Methods In General (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides a curable composition for nanoimprint use which is suitable for spin coating or slit coating to form a fine pattern, and having high adhesion to the substrate after curing, and the removal of a resist is easy. The said curable composition for nanoimprint use comprises more than 87% by weight of mono-functional polymerizable compounds, and a photo-polymerization initiator.

Description

.201006660 六、發明說明: 【發明所屬之技術領域】 本發明係關於奈米壓印用硬化性組成物。更詳而言,係關 於製造如下所述各構件所使用的用於利用光照射之微細圖案形 成之壓印用硬化性組成物。該各構件係包括:半導體積體電路 、平面螢幕、微機電系統(MEMS )、感測器元件、光碟、高 密度記憶體磁碟等之磁記錄媒體、繞射光柵或製版全像片等之 光學構件、奈米裝置、光學裝置、用於製造平型面板顯示器之 光學薄膜或偏光元件、液晶顯示器之薄膜電晶體、有機電晶體 、彩色濾光片、表塗層、柱材、液晶配向用之肋材、微透鏡陣 列、免疫分析晶片、DNA分離晶片、微反應器、奈米生物裝置 、光波導、光學濾光片、光子液晶、等。此外,本發明也係關 於使用此等之奈米壓印用硬化性組成物之圖案形成方法。 【先前技術】 奈米壓印法係發展在製造光碟方面已爲眾人皆知的壓紋技 術而將經形成凹凸圖案(concave-convex pattern)之金屬模具 原器(一般稱爲模仁(mold )、打印頭(stamper )、模板( template))加壓於光阻(resist)而產生力學性變形以精密地 轉印微細圖案之技術。由於模仁經製造一次則可簡單地反復成 型奈米結構等之微細結構,因此其係一種具有經濟效益之方法 ,同時因爲其係一種有害的廢棄物•排出物爲少的奈米加工技 術,因此近年則期望對於各式各樣的領域方面的應用。 奈米壓印法已有使用熱塑性樹脂作爲被加工材料之「熱壓 印法」(參閱例如,非發明專利文獻1 ),與使用光硬化性組 .201006660 成物之「光壓印法」(參閱例如,非發明專利文獻2 )之兩種 技術的提案。在「熱奈米壓印法」之情形時,其係一種將模仁 加壓於經加熱至玻璃轉移溫度以上的高分子樹脂,且在冷卻後 將模仁脫模使得微細結構轉印於基板上的樹脂之方法。該方法 由於也可應用於各式各樣的樹脂材料或玻璃材料,因此正期待 對於各方面之應用。例如,在發明專利文獻1及2則已揭述一 種使用熱塑性樹脂以廉價形成奈米圖案之奈米壓印方法。 在另一方面,在透射過透明模仁或透明基材而照射光,使 參 得光奈米壓印用硬化性組成物進行光硬化之「光奈米壓印法」 ,則不需要加熱當模仁在加壓時所用於模仁轉印的材料,而可 在室溫下進行壓印。最近也有報告揭示一種經組合此等兩者的 長處之「奈米流延法(nanocasting method)」、或用於製造三 維積層結構之「逆向壓印法(reversal imprint method)」等之 新開發。 在如上所述之奈米壓印法方面,則有提案揭述如下所述之 φ 應用技術。 其之第一技術係所成型之形狀(圖案)本身即具有功能而 可應用作爲各式各樣的奈米技術之要素構件、或作爲結構零組 件應用之情況。其之實例係包括各種微米•奈米光學元件或高 密度之記錄媒體、光學薄膜、在平型面板顯示器中之結構零組 件等。其之第二技術係微米結構與奈米結構同時一體成型,或 以簡單的層間位置對準來構築積層結構,而將其應用於微型全 程分析系統(# -TAS: Micr〇-T〇tal Analysis System)或生物 晶片之製造者。其之第三技術係利用於以所形成之圖案作爲圖 .201006660 罩(mask )而以蝕刻等之方法加工基板之用途者。此等技術經 藉由高精確度的位置對準與高積體化,則可取代先前的光刻技 術而應用於:製造高密度半導體積體電路、製造液晶顯示器之 電晶體、被稱爲「規則媒體(patterned media) j之次世代硬 碟之磁性體加工等。並且,近年來正在活躍地推展包括如前所 述技術在內的對於有關此等之應用的奈米壓印法之實用化。 作爲奈米壓印法之適用例,首先,說明對於製造高密度半 • 導體積體電路之應用實例。近年半導體積體電路係微細化、積 體化已向前獲得進展,且作爲用於實現其之微細加工的圖案轉 印技術而一直在推展光刻(photolithography)裝置之高精確度 化。然而,對於更進一步的微細化要求,則已演變成不容易達 成符合微細圖案解析性、設備成本、產量之三條件的地步。針 對於該問題,則有提案揭述一種奈米壓印光刻(nanoimprint lithography)(光奈米壓印法(photo-nanoimprint method)) 作爲用於以低成本形成微細的圖案之技術。例如,在下列發明 φ 專利文獻1及3係揭述一種將矽晶圓用作爲打印頭而以轉印來 形成25奈米以下的微細結構之奈米壓印技術。在本用途則要 求數十奈米等級之圖案形成性與在加工基板時提供作爲圖罩功 能所需要之高耐蝕刻性。 就奈米壓印法對於製造次世代硬碟驅動機(HDD)之應用 實例說明如下。HDD係在磁頭高性能化與媒體之高性能化兩者 之相輔相成下經過大容量化與小型化之歴程。HDD係在所謂媒 體高性能化的觀點上,則以提高表面記錄密度來達成大容量化 。然而,當在提高記錄密度時,由磁頭側面的所謂磁場擴大則 .201006660 將成爲問題。磁場擴大由於即使縮小磁頭也不會減小至某一程 度値以下,結果導致造成被稱爲「側光(side light)」之現象 。側光一旦發生,則在進行記錄時,將造成對於鄰接軌道的寫 入,使得已經記錄的資訊被消磁。此外,因磁場擴大而在再生 時則將發生也讀取到來自鄰接軌道之額外訊號等現象。針對於 此等問題,已有提案揭述一種如以非磁性材料塡充軌道之間而 以物理性、磁性方式加以分離來解決之「離散軌道媒體(DTM :Discrete Track Media)」或「位元規則媒體(BPM: Bit- β.201006660 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a curable composition for nanoimprinting. More specifically, it relates to a curable composition for imprints which is formed by using a fine pattern for light irradiation, which is used for each member as described below. The components include: a semiconductor integrated circuit, a planar screen, a microelectromechanical system (MEMS), a sensor element, a magnetic recording medium such as a compact disk, a high-density memory disk, a diffraction grating, or a plate-making hologram. Optical member, nano device, optical device, optical film or polarizing element for manufacturing flat panel display, thin film transistor for liquid crystal display, organic transistor, color filter, surface coating, column, liquid crystal alignment Ribs, microlens arrays, immunoassay wafers, DNA separation wafers, microreactors, nanobiodevices, optical waveguides, optical filters, photonic liquid crystals, and the like. Further, the present invention is also directed to a pattern forming method using the curable composition for nanoimprinting. [Prior Art] The nanoimprinting method develops a metal mold original device (generally called mold) which has been formed into a concave-convex pattern in the embossing technique which is well known in the manufacture of optical discs. A technique in which a print head (stamper, template) is pressed against a resist to cause mechanical deformation to precisely transfer a fine pattern. Since the mold core is manufactured once, the microstructure of the nanostructure or the like can be simply and repeatedly formed, so that it is an economical method, and because it is a nano-processing technique with less harmful waste and discharge. Therefore, in recent years, it has been expected to apply to a wide variety of fields. The nanoimprint method has a "hot stamping method" using a thermoplastic resin as a material to be processed (see, for example, Non-Patent Patent Document 1), and a "photoimprint method" using a photocurable group. 201006660 ( See, for example, a proposal for two techniques of Non-Invention Patent Document 2). In the case of the "hot nanoimprint method", it is a method of pressurizing the mold core to a polymer resin heated to a temperature higher than the glass transition temperature, and after cooling, the mold core is released to transfer the fine structure to the substrate. The method of resin on. This method is expected to be applied to various applications since it can be applied to a wide variety of resin materials or glass materials. For example, in Patent Documents 1 and 2, a nanoimprint method using a thermoplastic resin to form a nano pattern at low cost has been disclosed. On the other hand, when the light is transmitted through a transparent mold or a transparent substrate to light-cure the light-hardening composition for light nano-imprinting, it is not required to be heated. The mold is used for the transfer of the mold when pressurized, and can be embossed at room temperature. Recently, reports have also revealed a new development of a "nanocasting method" that combines the advantages of both, or a "reversal imprint method" for manufacturing a three-dimensional laminated structure. In the case of the nanoimprint method as described above, there is a proposal to disclose the φ application technique as described below. The shape (pattern) formed by the first technique itself has a function and can be applied as an elemental component of various nanotechnology or as a structural component application. Examples thereof include various micro/nano optical elements or high density recording media, optical films, structural components in flat panel displays, and the like. The second technology is that the micro-structure and the nano-structure are simultaneously integrated, or the laminated structure is constructed with simple inter-layer position alignment, and is applied to the micro-full analysis system (#-TAS: Micr〇-T〇tal Analysis System) or the manufacturer of a biochip. The third technique is used for the purpose of processing a substrate by etching or the like using the formed pattern as a mask. 201006660. These technologies can be applied to high-density semiconductor integrated circuits and transistors for manufacturing liquid crystal displays by high-precision positional alignment and high integration. The use of the magnetic media processing of the next generation of hard disk, etc., and the practical use of the nanoimprint method for such applications, including the aforementioned technology, has been actively promoted in recent years. As an application example of the nanoimprint method, first, an application example for manufacturing a high-density semi-conductor body circuit will be described. In recent years, the semiconductor integrated circuit has been refined and integrated, and has been used as a The pattern transfer technology that realizes its microfabrication has been promoting the high precision of the photolithography apparatus. However, for further miniaturization requirements, it has evolved to make it difficult to achieve micropattern resolution and equipment. The three conditions of cost and production. In response to this problem, there is a proposal to disclose a nanoimprint lithography (light nano embossing) Photo-nanoimprint method is a technique for forming a fine pattern at a low cost. For example, in the following inventions, Patent Documents 1 and 3 disclose that a tantalum wafer is used as a print head to be formed by transfer. Nano-imprint technology with a fine structure of 25 nm or less. In this application, pattern formation of several tens of nanometers is required, and high etching resistance required as a mask function is provided when processing a substrate. The application of the printing method to the next-generation hard disk drive (HDD) is described below. The HDD is a process of increasing the capacity and miniaturization of the high performance of the magnetic head and the high performance of the medium. HDD is in the process. In view of the high-performance of the medium, the surface recording density is increased to increase the capacity. However, when the recording density is increased, the so-called magnetic field on the side of the magnetic head is enlarged. 201006660 becomes a problem. It does not decrease to a certain extent or less, resulting in a phenomenon called "side light". Once the sidelights have occurred, the writing to the adjacent tracks will result in the recording, so that the already recorded information is demagnetized. In addition, when the magnetic field is expanded, an additional signal such as an additional signal from the adjacent track is generated during reproduction. In response to such problems, the prior art has proposed a "discrete track media (DTM: Discrete Track Media)" or "bit" that is solved by physically and magnetically separating between tracks by non-magnetic materials. Regular Media (BPM: Bit-β

Patterned Media)」之技術。在製造此等之媒體時所用於形成 磁性體或非磁性體圖案之方法,則已有提案採取奈米壓印之應 用。在本用途上也被要求數十奈米等級之圖案形成性與在加工 基板時提供作爲圖罩功能所需要之高耐蝕刻性。 其次,就對於液晶顯示器(LCD)或電漿顯示器(PDP) 等之平型顯示器方面的奈米壓印法之應用實例說明如下。 近年來,隨著LCD基板或PDP基板之大型化或高精細化 φ 的動向,則有一種光奈米壓印法已受到注目,因爲其係一種可 取代製造薄膜電晶體(TFT: Thin Film Transistor)或電極板 時所使用之先前的光刻法之廉價的光刻術。因此,已演變成必 須開發出一種可取代在先前的光刻法所使用的蝕刻光阻之光硬 化性光阻。 並且,對於LCD等之結構構件方面,也開始檢討對於下 列發明專利文獻4及5所揭述之透明保護膜材料、或下列發明 專利文獻5所揭述之間隙控制材(spacer)等的光奈米壓印法 之應用。此等結構構件用之光阻,由於與如前所述之餓刻光阻 201006660 不同而最後會殘留在顯示器內,有時候也稱之爲「永久光阻」 、或「永久膜」。 此外,在液晶顯示器中用於設定液晶胞間隙(cell gap ) 之間隙控制材也爲永久膜之一種,而在先前的光刻中,一般一 直廣泛地使用由樹脂、光聚合性單體及引發劑所構成之光硬化 性組成物(例如,參閱發明專利文獻6)。間隙控制材係一般 藉由在彩色濾光片基板上,形成彩色濾光片後、或形成如前所 述之彩色濾光片用保護膜後,塗布光硬化性組成物,並以光刻 ❹ 形成尺寸爲約l〇Aim至20/zm之圖案,並且以後烘烤加熱硬 化所形成。 並且,在例如微機電系統(MEMS )、感測器元件、繞射 光柵或製版全像片等之光學構件、奈米裝置、光學裝置、用於 製造平型面板顯示器之光學薄膜或偏光元件、液晶顯示器之薄 膜電晶體、有機電晶體、彩色濾光片、表塗層、柱材、液晶配 向用之肋材、微透鏡陣列、免疫分析晶片、DNA分離晶片、微 ^ 反應器、奈米生物裝置、光波導、光學濾光片、光子液晶等之 永久膜形成用途方面,奈米壓印光刻也是有用。 在此等永久膜用途方面,由於經形成之圖案會殘留於最終 製品,因此被要求耐熱性、耐光性、耐溶劑性、耐擦傷性、對 於外部壓力之高的機械特性、硬度等主要有關膜之耐久性或強 度之性能。 如上所述,大部份先前以光刻法所形成之圖案係可以奈米 壓印來形成,因此其係一種可廉價形成微細圖案之技術而受到 注目。 .201006660 使用於如上所述奈米壓印法之奈米壓印用硬化性組成物, 係必須具有以簡便操作即可形成良好的圖案之性質。具體言之 ’對於特性要求係黏度低、照射光時可以高反應率硬化、適合 於旋轉塗布或狹縫塗布、可形成微細的圖案、抑制對於模仁之 附著、對於光硬化後之基板的密著性高、具有優越的蝕刻性、 以及光阻之剝離容易等。 (發明專利文獻1 )美國發明專利第5,772,905號公報 (發明專利文獻2)美國發明專利第5,956,216號公報 © (發明專利文獻3)美國發明專利第5,259,926號公報 (發明專利文獻4)日本發明專利特開第2005-197699號公報 (發明專利文獻5)日本發明專利特開第2005-301289號公報 (發明專利文獻6 )日本發明專利特開第2004-240241號公報 (非發明專利文獻1 ) S_ Chou等人,「Appl. Phys. Lett.」第 67 冊、第 3,1 14 頁(1 995 年) (非發明專利文獻2 ) M. Colbun等人,「Proc. SPIE」第 φ 3,676 期、第 379 頁(1 999 年) 【發明內容】 〔所欲解決之技術問題〕 如上所述,對於奈米壓印用硬化性組成物係要求必須兼備 各式各樣的性質,但是直至目前爲止,已提案的組成物並非爲 能滿足此等條件之全部者。本發明之目的係提供一種適合於旋 轉塗布或狹縫塗布、可形成微細的圖案、對於光硬化後之基板 的密著性高、光阻之剝離容易、特別是以蝕刻光阻爲對象之奈 米壓印用硬化性組成物及使用其之圖案形成方法。 201006660 〔解決問題之技術方法〕 本發明之發明人等爲解決先前的技術問題而經專心硏討結 果發現:若根據具有下列方法之本發明,則可達成如上所述之 目的。亦即,提供如下所述之各項發明: 〔1〕 一種奈米壓印用硬化性組成物,其係包含87質量%以上 之單官能聚合性化合物及光聚合引發劑。 〔2〕 如第〔1〕項所述之奈米壓印用硬化性組成物,其係包 ^ 含兩種以上之單官能聚合性化合物。 〔3〕 如第〔2〕項所述之奈米壓印用硬化性組成物,其在如 前所述兩種以上之單官能聚合性化合物之中,一種單官 能聚合性化合物所具有的聚合性官能基係與其他之一種 單官能聚合性化合物所具有的聚合性官能基不同。 〔4〕 如第〔2〕至〔3〕項中任一項所述之奈米壓印用硬化性 組成物,其中如前所述兩種以上之單官能聚合性化合物 係至少包含:(1) 一種以上之丙烯酸酯化合物、(2) 0 丙烯醯胺化合物或N-乙烯基化合物。 〔5〕如第〔1〕至〔4〕項中任一項所述之奈米壓印用硬化性 組成物’其係進~步包含聚砂氧樹脂(silicone resin) ο 〔6〕如第〔1〕至〔5〕項中任一項所述之奈米壓印用硬化性 組成物’其係進一步包含長鏈烷基羧酸或其之金屬鹽、 或羧酸長鏈烷基酯。 〔7〕如第〔1〕至〔6〕項中任一項所述之奈米壓印用硬化性 組成物’其係進一步包含非離子系界面活性劑。 201006660 〔8〕 如第〔1〕至〔7〕項中任一項所述之奈米壓印用硬化性 組成物,其在25°C之黏度爲2至40 mPa . s » 〔9〕 一種圖案形成方法,其特徵爲適用於光奈米壓印光刻( photo-nanoimprint lithography),且係包括:塗布如第 〔1〕至〔8〕項中任一項所述之奈米壓印用硬化性組成 物並加以硬化以形成膜厚爲〇.〇3至40/zm之膜之步驟 、以及在所形成之膜上形成圖案之步驟。 〔10〕 一種光阻圖案形成方法,其係包括:塗布如第〔1〕至 參 〔8〕項中任一項所述之奈米壓印用硬化性組成物之步 驟;及將光透射性模仁加壓於基板上之光阻層,使得該 奈米壓印用硬化性組成物變形之步驟;從模仁背面或基 板背面照射光使得塗膜硬化,以形成用於嵌合吾所欲之 圖案的光阻圖案之步驟。 〔發明之功效〕 本發明之奈米壓印用硬化性組成物係適合於旋轉塗布或狹 φ 縫塗布,可形成微細的圖案、對於光硬化後之基板的密著性高 、且光阻之剝離容易。此外,若根據本發明,則也可提供一種 更進一步具有適度的黏度、在照射光時以高反應率硬化、抑制 對於模仁之附著、且也具有優越的蝕刻性之奈米壓印用硬化性 組成物。並且,若根據本發明之圖案形或方法時,則可以簡便 方法形成微細的圖案。 【實施方式】 〔本發明之最佳實施方式〕 在下文中,則就本發明之內容詳加說明。以下所述構成要 •10- 201006660 件之說明,有時候則根據本發明之代表性實施模式來敘述,但 是本發明並不受限於此等實施模式。 此外,在本案說明書中所謂「至」係意謂以在其前後所揭 述的數値爲下限値及上限値。另外,本說明書中,「(甲基) 丙烯酸酯」係代表丙烯酸酯及甲基丙烯酸酯,「(甲基)丙烯 酸」係代表丙烯酸及甲基丙烯酸,且「(甲基)丙烯醯基」係 代表丙烯醯基及甲基丙烯醯基。同時,在本說明書中,「聚合 $ 性化合物」係與寡聚物、高分子有所區別而意謂重量平均分子 量爲1,000以下之化合物。在本說明書中「官能基」係意謂參 與聚合反應之基。此外,在本說明書中有關基(原子團)之記 載中,並未記述經取代及未經取代之記載係也包括未具有取代 基者與具有取代基者兩者。例如,所謂的「烷基」係不僅是未 具有取代基之烷基(未經取代之烷基),也包括具有取代基之 烷基(經取代之烷基)在內者。另外,在本發明所謂的「奈米 壓印」係意謂大致爲數//m至數十奈米之尺寸的圖案轉印。 _ 〔本發明之奈米壓印用硬化性組成物〕 (組成之特徵) 本發明之奈米壓印用硬化性組成物(在下文中,有時候也 簡稱爲「本發明之組成物」)係包含:(a) 87質量%以上之 至少一種單官能聚合性化合物、與(b)光聚合引發劑者。通 常使用於光奈米壓印法之硬化性組成物係由包含具有聚合性官 能基之聚合性化合物、與藉由照射光而會引發該聚合性化合物 之聚合反應之光聚合引發劑,並且視需要再包含界面活性劑或 抗氧化劑等所構成。本發明之奈米壓印用硬化性組成物之特徵 -11- .201006660 係包含87質量%以上之單官能聚合性化合物,同時也包含光聚 合引發劑。 本發明之奈米壓印用硬化性組成物較佳爲更進一步包含聚 矽氧樹脂或長鏈烷基羧酸者,特佳爲包含聚矽氧樹脂者。 本發明之奈米壓印用硬化性組成物之較佳的組成係:(a )單官能聚合性化合物爲87至99.8質量%、( b)光聚合引發 劑爲0.1至8質量%、( c )聚矽氧樹脂爲0.008至5.0質量% 。更佳的組成係:(a)單官能聚合性化合物爲90至99質量% 0 、(b)光聚合引發劑爲0.3至5質量%、(c)聚矽氧樹脂爲 〇·〇 1至4質量%。更進一步較佳的組成係:(a )單官能聚合性 化合物爲95至98質量%、( b)光聚合引發劑爲0.5至3質量 %、( c )聚矽氧樹脂爲0.02至3質量%。在包含兩種以上單官 能聚合性化合物之情況時,則合計量較佳爲能滿足如上所述範 圍。關於光聚合引發劑與聚矽氧樹脂也是相同。此外,如上所 述之較佳的組成係就使用聚矽氧樹脂作爲(c )之情況所揭述 0 ,但是對於使用長鏈烷基羧酸作爲(C)之情況時之較佳的組 成也是相同。 茲就包含在本發明之奈米壓印用硬化性組成物中各成份之 詳細細節說明如下。 (包含在組成物之成份) 〈單官能聚合性化合物〉 本發明之奈米壓印硬化性組成物係至少包含一種單官能聚 合性化合物。使用於本發明之單官能聚合性化合物係具有一個 聚合性官能基之化合物。聚合性官能基之種類係並無特殊的限 -12- 201006660 制,但是較佳爲烯鍵性不飽和鍵。 ❹Patterned Media) technology. In the method of forming a magnetic or non-magnetic pattern for use in the manufacture of such media, it has been proposed to employ a nanoimprint application. In this application, pattern formation of several tens of nanometers is also required, and high etching resistance required as a mask function is provided when the substrate is processed. Next, an application example of the nanoimprint method for a flat display such as a liquid crystal display (LCD) or a plasma display (PDP) will be described below. In recent years, with the enlargement of the LCD substrate or the PDP substrate or the trend of high-definition φ, a photon imprint method has been attracting attention because it is an alternative to manufacturing a thin film transistor (TFT: Thin Film Transistor). Or inexpensive lithography of previous photolithography used in electrode plates. Therefore, it has evolved to develop a photohardenable photoresist which can replace the etching resist used in the prior photolithography. In addition, the transparent protective film material disclosed in the following invention patent documents 4 and 5 or the light control material (spacer) disclosed in the following invention patent document 5 is also reviewed. The application of the embossing method. The photoresist used in these structural members will eventually remain in the display, sometimes referred to as "permanent photoresist" or "permanent film", because it is different from the above-mentioned hungry photoresist 201006660. In addition, the gap control material for setting the cell gap in the liquid crystal display is also a kind of permanent film, and in the prior photolithography, the resin, the photopolymerizable monomer and the general use have been widely used. A photocurable composition composed of the agent (for example, see Patent Document 6). The gap control material is generally coated with a photo-curable composition after forming a color filter on a color filter substrate or after forming a protective film for a color filter as described above, and is photolithographically patterned. A pattern having a size of about 10 Aim to 20/zm is formed, and is formed by baking heat hardening later. Also, in optical components such as microelectromechanical systems (MEMS), sensor elements, diffraction gratings or plate-making photographic films, nanodevices, optical devices, optical films or polarizing elements for the manufacture of flat panel displays, Thin film transistors, organic transistors, color filters, surface coatings, pillars for liquid crystal displays, ribs for liquid crystal alignment, microlens arrays, immunoassay wafers, DNA separation wafers, micro-reactors, nano-organisms Nanoimprint lithography is also useful for permanent film formation applications such as devices, optical waveguides, optical filters, and photonic liquid crystals. In the case of such permanent film applications, since the formed pattern remains in the final product, it is required to have heat resistance, light resistance, solvent resistance, scratch resistance, mechanical properties and hardness against external pressure, and the like. Performance of durability or strength. As described above, most of the patterns previously formed by photolithography can be formed by nanoimprinting, and therefore, they are attracting attention as a technique for forming a fine pattern at low cost. .201006660 The curable composition for nanoimprint used in the nanoimprint method described above must have a property of forming a good pattern by a simple operation. Specifically, it has low viscosity for characteristics, high reaction rate hardening when irradiated with light, suitable for spin coating or slit coating, fine pattern formation, adhesion to mold core, and adhesion to light-hardened substrate. High in properties, excellent in etchability, and easy to peel off photoresist. (Patent Document 1) U.S. Patent No. 5,772,905 (Invention Patent Document 2) U.S. Patent No. 5,956,216 (Patent Document 3) U.S. Patent No. 5,259,926 (Invention Patent Document 4) Japanese Invention Patent Japanese Laid-Open Patent Publication No. 2005-301289 (Patent Patent Document 6) Japanese Laid-Open Patent Publication No. 2004-240241 (Non-invention Patent Document 1) S_Chou Et al., "Appl. Phys. Lett.", vol. 67, p. 3, 1 14 (1 995) (non-invention patent document 2) M. Colbun et al., "Proc. SPIE", φ 3,676, 379 pages (1,999) [Summary of the Invention] [Technical Problem to be Solved] As described above, it is necessary to have various properties for the hardenable composition for nanoimprinting, but until now, The composition of the proposal is not intended to satisfy all of these conditions. An object of the present invention is to provide a spine coating or a slit coating which can form a fine pattern, has high adhesion to a substrate after photocuring, and is easy to peel off a photoresist, in particular, an etch resist. A curable composition for rice embossing and a pattern forming method using the same. [Technical method for solving the problem] The inventors of the present invention have intensively prayed for solving the prior art problem, and have found that the object as described above can be achieved according to the present invention having the following method. In other words, the invention is as follows: [1] A curable composition for nanoimprinting comprising 87% by mass or more of a monofunctional polymerizable compound and a photopolymerization initiator. [2] The curable composition for nanoimprint described in the above [1], which contains two or more kinds of monofunctional polymerizable compounds. [3] The curable composition for nanoimprint described in the above [2], which is a polymerization of a monofunctional polymerizable compound among two or more monofunctional polymerizable compounds as described above. The functional group is different from the polymerizable functional group of another monofunctional polymerizable compound. [4] The curable composition for nanoimprint according to any one of [2] to [3] wherein the two or more monofunctional polymerizable compounds are at least: (1) One or more acrylate compounds, (2) acrylamide compounds or N-vinyl compounds. [5] The hardenable composition for nanoimprint described in any one of [1] to [4], wherein the step comprises a silicone resin ο [6] The hardenable composition for nanoimprint described in any one of [1] to [5] further comprising a long-chain alkyl carboxylic acid or a metal salt thereof or a long-chain alkyl carboxylic acid ester. [7] The curable composition for nanoimprint described in any one of the above [1] to [6] further comprising a nonionic surfactant. The sclerosing composition for nanoimprint according to any one of the above-mentioned items, wherein the viscosity at 25 ° C is 2 to 40 mPa. s » [9] A pattern forming method, which is characterized in that it is suitable for photo-nanoimprint lithography, and is used for coating a nanoimprint according to any one of [1] to [8] The step of hardening the composition and hardening to form a film having a film thickness of 〇3 to 40/zm, and forming a pattern on the formed film. [10] A method of forming a photoresist pattern, comprising: a step of applying a hardenable composition for nanoimprinting according to any one of [1] to [8]; and transmitting light transmittance Pressing the mold on the photoresist layer on the substrate to deform the hardenable composition of the nanoimprint; irradiating the light from the back of the mold or the back of the substrate to harden the coating to form a fitting for the purpose The step of the patterned photoresist pattern. [Effect of the Invention] The curable composition for nanoimprinting of the present invention is suitable for spin coating or narrow slit coating, and can form a fine pattern, has high adhesion to a substrate after photocuring, and has a light resistance. Peeling is easy. Further, according to the present invention, it is also possible to provide a hardenability for nanoimprinting which has a moderate viscosity, is hardened at a high reaction rate when irradiated with light, suppresses adhesion to a mold, and also has excellent etching properties. Composition. Further, according to the pattern shape or method of the present invention, a fine pattern can be formed in a simple manner. [Embodiment] [Best Embodiment of the Invention] Hereinafter, the contents of the present invention will be described in detail. The following description of the components of the present invention is sometimes described in terms of representative embodiments of the present invention, but the present invention is not limited to the embodiments. In addition, the term "to" in the present specification means that the number recited before and after it is the lower limit and the upper limit. In the present specification, "(meth)acrylate" means acrylate and methacrylate, "(meth)acrylic" means acrylic acid and methacrylic acid, and "(meth)acryloyl group" Represents an acryloyl group and a methacryl group. Meanwhile, in the present specification, the "polymeric compound" is a compound which differs from an oligomer or a polymer and means a weight average molecular weight of 1,000 or less. In the present specification, "functional group" means a group which participates in a polymerization reaction. Further, in the description of the group (atomic group) in the present specification, it is not described that the substituted or unsubstituted description includes both those having no substituent and those having a substituent. For example, the "alkyl group" is not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). Further, the term "nanoimprint" as used in the present invention means a pattern transfer of a size of approximately several m/s to tens of nanometers. _ [The curable composition for nanoimprinting of the present invention] (Characteristics of composition) The curable composition for nanoimprinting of the present invention (hereinafter, also simply referred to as "the composition of the present invention") The method includes (a) at least one of a monofunctional polymerizable compound of 87% by mass or more, and (b) a photopolymerization initiator. The curable composition generally used in the photo-nano imprint method is a photopolymerization initiator containing a polymerizable compound having a polymerizable functional group and a polymerization reaction which initiates polymerization of the polymerizable compound by irradiation with light, and It is required to further comprise a surfactant or an antioxidant. The characteristics of the curable composition for nanoimprinting of the present invention are -11-.201006660, which comprises 87% by mass or more of a monofunctional polymerizable compound, and also contains a photopolymerization initiator. The curable composition for nanoimprinting of the present invention preferably further comprises a polyoxyalkylene resin or a long-chain alkyl carboxylic acid, and particularly preferably a polyoxyxylene resin. A preferred composition of the hardenable composition for nanoimprint of the present invention is (a) a monofunctional polymerizable compound of 87 to 99.8% by mass, and (b) a photopolymerization initiator of 0.1 to 8% by mass, (c) The polyoxynoxy resin is from 0.008 to 5.0% by mass. A more preferable composition is: (a) the monofunctional polymerizable compound is 90 to 99% by mass of 0, (b) the photopolymerization initiator is 0.3 to 5% by mass, and (c) the polyfluorene oxide resin is 〇·〇1 to 4 quality%. A still further preferred composition is: (a) the monofunctional polymerizable compound is 95 to 98% by mass, (b) the photopolymerization initiator is 0.5 to 3% by mass, and (c) the polyfluorene oxide resin is 0.02 to 3% by mass. . In the case where two or more monofunctional polymerizable compounds are contained, the total amount is preferably such that it satisfies the above range. The same applies to the photopolymerization initiator and the polyoxymethylene resin. Further, the preferred composition as described above is a polyoxyxylene resin as disclosed in the case of (c), but a preferred composition for the case of using a long-chain alkyl carboxylic acid as (C) is also the same. The details of each component contained in the curable composition for nanoimprinting of the present invention are explained below. (Including the component of the composition) <Monofunctional polymerizable compound> The nanoimprinting curable composition of the present invention contains at least one monofunctional polymerizable compound. The monofunctional polymerizable compound used in the present invention is a compound having one polymerizable functional group. The type of the polymerizable functional group is not particularly limited to -12-201006660, but is preferably an ethylenically unsaturated bond. ❹

在本發明可使用之「單官能聚合性化合物」係包括:丙烯 醯胺、甲基丙烯酸酯、丙烯酸乙醯氧基酯、丙烯酸苯甲酯、丙 烯酸丁酯、丙烯酸縮水甘油酯、丙烯腈、烯丙基苯、巴豆醛、 二烯丙基氰胺、反丁烯二酸二乙酯、2-乙烯基-2-噁唑啉、5-甲 基-2-乙烯基-2-噁唑啉、4,4-二甲基-2-乙烯基-2-噁唑啉、4,4-二甲基-2-乙烯基-5,6-二氫-4H-1,3-噁阱、4,4,6-三甲基-2-乙烯 基-5,6-二氫-4H-1,3-噁阱、2-異丙烯基-2-噁唑啉、4,4-二甲基-2-異丙烯基-2-噁唑啉、反丁烯二腈、順丁烯二酸酐、順丁烯二 醯亞胺、N-苯基甲基丙烯醢胺、甲基丙烯酸丁酯、甲基丙烯酸 縮水甘油酯、甲基丙烯酸甲酯、甲基丙烯酸苯酯、N-甲基丙烯 醯胺、N-羥基乙基丙烯醯胺、(甲基)丙烯酸N,N-二甲基胺基 乙酯、(甲基)丙烯酸二乙基胺基乙酯、N,N’-二甲基丙烯醯 胺、醋酸烯丙酯、丙烯酸烯丙酯、烯丙基醇、乙烯基氫硫基苯 并噻唑、N-乙烯基己內醯胺、乙烯基咔唑、鄰苯二甲酸二烯丙 酯、1,1’-二苯基乙烯、1-乙烯基咪唑、1-乙烯基-2-甲基咪唑、 茚、甲基丙烯醯胺、甲基丙烯酸2-羥基乙酯、降莰二烯、N-乙 烯基噁唑啶酮、N-乙烯基-2-吡咯啶酮、N-乙烯基甲醯胺、二烯 丙基三聚氰胺、N,N’-二乙烯基苯胺、茚、醋酸異丙烯酯、甲 基丙烯醯基丙酮、降莰二烯、2,4·丙烯氧基甲基-2,4-二甲基噁 唑啉、2,4-甲基丙烯醯氧基甲基-2,4-二甲基噁唑啉、膦酸乙烯 基二乙酯、膦酸乙烯基二甲酯、醋酸2-甲基丙烯酯、3-(2-乙 烯基)-6-甲基-4,5-二氫噠嗪酮、2-甲基-5-乙烯基吡啶、2-乙 烯基吡啶、2-乙烯基-5-乙基吡啶、1-苯甲基-3-亞甲基-5-甲基 -13- 201006660 吡咯啶嗣、2-乙烯基喹啉、苯乙烯、2,4,6-三甲基苯乙烯、α-甲氧基苯乙烯、間-溴苯乙烯、間-氯苯乙烯、間-甲基苯乙烯、 對-溴苯乙烯、對-氯苯乙烯、對-氰苯乙烯、對-甲氧基苯乙烯 、對-甲基苯乙烯、α -甲基苯乙烯、對-1· ( 2-羥基丁基)苯乙 烯、對-1-(2-羥基丙基)苯乙烯、對-2- (2-羥基丙基)苯乙烯 、N-乙烯基琥珀醯亞胺、2-甲基-5-乙烯基四唑、2-苯基-5-( 4’-乙烯基)苯基四唑、Ν,Ν-甲基-乙烯基甲苯磺醯胺、N-乙烯 基-Ν’-乙基脲、醋酸乙烯酯、苯甲酸乙烯酯、乙烯基丁基醚、 丁酸乙烯酯、氯醋酸乙烯酯、二氯醋酸乙烯酯、乙烯基十二烷 基醚、乙烯基醚、乙烯基乙基醚、草酸乙烯基甲酯、乙烯基乙 基硫醚、甲酸乙烯酯、乙烯基異丁基醚、乙烯基異丁基硫醚、 乙烯基異丙基酮、月桂酸乙烯酯、乙烯基-間-甲苯酚基醚、乙 烯基甲基硫醚、乙烯基甲基亞颯、乙烯基-鄰-甲苯酚基醚、乙 烯基十八烷基醚、乙烯基辛基醚、乙烯基-對-甲苯酚基醚、乙 烯基苯基醚、乙烯基苯基硫醚、丙酸乙烯酯、硬脂酸乙烯酯、 φ 乙烯基-三級-丁基硫醚、硫代醋酸乙烯酯、乙烯基-4-氯環己基 酮、乙烯基-2-氯乙基醚、乙烯基-參(三甲氧基矽烷氧基)矽 烷、對-乙烯基苯甲基乙基甲醇、對-乙烯基苯甲基甲基甲醇、 碳酸伸乙烯酯、異氰酸乙烯酯、Ν,Ν-二乙基丙烯醯胺、丙烯酸 醯亞胺基酯、Ν-乙烯基甲醯胺、(甲基)丙烯酸乙氧基苯酯、 (甲基)丙烯酸環己酯、(甲基)丙烯酸二環戊烷酯、(甲基 )丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、( 甲基)丙烯酸異莰酯、丙烯酸氧雜環丁烷酯、(甲基)丙烯酸 1-金剛烷酯、(2-乙基-2-甲基-1,3-二噁茂烷-4-基)甲基(甲 * 14- 201006660 基)丙烯酸酯、丙烯醯基嗎啉、丙烯酸二聚物、2-(甲基)丙 烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二 甲酸等。 在此等之中,較佳爲N-乙烯基己內醯胺、N-乙烯基-2-吡 咯啶酮、丙烯醯基嗎啉、丙烯酸苯甲酯、N-乙烯基甲醯胺、丙 烯酸異莰酯、丙烯酸苯氧基乙酯、2-(甲基)丙烯醯氧基乙基 琥珀酸、(2-乙基-2-甲基-1,3·二噁茂烷-4-基)甲基(甲基) 丙烯酸酯;其中,由於N-乙烯基己內醯胺、丙烯醯基嗎啉、丙 _ 烯酸苯甲酯、丙烯酸異莰酯係具有低黏度、相溶性佳、且硬化 性良好的觀點而爲更佳。 本發明之奈米壓印硬化性組成物特佳爲包含兩種以上之單 官能聚合性化合物。此時,從提高光硬化性、或改善對於基板 之密著性的觀點來考慮,則兩種以上之單官能聚合性化合物係 較佳爲選擇極性不同的聚合性基來組合。具體言之,較佳爲組 合(甲基)丙烯酸基之單官能聚合性化合物與丙烯醯胺基之單 φ 官能聚合性化合物,或組合(甲基)丙烯酸基之單官能聚合性 化合物與N-乙烯基之單官能聚合性化合物。 使用兩種以上之單官能聚合性化合物時,則較佳爲含量最 多的單官能聚合性化合物之含量係組成物全體之50至98質量 %,更佳爲60至96質量%,進一步更佳爲70至95質量%。 〈其他之聚合性單體〉 在本發明視需要也可添加「二官能以上之聚合性化合物」 。其之具體的化合物實例係包括:(甲基)丙烯酸二甘醇一乙 基醚酯、二(甲基)丙烯酸二羥甲基二環戊烷酯、二(甲基) -15- 201006660 丙烯酸化異三聚氟酸酯、二(甲基)丙烯酸1,3 -丁二醇酯、二 (甲基)丙烯酸1,4-丁二醇酯、經EO改質之二(甲基)丙烯 酸1,6-己二醇酯、經ECH改質之二(甲基)丙烯酸1,6-己二醇 酯、聚丙烯酸烯丙氧基乙二醇酯、二(甲基)丙烯酸1,9-壬二 醇酯、經EO改質之二(甲基)丙烯酸雙酚A酯、經PO改質 之二(甲基)丙烯酸雙酚A酯、改質二(甲基)丙烯酸雙酚A 酯、經EO改質之二(甲基)丙烯酸雙酚F酯、經ECH改質之 二丙烯酸六氫鄰苯二甲酸酯、二(甲基)丙烯酸羥基三甲基乙 酸新戊二醇酯、二(甲基)丙烯酸新戊二醇酯、經EO改質之 二丙烯酸新戊二醇酯、經環氧丙烷(在下文中,則稱爲「P〇j 。)改質之二丙烯酸新戊二醇酯、經己內酯改質之二(甲基) 丙烯酸羥基三甲基乙酸新戊二醇酯、經硬脂酸改質之二(甲基 )丙烯酸新戊四醇酯、經ECH改質之二(甲基)丙烯酸鄰苯二 甲酸酯、聚二(甲基)丙烯酸(乙二醇-四亞甲基二醇)酯、 聚二(甲基)丙烯酸(丙二醇-四亞甲基二醇)酯、聚酯(二 ^ )丙烯酸酯、聚二(甲基)丙烯酸乙二醇酯、聚二(甲基)丙 9 烯酸丙二醇酯、經ECH改質之二(甲基)丙烯酸丙二醇酯、二 (甲基)丙烯酸聚矽氧酯、二(甲基)丙烯酸三甘醇酯、二( 甲基)丙烯酸四甘醇酯、(二)丙烯酸三環癸烷二甲醇酯、經 新戊二醇改質之二(甲基)丙烯酸三羥甲基丙烷酯、二(甲基 )丙烯酸三伸丙二醇酯、經E0改質之二(甲基)丙烯酸三伸 丙二醇酯、二(甲基)丙烯酸三丙三醇酯、二(甲基)丙烯酸 二丙二醇酯、二乙烯基伸乙基脲、二乙烯基伸丙基脲、經ECH 改質之三(甲基)丙烯酸丙三醇酯、經E0改質之三(甲基) -16- 201006660 丙烯酸丙三醇酯、經p〇改質之三(甲基)丙烯酸丙三醇酯、 三丙烯酸新戊四醇酯、經E0改質之三丙烯酸磷酸酯、三(甲 基)丙烯酸三羥甲基丙烷酯、經己內酯改質之三(甲基)丙烯 酸三羥甲基丙烷酯、經E0改質之三(甲基)丙烯酸三羥甲基 丙烷酯、經PO改質之三(甲基)丙烯酸三羥甲基丙烷酯、異 三聚氰酸參(丙烯氧基乙基)酯、六(甲基)丙烯酸二新戊四 醇酯、經己內酯改質之六(甲基)丙烯酸二新戊四醇酯、羥基 五(甲基)丙烯酸二新戊四醇酯、經烷基改質之五(甲基)丙 烯酸二新戊四醇酯、聚(甲基)丙烯酸二新戊四醇酯、經烷基 改質之三(甲基)丙烯酸二新戊四醇酯、四(甲基)丙烯酸 雙-三羥甲基丙烷酯、乙氧基四(甲基)丙烯酸新戊四醇酯、 四(甲基)丙烯酸新戊四醇酯等。 二官能以上之聚合性化合物之含量係較佳爲組成物全體之 〇至1〇質量%,更佳爲0至7質量%,進一步更佳爲0至3質 量%。 φ 〈光聚合引發劑〉 本發明之奈米壓印硬化性組成物係包含光聚合引發劑。使 用於本發明之光聚合引發劑,只要其係可藉由照射光而產生用 於聚合如上所述之單官能聚合性化合物的活性種之化合物時, 則可使用任何者。光聚合引發劑係較佳爲可藉由照射光而產生 自由基之自由基聚合引發劑、可藉由照射光而產生酸之陽離子 聚合引發劑,更佳爲自由基聚合引發劑,但是應該根據該聚合 性化合物之聚合性基的種類而適當地決定。亦即,在本發明之 光聚合引發劑係必須調配成對於所使用的光源之波長具有活性 -17- 201006660 者,並根據反應形式之差異(例如自由基聚合或陽離子聚合等 )而會產生適當的活性種者。此外,在本發明中,光聚合引發 劑也可數種倂用。 使用於本發明之光聚合引發劑之含量,係相對於包含在組 成物中的全部聚合性單體爲例如0.0 1至1 5質量%,較佳爲0.1 至12質量%,更佳爲0.2至7質量%。若使用兩種以上之光聚 合引發劑時,則其之合計量爲如前所述範圍。 若光聚合引發劑之含量爲〇.〇1質量%以上時,則具有提高 翁 感度(速硬化性)、解析性(resolution)、線緣粗糙度(line-edge roughness )、 塗 膜強度 的傾向 ,因此 爲較佳 。在 另一方 面,若光聚合引發劑之含量爲1 5質量%以下時,則具有提高光 透射性、著色性、使用性等的傾向,因此爲較佳。直到目前爲 止,關於含有染料及/或顏料之噴墨用組成物或液晶顯示器彩色 濾光片用組成物方面,雖然已對較佳的光聚合引發劑及/或光酸 產生劑之添加量進行各種檢討,但是對於奈米壓印用等之光奈 Ο 米壓印用硬化性組成物之較佳的光聚合引發劑及/或光酸產生劑 之添加量卻並未獲得明確結果。亦即,在含有染料及/或顏料之 系統中,此等則有可能作用如同自由基捕捉劑,結果導致會影 響到光聚合性、感度。因此,對於此等用途則在考慮及此點而 將光聚合引發劑之添加量加以最適化。在另一方面,在本發明 之奈米壓印硬化性組成物中,染料及/或顏料係並非爲必要成份 ,因此有可能發生光聚合引發劑之最適範圍卻與噴墨用組成物 或液晶顯示器彩色濾光片用組成物等之領域不同之情形。 可在本發明使用之「自由基光聚合引發劑」,一般而言, -18 - 201006660 係可使用市售之引發劑。從硬化感度的觀點來考慮,則較佳爲 醯基膦系化合物、肟酯系化合物。此等之實例係包括:可獲自 汽巴股份有限公司(Ciba Inc.)之IRGACURE (註冊商標) 2959(1-〔4-(2-羥基乙氧基)苯基〕-2-羥基-2-甲基-1-丙烷-1-酮)、IRGACURE (註冊商標)184 (1-羥基環己基苯基酮) 、IRGACURE (註冊商標)5 00 (1-羥基環己基苯基酮,二苯甲 酮)、IRGACURE (註冊商標)651(2,2&gt;二甲氧基-1,2-二苯基 乙烷-1-酮)、IRGACURE (註冊商標)379 (2-(二甲基胺基 )-2-〔( 4-甲基苯基)甲基〕-1·〔 4- ( 4-嗎啉基)苯基·卜丁 酮〕)、IRGACURE (註冊商標)907 (2-甲基-1-〔 4-甲基硫基 苯基〕-2-嗎啉基丙烷-1-酮)、IRGACURE (註冊商標)819 ( 雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦)、IRGACURE (註 冊商標)1800(雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基-戊 基氧化膦,1-羥基環己基苯基酮)、IRGACURE (註冊商標) 1 800 (雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基-戊基氧化膦 ,2-羥基-2-甲基-1-苯基-1-丙烷-1-酮)、IRGACURE (註冊商 標)OXE01 ( 1,2-辛二酮,1-〔 4-(苯硫基)苯基〕-2- ( 0-苯 甲醯基肟))、DAROCUR (註冊商標)1173(2-羥基-2-甲基-卜苯基-l-丙烷-l-酮)、DAROCUR(註冊商標)1116、1398、 1174及1 020、CGI2 42(乙烷酮,1-〔9-乙基- 6-(2-甲基苯甲 醯基)-9H-咔唑-3-基〕-1- ( 0-乙醯基肟));可獲自BASF公 司(BASF Corporation)之 Lucirin TPO ( 2,4,6-三甲基苯甲醯 基二苯基氧化膦)、Lucirin TPO-L (2,4,6-三甲基苯甲醯基苯 基乙氧基氧化膦);可獲自Nihon SiberHegner K.K.公司之 •19- 201006660 ESACURE 1〇〇1Μ(1-〔 (4-苯甲醯基苯基硫烷基)苯基〕-2-甲基-2- (4 -甲基苯基擴酸基)丙院-1-酮);可獲自旭電化工 業股份有限公司(ADEKA Corporation )之 ADEKA OPTOMER (註冊商標)N-141 4 (咔唑.苯酮系)、ADEKA OPTOMER ( 註冊商標)N-1717(吖啶系)、ADEKA OPTOMER (註冊商標 )N-1606 (三氮畊系);三和化學股份有限公司(Sanwa Chemical Co _,Ltd.)製造之 TFE-三氮畊(2-〔2·(呋喃-2-基 )乙烯基〕-4,6-雙(三氯甲基)-1,3,5-三氮阱)、三和化學股 份有限公司製造之TME-三氮阱(2·〔2- (5-甲基呋喃-2-基) 乙烯基〕-4,6-雙(三氯甲基)-1,3,5-三氮畊)、三和化學股份 有限公司製造之MP-三氮畊(2- (4-甲氧基苯基)-4,6-雙(三 氯甲基)-1,3,5-三氮阱)、Midori化學股份有限公司(Midori Chemical Co·,Ltd.)製造之 TAZ-1 13 (2-〔2-(3,4-二甲氧基 苯基)乙烯基〕-4,6-雙(三氯甲基)-l,3,5-三氮阱)、Midori 化學股份有限公司製造之TAZ-1 08 (2- (3,4-二甲氧基苯基)-φ 4,6·雙(三氯甲基)-1,3,5-三氮畊);二苯甲酮、4,4’-雙二乙 基胺基二苯甲酮、甲基-2-二苯甲酮、4-苯甲醯基-4’-甲基二苯 基硫醚、4-苯基二苯甲嗣、乙基米其勒酮、2-氯氧硫卩山噃、2-甲 基氧硫卩山哩、2-異丙基氧硫灿卩星、4-異丙基氧硫Dill唱、2,4-二 乙基氧硫Bill哩、1-氯-4-丙氧基氧硫妯噃、2-甲基氧硫卩山嗶、氧 硫卩山喔銨鹽、苯偶姻、4,4’-二甲氧基苯偶姻、苯偶姻甲基醚、 苯偶姻乙基醚、苯偶姻異丙基醚、苯偶姻異丁基醚、苯甲基二 甲基縮酮、1,1,1-三氯苯乙酮、二乙氧基苯乙酮及二苯并軟木 酮、鄰-苯甲醯基苯甲酸甲酯、2-苯甲酿基萘、4-苯甲醯基聯苯 -20- 201006660 、4-苯甲醯基二苯基醚、1,4-苯甲醯基苯、二苯乙二酮(benzii )、10-丁基-2-氯吖啶酮、〔4-(甲基苯硫基)苯基〕苯基甲 烷、2·乙基蒽醌、2,2-雙(2-氯苯基)-4,5,4’,5’-肆(3,4,5-三 甲氧基苯基)1,2’-聯二咪唑、2,2-雙(鄰-氯苯基)-4,5,4,,5,_ 四苯基_1,2’_聯二咪唑、參(4-二甲基胺基苯基)甲烷、4_(二 甲基胺基)苯甲酸乙酯、苯甲酸2-(二甲基胺基)乙酯、4_( 二甲基胺基)苯甲酸丁氧基乙酯等。 • 此外,在本發明中「光」不僅是紫外線、近紫外線、遠紫 . 外線、可見光、紅外線等範圍之波長的光、或電磁波,也包括 放射線。如前所述之放射線也包括:例如微波、電子射線、 EUV (極遠紫外光)、X-射線。此外,也可使用248奈米-準分 子雷射(excimer laser) 、193奈米-準分子雷射、172奈米-準 分子雷射等之雷射光。此等之光也可使用經通過光學濾光片之 單色光(單一波長光)、或複數之波長不同之光(複合光)。 曝光也可爲多重曝光,爲提高膜強度、耐蝕刻性等目的,則可 φ 在經形成圖案後加以全面曝光。 可在本發明使用之光聚合引發劑係需要針對於所使用的光 源之波長而適當地選擇,但是較佳爲不至於在模仁加壓·曝光 中會產生氣體者。一旦產生氣體,則模仁將會被污染,結果導 致必須頻繁地洗淨模仁,或光硬化性組成物在模仁內變形,使 得轉印圖案之精確度劣化等問題。 本發明之奈米壓印硬化性組成物較佳爲聚合性化合物(A )爲自由基聚合性化合物,且光聚合引發劑(B)爲藉由照射 光而產生自由基的自由基聚合引發劑之自由基聚合性組成物。 -21- 201006660 〈聚矽氧樹脂〉 本發明之奈米壓印硬化性組成物較佳爲含有聚矽氧樹脂。 可在本發明使用之聚矽氧樹脂,只要其爲固體狀之聚矽氧樹脂 、聚矽氧油、或經在聚矽氧油添加硬脂酸鈉等之金屬皂的聚矽 氧潤滑脂之化合物或組成物時,則可使用任何者,但是特佳爲 聚矽氧油。根據本發明,在87質量%以上之單官能聚合性化合 物及光聚合引發劑加上再使用聚矽氧樹脂,藉此則可改善旋轉 塗布或狹縫塗布,更容易形成微細的圖案,改善光硬化後對於 基板之密著性,使得光阻之剝離容易。並且,也可抑制對於模 仁之附著、提高蝕刻性。 具體言之,「聚矽氧樹脂j係包括:二甲基聚矽氧油、甲 基苯基聚矽氧油、甲基氫矽氧烷聚矽氧油、經烷基改質之聚矽 氧油、經烷氧基改質之聚矽氧油、聚醚聚矽氧油、經氫硫基改 質之聚矽氧油、經胺基改質之聚矽氧油、經環氧基改質之聚矽 氧油、經羧基改質之聚矽氧油、經丙烯酸酯改質之聚矽氧油、 _ 經甲基丙烯酸酯改質之聚矽氧油、經氟改質之聚矽氧油、經羥The "monofunctional polymerizable compound" which can be used in the present invention includes: acrylamide, methacrylate, acetoxy acrylate, benzyl acrylate, butyl acrylate, glycidyl acrylate, acrylonitrile, olefin. Propyl benzene, crotonaldehyde, diallyl cyanamide, diethyl fumarate, 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-5,6-dihydro-4H-1,3-oxo, 4, 4,6-trimethyl-2-vinyl-5,6-dihydro-4H-1,3-oxo trap, 2-isopropenyl-2-oxazoline, 4,4-dimethyl-2 -Isopropenyl-2-oxazoline, fumaronitrile, maleic anhydride, maleimide, N-phenylmethacrylamide, butyl methacrylate, methacrylic acid Glycidyl ester, methyl methacrylate, phenyl methacrylate, N-methyl acrylamide, N-hydroxyethyl acrylamide, N,N-dimethylaminoethyl (meth) acrylate, Diethylaminoethyl (meth)acrylate, N,N'-dimethylpropenylamine, allyl acetate, allyl acrylate, olefin Propyl alcohol, vinyl thiobenzobenzothiazole, N-vinyl caprolactam, vinyl carbazole, diallyl phthalate, 1,1'-diphenylethylene, 1-vinyl Imidazole, 1-vinyl-2-methylimidazole, hydrazine, methacrylamide, 2-hydroxyethyl methacrylate, norbornadiene, N-vinyloxazolidinone, N-vinyl-2 - pyrrolidone, N-vinylformamide, diallyl melamine, N,N'-divinylaniline, hydrazine, isopropenyl acetate, methacrylonitrile, norbornadiene, 2, 4·Propoxymethyl-2,4-dimethyloxazoline, 2,4-methylpropenyloxymethyl-2,4-dimethyloxazoline, vinyl phosphonium diethyl ester , vinyl dimethyl phosphonate, 2-methyl propylene acetate, 3-(2-vinyl)-6-methyl-4,5-dihydropyridazinone, 2-methyl-5-vinyl Pyridine, 2-vinylpyridine, 2-vinyl-5-ethylpyridine, 1-benzyl-3-methyl-5-methyl-13-201006660 pyrrolidinium, 2-vinylquinoline, Styrene, 2,4,6-trimethylstyrene, α-methoxystyrene, m-bromostyrene, m-chlorostyrene, m-methylphenyl Alkene, p-bromostyrene, p-chlorostyrene, p-cyanostyrene, p-methoxystyrene, p-methylstyrene, α-methylstyrene, p--1 (2-hydroxyl) Butyl)styrene, p--1-(2-hydroxypropyl)styrene, p--2-(2-hydroxypropyl)styrene, N-vinylsuccinimide, 2-methyl-5- Vinyltetrazole, 2-phenyl-5-(4'-vinyl)phenyltetrazole, anthracene, fluorene-methyl-vinyltoluenesulfonamide, N-vinyl-Ν'-ethylurea, Vinyl acetate, vinyl benzoate, vinyl butyl ether, vinyl butyrate, vinyl chloroacetate, vinyl dichloroacetate, vinyl lauryl ether, vinyl ether, vinyl ethyl ether, oxalic acid Vinyl methyl ester, vinyl ethyl sulfide, vinyl formate, vinyl isobutyl ether, vinyl isobutyl sulfide, vinyl isopropyl ketone, vinyl laurate, vinyl-m-cresol Ether, vinyl methyl sulfide, vinyl methyl hydrazine, vinyl-o-cresol ether, vinyl stearyl ether, vinyl octyl ether, vinyl-p-cresyl ether , vinyl phenyl ether, vinyl Thioether, vinyl propionate, vinyl stearate, φ vinyl-tertiary-butyl sulfide, thiovinyl acetate, vinyl-4-chlorocyclohexyl ketone, vinyl-2-chloroethyl Ether, vinyl-parade (trimethoxydecyloxy)decane, p-vinylbenzylethylmethanol, p-vinylbenzylmethylmethanol, vinyl carbonate, vinyl isocyanate, Ν, Ν-diethyl acrylamide, acrylimido acrylate, fluorene-vinyl carbamide, ethoxyphenyl (meth) acrylate, cyclohexyl (meth) acrylate, (methyl) Dicyclopentyl acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, isodecyl (meth)acrylate, oxetane acrylate, ( 1-adamantylmethyl (meth)acrylate, (2-ethyl-2-methyl-1,3-dioxan-4-yl)methyl (methyl*14-201006660) acrylate, acrylonitrile Morpholine, acrylic acid dimer, 2-(meth)acryloxyethyl succinic acid, 2-(methyl) propylene methoxyethyl hexahydrophthalic acid, and the like. Among these, N-vinyl caprolactam, N-vinyl-2-pyrrolidone, acryloylmorpholine, benzyl acrylate, N-vinylformamide, acrylic acid are preferred. Oxime ester, phenoxyethyl acrylate, 2-(methyl) propylene methoxyethyl succinic acid, (2-ethyl-2-methyl-1,3 dioxan-4-yl) A (meth) acrylate; wherein, N-vinyl caprolactam, propylene decylmorpholine, propyl methacrylate, isodecyl acrylate have low viscosity, good compatibility, and hardenability A good point of view is better. The nanoimprint-curable composition of the present invention is particularly preferably one or more kinds of monofunctional polymerizable compounds. In this case, it is preferred that two or more kinds of monofunctional polymerizable compounds are selected by selecting polymerizable groups having different polarities from the viewpoint of improving the photocurability and improving the adhesion to the substrate. Specifically, it is preferably a combination of a (meth)acryl-based monofunctional polymerizable compound and an acrylamide-based mono-functional polymerizable compound, or a combination of a (meth)acryl-based monofunctional polymerizable compound and N- A monofunctional polymerizable compound of a vinyl group. When two or more kinds of monofunctional polymerizable compounds are used, the content of the monofunctional polymerizable compound having the highest content is preferably from 50 to 98% by mass, more preferably from 60 to 96% by mass, further preferably 70 to 95% by mass. <Other Polymerizable Monomers> In the present invention, a "difunctional or higher polymerizable compound" may be added as needed. Specific examples of the compound include: diethylene glycol monoethyl ether (meth)acrylate, dimethylol dicyclopentane di(meth)acrylate, di(methyl)-15-201006660 acrylated Isotrimeric fluoroacrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, EO-modified bis(meth)acrylic acid 1, 6-hexanediol ester, ECH modified di(meth)acrylic acid 1,6-hexanediol ester, polyacrylic acid allyloxyethylene glycol ester, di(meth)acrylic acid 1,9-anthracene Alcohol ester, EO modified bis(meth)acrylic acid bisphenol A ester, PO modified bis(meth)acrylic acid bisphenol A ester, modified di(meth)acrylic acid bisphenol A ester, EO Modified bis(meth)acrylic acid bisphenol F ester, ECH modified hexahydrophthalic acid diacrylate, di(meth)acrylic acid hydroxytrimethylacetate neopentyl glycol ester, di(a) Neopentyl glycol acrylate, EO modified neopentyl glycol diacrylate, propylene oxide (hereinafter referred to as "P〇j." modified neopentyl glycol diacrylate) , modified by caprolactone, bis(meth) hydroxytrimethylacetate neopentyl glycol ester, modified by stearic acid, neopentyl glycol (meth) acrylate, modified by ECH (meth)acrylic acid phthalate, polydi(meth)acrylic acid (ethylene glycol-tetramethylene glycol) ester, polydi(meth)acrylic acid (propylene glycol-tetramethylene glycol) Ester, polyester (di) acrylate, polyethylene di(meth) acrylate, propylene glycol poly(meth) propylene hexaenoate, propylene glycol di(meth) acrylate modified by ECH, Poly(nonoxy) bis(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, (b)tricyclodecane dimethanol acrylate, neopentyl glycol Modified dimethyl (meth) acrylate trimethyl propyl acrylate, di(propylene) propylene trimethacrylate, E0 modified bis (meth) acrylate tripropylene glycol, di (meth) acrylate three Glycerol ester, dipropylene glycol di(meth)acrylate, divinyl extended ethyl urea, divinyl propyl urea, E CH modified tris(meth)acrylic acid glycerol ester, E0 modified tris(methyl)-16- 201006660 glycerol acrylate, p〇 modified tris(meth)acrylic acid glycerol Ester, pentaerythritol triacrylate, E0 modified triacrylate phosphate, trimethylolpropane tris(meth)acrylate, trimethylol tris(meth)acrylate modified by caprolactone Propane ester, trimethylolpropane tris(meth)acrylate modified by E0, trimethylolpropane tris(meth)acrylate modified by PO, isomeric cyanuric acid (propyleneoxy b Ester ester, dineopentaerythritol hexa(meth)acrylate, dipentaerythritol hexa(meth)acrylate modified by caprolactone, dipentaerythritol hydroxypenta(meth)acrylate Alkyl pentaerythritol (meth) acrylate, neopentyl glycol methacrylate, alkyl modified tris (tetra) pentylene glycol (meth) acrylate Ester, bis-trimethylolpropane tetra(meth)acrylate, neopentyl glycol ethoxytetra(meth)acrylate, tetra(meth)propene Acid pentaerythritol ester and the like. The content of the difunctional or higher polymerizable compound is preferably from 〇 to 1% by mass, more preferably from 0 to 7% by mass, still more preferably from 0 to 3% by mass. φ <Photopolymerization Initiator> The nanoimprint-curable composition of the present invention contains a photopolymerization initiator. The photopolymerization initiator to be used in the present invention may be any one as long as it can produce a compound for polymerizing an active species of a monofunctional polymerizable compound as described above by irradiation with light. The photopolymerization initiator is preferably a radical polymerization initiator which generates a radical by irradiation of light, a cationic polymerization initiator which generates an acid by irradiation with light, more preferably a radical polymerization initiator, but it should be based on The type of the polymerizable group of the polymerizable compound is appropriately determined. That is, the photopolymerization initiator of the present invention must be formulated to have an activity -17-201006660 for the wavelength of the light source used, and may be appropriately produced depending on the difference in the reaction form (e.g., radical polymerization or cationic polymerization, etc.). Active species. Further, in the present invention, a photopolymerization initiator can also be used in several applications. The content of the photopolymerization initiator to be used in the present invention is, for example, 0.01 to 15 mass%, preferably 0.1 to 12 mass%, more preferably 0.2 to the total of the polymerizable monomer contained in the composition. 7% by mass. When two or more kinds of photopolymerization initiators are used, the total amount thereof is as described above. When the content of the photopolymerization initiator is 〇.〇1% by mass or more, there is a tendency to improve the sensitivity (speed hardenability), resolution, line-edge roughness, and film strength. Therefore, it is better. On the other hand, when the content of the photopolymerization initiator is 15% by mass or less, the light transmittance, the coloring property, the usability, and the like tend to be improved, which is preferable. Up to now, regarding the inkjet composition containing a dye and/or a pigment or the composition for a color filter of a liquid crystal display, the addition amount of a preferable photopolymerization initiator and/or photoacid generator has been performed. Although various evaluations have been made, the addition amount of the preferred photopolymerization initiator and/or photoacid generator for the curable composition for the enamel imprinting such as nanoimprinting has not been clearly obtained. That is, in a system containing a dye and/or a pigment, these may function as a radical scavenger, and as a result, photopolymerization and sensitivity may be affected. Therefore, for such applications, the amount of the photopolymerization initiator added is optimized in consideration of this point. On the other hand, in the nanoimprint hardenable composition of the present invention, the dye and/or the pigment are not essential components, so that the optimum range of the photopolymerization initiator may occur with the inkjet composition or liquid crystal. The display color filter is different in the field of composition and the like. A "radical photopolymerization initiator" which can be used in the present invention, in general, -18 - 201006660 can be used as a commercially available initiator. From the viewpoint of hardening sensitivity, a mercaptophosphine compound or an oxime ester compound is preferred. Examples of such are: IRGACURE (registered trademark) 2959 (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2) available from Ciba Inc. -Methyl-1-propan-1-one), IRGACURE (registered trademark) 184 (1-hydroxycyclohexyl phenyl ketone), IRGACURE (registered trademark) 5 00 (1-hydroxycyclohexyl phenyl ketone, diphenyl Ketone), IRGACURE (registered trademark) 651 (2, 2 &gt; dimethoxy-1,2-diphenylethane-1-one), IRGACURE (registered trademark) 379 (2-(dimethylamino) -2-[(4-Methylphenyl)methyl]-1·[4-(4-morpholinyl)phenyl]butanone], IRGACURE (registered trademark) 907 (2-methyl-1) -[4-Methylthiophenyl]-2-morpholinylpropan-1-one), IRGACURE (registered trademark) 819 (bis(2,4,6-trimethylbenzylidene)-phenyl Phosphine oxide), IRGACURE (registered trademark) 1800 (bis(2,6-dimethoxybenzylidene)-2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ), IRGACURE (registered trademark) 1 800 (bis(2,6-dimethoxybenzylidene)-2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-2-methyl- 1 -Phenyl-1-propan-1-one), IRGACURE (registered trademark) OXE01 ( 1,2-octanedione, 1-[4-(phenylthio)phenyl]-2-(0-benzamide) Base)), DAROCUR (registered trademark) 1173 (2-hydroxy-2-methyl-phenyl-l-propane-l-one), DAROCUR (registered trademark) 1116, 1398, 1174 and 1 020, CGI2 42 (ethyl ketone, 1-[9-ethyl-6-(2-methylbenzylidenyl)-9H-indazol-3-yl]-1-(0-ethylindenyl)); Lucirin TPO (2,4,6-trimethylbenzimidyldiphenylphosphine oxide) from BASF Corporation (BASF Corporation), Lucirin TPO-L (2,4,6-trimethylbenzhydrylbenzene) Ethyl ethoxylated phosphine oxide; available from Nihon Siber Hegner KK. 19- 201006660 ESACURE 1〇〇1Μ(1-[(4-Benzylnonylphenylsulfanyl)phenyl]-2-methyl -2- (4-methylphenyl-propionate) propyl-1-one); ADEKA OPTOMER (registered trademark) N-141 4 (carbazole) available from ADEKA Corporation. Benzophenone), ADEKA OPTOMER (registered trademark) N-1717 (acridine), ADEKA OPTOMER (registered trademark) N-1606 (three nitrogen cultivation); TFE-trinitrogen (2-[2·(furan-2-yl)vinyl]-4,6-bis(trichloromethyl)-1) manufactured by Sanwa Chemical Co., Ltd. 3,5-triazo trap), TME-triazine trap manufactured by Sanwa Chemical Co., Ltd. (2·[2-(5-methylfuran-2-yl)vinyl]-4,6-bis (three Chloromethyl)-1,3,5-trinitrogen), MP-trinitrogen (2-(4-methoxyphenyl)-4,6-bis(trichloro) manufactured by Sanwa Chemical Co., Ltd. Methyl)-1,3,5-triazine well), TAZ-1 13 (2-[2-(3,4-dimethoxy), manufactured by Midori Chemical Co., Ltd.) Phenyl)vinyl]-4,6-bis(trichloromethyl)-l,3,5-triazine well), TAZ-1 08 (2- (3,4-two) manufactured by Midori Chemical Co., Ltd. Methoxyphenyl)-φ 4,6·bis(trichloromethyl)-1,3,5-trinitrogen tillage; benzophenone, 4,4'-bisdiethylaminobiphenyl Ketone, methyl-2-benzophenone, 4-benzylidene-4'-methyldiphenyl sulfide, 4-phenylbenzhydryl, ethylmichyleone, 2-chloroox Sulphur sulphate, 2-methyl oxysulfonate, 2-isopropyl oxysulfonate 4-isopropyloxysulfide Dill sing, 2,4-diethyloxysulfide Bill, 1-chloro-4-propoxy oxysulfonium, 2-methyl oxysulfonate, oxysulfonate Ammonium, benzoin, 4,4'-dimethoxybenzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzyl dimethyl ketal, 1,1,1-trichloroacetophenone, diethoxyacetophenone and dibenzoxyl ketone, methyl o-benzhydrylbenzoate, 2-benzene酿-naphthalene, 4-benzylidenebiphenyl-20- 201006660, 4-benzylidene diphenyl ether, 1,4-benzylidene benzene, diphenylethylenedione (benzii), 10- Butyl-2-chloroacridone, [4-(methylphenylthio)phenyl]phenylmethane, 2·ethyl hydrazine, 2,2-bis(2-chlorophenyl)-4,5 , 4',5'-肆(3,4,5-trimethoxyphenyl) 1,2'-biimidazole, 2,2-bis(o-chlorophenyl)-4,5,4,, 5,_ tetraphenyl-1,2'-biimidazole, ginseng (4-dimethylaminophenyl)methane, ethyl 4-(dimethylamino)benzoate, 2-(dimethyl benzoate) Ethylamino)ethyl ester, 4-(dimethylamino)benzoic acid butoxyethyl ester, and the like. • In the present invention, "light" is not only ultraviolet light, near ultraviolet light, or far purple. Light of a wavelength in the range of external rays, visible light, infrared rays, or electromagnetic waves, but also radiation. Radiation as described above also includes, for example, microwaves, electron rays, EUV (extreme ultraviolet light), and X-rays. In addition, laser light such as a 248 nm-excimer laser, a 193 nm-excimer laser, a 172 nm-quasi-electron laser, or the like can be used. These lights can also use monochromatic light (single-wavelength light) that passes through an optical filter, or light of a complex wavelength (composite light). The exposure may be multiple exposure, and for the purpose of improving film strength, etching resistance, etc., φ may be fully exposed after being patterned. The photopolymerization initiator to be used in the present invention needs to be appropriately selected in accordance with the wavelength of the light source to be used, but it is preferred that the gas is not generated during pressurization/exposure of the mold. Once the gas is generated, the mold core will be contaminated, resulting in frequent cleaning of the mold core, or deformation of the photohardenable composition in the mold core, which deteriorates the accuracy of the transfer pattern. The nanoimprinting curable composition of the present invention is preferably a polymerizable compound (A) which is a radical polymerizable compound, and the photopolymerization initiator (B) is a radical polymerization initiator which generates a radical by irradiation with light. A radical polymerizable composition. -21-201006660 <Polyoxime resin> The nanoimprint hardenable composition of the present invention preferably contains a polyoxyxylene resin. The polyoxyxylene resin which can be used in the present invention, as long as it is a solid polyoxyxylene resin, a polyoxygenated oil, or a polyoxyxide grease which is added with a metal soap such as sodium stearate in a polyoxygenated oil. In the case of a compound or a composition, any of them may be used, but it is particularly preferably a polyoxygenated oil. According to the present invention, the monofunctional polymerizable compound and the photopolymerization initiator are used in an amount of 87% by mass or more, and the polyfluorene resin is reused, whereby spin coating or slit coating can be improved, and a fine pattern can be formed more easily, and light can be improved. The adhesion to the substrate after hardening makes the peeling of the photoresist easy. Further, adhesion to the mold can be suppressed and the etching property can be improved. Specifically, "polyoxyl resin j system includes: dimethyl polyphthalide oil, methyl phenyl polyoxy sulfonate oil, methyl hydroquinone oxymethane oil, alkyl modified polyoxyl Oil, alkoxy modified polyoxyxide oil, polyether polyoxyxene oil, hydrogen sulfide modified polyoxygenated oil, amine modified polyoxyxene oil, epoxy modified Polyoxygenated oil, carboxyl modified polyoxyxide oil, acrylate modified polyoxygenated oil, methacrylate modified polyoxygenated oil, fluorine modified polyoxygenated oil Hydroxyl

TO 基改質之聚矽氧油等。其中,較佳爲經丙烯酸系改質之聚矽氧 油、經甲基丙烯酸酯改質之聚矽氧油、經羧基改質之聚矽氧油 、經烷氧基改質之聚矽氧油、經環氧基改質之聚矽氧油;更佳 爲經丙烯酸系改質之聚矽氧油、經甲基丙烯酸酯改質之聚矽氧 油、經羧基改質之聚矽氧油。此外,也可使用市售商品,例如 信越化學工業股份有限公司(Shin-Etsu Chemical Co.,Ltd.) 製造之 KF-105、X-22-163A、X-22-169AS、X-22-160AS、X-22-164A ' X-22-3710、X-22-167B、X-22-4272 等 ° •22- 201006660 在本發明使用之聚矽氧樹脂之分子量較佳爲3 00至20,000 ,更佳爲400至1 5,000,進一步更佳爲500至1 2,000。 若聚矽氧樹脂之分子量爲如上所述較佳範圍之下限値以上 時,則具有經光硬化後之光阻可容易地從模仁剝離的傾向,因 此爲較佳。在另一方面,若聚矽氧樹脂分子量爲如上所述較佳 範圍之上限値以下時,則具有降低光阻組成物之黏度的傾向, 因此爲較佳》 可在本發明使用之聚矽氧樹脂之含量係相對於包含在組成 Φ 物的全部聚合性單體爲例如0.008至5質量%,較佳爲0.01至 4質量%,更佳爲0.02至3質量%。若使用兩種以上之聚矽氧 樹脂時,則其之合計量爲如前所述範圍。 若聚矽氧樹脂之含量爲如上所述較佳範圍之下限値以上時 ,則具有經光硬化後之光阻可容易地從模仁剝離、且顯著地減 少以狹縫塗布等進行塗布時所發生之塗布痕(coating streak) 等缺陷的傾向,因此爲較佳。在另一方面,若聚矽氧樹脂之含 φ 量爲如上所述較佳範圍之上限値以下時,則具有顯著地減少在 塗布時所發生之塗布液彈撥(cissing)等缺陷,使得光阻與基 板之密著趨於良化的傾向,因此爲較佳。 〈長鏈烷基羧酸等〉 本發明之奈米壓印硬化性組成物較佳爲也含有長鏈烷基羧 酸或其之金屬鹽、或羧酸長鏈烷基酯。 可使用於本發明之長鏈烷基羧酸之烷基部份的碳數、與可 使用於本發明之羧酸長鏈烷基酯之烷基部份的碳數較佳爲12 至20,更佳爲13至19,進一步更佳爲14至18。只要碳數爲 -23- 201006660 12以上時,則可容易地獲得由於添加所獲得之功效,若碳數爲 20以下時,則具有可容易地獲得良好的溶解性的傾向。用於構 成長鏈烷基羧酸金屬鹽之金屬係包括鈉、鉀等。羧酸長鏈烷基 酯之羧酸部份係並無特殊的限制,可使用烷基羧酸或芳基羧酸 〇 在本發明適合使用的長鏈烷基羧酸或其之金屬鹽、羧酸長 鏈烷基酯係包括:例如,硬脂酸鋅、棕櫚酸鋅、硬脂酸丁酯、 棕櫚酸乙酯等。 ❿ 根據本發明,使用87質量%以上之單官能聚合性化合物及 光聚合引發劑,再加上長鏈烷基羧酸或其之金屬鹽、或羧酸長 鏈烷基酯,藉此則可改善旋轉塗布或狹縫塗布、使得更容易形 成微細的圖案、改善經光硬化後對於基板之密著性、使得剝離 光阻容易進行。並且,也可抑制對於模仁之附著、提高蝕刻性 〇 (d )其他之成份 _ 本發明之奈米壓印硬化性組成物,除了如上所述之(a) 9 單官能聚合性化合物、(b)光聚合引發劑、(C)聚矽氧樹脂 或長鏈烷基羧酸以外,也可根據各種目的而在不至於損及本發 明之功效範圍內添加界面活性劑、抗氧化劑、溶劑、高分子成 份、聚合抑制劑、紫外線吸收劑、光穩定劑、抗劣化劑、塑化 劑、密著促進劑、熱聚合引發劑、著色劑、彈性體粒子、光酸 增殖劑、光鹼產生劑、鹼性化合物、流動調整劑、消泡劑、分 散劑等。本發明之奈米壓印硬化性組成物係特佳爲含有非離子 系界面活性劑者。 -24- 201006660 一界面活性劑- 本發明之奈米壓印硬化性組成物較佳爲含有界面活性劑。 可使用於本發明之界面活性劑之含量係在全部組成物中則爲例 如0.001至5質量%,較佳爲0.002至4質量%,更佳爲0.005 至3質量%。若使用兩種以上之界面活性劑時,則其之合計量 爲如前所述範圍。若界面活性劑在組成物中爲在0.001至5質 量%之範圍時,則具有塗布均勻性之功效良好,且不容易導致 由於界面活性劑過多造成的模仁轉印特性惡化、光阻對於基板 之密著不良之優點。 藉由使用如上所述界面活性劑,則可更容易地解決在用於 形成例如半導體元件製造用之矽晶圓、或液晶元件製造用之玻 璃見方基板、鉻膜、鉬膜、鉬合金膜、鉬膜、钽合金膜、氮化 矽膜、非晶矽膜、經摻雜氧化錫之氧化銦(ITO )膜或氧化錫 膜等在各種膜之基板上一般塗布奈米壓印硬化性組成物時所造 成之線痕(Striation )、或鱗狀花樣(光阻膜之乾燥不均勻) φ 等塗布不良之問題。此外,可更容易地提高對於模仁凹部的模 腔(cavity )內之奈米壓印硬化性組成物的流動性、提高模仁 與光阻之間的剝離性、提高光阻與基板之間的密著性、降低組 成物的黏度等。 可在本發明使用之「非離子性界面活性劑」之實例係包括 :商品名 PAIONIN D6112W (竹本油脂股份有限公司( Takemoto Oil &amp; Fat Co·,Ltd.)製造)等之聚氧化烯聚苯乙烯 基苯基醚。此外,商品名FLUORAD FC-430、FC-431 (住友 3M股份有限公司(Sumitomo 3 M Co.,Ltd.)製造);商品名 -25- 201006660TO-based modified polyoxygenated oil. Among them, preferred are acrylic modified polyoxyxides, methacrylate-modified polyoxygenated oils, carboxyl-modified polyoxygenated oils, and alkoxy-modified polyoxygenated oils. An epoxy group-modified polyoxyxide oil; more preferably an acrylic modified polyoxyxide oil, a methacrylate modified polyoxygenated oil, or a carboxyl modified polyoxyxide oil. Further, commercially available products such as KF-105, X-22-163A, X-22-169AS, and X-22-160AS manufactured by Shin-Etsu Chemical Co., Ltd. may also be used. , X-22-164A 'X-22-3710, X-22-167B, X-22-4272, etc. ° 22-201006660 The molecular weight of the polyoxyxylene resin used in the present invention is preferably from 300 to 20,000, more The best is 400 to 1 5,000, and further preferably 500 to 1 2,000. When the molecular weight of the polyoxyxene resin is at least the lower limit 较佳 of the above preferred range, the photoresist after photocuring tends to be easily peeled off from the mold, which is preferable. On the other hand, when the molecular weight of the polyoxyxylene resin is less than or equal to the upper limit of the preferred range as described above, the viscosity of the photoresist composition tends to be lowered, so that it is preferable to use the polyoxyl oxide which can be used in the present invention. The content of the resin is, for example, 0.008 to 5% by mass, preferably 0.01 to 4% by mass, and more preferably 0.02 to 3% by mass based on the total of the polymerizable monomer contained in the composition Φ. When two or more kinds of polyoxynoxy resins are used, the total amount thereof is as described above. When the content of the polyoxyxylene resin is at least the lower limit 较佳 of the above preferred range, the photoresist after photocuring can be easily peeled off from the mold core, and the coating is preferably reduced by coating with slit coating or the like. It is preferred because it tends to cause defects such as coating streak. On the other hand, if the content of φ of the polyoxyxylene resin is less than or equal to the upper limit 较佳 of the preferred range as described above, it has a significant reduction in defects such as coating liquid cissing which occurs at the time of coating, so that the photoresist The adhesion to the substrate tends to be good, and therefore it is preferred. <Long-chain alkyl carboxylic acid, etc.> The nanoimprinting curable composition of the present invention preferably further contains a long-chain alkyl carboxylic acid or a metal salt thereof or a long-chain alkyl carboxylic acid ester. The carbon number of the alkyl moiety of the long-chain alkyl carboxylic acid used in the present invention and the carbon number of the alkyl moiety which can be used in the long-chain alkyl carboxylic acid ester of the present invention are preferably from 12 to 20, More preferably from 13 to 19, still more preferably from 14 to 18. When the carbon number is -23-201006660 12 or more, the effect obtained by the addition can be easily obtained, and when the carbon number is 20 or less, the solubility tends to be easily obtained. The metal system for structuring the metal salt of a chain alkyl carboxylic acid includes sodium, potassium and the like. The carboxylic acid moiety of the long-chain alkyl carboxylic acid ester is not particularly limited, and an alkyl carboxylic acid or an aryl carboxylic acid hydrazine may be used in the long-chain alkyl carboxylic acid or a metal salt thereof or a carboxylic acid thereof which is suitably used in the present invention. The acid long-chain alkyl esters include, for example, zinc stearate, zinc palmitate, butyl stearate, ethyl palmitate, and the like. ❿ According to the invention, 87% by mass or more of the monofunctional polymerizable compound and the photopolymerization initiator are used, and a long-chain alkyl carboxylic acid or a metal salt thereof or a long-chain alkyl carboxylic acid ester is used, whereby The spin coating or the slit coating is improved to make it easier to form a fine pattern, to improve the adhesion to the substrate after photo-curing, and to facilitate the peeling of the photoresist. Further, it is also possible to suppress the adhesion to the mold core and to improve the etching property (d) other components. The nanoimprint hardenable composition of the present invention, in addition to the above (a) 9 monofunctional polymerizable compound, (b) In addition to the photopolymerization initiator, (C) polyoxyalkylene resin or long-chain alkyl carboxylic acid, it is also possible to add a surfactant, an antioxidant, a solvent, and the like in accordance with various purposes without impairing the efficacy of the present invention. Molecular component, polymerization inhibitor, ultraviolet absorber, light stabilizer, anti-deterioration agent, plasticizer, adhesion promoter, thermal polymerization initiator, colorant, elastomer particles, photoacid proliferation agent, photobase generator, A basic compound, a flow regulator, an antifoaming agent, a dispersing agent, and the like. The nanoimprint hardenable composition of the present invention is particularly preferably a nonionic surfactant. -24- 201006660 - Interfacial Active Agent - The nanoimprinting curable composition of the present invention preferably contains a surfactant. The content of the surfactant to be used in the present invention is, for example, 0.001 to 5% by mass, preferably 0.002 to 4% by mass, more preferably 0.005 to 3% by mass based on the total composition. When two or more kinds of surfactants are used, the total amount thereof is as described above. If the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and the transfer property of the mold is deteriorated due to excessive surfactant, and the photoresist is resistant to the substrate. The advantage of being poor. By using the surfactant as described above, it is possible to more easily solve the problem of forming a silicon wafer for manufacturing a semiconductor element, or a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, or the like. A molybdenum film, a ruthenium alloy film, a tantalum nitride film, an amorphous tantalum film, an indium oxide (ITO) film doped with tin oxide, or a tin oxide film are generally coated with a nanoimprint hardenable composition on a substrate of various films. The problem of poor coating such as striation or scaly pattern (uneven drying of the photoresist film) φ. Further, it is possible to more easily improve the fluidity of the nanoimprint hardenable composition in the cavity of the mold recess, to improve the peeling property between the mold and the photoresist, and to improve the relationship between the photoresist and the substrate. Adhesion, reducing the viscosity of the composition, and the like. Examples of the "nonionic surfactant" which can be used in the present invention include polyoxyalkylene polyphenylene having a trade name of PAIONIN D6112W (manufactured by Takemoto Oil &amp; Fat Co., Ltd.). Vinyl phenyl ether. In addition, the trade name is FLUORAD FC-430, FC-431 (manufactured by Sumitomo 3 M Co., Ltd.); trade name -25- 201006660

SURFLON S-382 (旭硝子股份有限公司(Asahi Glass Co., Ltd. )製造);EFTOP EF-122A、122B、122C、EF-121 ' EF-126、 EF-127、MF-100 ( Tochem Products Co.,Ltd.製造);商品名 PF-636 、 PF-6320 、 PF-656 、 PF-6520 (皆爲 OMNOVASURFLON S-382 (manufactured by Asahi Glass Co., Ltd.); EFTOP EF-122A, 122B, 122C, EF-121 ' EF-126, EF-127, MF-100 ( Tochem Products Co. , manufactured by Ltd.; trade names PF-636, PF-6320, PF-656, PF-6520 (both OMNOVA

Solutions,Inc.製造);商品名 FTERGENT FT 250、FT 251、 DFX18 ( NEOS股份有限公司(NEOS Co·,Ltd·)製造):商品 名UNIDYNE DS-401、DS-403、DS-451 (皆爲大金工業股份有 限公司(Daikin Industries, Ltd.)製造);商品名 MEGAFAC 參 171、172、173、178K、178A (皆爲大日本油墨化學工業股份 有限公司(Dainippon Ink and Chemicals,Inc_)製造)等之「 氟系界面活性劑」。在此等之中,較佳爲聚氧化烯聚苯乙烯基 苯基醚或含有全氟基之寡聚物等。 一抗氧化劑一 本發明之奈米壓印硬化性組成物係可含有習知的抗氧化劑 。可在本發明使用之抗氧化劑之含量相對於聚合性化合物之總 φ 量係例如爲0.01至10質量%,較佳爲0.2至5質量%。若使用 兩種以上之抗氧化劑時,則其之合計量爲如前所述範圍。 如前所述抗氧化劑係用於抑制由於熱或光照射的退色及由 於臭氧、活性氧、N0X、SOx ( X爲整數)等之各種氧化性氣體 造成之退色者。特別是在本發明中,藉由添加抗氧化劑,則具 有防止硬化膜著色、或減少由於分解的膜厚減少之優點。此等 之「抗氧化劑」係包括:醯基肼類、位阻型胺系抗氧化劑、含 氮雜環氫硫基系化合物、硫醚系抗氧化劑、位阻型酚系抗氧化 劑、抗壞血酸類、硫酸鋅、硫氰酸鹽類、硫脲衍生物、糖類、 -26- 201006660 亞硝酸鹽、亞硫酸鹽、硫代硫酸鹽、羥基胺衍生物等。其中, 特別是在硬化膜之著色、膜厚減少的觀點上,則較佳爲位阻型 酚系抗氧化劑、硫醚系抗氧化劑。 如前所述「抗氧化劑」之市售商品係包括:商品名 IRGANOX 1010、1035、1076、12 22 (以上是汽巴精化股份有 限公司(Ciba-Geigy Corp.)製造);商品名 ANTIGENE P、 3C、FR、SUMILIZER S、SUMILIZER GA80(住友化學工業股 份有限公司(Sumitomo Chemical Co.,Ltd.)製造);商品名 Φ ADK STAB AO70、AO80、AO5 03 ( ADEKA(股)製造)等。此 等係可單獨使用或混合使用。. _溶劑一 本發明之奈米壓印用硬化性組成物係也可視各種需要而含 有溶劑。溶劑較佳爲使用有機溶劑。但是有機溶劑之含量在全 部組成物中較佳爲3質量%以下。亦即,本發明之奈米壓印用 硬化性組成物,由於含有單官能聚合性化合物作爲反應性稀釋 φ 劑,不一定需要含有用於溶解本發明之奈米壓印用硬化性組成 物的成份之有機溶劑。而且,若未含有有機溶劑時,則由於不 再需要以溶劑之揮發爲目的之烘烤步驟,有助於簡化製程之優 點大。因此,在本發明之奈米壓印用硬化性組成物中有機溶劑 之含量較佳爲3質量%以下,更佳爲2質量%以下,特佳爲未 含有。如此,本發明之奈米壓印用硬化性組成物係不一定含有 有機溶劑者,但是在例如欲將不會溶解化合物等作爲本發明之 奈米壓印用硬化性組成物而溶解之情況、或欲微調整黏度時, 則反應性稀釋劑可任意添加,適合使用於本發明之奈米壓印用 -27- 201006660 硬化性組成物之有機溶劑的種類係在奈米壓印用硬化性組成物 或光阻方面一般使用之溶劑,且只要其爲可將本發明所使用之 化合物加以溶解及均勻分散者即可,且爲不至於與此等成份進 行反應者時,則並無特殊的限制。 如前所述「有機溶劑」係包括:例如,甲醇、乙醇等之「 醇類」;四氫呋喃等之「醚類」:乙二醇一甲基醚、乙二醇二 甲基醚、乙二醇甲基乙基醚、乙二醇一乙基醚等之「二醇醚類 」:醋酸甲基賽路蘇酯、醋酸乙基賽路蘇酯等之「醋酸乙二醇 Ο 烷基醚酯類」;二甘醇一甲基醚、二甘醇二乙基醚、二甘醇二 甲基醚、二甘醇乙基甲基醚、二甘醇一乙基醚、二甘醇一丁基 醚等之「二甘醇類」;醋酸丙二醇甲基醚酯、醋酸丙二醇乙基 醚酯等之「醋酸丙二醇烷基醚酯類」:甲苯、二甲苯等之「芳 香族烴類」;丙酮、甲基乙基酮、環己酮、4-羥基-4-甲基-2-戊酮、2-庚酮等之「酮類」;2-羥基丙酸乙酯、2-羥基-2-甲基 丙酸甲酯、2·羥基-2-甲基丙酸乙酯、乙氧基醋酸乙酯、羥基醋 Λ 酸乙酯、2-羥基-2-甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧 基丙酸乙酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、醋酸乙 酯、醋酸丁酯、乳酸甲酯、乳酸乙酯等之「乳酸酯類」等之「 酯類」等。 並且,也可添加:Ν-甲基甲醯胺、Ν,Ν-二甲基甲醯胺、Ν-甲基甲醯胺苯、Ν-甲基乙醯胺、Ν,Ν-二甲基乙醯胺、Ν_甲基吡 略啶酮、二甲基亞砸、苯甲基乙基醚、二己基醚、丙酮基丙酮 、異佛酮、己酸、辛酸、1-辛醇、1-壬醇、苯甲基醇、醋酸苯 甲醋、苯甲酸乙醋、草酸二乙醋、順丁稀二酸二乙酯、丁 -28- 201006660 內酯、碳酸伸乙酯、碳酸伸丙酯、醋酸苯基賽路蘇酯等之「高 沸點溶劑」。此等係可一種單獨使用或兩種以上倂用。 在此等之中,特佳爲醋酸甲氧基丙二醇酯、2-羥基丙酸乙 酯、3 -甲氧基丙酸甲酯、3 -乙氧基丙酸乙酯、乳酸乙酯、環己 酮、甲基異丁基酮、2-庚酮等。 此外,在本發明之奈米壓印用硬化性組成物中,也可含有 水,但是其之含量在全部組成物中較佳爲2.0質量%以下,更 佳爲1.5質量%,進一步更佳爲1.0質量%以下。藉由控制在調 製時之水份量爲2.0質量%以下,則可使得本發明之奈米壓印 用硬化性組成物之儲存穩定性更趨於穩定。 —增感劑_ (d )增感劑 在本發明之奈米壓印用硬化性組成物係可添加增感劑。藉 由添加增感劑,則可調整UV範圍之波長吸收性。 在本發明適合使用之典型的「增感劑(sensitizer)」係包 括:在 Crivello ( J. V. Crivello,Adv. in Polymer Sci.,62,1 ( 1984 ))所揭述者,具體言之,其係包括:芘、茈、吖啶橙、 氧硫岫哩、2-氯氧硫卩山卩星、苯并黃素、N-乙烯基咔唑、9,10-二 丁氧基蒽、蒽醌、香豆素、酮香豆素、菲、樟腦醌、啡噻阱衍 生物等。 在本發明之奈米壓印用硬化性組成物中,增感劑之含有比 例係較佳爲組成物全體之〇至5.0質量%,更佳爲〇·1至5.0質 量%,進一步更佳爲0.2至2.0質量%。藉由設定增感劑之含量 爲0.1質量%以上,則可更有效地顯現增感劑之功效。此外’ -29- 201006660 藉由設定增感劑含量爲5質量%以下’則可抑制溶解不良或液 穩定性之劣化。 -有機金屬偶合劑- 在本發明之奈米壓印用硬化性組成物中,爲提高具有微細 凹凸圖案的表面結構之耐熱性、強度、或與金屬蒸鍍層之密著 性,則也可調配有機金屬偶合劑。此外,有機金屬偶合劑也因 具有促進熱硬化反應之功效而爲有效。「有機金屬偶合劑」係 可使用:矽烷偶合劑、鈦偶合劑、锆偶合劑、鋁偶合劑、錫偶 合劑等之各種偶合劑。 使用於本發明之奈米壓印用硬化性組成物之「矽烷偶合劑 」係包括:例如,乙烯基三氯矽烷、乙烯基參(yS -甲氧基乙 氧基)矽烷、乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷等之 「乙烯基矽烷」;r-甲基丙烯醯氧基丙基三甲氧基矽烷、7-甲基丙烯醯氧基丙基甲基二甲氧基矽烷等之「丙烯酸系矽烷」 ;々-(3,4-環氧基環己基)乙基三甲氧基矽烷、r-環氧丙氧 ©基丙基三甲氧基矽烷、r-環氧丙氧基丙基甲基二乙氧基矽烷 等之「環氧基矽烷」;〜沒-(胺基乙基)-r-胺基丙基三甲氧 基矽烷、N-万-(胺基乙基)-τ •胺基丙基甲基二甲氧基矽烷、 r -胺基丙基三甲氧基矽烷、Ν-苯基-γ-胺基丙基三甲氧基矽烷 等之「胺基矽烷」:以及其他之「矽烷偶合劑」係包括:r-氫硫基丙基三甲氧基矽烷、r-氯丙基甲基二甲氧基矽烷、r-氯丙基甲基二乙氧基矽烷等。 「鈦偶合劑」係包括:例如,三異硬脂醯基鈦酸異丙酯、 參-十二烷基苯磺醯基鈦酸異丙酯、參(二辛基焦磷醯基)鈦 -30- 201006660 酸異丙酯、雙(二辛基亞磷醯基)鈦酸四異丙酯、雙(二-十 三烷基亞磷醯基)鈦酸四辛酯、雙(二-十三烷基)亞磷醯基 鈦酸四(2,2-二烯丙氧基甲基)酯、鈦酸雙(二辛基焦磷醯基 )氧基醋醯基酯、鈦酸雙(二辛基焦磷醯基)伸乙基酯、三辛 醯基鈦酸異丙酯、二甲基丙烯醯基異硬脂醯基鈦酸異丙酯、異 硬脂醯基二丙烯醯基鈦酸異丙酯、三(二辛基磷醯基)鈦酸異 丙酯、三異丙苯基苯基鈦酸異丙酯、三(N-胺基乙基·胺基乙 基)鈦酸異丙酯、苯基氧基醋醯基鈦酸二異丙苯酯、鈦酸二異 硬脂醯基伸乙酯等。 「鍩偶合劑」係包括:例如,四-正-丙氧基鉻、四-丁氧基 鉻、醋酮酸四乙醯基鉻、雙(乙醯基醋酮酸)二丁氧基鍩、乙 醯基醋酸三丁氧基乙基锆、醋酮酸丁氧基乙醯基雙(乙醯基醋 酸乙基)鉻等。 「鋁偶合劑」係包括:例如,異丙酸鋁、二異丙酸單二 級-丁氧基鋁、二級-丁酸鋁、乙氧化鋁、二異丙酸乙醯基醋酸 乙基鋁、參(乙醯基醋酸乙基)鋁、二異丙酸乙醯基醋酸烷基 鋁 '一乙醯基醋酮酸雙(乙醯基醋酸乙基)鋁、參(乙醯基醋 酸乙醯基)鋁等。 如上所述有機金屬偶合劑係可在奈米壓印用硬化性組成物 之固體成份總量中以0.001至10質量%之比例任意調配。藉由 將有機金屬偶合劑之比例設定於0.001質量%以上,則對於提 高耐熱性、強度、賦予與蒸鍍層之密著性係具有趨向於更有效 的傾向。在另一方面,藉由設定有機金屬偶合劑之比例爲10 質量%以下,則具有趨向於可抑制組成物之穩定性、成膜性之 -31- 201006660 缺損的傾向,因此爲較佳。 _聚合抑制劑- 在本發明之奈米壓印用硬化性組成物中,爲提高儲存穩定 性等,則可調配聚合抑制劑。「聚合抑制劑」係可使用例如: 氫醌、三級-丁基氫醌、兒茶酚、氫醌一甲基醚等之「酚類」 :苯醌、二苯基苯醌等之「醌類」:啡噻阱類;及銅類等。聚 合抑制劑係相對於奈米壓印用硬化性組成物之總量較佳爲任意 以0.001至10質量%之比例調配。 -紫外線吸收劑一 本發明之奈米壓印用硬化性組成物係也可調配紫外線吸收 劑。 「紫外線吸收劑」之市售商品係包括:TINUVIN P、234 、3 20、326、327、328、213 (以上是汽巴精化股份有限公司 製造);SUMISORB 110、130、140、220、250、300、320、 340、350、400 (以上是住友化學工業股份有限公司製造)等 。紫外線吸收劑係相對於奈米壓印用硬化性組成物之總量較佳 爲任意以0.01至10質量%之比例調配。 一光穩定劑一 本發明之奈米壓印用硬化性組成物係也可調配光穩定劑。 「光穩定劑」之市售商品係包括:TINUVIN 292、144、 62 2LD (以ΐ是汽巴精化股份有限公司製造):SANOL LS-770 、765、292、2626、1114、744 (以上是三共化成工業股份有 限公司(Sankyo Chemical Industries Co.,Ltd.)製造)等。光 穩定劑係相對於組成物之總量較佳爲以0.0 1至1 0質量%之比 -32- 201006660 例調配。 —抗劣化劑一 本發明之奈米壓印用硬化性組成物係也可調配抗劣化劑。 「抗劣化劑」之市售商品係包括:antigene W、S、P、 3C、6C、RD-G、FR、AW (以上是住友化學工業股份有限公司 製造)等。抗劣化劑係相對於組成物之總量較佳爲以〇.〇1至 10質量%之比例調配。 一塑化劑一 本發明之奈米壓印用硬化性組成物係也可調配塑化劑。 在本發明之奈米壓印用硬化性組成物中,爲調整與基板之 接著性或膜之柔軟性、硬度等,則也可添加入塑化劑。較佳的 「塑化劑」之具體實例係包括:例如,鄰苯二甲酸二辛酯、鄰 苯二甲酸雙十二烷酯、二辛酸三甘醇酯、鄰苯二甲酸二甲基乙 二醇酯、磷酸三甲苯酚酯、己二酸二辛酯、癸二酸二丁酯、三 乙醢基甘油、己二酸二甲酯、己二酸二乙酯、己二酸二(正_ 丁基)酯、辛二酸二甲酯、辛二酸二乙酯、辛二酸二(正-丁 基)酯等。塑化劑係可以組成物中之30質量%以下任意添加, 較佳爲20質量%以下,更佳爲1 0質量%以下。如欲獲得塑化 劑之添加功效,則較佳爲〇. 1質量%。 -密著促進劑一 本發明之奈米壓印用硬化性組成物係也可調配密著促進劑 〇 在本發明之奈米壓印用硬化性組成物中,爲調整與基板之 接著性等,則也可添加密著促進劑。「密著促進劑(adhesion -33- 201006660 accelerator )」係可使用:苯并咪唑類或聚苯并咪唑類、經低 級羥基烷基取代吡啶衍生物、含氮雜環化合物、尿素或硫脲、 有機磷化合物、8-氧基喹啉、4-羥基喋啶、1,1〇-啡啉、2,2’-聯 二吡啶衍生物、苯并***類、有機磷化合物與伸苯基二胺化合 物、2-胺基-1-苯基乙醇、N-苯基乙醇胺、N-乙基二乙醇胺、N-乙基二乙醇胺、N-乙基乙醇胺及其衍生物、苯并噻唑衍生物等 。密著促進劑在組成物中係較佳爲20質量%以下,更佳爲1 0 質量%以下,進一步更佳爲5質量%以下。如欲獲得密著促進 ❹ 劑之添加功效,則較佳爲〇. 1質量%以上。 一熱聚合引發劑一 本發明之奈米壓印用硬化性組成物係也可調配熱聚合引發 劑。 在將本發明之奈米壓印用硬化性組成物硬化時,視需要也 可添加熱聚合引發劑。較佳的「熱聚合引發劑」係包括:例如 ,過氧化物、偶氮化合物。其之具體實例係包括:苯甲醯基過 φ 氧化物、過氧基苯甲酸三級-丁酯、偶氮雙異丁腈等。 一著色劑_ 本發明之奈米壓印用硬化性組成物係也可調配著色劑。 在本發明之奈米壓印用硬化性組成物中,爲提高塗膜之視 認性等爲目的,則可任意添加著色劑。著色劑係可在不至於損 及本發明之目的範圍內使用在UV噴墨組成物、彩色濾光片用 組成物及CCD (電荷耦合裝置)影像感測器用組成物等所使用 之顏料或染料。可在本發明使用之顏料係可使用先前習知的各 種無機顏料或有機顏料。「無機顏料」係以金屬氧化物、金屬 -34 - 201006660 錯合鹽等所代表之金屬化合物。具體言之,其係包括:鐵、鈷 、鋁、鎘、鉛、銅、鈦、鎂、鉻、鋅、銻等之金屬氧化物、金 屬複合氧化物。「有機顏料」係包括:C.I.顏料黃11、24、31 、53、 83、 99、 108、 109、 110、 138、 139、 151、 154、 167; C.I.顏料橙 36、38、43; C.I.顏料紅 105、122、149、150、155 、171、175、176、177、209 ; C.I.顏料紫 19、23、32、39; C_I.顏料藍 1、2、15、16、22、60、66; C.I.顏料綠 7、36、37 ;C.I.顏料棕25、28; C.I.顏料黑1、7及碳黑。 ❿ 一塡料一 本發明之奈米壓印用硬化性組成物係也可調配塡料。 在本發明之奈米壓印用硬化性組成物中,爲提高塗膜之耐 熱性、機械強度、膠黏性等之目的,則也可添加塡料作爲任意 成份。無機微粒子係使用大小爲屬於超微粒子者。在此所謂^ 超微粒子」係次微米級之粒子,係意謂比一般稱爲「微粒子」 之具有粒徑爲從數/zm至數100 之粒子的粒徑更小者。可 • 在本發明使用之無機微粒子之具體的尺寸,雖然也因用於適用 - 奈米壓印用硬化性組成物的光學物品之用途及等級而有所差異 ,但是一般較佳爲使用一次粒徑爲在1奈米至3 00奈米範圍者 。若一次粒徑爲1奈米以上時,則可充分地提高奈米壓印用硬 化性組成物之賦塑性、形狀維持性及脫模性,同時’若一次粒 徑爲3 00奈米以下時,則可保持硬化樹脂所必要的透明性’因 此在透明性方面則爲較佳。 無機微粒子之具體實例係包括Si〇2、Ti02、Zr〇2、Sn02、 ai2o3等之金屬氧化物微粒子’較佳爲從此等之中選擇使用如 -35- 201006660 上所述可分散成膠體狀且具有次微米級的粒徑者,特佳爲使用 膠態二氧化矽(Si〇2 )微粒子。 無機微粒子係在奈米壓印用硬化性組成物之固體成份總量 中較佳爲以1至70質量%之比例調配,特佳爲以1至50質量 %之比例調配。藉由設定無機微粒子之比例爲1質量%以上, 則可充分地提高本發明之奈米壓印用硬化性組成物之賦型性、 形狀維持性及脫模性,且若從在曝光硬化後之強度或表面硬度 的觀點來考慮,則較佳爲無機微粒子之比例爲70質量%以下。 -彈性體粒子- 本發明之奈米壓印用硬化性組成物係也可調配彈性體粒子 〇 此外,本發明之奈米壓印用硬化性組成物中,爲提高機械 強度、柔軟性等之目的,則也可添加彈性體粒子作爲任意成份 〇 可在本發明之奈米壓印用硬化性組成物作爲任意成份而添 φ 加之彈性體粒子係較佳爲平均粒徑爲10奈米至700奈米,更 佳爲30至3 00奈米。例如,聚丁二烯、聚異戊二烯、丁二烯/ 丙烯腈共聚合物、苯乙烯/ 丁二烯共聚合物、苯乙烯/異戊二烯 共聚合物、乙烯/丙烯共聚合物、乙烯/α-烯烴系共聚合物、乙 烯/α-烯烴/多烯共聚合物、丙烯酸系橡膠、丁二烯/(甲基) 丙烯酸酯共聚合物、苯乙烯/ 丁二烯嵌段共聚合物、苯乙烯/異 戊二烯嵌段共聚合物、等之「彈性體」之粒子。此外,也可使 用將彈性體粒子以甲基丙烯酸甲酯高分子、甲基丙烯酸甲酯/甲 基丙烯酸縮水甘油酯共聚合物等加以被覆之芯/殻型粒子。彈性 -36- 201006660 體粒子係也可具有交聯結構。 「彈性體粒子」之市售商品係包括:例如,REGINOUS BOND RKB ( Reginous Chemical Industries Co·,Ltd.製造)、 TECHNO MBS-61、MBS-69 (以上是 Techno Polymer Co., Ltd. 製造)等。 此等彈性體粒子係可單獨、或兩種以上組合使用。在本發 明之奈米壓印用硬化性組成物中的彈性體成份之含有比例係較 佳爲1至35質量%,更佳爲2至30質量%,特佳爲3至20質 量%。 -鹼性化合物一 在本發明之奈米壓印用硬化性組成物中,爲抑制硬化收縮 、提髙熱穩定性等之目的,則也可以任意量添加鹼性化合物。 「驗性化合物(basic compound)」係包括:胺及喹琳及喹畊 等之含氮雜環化合物、鹼性鹼金屬化合物、鹼性鹼土金屬類化 合物等。在此等之中,從與光聚合性單體之相溶性的觀點來考 A 慮,則較佳爲胺類,例如,辛基胺、萘基胺、二甲苯二胺、二 ❿ 苯甲基胺、二苯基胺、二丁基胺、二辛基胺、二甲基苯胺、哏 陡(quinuclidine )、三丁基胺、三辛基胺、四甲基伸乙基二胺 、四甲基-1,6-六亞甲基二胺、六亞甲基四胺、及三乙醇胺等。 (組成物之調製) 本發明之奈米壓印用硬化性組成物係可混合如上所述之各 成份來調製。此外,在藉由混合如前所述各成份後,例如,可 以孔徑爲0.05 //m至5.0/zm之濾網加以過濾來調製成溶液。 光奈米壓印用硬化性組成物之混合•溶解係通常在0°C至100 -37- 201006660 °c之範圍進行。過濾係可以多階段方式進行、或反復數次進行 。此外,也可將經過濾的液再行過濾。過濾所使用的濾網之材 質係可使用聚乙烯樹脂、聚丙烯樹脂、氟樹脂、尼龍樹脂等者 ,但是並無特殊的限制。 在本發明之奈米壓印用硬化性組成物中,除了溶劑以外之 成份在25 °C之黏度係較佳爲1至100 mPa· s。更佳爲2至50 mPa . s,進一步更佳爲5至30 mPa · s。藉由控制黏度於適當 的範圍,則可提高圖案之矩形性,並且抑制殘膜爲低。 藉由如上所述所調製得之本發明之奈米壓印用硬化性組成 物係塗布性良好,且不容易在旋轉塗布、狹縫塗布時發生缺陷 。此外,其係低黏度、光反應率也高,且具有優越的在奈米壓 印光刻時之圖案形成性。因此,在使用ITO被膜、金屬被膜、 絕緣被膜、或半導體(矽晶圓等)基板之情形時,則特別具有 優越的經光硬化後之光阻硬化膜/基板之密著。並且,本發明之 奈米壓印用硬化性組成物係經光硬化後,光阻與模仁之剝離性 ©良好,且不至於造成模仁污染。同時濕式蝕刻性良好,又在施 加蝕刻後,可容易地剝離光阻,且剝離光阻後之基板面並無污 染。 〔圖案形成方法〕 其次,就使用本發明之奈米壓印用硬化性組成物的圖案( 特別是微細凹凸圖案)之形成方法說明如下。在本發明中,則 將硬化性組成物塗布並加以硬化以形成圖案》具體言之,在基 板或支撐體上至少塗布由本發明之奈米壓印用硬化性組成物所 構成之圖案形成層,視需要加以乾燥而形成由奈米壓印用硬化 -38- 201006660 性組成物所構成之層(圖案形成層)以製造圖案接受體( pattern receiver),然後,對於該圖案接受體之圖案形成層表 面壓接模仁,施加轉印模仁圖案之加工,並將微細凹凸圖案形 成層加以曝光使其硬化。根據本發明之圖案形成方法之光壓印 光刻係也可加以積層化或多重圖案化、或也可與一般的熱壓印 組合使用。 此外,關於本發明之奈米壓印用硬化性組成物之應用方面 ,經在基板或支撐體上塗布本發明之奈米壓印用硬化性組成物 ,並將由該組成物所構成之層加以曝光、硬化,視需要加以乾 燥(烘烤),藉此則也可製造表塗層或絶緣膜等之永久膜。 在下文中,則就使用本發明之奈米壓印用硬化性組成物之 圖案形成方法、及圖案轉印方法加以說明。 本發明之奈米壓印用硬化性組成物係可以一般習知的「塗 布方法」,例如浸漬塗布法、風刀塗布法、幕簾塗布法、線棒 式塗布法、凹版輪轉塗布法、擠壓塗布法、旋轉塗布方法、狹 φ 縫掃描法等來塗布形成。由本發明之光硬化性組成物所構成之 層的膜厚係視使用之用途而不同,但是通常爲0.03// m至40 y m,較佳爲0.05/zm至30/zm。此外,本發明之奈米壓印用硬 化性組成物也可採用多重塗布。 用於塗布本發明之奈米壓印用硬化性組成物之基板或支撐 體係並無特殊的限制,其係可使用:石英、玻璃、光學薄膜、 陶瓷材料、蒸鍍膜、磁性膜、反射膜、1^、(:11、(^、?6等之 金屬基板、紙、SOG (旋塗玻璃)、聚酯薄膜、聚碳酸酯薄膜 、聚醯亞胺薄膜等之高分子基板、TFT陣列基板、PDP之電極 -39- 201006660 板、玻璃或透明塑膠基板、ITO或金屬等之導電性基材、絕緣 性基材、矽、氮化矽、多晶矽、氧化矽、非晶矽等之半導體製 造用基板等。基板之形狀可爲板狀或輥狀。 將本發明之奈米壓印用硬化性組成物硬化所使用的光係並 無特殊的限制,但是可使用高能量電離放射線、近紫外線、遠 紫外線、可見光、紅外線等域之波長的光或放射線。「高能量 電離放射線源」係包括:例如,藉由科克勞夫(Cockcroft)型 加速器、凡德格拉夫(Van de Graaff)型加速器、直線加速器 ❹ (linear accelerator)、電子迴旋加速器(betatron)、粒子迴 旋加速器(cyclotron )等加速器所加速的電子射線係在工業上 最方便且經濟有效而被使用,但是也可使用由其他之放射性同 位元素或原子爐等所放射出之r射線、X射線、α射線、中子 射線、質子射線等之放射線。「紫外線源」係包括:例如,紫 外線螢光燈、低壓水銀燈、高壓水銀燈、超高壓水銀燈、氙燈 、碳弧燈、太陽燈等。「放射線」係包括:例如微波、EUV。 φ 此外,在本發明也適合使用LED、半導體雷射光、或248奈米 之KrF準分子雷射光、或193奈米ArF準分子雷射等在半導體 微細加工所使用之雷射光,此等光係可使用單色光、或也可使 用複數之波長不同的光(混合光)。 其次,就可在本發明使用之模仁材料加以說明。使用本發 明之奈米壓印用硬化性組成物之光奈米壓印光刻係模仁材料及/ 或基板之至少一者必須選擇光透射性材料。在適用於本發明之 光壓印光刻,則在基板上塗布奈米壓印用硬化性組成物,然後 將光透射性模仁按壓於其上,並從模仁背面照射光,使得奈米 -40- 201006660 壓印用硬化性組成物硬化。此外,也可在光透射性基板上塗布 奈米壓印用硬化性組成物,然後將模仁按壓於其上,並從模仁 背面照射光,使得奈米壓印用硬化性組成物硬化。 光照射可在附著模仁之狀態下進行、或經剝離模仁後進行 ,但是在本發明中,則較佳爲在模仁仍然密著的狀態下進行。 可在本發明使用之模仁係使用具有欲轉印的圖案之模仁&gt; 模仁可藉由例如光刻或電子射線描畫法等,並根據吾所欲加工 精確度進行形成圖案,但是在本發明中,則對於模仁圖案形成 ® 方法係並無特殊的限制。 在本發明可使用之光透射性模仁材料係並無特殊的限制, 只要其爲具有特定的強度、耐久性者即可。具體言之,例如, 玻璃、石英、PMMA (聚甲基丙烯酸甲酯)、聚碳酸酯樹脂等 之光透明性樹脂、透明金屬蒸鍍膜、聚二甲基矽氧烷等之柔軟 膜、光硬化膜、金屬膜等。 本發明在使用透明基板之情況時,則所使用之非光透射型 φ 模仁材料係並無特殊的限制,只要其爲具有特定的強度者即可 。具體言之,例如,陶瓷材料、蒸鍍膜、磁性膜、反射膜、Ni 、Cu、Cr、Fe等之金屬基板、SiC、矽、氮化矽、多晶矽、氧 化矽、非晶矽等之基板等,但是並無特殊的限制。形狀可爲板 狀模仁、輥狀模仁之任一者。輥狀模仁係適用於特別需要連續 生產性轉印之情形。 如上所述之可在本發明使用之模仁,爲提高奈米壓印用硬 化性組成物、與模仁之剝離性,則也可使用經施加脫模處理者 。經施加使用聚矽氧系或氟系等之矽烷偶合劑處理者,例如也 -41 - 201006660 適合使用大金工業股份有限公司製造:商品名OPTOOL DSX; 或住友3M股份有限公司製造:商品名N〇Vec EGC-1 720等之 市售之脫模劑。 一般而言,使用本發明來進行光壓印光刻時,模仁之壓力 較佳爲在10大氣壓以下進行。藉由採取模仁壓力爲10大氣壓 以下,則模仁或基板不容易變形且具有提高圖案精確度的傾向 ,此外,也由於所施加壓力低而具有可縮小裝置的傾向,因此 爲較佳。模仁之壓力較佳爲選擇在模仁凸部之奈米壓印用硬化 性組成物殘膜會變少範圍內,可確保模仁轉印均勻性之範圍。 本發明在進行光壓印光刻時的光照射,只要其爲比硬化所 需要之照射量爲足夠地大即可。硬化所需要之照射量係視奈米 壓印用硬化性組成物的不飽和鍵之消耗量或硬化膜之膠黏性而 定。 此外,在適用於本發明之光壓印光刻,進行光照射時之基 板溫度通常係在室溫下進行,但是爲提高反應性也可在一面加 熱一面照射光。在照射光之前階段,若控制爲真空狀態時,則 在例如防止氣泡混入、抑制由於氧氣混入而降低反應性、提高 模仁與奈米壓印用硬化性組成物之密著性上是有功效,因此可 在真空狀態下照射光。在本發明之較佳的真空度係從10·1 Pa 至常壓之範圍進行。 本發明之奈米壓印用硬化性組成物係藉由混合如上所述各 成份後,以例如孔徑爲〇·〇5 &quot;m至5.0/zm之濾網加以過濾’ 則可調製成溶液。奈米壓印用硬化性組成物之混合•溶解通常 係在〇°C至l〇〇°C之範圍進行。過濾係可以多階段方式進行、 -42- 201006660 或反復進行多次之方式。此外,也可將經過濾之液再加以過濾 。過濾所使用之材質係並無特殊的限制,可使用聚乙烯樹脂、 聚丙烯樹脂、氟樹脂、尼龍樹脂等者。 就將本發明之奈米壓印用硬化性組成物適用於鈾刻光阻時 之情況說明如下。蝕刻步驟係可在習知的蝕刻處理方法中適當 地選擇之方法實施,其係爲移除未經光阻圖案所覆蓋的基底部 份所實施,藉此則可獲得薄膜之圖案。其之方法可採取使用蝕 刻液的處理(濕式蝕刻)、或者在減壓下以電漿放電將反應性 氣體加以活性化處理(乾式蝕刻)中之任一者。 蝕刻處理係可匯集適當的片數集體處理之批式、或每一片 處理的單片處理。 進行如前所述之「濕式蝕刻」時所使用之蝕刻液,除了代 表性的氯化鐵/鹽酸系、鹽酸/硝酸系、氫溴酸系等以外,也開 發出許多種蝕刻液可付諸實務應用。亦即,對於Cr係使用硝 酸鈽銨溶液、或硝酸铈•過氧化氫溶液之混合液;對於Ti係 φ 使用稀釋氫氟酸、氫氟酸•硝酸之混合液;對於Ta係使用銨 溶液與過氧化氫溶液之混合液;對於Mo係使用過氧化氫溶液 、氨水·過氧化氫溶液之混合物、磷酸·硝酸之混合液;對於 MoW、A1係使用磷酸·硝酸之混合液、氫氟酸·硝酸之混合液 、磷酸.硝酸.醋酸之混合液;對於ITO係使用稀釋王水、氯 化鐵溶液、碘化氫溶液;對於SiNx或Si02係使用緩衝氫氟酸 、氫氟酸•氟化銨之混合液;對於Si、多晶矽係使用氫氟酸· 硝酸·醋酸之混合液;對於W係使用氨水.過氧化氫溶液之混 合液;對於PSG係使用硝酸•氫氟酸之混合液;對於BSG係 -43- 201006660 使用氫氟酸·氟化銨之混合液等。 「濕式蝕刻」係可爲噴淋方式或浸漬方式,但是由於蝕刻 率、面內均勻性、配線寬度之精確度係大幅度地相依於處理溫 度,因此條件必須根據基板種類、用途、線寬條件來加以最適 化。此外,在進行該濕式蝕刻時,則較佳爲施加後烘烤以防止 由於蝕刻液滲透造成之底切(under cut)現象。通常此等後烘 烤係在約90°C至140°C下進行,但是並不受限於此等。 _ 「乾式蝕刻」基本上是使用在真空裝置內具有一對平行配 ❹ 置之電極,而在一側的電極上設置基板之平行平板型乾式蝕刻 裝置。根據用於產生電漿之高頻電源係連接於設置基板之側的 電極、或連接於相反側電極,則可加以分類成主要由離子參與 之「反應性離子蝕刻(RIE)模式」及主要由自由基參與之「 電漿飩刻(PE)模式」。 可在該「乾式蝕刻」使用之「蝕刻劑氣體」係使用適合各 膜種之蝕刻劑氣體。亦即,對於a — Si/n+或s_ Si係使用四氟 ^ 化碳(氯)+氧、四氟化碳(六氟化硫)+氯化氫(氯);對 於a — SiNx係使用四氟化碳+氧;對於a — SiOx係使用四氟化 碳+氧、三氟化碳+氧;對於Ta係使用四氟化碳(六氟化硫 )+氧;對於MoTa/MoW係使用四氟化碳+氧;對於Cr係使 用氯+氧;對於A1係使用三氯化砸+氯 '溴化氫、溴化氫+ 氯、碘化氫等。在乾式蝕刻步驟,則有可能由於離子衝撃或熱 而導致光阻結構大幅度地變質之情況,並且也會對剝離性造成 影響。 就在蝕刻後,用於剝離下層基板轉印圖案所使用的光阻之 -44- 201006660 方法說明如下。剝離可藉由一些例如:以液移除(濕式剝離) 、或藉由在減壓下的氧氣之電漿放電加以氧化成氣體狀而移除 (乾式剝離/灰化)、或以臭氧和UV (紫外線)光加以氧化成 氣體狀而移除(乾式剝離/UV灰化)等之剝離方法以移除光阻 。剝離液則以氫氧化鈉水溶液、氫氧化鉀水溶液、臭氧溶解水 之水溶液系和胺與二甲基亞砸或N -甲基吡略啶酮之混合物的有 機溶劑系爲一般性習知者。後者之實例則以一乙醇胺/二甲基亞 颯混合物(重量混合比=7/3 )爲眾所皆知。 ❹ 光阻剝離速度係顯著地受到溫度•液量•時間•壓力等之 影響,但是可視基板i類、用途而加以最適化。在本發明中, 較佳爲在室溫至約i〇〇°c溫度之範圍浸泡基板(數分鐘至數十 分鐘)、並施加醋酸丁酯等之溶劑洗滌、水洗。從提高剝離液 本身之洗滌性、顆粒移除性、抗腐蝕性的觀點來考慮,則也可 僅施加水洗滌。水洗之較佳實例爲純水噴淋、乾燥則較佳爲風 刀乾燥。若在基板上暴露出非結晶質矽之情況時,由於在水與 ^ 空氣之存在下會形成氧化膜,因此較佳爲遮斷空氣。此外,也 可適用藉由倂用灰化與化學藥液的剝離之方法。「灰化」係包 括;電漿灰化、下向流式灰化、使用臭氧之灰化、UV/臭氧灰 化。例如以乾式蝕刻加工A1基板時,一般使用氯系之氣體’ 但是卻有可能由於氯與A1之反應產物的氯化鋁等而腐蝕A1之 情形。爲防止此等問題,則也可使用含有防腐劑之剝離液。 除了如前所述之蝕刻步驟、剝離步驟、洗滌步驟、水洗以 外之其他步驟係並無特殊的限制,可從習知的圖案形成步驟中 適當地選擇使用。例如,硬化處理步驟等。此等係可一種單獨 -45- 201006660 使用、或其兩種以上倂用。硬化處理步驟係並無特殊的限制’ 可視目的而適當地選擇,例如,可選擇全面加熱處理或全面曝 光處理等。 如前所述「全面加熱處理」之方法係例如將所形成的圖案 加熱之方法。藉由全面加熱,則可提高該圖案表面之膜強度。 全面加熱時之加熱溫度係較佳爲80至200°C,更佳爲90至 180°C。若控制該加熱溫度爲80°C以上時,則有更進一步提高 經加熱處理之膜強度的傾向,若控制爲200°C以下時,則可更 有效地抑制由於奈米壓印用硬化性組成物中之成份發生分解而 導致膜質變得脆弱的傾向。用於實施該全面加熱之裝置係並無 特殊的限制,可從習知的裝置中根據目的而適當地選擇,例如 ,乾燥烘箱、熱板、IR (紅外線)加熱器等。此外,使用熱板 時,則較佳爲在經形成圖案的基材由平板浮起之狀態下進行以 達成均勻的加熱。 如前所述「全面曝光處理」之方法係例如將所形成的圖案 之全面加以曝光之方法。藉由全面曝光,由於形成如前所述感 光層的組成物中之硬化將獲得促進,使得該圖案之表面硬化, 因此可提高耐蝕刻性。用於實施該全面曝光之裝置係並無特殊 的限制,可視目的適當地選擇,例如可選擇超髙壓水銀燈等之 UV曝光機。 《實施例》 茲以實施例更具體說明本發明如下。根據在下列實施例所 列舉材料、使用量、比例、處理內容、處理次序等當可在不脫 離本發明精神範圍內尙可作各種之變化。因此,本發明之範圍 -46- 201006660 並不受限於如下所例示具體實例之限制。 〔實施例1〕 精確稱取:(a)作爲單官能聚合性化合物之29.22克之 N-乙烯基己內醯胺(Aldrich公司製造)與68.18克之丙烯酸苯 甲酯(大阪有機化學工業股份有限公司(Osaka Organic Chemical Industry Ltd.)製造之 VISCOAT #160 ) 、(b)作爲 光聚合引發劑之2.10克之2,4,6-三甲基苯甲醯基-乙氧基苯基-氧化膦(BASF公司製造之Lucirin TPO-L) ( P-1 ) ' ( 〇作 爲聚矽氧樹脂之0.50克之反應性聚矽氧(信越化學工業股份有 限公司製造之XX-22- 164A),並在室溫下混合2小時,以製 成均勻溶液,組成物之黏度爲3 mPa· s。 將所調製得之組成物在經形成膜厚爲2,000 A之鋁(A1) 被膜的4英寸之玻璃基板(0.7 mm厚度)上加以旋轉塗布成厚 度爲3#m。將經旋轉塗布的塗布基膜放置於ORC公司製造之 以高壓水銀燈(燈功率爲2,000 mW/cm2)爲光源之奈米壓印裝 置上,然後在模仁加壓力爲0.8 kN、曝光中之真空度爲1〇 Torr下,從模仁背面以100 mJ/cm2之條件曝光。此時之模仁 係使用具有20 y m之線/間距圖案、溝深爲2.0 /z m、且經以使 用氟系氣體的電漿施加過表面處理之玻璃作爲材質之模仁。曝 光後、移除模仁以獲得光阻圖案,接著,以磷硝酸蝕刻劑移除 未經光阻所被覆的鋁(A1 )部,以形成以鋁(A1 )製造之電極 圖案。並且,在70°C之一乙醇胺/NMP ( N-甲基吡咯啶酮)混 合剝離液中浸漬處理1 〇分鐘以剝離模仁。 〔實施例2至12、比較例1至2〕 -47- 201006660 根據表1所示而變化組成,並實施與實施例1相同的步驟 〇 對於以上之實施例1至13及比較例1至2之各奈米壓印 用硬化性組成物,進行下列之測定及評估。 〈黏度測定〉 黏度之測定係使用東機產業股份有限公司(Toki Sangyo Co., Ltd.)製造之RE-80L型旋轉黏度計在25±0.2°C下測定。 測定時之旋轉速度係根據測定對象物之黏度而加以變化》 參 亦即,若係0.5 mPa. s以上、小於5 mPa· s時,則在100 rpm;若係5 mPa· s以上、小於10 mPa. s時,則在50 rpm; 若係10 mPa· s以上、小於30 mPa· s時,則在20 rpm;若係 30 mPa. s以上、小於60 mPa· s時,則在10 rpm;若係60 mPa. s以上、小於120 mPa · s時,則在5 rpm進行測定。 〈光硬化性〉 以FT-IR在氮氣大氣下測定由於光照射的雙鍵之810 cnT1 φ 的吸收,並將雙鍵之消耗率作爲反應率。然後,光硬化性係以 下列基準進行評估: A: 反應率爲70%以上、100%以下; B: 反應率爲40%以上、小於70% ; C: 反應率爲小於40%。 〈旋轉塗布適性〉· 在經形成膜厚爲2,00 0 A之鋁(A1)被膜的4英寸之0.7 mm厚度的玻璃基板上,將奈米壓印用硬化性組成物以旋轉塗 布成厚度爲3.0/zm後,將該玻璃基板靜置1分鐘,然後觀察 48- 201006660 表面狀態,且以下列基準進行評估: A: 未觀察到塗布液彈撥(cissing)與塗布條紋( coating line)(線痕:striation); B: 稍微觀察到塗布條紋; C: 顯著地觀察到塗布液彈撥或塗布條紋。 〈狹縫塗布適性〉 在經形成膜厚爲2,000 A之鋁(A1)被膜的4英寸之〇.7 mm厚度的玻璃基板( 550 mm X 650 mm)上,使用大型基板塗 布用之狹縫式光阻塗布裝置(平田機工股份有限公司(Hirata Corp.)製造之Head Coat er System)塗布奈米壓印用硬化性組 成物,形成膜厚爲3.0 之光阻被膜,然後,觀察有無出現 於縱橫方向之條紋狀不均勻,且以下列基準進行評估: A: 未觀察到條紋狀不均勻; B: 稍微觀察到條紋狀不均勻; C: 顯著地觀察到條紋狀不均勻,或在光阻被膜觀察到 塗布液彈撥。 〈圖案形成性〉 使用具有20;am之線/間距圖案、溝深爲2.0μιη、且以經 使用氟系氣體的電漿表面處理過的玻璃作爲材質之模仁,在經 形成膜厚爲2,000 Α之鋁(Α1)被膜的4英寸之玻璃基板(0.7 mm厚度)上將光阻塗設成3/zm,然後在300 mJ/cm2之曝光量 的條件下進行光壓印。然後,剝離模仁,然後以光學顯微鏡、 掃描型電子顯微鏡觀察基板上之圖案,且以下列基準加以評估 -49- 201006660 A : 與 模仁之 圖 案 形狀之 根源 的原 版之圖案大致相同; B : 有與模仁 之 圖 案 形狀 之根 源的 原版之圖案一部份不 同 之部分 ( 與 原 版之 圖案 少於 20處之範圍); C : 明 顯地與 模 仁 之 圖案 形狀 之根 源的原版之圖案不同 9 或圖案 之 膜 厚 與原 版之 圖案 不同有20處以上: D : 光 反應率 或 塗 布 適性 (C0 atability )之評估爲C, 且 無法評估 圖 案 形成 性。 〈對於模仁之附著性〉 © 使用具有20 v m之線/間距圖案、溝深爲2.0// m、且以經 使用氟系氣體的電漿表面處理過的玻璃作爲材質之模仁,在經 形成膜厚爲2,000 A之鋁(A1)被膜的4英寸之玻璃基板(0.7 mm厚度)上將光阻塗設成3/zm,然後,反復進行100次光壓 印。經1 00次的光硬化後剝離模仁時,以目視、以及光學顯微 鏡觀察是否具有硬化膜或未硬化物殘留於模仁與模仁之形狀變 化,然後以下列基準進行評估。此外,在光壓印時之曝光量係 ^ 設定於 300 mJ/cm2。 A: 無殘留物,模仁也無形狀變化; B: 可稍微觀察到殘留物,但是模仁並無形狀變化: C: 有殘留物,且在模仁發生彎曲等之形狀變化; D: 光反應率或塗布適性評估爲C,且無法評估對於模 仁之附著性。 〈光硬化後之基板密著性〉 參考 JIS K 5600-5-6 (正交切割法(cross-cut method)) t準則來評估基材密著性。在矽晶圓上將光阻塗布成使得硬化 -50- 201006660 後之膜厚爲3/zm後,在未壓著模仁及氮氣大氣下,以300 mJ/crn2之曝光量加以曝光以獲得硬化膜。在該硬化膜加工 10x10方格數之1 mm X 1 mm之正交方格切痕圖案。在方格圖 案 貼 上膠 黏帶 後 ,以 60 度 之角 度 撕 下膠黏帶。以 目視計數觀 測 rsi 圖 案剝 離之 方 格數 目, 且 以下 列 基 準進行評估。 若所觀測到 圖 案 剝離 的方 格 數目 之數 愈 少, 則 表: 示基材密著性: 愈佳。 A : 觀 測 到剝 離的 方 格數 巨 爲 0至少於5 ; B : 觀 測 到剝 離的 方格數 爲 5以上至少於 50 ; C : 觀 測 到剝 離的 方 格數 巨 爲 5 0以上; D : 光 反 應率 或塗 布 適性 評 估 爲C,且無法評估光硬化 後 之 基板 密著 性 0 〈鈾刻性〉 在經形成於玻璃基板的如前所述之鋁(A1 )上以圖案狀形 成奈米壓印用硬化性組成物,並加以硬化後,以磷硝酸蝕刻劑 蝕刻鋁薄膜後,以目視及光學顯微鏡觀察20 # m之線/間距, φ 且以下列基準進行評估: A: 獲得線寬爲2 0±2.0/zm之鋁線; B : 變成線之線寬不均勻性超過±2.0 // m.之線; C: 線有缺損部份,或線間連接著; D : 光反應率或塗布適性評估爲C,且無法評估蝕刻性 〇 〈光阻剝離性〉 在經形成於玻璃基板的如前所述之鋁(A1)上以3/zrn膜 厚形成奈米壓印用硬化性組成物,並在氮氣大氣下,以300 -51- 201006660 mJ/cm2加以光硬化後,浸漬於50°C之N-甲基吡咯啶酮中歷時 1 〇分鐘,經水洗、乾燥後,以目視及光學顯微鏡觀察基板表面 ,且以下列基準進行評估: A : 在 基板上未觀 察 到 光 阻 殘 留 物 1 B : 在 基板上稍微 觀 察 到 光 阻 殘 留物; C : 光 阻未完全移 除 t D : 光 反應率或塗 布 適 性 之 評 估 爲 C,且無法評估光阻 剝 離性。 以上 之測 定及評估結 果 係 匯 集 如 表 1 所示。 -52- 201006660 I嗽Solutions, Inc. Manufacturing); trade name FTERGENT FT 250, FT 251, DFX18 (manufactured by NEOS Co., Ltd.): trade name UNIDYNE DS-401, DS-403, DS-451 (all are Daikin Industrial shares) Ltd. (Daikin Industries, Ltd. )) MEGAFAC refers to "Fluorine-based surfactants" such as 171, 172, 173, 178K, and 178A (all manufactured by Dainippon Ink and Chemicals, Inc.). Among these, polyoxyalkylene polystyrene phenyl ether or a perfluoro group-containing oligomer or the like is preferable. An antioxidant The nanoimprinting curable composition of the present invention may contain a conventional antioxidant. The amount of the antioxidant which can be used in the present invention is, for example, 0 relative to the total amount of the φ of the polymerizable compound. 01 to 10% by mass, preferably 0. 2 to 5 mass%. When two or more kinds of antioxidants are used, the total amount thereof is as described above. As described above, the antioxidant is used for suppressing discoloration due to heat or light irradiation and fading due to various oxidizing gases such as ozone, active oxygen, NOX, SOx (X is an integer), and the like. In particular, in the present invention, by adding an antioxidant, there is an advantage that the curing film is prevented from being colored or the film thickness due to decomposition is reduced. These "antioxidants" include: mercapto hydrazines, sterically hindered amine antioxidants, nitrogen-containing heterocyclic thiol-based compounds, thioether-based antioxidants, sterically hindered phenolic antioxidants, ascorbic acid, Zinc sulfate, thiocyanate, thiourea derivative, saccharide, -26-201006660 nitrite, sulfite, thiosulfate, hydroxylamine derivative, and the like. Among them, a sterically hindered phenol-based antioxidant or a thioether-based antioxidant is preferred from the viewpoint of coloring and film thickness reduction of the cured film. Commercial products such as "antioxidants" mentioned above include: trade name IRGANOX 1010, 1035, 1076, 12 22 (above is Ciba-Geigy Corp.) ))) ANTIGENE P, 3C, FR, SUMILIZER S, SUMILIZER GA80 (Sumitomo Chemical Co., Ltd.) ,Ltd. ) Manufacturing); trade name Φ ADK STAB AO70, AO80, AO5 03 (made by ADEKA). These systems can be used alone or in combination. .  _ Solvent 1 The curable composition for nanoimprint of the present invention may contain a solvent depending on various needs. The solvent is preferably an organic solvent. However, the content of the organic solvent is preferably 3% by mass or less based on the total composition. In other words, the curable composition for nanoimprint of the present invention contains a monofunctional polymerizable compound as a reactive diluent φ agent, and does not necessarily need to contain a curable composition for dissolving the nanoimprint of the present invention. The organic solvent of the ingredients. Further, if the organic solvent is not contained, since the baking step for the purpose of volatilization of the solvent is no longer required, the advantage of simplifying the process is large. Therefore, the content of the organic solvent in the curable composition for nanoimprinting of the present invention is preferably 3% by mass or less, more preferably 2% by mass or less, and particularly preferably not contained. In the case where the curable composition for nanoimprinting of the present invention does not necessarily contain an organic solvent, for example, it is intended to dissolve the compound or the like as a curable composition for nanoimprinting of the present invention. Or if the viscosity is to be finely adjusted, the reactive diluent may be added arbitrarily, and is suitable for use in the nanoimprinting of the present invention. -27-201006660 The type of the organic solvent of the curable composition is a hardening composition for nanoimprinting. A solvent generally used for the object or the photoresist, and there is no particular limitation as long as it is a compound which can be used for dissolving and uniformly dispersing the compound used in the present invention, and is not required to react with such components. . As described above, the "organic solvent" includes, for example, "alcohols" such as methanol and ethanol, and "ethers" such as tetrahydrofuran: ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, and ethylene glycol. "Glycol ethers" such as methyl ethyl ether and ethylene glycol monoethyl ether: "ethylene glycol oxime acetate, ethyl celecoxib acetate, etc." Diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether "Diethylene glycol"; "propylene glycol alkyl ether acetate" such as propylene glycol methyl ether acetate or propylene glycol ethyl ether acetate: "aromatic hydrocarbons" such as toluene and xylene; acetone, A "ketones" such as ethyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, 2-heptanone; ethyl 2-hydroxypropionate, 2-hydroxy-2-methyl Methyl propionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-2-methylbutanoate, 3-methoxy Methyl propionate, ethyl 3-methoxypropionate, 3-ethoxy Methyl propionate, ethyl 3-ethoxypropionate, ethyl acetate ester, butyl acetate, methyl lactate, ethyl lactate, etc. "acid ester", etc. The "esters" and the like. Furthermore, it is also possible to add: Ν-methylformamide, hydrazine, hydrazine-dimethylformamide, hydrazine-methylformamide, hydrazine-methylacetamide, hydrazine, hydrazine-dimethyl ethane Indamine, Ν-methylpyrrolidone, dimethyl hydrazine, benzyl ethyl ether, dihexyl ether, acetone acetone, isophorone, hexanoic acid, octanoic acid, 1-octanol, 1-indole Alcohol, benzyl alcohol, benzyl acetate, ethyl benzoate, oxalic acid diethyl acetonate, diethyl succinate, butyl -28-201006660 lactone, ethyl carbonate, propyl carbonate, acetic acid "High boiling point solvent" such as phenyl racelus. These may be used alone or in combination of two or more. Among them, particularly preferred are methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, and cyclohexane. Ketone, methyl isobutyl ketone, 2-heptanone, and the like. Further, in the curable composition for nanoimprinting of the present invention, water may be contained, but the content thereof is preferably 2. 0% by mass or less, more preferably 1. 5 mass%, further preferably 1. 0% by mass or less. By controlling the amount of water during the modulation is 2. When the content is 0% by mass or less, the storage stability of the curable composition for nanoimprinting of the present invention can be made more stable. — Sensitizer — (d) Sensitizer A sensitizer may be added to the curable composition for nanoimprint of the present invention. By adding a sensitizer, the wavelength absorbance in the UV range can be adjusted. A typical "sensitizer" suitable for use in the present invention includes: in Crivello (J.  V.  Crivello, Adv.  In Polymer Sci. , 62,1 ( 1984 )), specifically, including: 芘, 茈, acridine orange, oxysulfuron, 2-oxathiazide, comet, benzoflavin, N -vinylcarbazole, 9,10-dibutoxyanthracene, hydrazine, coumarin, ketocoumarin, phenanthrene, camphorquinone, morphine derivative, and the like. In the curable composition for nanoimprinting of the present invention, the content ratio of the sensitizer is preferably from 全体 to 5. 0% by mass, more preferably 〇·1 to 5. 0% by mass, further preferably 0. 2 to 2. 0% by mass. By setting the content of the sensitizer to 0. When the amount is 1% by mass or more, the effect of the sensitizer can be more effectively exhibited. Further, by setting the sensitizer content to 5% by mass or less, the deterioration of the dissolution or the liquid stability can be suppressed. -Organic Metal Coupling Agent - In the curable composition for nanoimprinting of the present invention, it is also adjustable in order to improve the heat resistance, strength, or adhesion to the metal deposition layer of the surface structure having the fine uneven pattern. Organometallic coupling agent. Further, the organometallic coupling agent is also effective because it has an effect of promoting a thermosetting reaction. As the "organic metal coupling agent", various coupling agents such as a decane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a tin coupling agent can be used. The "decane coupling agent" used in the curable composition for nanoimprinting of the present invention includes, for example, vinyl trichlorodecane, vinyl ginseng (yS-methoxyethoxy) decane, vinyl triethyl ethane. "Vinyl decane" such as oxydecane or vinyltrimethoxydecane; r-methacryloxypropyltrimethoxydecane, 7-methacryloxypropylmethyldimethoxydecane "Acrylic decane"; 々-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, r-glycidoxypropyltrimethoxydecane, r-glycidoxy "Epoxy decane" such as propylmethyldiethoxy decane; ~--(aminoethyl)-r-aminopropyltrimethoxydecane, N-wan-(aminoethyl)- "Amino decane" such as τ•aminopropylmethyldimethoxydecane, r-aminopropyltrimethoxydecane, fluorenyl-phenyl-γ-aminopropyltrimethoxydecane: and others The "decane coupling agent" includes r-hydrothiopropyltrimethoxydecane, r-chloropropylmethyldimethoxydecane, and r-chloropropylmethyldiethoxydecane. The "titanium coupling agent" includes, for example, isopropyl triisostearate isopropyl titanate, isopropyl dodecylbenzenesulfonyl titanate, and bis(dioctylpyridinium) titanium. 30- 201006660 Isopropyl acrylate, bis(dioctylphosphonium) tetraisopropyl titanate, bis(di-tridecylphosphonium) tetraoctyl titanate, bis(di-tride) Alkyl) phosphinium titanate tetrakis(2,2-diallyloxymethyl) titanate, bis(dioctylpyranosyl)oxyacetate, titanate bis(dioctyl) Equivalent ethyl ester, trioctyl isopropyl titanate, dimethyl methacrylate isostearyl isopropyl titanate, isostearyl decyl bis decyl strontium titanate , tris(dioctylphosphonium) isopropyl titanate, isopropyl triisopropylphenyl phenyl titanate, isopropyl tris(N-aminoethyl-aminoethyl) titanate, benzene Dioxyphenyl hydroxyacetate titanate, diisostearyl titanate, and the like. "鍩 coupling agent" includes, for example, tetra-n-propoxy oxychromium, tetra-butoxy chromium, acetophenonic acid tetraethylene chromic acid, bis(ethyl ketone ketone acid) dibutoxy fluorene, Tributyloxyethyl zirconate acetate, butoxyethyl acetophenate bis(ethinylacetate ethyl) chromium, and the like. The "aluminum coupling agent" includes, for example, aluminum isopropylate, mono- and peroxyaluminum diisopropylate, aluminum di-butyrate, acetyl chloride, ethyl aluminum diacetate diacetate , ginseng (ethyl ethyl acetoacetate), aluminum alkyl acetoacetate diacetate, ethyl acetoacetate, bis(ethyl acetoxyethyl) aluminum, ginseng (acetamidoacetate) Base) aluminum and the like. The organometallic coupler is as described above in the total amount of solid components of the hardenable composition for nanoimprinting. The ratio of 001 to 10% by mass is arbitrarily adjusted. By setting the ratio of the organometallic coupling agent to 0. When the amount is 001% by mass or more, the heat resistance, the strength, and the adhesion to the vapor deposition layer tend to be more effective. On the other hand, when the ratio of the organic metal coupling agent is 10% by mass or less, it tends to suppress the stability of the composition and the film-forming property from -31 to 201006660, which is preferable. _Polymerization inhibitor - In the curable composition for nanoimprint of the present invention, a polymerization inhibitor can be formulated to improve storage stability and the like. As the "polymerization inhibitor", for example, "phenols" such as hydroquinone, tertiary butyl hydroquinone, catechol, and hydroquinone monomethyl ether can be used: "benzoquinone, diphenyl phenylhydrazine, etc." Class": morphine traps; and copper. The total amount of the polymerization inhibitor relative to the hardenable composition for nanoimprinting is preferably arbitrarily 0. Between 001 and 10% by mass. - Ultraviolet absorber - The curable composition for nanoimprint of the present invention can also be formulated with an ultraviolet absorber. Commercial products of "UV absorber" include: TINUVIN P, 234, 3 20, 326, 327, 328, 213 (above is manufactured by Ciba Specialty Chemicals Co., Ltd.); SUMISORB 110, 130, 140, 220, 250 , 300, 320, 340, 350, 400 (above is manufactured by Sumitomo Chemical Industries Co., Ltd.). The total amount of the ultraviolet absorber relative to the hardenable composition for nanoimprinting is preferably arbitrarily 0. Proportion of 01 to 10% by mass. A light stabilizer 1 The curable composition for nanoimprint of the present invention can also be formulated with a light stabilizer. Commercial products of "Light Stabilizer" include: TINUVIN 292, 144, 62 2LD (made by Ciba Specialty Chemicals Co., Ltd.): SANOL LS-770, 765, 292, 2626, 1114, 744 (above Sankyo Chemical Industries Co., Ltd. ,Ltd. ) Manufacturing) and so on. The total amount of the light stabilizer relative to the composition is preferably 0. 0 to 10% by mass ratio -32- 201006660 Example. —Anti-Deterioration Agent 1 The curable composition for nanoimprint of the present invention can also be formulated with an anti-deterioration agent. Commercially available products of "anti-deterioration agent" include: antigene W, S, P, 3C, 6C, RD-G, FR, AW (the above is manufactured by Sumitomo Chemical Industries Co., Ltd.). The anti-deterioration agent is preferably 〇 with respect to the total amount of the composition. 〇 1 to 10% by mass ratio. A plasticizer 1 The hardenable composition for nanoimprint of the present invention can also be formulated with a plasticizer. In the curable composition for nanoimprint of the present invention, a plasticizer may be added in order to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like. Specific examples of preferred "plasticizers" include, for example, dioctyl phthalate, dodecyl phthalate, triethylene glycol dioctanoate, dimethylethylene phthalate Alcohol ester, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triethylene glyceryl glycerol, dimethyl adipate, diethyl adipate, adipate di(n-di-butyl) Ester), dimethyl suberate, diethyl suberate, di(n-butyl) suberate, and the like. The plasticizer may be arbitrarily added in an amount of 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less. If it is desired to obtain the additive effect of the plasticizer, it is preferably 〇.  1% by mass. - adhesion promoter - The curable composition for nanoimprinting of the present invention is also provided with an adhesion promoter. In the curable composition for nanoimprint of the present invention, the adhesion to the substrate is adjusted. A adhesion promoter may also be added. "Adhesion promoter (33-201006660 accelerator)" can be used: benzimidazoles or polybenzimidazoles, substituted pyridine derivatives with lower hydroxyalkyl groups, nitrogen-containing heterocyclic compounds, urea or thiourea, Organophosphorus compound, 8-oxyquinoline, 4-hydroxyacridine, 1,1 quinone-morpholine, 2,2'-bipyridine derivative, benzotriazole, organophosphorus compound and phenylene Amine compound, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethylethanolamine and derivatives thereof, benzothiazole derivatives, etc. . The adhesion promoter is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less in the composition. If it is desired to obtain the adhesion promoting effect of the sputum, it is preferably 〇.  1% by mass or more. A thermal polymerization initiator - The curable composition for nanoimprint of the present invention can also be formulated with a thermal polymerization initiator. When the curable composition for nanoimprinting of the present invention is cured, a thermal polymerization initiator may be added as needed. Preferred "thermal polymerization initiators" include, for example, peroxides and azo compounds. Specific examples thereof include a benzamidine-based φ oxide, a tertiary-butyl peroxybenzoate, azobisisobutyronitrile, and the like. A coloring agent _ The curable composition for nanoimprinting of the present invention can also be formulated with a coloring agent. In the curable composition for nanoimprinting of the present invention, a coloring agent can be arbitrarily added for the purpose of improving the visibility of the coating film and the like. The coloring agent can be used for a pigment or dye used in a composition for a UV inkjet composition, a color filter, and a composition for a CCD (Charge Coupled Device) image sensor, without departing from the object of the present invention. . As the pigment which can be used in the present invention, various conventional inorganic pigments or organic pigments can be used. The "inorganic pigment" is a metal compound represented by a metal oxide or a metal -34 - 201006660 mismatched salt. Specifically, it includes metal oxides of metal such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, lanthanum, and metal composite oxides. "Organic Pigments" include: C. I. Pigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139, 151, 154, 167; C. I. Pigment orange 36, 38, 43; C. I. Pigment red 105, 122, 149, 150, 155, 171, 175, 176, 177, 209; C. I. Pigment violet 19, 23, 32, 39; C_I. Pigment blue 1, 2, 15, 16, 22, 60, 66; C. I. Pigment Green 7,36,37; C. I. Pigment brown 25, 28; C. I. Pigment black 1, 7 and carbon black. ❿ 塡 一 本 本 本 本 本 本 本 本 本 本 本 本 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈In the curable composition for nanoimprinting of the present invention, a crucible may be added as an optional component for the purpose of improving the heat resistance, mechanical strength, adhesiveness, and the like of the coating film. The inorganic fine particle system is used in a size that belongs to ultrafine particles. Here, the ultrafine particles are submicron-sized particles, which means smaller than the particle diameter of particles having a particle diameter of from several to zm to several hundred, which are generally referred to as "microparticles". The specific size of the inorganic fine particles used in the present invention may vary depending on the use and grade of the optical article used for the hardenable composition for nanoimprinting, but it is generally preferred to use a primary particle. The diameter is in the range of 1 nm to 300 nm. When the primary particle diameter is 1 nm or more, the plasticity, shape retention, and mold release property of the curable composition for nanoimprinting can be sufficiently improved, and when the primary particle diameter is 300 nm or less In addition, the transparency necessary for the hardening resin can be maintained, so that it is preferable in terms of transparency. Specific examples of the inorganic fine particles include metal oxide fine particles of Si〇2, TiO2, Zr〇2, Sn02, ai2o3, etc., and are preferably selected from among these to be dispersible into a colloidal shape as described in -35-201006660 and For those having a submicron particle size, it is particularly preferable to use colloidal cerium oxide (Si〇2) fine particles. The inorganic fine particle system is preferably blended in a total amount of solid components of the curable composition for nanoimprinting in a ratio of from 1 to 70% by mass, particularly preferably from 1 to 50% by mass. When the ratio of the inorganic fine particles is set to 1% by mass or more, the formability, shape retention property, and mold release property of the curable composition for nanoimprint of the present invention can be sufficiently improved, and after exposure hardening From the viewpoint of the strength or the surface hardness, the ratio of the inorganic fine particles is preferably 70% by mass or less. - Elastomeric Particles - The curable composition for nanoimprinting of the present invention is also capable of blending elastomer particles. In addition, the curable composition for nanoimprint of the present invention has improved mechanical strength, flexibility, and the like. Alternatively, an elastomer particle may be added as an optional component. The hardenable composition for nanoimprinting of the present invention may be added as an optional component. The elastomeric particle system preferably has an average particle diameter of 10 nm to 700. Nano, preferably 30 to 300 nm. For example, polybutadiene, polyisoprene, butadiene/acrylonitrile copolymer, styrene/butadiene copolymer, styrene/isoprene copolymer, ethylene/propylene copolymer , ethylene/α-olefin copolymer, ethylene/α-olefin/polyene copolymer, acrylic rubber, butadiene/(meth)acrylate copolymer, styrene/butadiene block Polymer, styrene/isoprene block copolymer, and other "elastomer" particles. Further, core/shell type particles in which the elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate/glycidyl methacrylate copolymer or the like may be used. Elasticity -36- 201006660 The bulk particle system may also have a crosslinked structure. Commercial products of "elastomer particles" include, for example, REGINOUS BOND RKB (Reginous Chemical Industries Co., Ltd. Manufacturing), TECHNO MBS-61, MBS-69 (above is Techno Polymer Co.) , Ltd.  Manufacturing) and so on. These elastomer particles may be used singly or in combination of two or more. The content of the elastomer component in the curable composition for nanoimprinting of the present invention is preferably from 1 to 35 mass%, more preferably from 2 to 30 mass%, particularly preferably from 3 to 20 mass%. - Basic compound 1 In the curable composition for nanoimprint of the present invention, a basic compound may be added in an arbitrary amount for the purpose of suppressing the curing shrinkage, the heat stability of the coating, and the like. The "basic compound" includes a nitrogen-containing heterocyclic compound such as an amine, quinoline or quinoline, a basic alkali metal compound, and an alkaline alkaline earth metal compound. Among these, from the viewpoint of compatibility with a photopolymerizable monomer, amines such as octylamine, naphthylamine, xylenediamine, and dinonylbenzyl are preferable. Amine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, trioctylamine, tetramethylethylenediamine, tetramethyl -1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine. (Preparation of composition) The curable composition for nanoimprint of the present invention can be prepared by mixing the above components. Further, after mixing the components as described above, for example, the pore diameter may be 0. 05 //m to 5. A 0/zm filter was filtered to prepare a solution. The mixing/dissolving system of the hardenable composition for light nanoimprinting is usually carried out in the range of 0 ° C to 100 -37 to 201006660 °c. The filtration system can be carried out in a multi-stage manner or several times. In addition, the filtered liquid can be filtered again. The material of the filter used for the filtration may be a polyethylene resin, a polypropylene resin, a fluororesin, a nylon resin or the like, but is not particularly limited. In the curable composition for nanoimprinting of the present invention, the viscosity of the component other than the solvent at 25 ° C is preferably from 1 to 100 mPa·s. More preferably 2 to 50 mPa.  s, further preferably 5 to 30 mPa · s. By controlling the viscosity in an appropriate range, the rectangularity of the pattern can be improved, and the residual film can be suppressed from being low. The curable composition for nanoimprint of the present invention prepared as described above is excellent in coatability, and it is not easy to cause defects during spin coating or slit coating. Further, it has low viscosity, high light reaction rate, and excellent pattern formation property in nanoimprint lithography. Therefore, in the case of using an ITO film, a metal film, an insulating film, or a semiconductor (such as a germanium wafer), it is particularly excellent in adhesion of the photocured film/substrate after photohardening. Further, in the case where the curable composition for nanoimprinting of the present invention is photocured, the peeling property of the photoresist and the mold core is good, and the mold is not contaminated. At the same time, the wet etching property is good, and after the etching is applied, the photoresist can be easily peeled off, and the substrate surface after the photoresist is peeled off is not contaminated. [Pattern Forming Method] Next, a method of forming a pattern (particularly, a fine concavo-convex pattern) of the curable composition for nanoimprint of the present invention will be described below. In the present invention, the curable composition is applied and cured to form a pattern. Specifically, at least the pattern forming layer composed of the curable composition for nanoimprint of the present invention is applied onto the substrate or the support. Drying to form a layer (pattern forming layer) composed of a hardened-38-201006660 composition for nanoimprinting to form a pattern receiver, and then patterning the surface of the pattern acceptor The mold core is crimped, a transfer mold pattern is applied, and the fine uneven pattern formation layer is exposed to be cured. The photoimprint lithography system according to the pattern forming method of the present invention may be laminated or multi-patterned, or may be used in combination with general hot stamping. Further, in the application of the curable composition for nanoimprinting of the present invention, the curable composition for nanoimprint of the present invention is applied onto a substrate or a support, and a layer composed of the composition is applied. Exposure, hardening, and drying (baking) as needed, whereby a permanent film such as a surface coating or an insulating film can be produced. Hereinafter, the pattern forming method and the pattern transfer method of the curable composition for nanoimprint of the present invention will be described. The curable composition for nanoimprinting of the present invention can be a generally known "coating method", for example, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, and extrusion. The coating method is formed by a press coating method, a spin coating method, a narrow slit scanning method, or the like. The film thickness of the layer composed of the photocurable composition of the present invention varies depending on the use, but is usually 0. 03// m to 40 y m, preferably 0. 05/zm to 30/zm. Further, the hardening composition for nanoimprint of the present invention may also be subjected to multiple coating. The substrate or supporting system for coating the curable composition for nanoimprinting of the present invention is not particularly limited, and may be used: quartz, glass, optical film, ceramic material, vapor deposited film, magnetic film, reflective film, Polymer substrate, TFT array substrate, such as metal substrate, paper, SOG (spin-coated glass), polyester film, polycarbonate film, polyimide film, etc. Electrode of PDP-39-201006660 Substrate for semiconductor manufacturing such as plate, glass or transparent plastic substrate, conductive substrate such as ITO or metal, insulating substrate, tantalum, tantalum nitride, polysilicon, yttrium oxide, or amorphous germanium The shape of the substrate may be a plate shape or a roll shape. The light system used for curing the curable composition for nanoimprinting of the present invention is not particularly limited, but high energy ionizing radiation, near ultraviolet rays, and far can be used. Light or radiation of wavelengths in the ultraviolet, visible, infrared, etc. "High-energy ionizing radiation sources" include, for example, the Cockcroft type accelerator and the Van de Graaff type. Electron ray accelerated by accelerators such as linear accelerators, betatrons, and cyclotrons is the most convenient and cost-effective in the industry, but can be used by others. Radiation of r-rays, X-rays, alpha rays, neutron rays, proton rays, etc. emitted by radioactive isotope elements or atomic furnaces, etc. "UV sources" include, for example, ultraviolet fluorescent lamps, low-pressure mercury lamps, high-pressure mercury lamps, Ultra-high pressure mercury lamp, xenon lamp, carbon arc lamp, solar lamp, etc. "radiation" includes, for example, microwave, EUV. φ In addition, LED, semiconductor laser light, or 248 nm KrF excimer laser light is also suitable for use in the present invention. Or a 193 nm ArF excimer laser or the like for use in semiconductor microfabrication, such as monochromatic light, or a plurality of different wavelengths of light (mixed light) may be used. Description of the mold core material used in the present invention. Photon imprint lithography using the hardenable composition for nanoimprint of the present invention At least one of the mold material and/or the substrate must select a light transmissive material. In the photoimprint lithography suitable for the present invention, a hardenable composition for nanoimprint is applied onto the substrate, and then the light transmissive property is applied. The mold core is pressed thereon, and the light is irradiated from the back of the mold to harden the hardening composition of the nano-40-201006660 imprint. In addition, the hardenability composition of the nano imprint can be coated on the light transmissive substrate. Then, the mold core is pressed thereon, and the light is irradiated from the back surface of the mold to harden the nano-imprinted hardenable composition. The light irradiation can be carried out in the state of attaching the mold core or after peeling off the mold core. However, in the present invention, it is preferred to carry out the state in which the mold core is still adhered. The mold core which can be used in the present invention is a mold core having a pattern to be transferred. The mold core can be patterned by, for example, photolithography or electron beam drawing, and according to the precision of the processing, but in the case of In the present invention, there is no particular limitation on the mold patterning method method. The light-transmitting mold core material which can be used in the present invention is not particularly limited as long as it has specific strength and durability. Specifically, for example, a light-transparent resin such as glass, quartz, PMMA (polymethyl methacrylate) or polycarbonate resin, a transparent metal vapor-deposited film, a soft film such as polydimethyl siloxane, or photohardening Film, metal film, etc. In the case where a transparent substrate is used in the present invention, the non-light transmitting type φ mold material used is not particularly limited as long as it has a specific strength. Specifically, for example, a ceramic material, a vapor deposited film, a magnetic film, a reflective film, a metal substrate such as Ni, Cu, Cr, or Fe, a substrate such as SiC, tantalum, tantalum nitride, polycrystalline germanium, germanium oxide, or amorphous germanium, etc. , but there are no special restrictions. The shape may be any of a plate-shaped mold core and a roll-shaped mold. Roller molds are suitable for situations where continuous production transfer is particularly desirable. As the above-mentioned mold core which can be used in the present invention, in order to improve the peeling property of the hardening composition for nanoimprinting and the mold, it is also possible to use a mold release treatment. For treatment with a decane coupling agent using a polyfluorene-based or fluorine-based method, for example, -41 - 201006660 is suitable for use in Daikin Industries Co., Ltd.: trade name OPTOOL DSX; or Sumitomo 3M Co., Ltd.: trade name N市Vec EGC-1 720 and other commercially available release agents. In general, when photoimprint lithography is carried out using the present invention, the pressure of the mold core is preferably carried out at 10 atmospheres or less. When the pressure of the mold is 10 atmospheres or less, the mold or the substrate is not easily deformed, and the pattern accuracy tends to be improved. Further, since the applied pressure is low, the apparatus tends to be reduced, which is preferable. The pressure of the mold core is preferably selected to be within a range in which the residual film of the hardenable composition for nanoimprinting in the convex portion of the mold is reduced, and the uniformity of the transfer of the mold can be ensured. The light irradiation at the time of performing photoimprint lithography of the present invention is sufficient as long as it is sufficiently larger than the amount of irradiation required for curing. The amount of irradiation required for hardening depends on the consumption of the unsaturated bond of the curable composition for nanoimprinting or the adhesiveness of the cured film. Further, in the photoimprint lithography applicable to the present invention, the substrate temperature at the time of light irradiation is usually carried out at room temperature, but it is also possible to illuminate the surface while heating to improve the reactivity. In the stage before the irradiation of light, if it is controlled to be in a vacuum state, for example, it is effective in preventing the incorporation of air bubbles, suppressing the decrease in reactivity due to the incorporation of oxygen, and improving the adhesion between the mold core and the curable composition for nanoimprinting. Therefore, the light can be irradiated under vacuum. The preferred degree of vacuum in the present invention is from the range of 10·1 Pa to atmospheric pressure. The hardening composition for nanoimprint of the present invention is obtained by mixing the above components, for example, with a pore diameter of 〇·〇5 &quot;m to 5. The 0/zm filter is filtered to make it a solution. The mixing and dissolution of the hardenable composition for nanoimprinting is usually carried out in the range of 〇 ° C to l 〇〇 ° C. The filtration system can be carried out in a multi-stage manner, -42-201006660 or repeated several times. Alternatively, the filtered liquid can be filtered again. The material used for the filtration is not particularly limited, and a polyethylene resin, a polypropylene resin, a fluororesin, a nylon resin or the like can be used. The case where the curable composition for nanoimprinting of the present invention is applied to uranium engraved photoresist will be described below. The etching step can be carried out by a method suitably selected in a conventional etching treatment method, which is carried out by removing a portion of the substrate covered by the photoresist pattern, whereby a pattern of the film can be obtained. The method may be either a treatment using an etching solution (wet etching) or an activation treatment (dry etching) of a reactive gas by plasma discharge under reduced pressure. The etching process can be used to assemble a suitable number of batches of collective processing, or a single piece of processing per wafer. In addition to the representative ferric chloride/hydrochloric acid, hydrochloric acid/nitric acid, hydrobromic acid, etc., the etching liquid used in the "wet etching" described above has been developed. Practical applications. That is, a mixture of ammonium cerium nitrate solution or cerium nitrate/hydrogen peroxide solution is used for the Cr system; a mixed solution of hydrofluoric acid, hydrofluoric acid and nitric acid is used for the Ti system φ; and an ammonium solution is used for the Ta system. a mixture of hydrogen peroxide solution; a mixture of hydrogen peroxide solution, ammonia water and hydrogen peroxide solution, and a mixture of phosphoric acid and nitric acid; and a mixture of phosphoric acid and nitric acid and hydrofluoric acid for MoW and A1. Mixture of nitric acid, phosphoric acid. Nitric acid. a mixture of acetic acid; a dilute aqua regia, a ferric chloride solution, or a hydrogen iodide solution for ITO; a buffered hydrofluoric acid, a mixture of hydrofluoric acid and ammonium fluoride for SiNx or SiO 2; for Si, polycrystalline lanthanide Use a mixture of hydrofluoric acid, nitric acid and acetic acid; use ammonia for W system. A mixed solution of hydrogen peroxide solution; a mixed solution of nitric acid and hydrofluoric acid for PSG; a mixed solution of hydrofluoric acid and ammonium fluoride for BSG-43-201006660. The "wet etching" may be a shower method or a immersion method, but since the etching rate, in-plane uniformity, and wiring width accuracy are largely dependent on the processing temperature, the conditions must be based on the substrate type, use, and line width. Conditions to optimize. Further, in the case of performing the wet etching, post-baking is preferably applied to prevent an undercut phenomenon due to penetration of the etching liquid. Usually, these post-baking is carried out at about 90 ° C to 140 ° C, but is not limited thereto. _ "Dry etching" is basically a parallel plate type dry etching apparatus in which a pair of parallel electrodes are arranged in a vacuum apparatus and a substrate is provided on one side of the electrodes. According to the electrode for connecting the high-frequency power source for generating plasma to the side of the substrate, or to the electrode for the opposite side, it can be classified into a "reactive ion etching (RIE) mode mainly involving ions and mainly by Free radicals participate in the "plasma engraving (PE) mode". An etchant gas suitable for each film type can be used for the "etching agent gas" used in the "dry etching". That is, for a-Si/n+ or s_Si system, tetrafluorocarbon (chlorine) + oxygen, carbon tetrafluoride (sulfur hexafluoride) + hydrogen chloride (chlorine) is used; for a-SiNx system, tetrafluorination is used. Carbon + oxygen; for a - SiOx system using carbon tetrafluoride + oxygen, carbon trifluoride + oxygen; for Ta series using carbon tetrafluoride (sulfur hexafluoride) + oxygen; for MoTa / MoW system using tetrafluorination Carbon + oxygen; chlorine + oxygen for Cr; and antimony trichloride + chlorine 'hydrogen bromide, hydrogen bromide + chlorine, hydrogen iodide, etc. for A1. In the dry etching step, there is a possibility that the photoresist structure is largely deteriorated due to ion rushing or heat, and the peeling property is also affected. The method for peeling off the photoresist used for the transfer pattern of the underlying substrate after etching is described as follows. Peeling may be removed by some means, for example, by liquid removal (wet stripping), or by oxidizing to a gas by plasma discharge of oxygen under reduced pressure (dry stripping/ashing), or by ozone and UV (ultraviolet) light is oxidized to a gas state to remove (dry peeling/UV ashing) or the like to remove the photoresist. The stripping solution is a conventional solvent in which an aqueous solution of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ozone-dissolved water, and a mixture of an amine and dimethyl hydrazine or N-methylpyridinone are used. The latter example is well known as a mixture of monoethanolamine/dimethyl hydrazine (weight ratio = 7/3). ❹ The photoresist peeling speed is significantly affected by temperature, liquid volume, time, pressure, etc., but it can be optimized depending on the type I and use of the substrate. In the present invention, it is preferred to soak the substrate (minutes to several tens of minutes) at a temperature ranging from room temperature to about i〇〇°c, and apply a solvent such as butyl acetate to wash and wash with water. From the viewpoint of improving the washing property, the particle removability, and the corrosion resistance of the peeling liquid itself, it is also possible to apply only water washing. A preferred example of water washing is pure water spraying, and drying is preferably air knife drying. When an amorphous ruthenium is exposed on the substrate, since an oxide film is formed in the presence of water and air, it is preferable to block the air. Further, a method of detaching by ashing and chemical liquid can be applied. "ashing" includes: plasma ashing, downflow ashing, ozone ashing, UV/ozone ashing. For example, when the A1 substrate is processed by dry etching, a chlorine-based gas is generally used, but there is a possibility that A1 is corroded by aluminum chloride or the like of a reaction product of chlorine and A1. To prevent these problems, a peeling solution containing a preservative can also be used. The other steps than the etching step, the stripping step, the washing step, and the water washing as described above are not particularly limited, and may be appropriately selected from the conventional pattern forming steps. For example, a hardening treatment step or the like. These can be used alone -45-201006660, or two or more thereof. The hardening treatment step is not particularly limited, and may be appropriately selected depending on the purpose, and for example, a full heat treatment or a full exposure treatment may be selected. The method of "total heat treatment" as described above is, for example, a method of heating the formed pattern. By full heating, the film strength of the surface of the pattern can be increased. The heating temperature at the time of full heating is preferably from 80 to 200 ° C, more preferably from 90 to 180 ° C. When the heating temperature is controlled to 80° C. or higher, the strength of the film subjected to heat treatment tends to be further increased. When the temperature is controlled to 200° C. or less, the curable composition for nanoimprinting can be more effectively suppressed. The decomposition of the ingredients in the material tends to cause the film to become weak. The apparatus for carrying out the overall heating is not particularly limited, and may be appropriately selected depending on the purpose from a conventional apparatus, for example, a drying oven, a hot plate, an IR (infrared) heater or the like. Further, when a hot plate is used, it is preferred to carry out uniform heating in a state where the patterned substrate is floated by the flat plate. The method of "full exposure processing" as described above is, for example, a method of exposing the entire pattern to be formed. By the full exposure, since the hardening in the composition for forming the photosensitive layer as described above is promoted, the surface of the pattern is hardened, so that the etching resistance can be improved. The apparatus for carrying out the full exposure is not particularly limited and may be appropriately selected depending on the purpose, and for example, a UV exposure machine such as an ultra-pressurized mercury lamp may be selected. <<Embodiment>> The present invention will be more specifically described by way of examples. The materials, the amounts, the ratios, the processing contents, the processing order, and the like, which are listed in the following examples, can be variously changed without departing from the spirit and scope of the invention. Therefore, the scope of the present invention -46-201006660 is not limited by the specific examples exemplified below. [Example 1] Accurately weighed: (a) as a monofunctional polymerizable compound. 22 grams of N-vinyl caprolactam (manufactured by Aldrich) and 68. 18 grams of benzyl acrylate (Osaka Organic Chemical Industry Ltd.) ) manufactured VISCOAT #160), (b) as a photopolymerization initiator. 10 g of 2,4,6-trimethylbenzylidene-ethoxyphenyl-phosphine oxide (Lucirin TPO-L manufactured by BASF) (P-1) ' (〇为聚矽氧氧的 0. 50 g of reactive polyfluorene (XX-22-164A manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed at room temperature for 2 hours to prepare a homogeneous solution having a viscosity of 3 mPa·s. The prepared composition was placed on a 4-inch glass substrate formed of an aluminum (A1) film having a film thickness of 2,000 A (0. The thickness of 7 mm was spin-coated to a thickness of 3 #m. The spin-coated coated base film was placed on a nanoimprinting apparatus manufactured by ORC Co., Ltd. using a high-pressure mercury lamp (lamp power of 2,000 mW/cm2) as a light source, and then the pressure was applied to the mold. 8 kN, the vacuum in the exposure was 1 Torr, and exposed from the back of the mold at 100 mJ/cm2. At this time, the mold core has a line/pitch pattern of 20 y m and a groove depth of 2. 0 / z m, and a surface treated glass is used as a material for the mold by using a plasma of a fluorine-based gas. After the exposure, the mold was removed to obtain a photoresist pattern, and then the aluminum (A1) portion which was not coated with the photoresist was removed with a phosphorus-nitric acid etchant to form an electrode pattern made of aluminum (A1). Further, the mixture was immersed in an ethanolamine/NMP (N-methylpyrrolidone) mixed stripping solution at 70 ° C for 1 minute to peel off the mold. [Examples 2 to 12, Comparative Examples 1 to 2] -47 - 201006660 The composition was changed as shown in Table 1, and the same procedures as in Example 1 were carried out. For the above Examples 1 to 13 and Comparative Examples 1 to 2 The hardening composition for each nanoimprint was subjected to the following measurement and evaluation. <Viscosity measurement> The viscosity is measured using Toki Sangyo Co., Ltd. (Toki Sangyo Co.) , Ltd. The manufactured RE-80L rotary viscometer is at 25±0. Measured at 2 °C. The rotation speed at the time of measurement is changed according to the viscosity of the object to be measured", that is, if it is 0. 5 mPa.  s or more, less than 5 mPa·s, at 100 rpm; if it is 5 mPa·s or more, less than 10 mPa.  s is at 50 rpm; if it is 10 mPa·s or more and less than 30 mPa·s, it is at 20 rpm; if it is 30 mPa.  Above s, less than 60 mPa·s, at 10 rpm; if 60 mPa.  When s or more and less than 120 mPa · s, the measurement is performed at 5 rpm. <Photocurability> The absorption of 810 cnT1 φ by the double bond of light irradiation was measured by FT-IR in a nitrogen atmosphere, and the consumption rate of the double bond was taken as the reaction rate. Then, the photocurability was evaluated on the following basis: A: The reaction rate was 70% or more and 100% or less; B: The reaction rate was 40% or more and less than 70%; C: The reaction rate was less than 40%. <Rotary coating suitability> · 4 inches of aluminum (A1) film formed with a film thickness of 2,00 0 A. On a glass substrate having a thickness of 7 mm, the hardening composition for nanoimprinting was spin-coated to a thickness of 3. After 0/zm, the glass substrate was allowed to stand for 1 minute, and then the surface state of 48-201006660 was observed and evaluated on the following basis: A: No coating cissing and coating line (line mark) was observed. :striation); B: Coating streaks were slightly observed; C: Coating plucking or coating streaks were observed remarkably. <Slit coating suitability> 4 inches after the aluminum (A1) film having a film thickness of 2,000 A is formed. On a 7 mm thick glass substrate (550 mm X 650 mm), a slit type photoresist coating device for large substrate coating (Hirata Corp.) The manufactured Head Coat er System) is coated with a hardening composition for nanoimprinting to form a film thickness of 3. The photoresist of 0 was observed, and then the presence or absence of streaky unevenness in the longitudinal and lateral directions was observed and evaluated on the following basis: A: no streaky unevenness was observed; B: streaky unevenness was observed slightly; C: significant Stripe unevenness was observed in the ground, or the coating liquid plucked was observed in the photoresist film. <Pattern Formability> A line/pitch pattern having 20; am is used, and the groove depth is 2. A 4 inch glass substrate having a thickness of 2,000 Å of aluminum (Α1) film formed by using a glass surface treated with a plasma of a fluorine-based gas as a material. The photoresist was applied to 3/zm at a thickness of 7 mm and then optically imprinted at an exposure of 300 mJ/cm2. Then, the mold core was peeled off, and then the pattern on the substrate was observed with an optical microscope and a scanning electron microscope, and evaluated on the following basis -49-201006660 A: The pattern of the original plate which is the source of the pattern shape of the mold core is substantially the same; B: Yes a part different from the original pattern of the root of the pattern shape of the mold core (less than 20 in the original pattern); C : obviously different from the original pattern of the pattern shape of the mold core 9 or the pattern The film thickness differs from the original pattern by more than 20: D: The evaluation of the photoreaction rate or the coating suitability (C0 atability) is C, and the pattern formation property cannot be evaluated. <Adhesion to the mold core> © Use a line/pitch pattern of 20 v m with a groove depth of 2. 0//m, and a glass of a surface treated with a plasma of a fluorine-based gas as a material, a 4-inch glass substrate having a film thickness of 2,000 A (A1) film (0. The photoresist was applied to 3/zm at a thickness of 7 mm, and then 100 times of photolithography was repeated. After peeling the mold core after 100 times of photohardening, it was visually observed and optical microscopically observed whether or not the cured film or the uncured material remained in the shape of the mold and the mold, and then evaluated on the following basis. In addition, the exposure amount at the time of photoimprinting is set at 300 mJ/cm2. A: No residue, no change in shape of the mold; B: The residue can be observed slightly, but the shape of the mold has no shape change: C: There is residue, and the shape changes in the mold, etc.; D: Photoreaction The rate or coating suitability was evaluated as C, and the adhesion to the mold kernel could not be evaluated. <Substrate Adhesion after Photohardening> The substrate adhesion was evaluated by referring to JIS K 5600-5-6 (cross-cut method) t criterion. The photoresist is coated on the germanium wafer so that the film thickness after hardening -50-201006660 is 3/zm, and exposure is performed at a exposure amount of 300 mJ/crn2 without pressing the mold and nitrogen atmosphere to obtain hardening. membrane. An orthogonal square cut pattern of 1 mm X 1 mm of 10 x 10 squares was processed in the cured film. After attaching the adhesive tape to the grid pattern, remove the adhesive tape at an angle of 60 degrees. Observe the number of squares of the rsi pattern peeled off by visual inspection, and the following columns are used for evaluation. If the number of squares in which the pattern is peeled off is observed, the table shows: substrate adhesion: the better. A : The number of squares observed to be peeled off is 0 to be at least 5; B: the number of squares observed to be peeled is 5 or more and at least 50; C: the number of squares observed to be peeled off is 50 or more; D : light The reaction rate or coating suitability was evaluated as C, and the substrate adhesion after photohardening could not be evaluated. 0 [Uranium engraving] The nano-pressure was formed in a pattern on the aluminum (A1) formed on the glass substrate as described above. After the hardening composition was printed and hardened, the aluminum film was etched with a phosphorus-nitric acid etchant, and the line/space of 20 #m was observed by visual and optical microscopy, φ and evaluated on the following basis: A: The line width was obtained. 2 0±2. 0/zm aluminum wire; B: line width unevenness exceeding ±2. 0 // m. C: The line has a defect, or the line is connected; D: The light response rate or coating suitability is evaluated as C, and the etching property cannot be evaluated. <Resistance peeling> Before being formed on the glass substrate The aluminum (A1) is formed into a hardenable composition for nanoimprinting at a film thickness of 3/zrn, and is photohardened at 300 -51 to 201006660 mJ/cm 2 under a nitrogen atmosphere, and then immersed at 50 ° C. The N-methylpyrrolidone was allowed to stand for 1 minute, washed with water, and dried, and the surface of the substrate was observed by a visual and optical microscope and evaluated on the following basis: A: No photoresist residue was observed on the substrate 1 B : A photoresist residue was slightly observed on the substrate; C: The photoresist was not completely removed t D : The light reaction rate or coating suitability was evaluated as C, and the photoresist peeling property could not be evaluated. The above survey and evaluation results are summarized in Table 1. -52- 201006660 I嗽

am s〇 〇〇 SO 67.44 〇 ΓΠ ο (N Ο 〇 〇 寸 cr\ &lt; &lt; &lt; QQ CQ u 03 U u 85.00 12.40 ο (N 沄 Ο 〇 ΓΛ &lt; CQ &lt; QQ U υ CQ 03 o 寅施 例13 1 28.60 1 66.80 g CS Ο «Ν 沄 ο '-Ο ο &lt; &lt; &lt; &lt; CQ OQ &lt; QQ 實施 例12 v〇 00 73.84 〇 ιτΐ Ο (Ν 沄 ο 〇 〇 rs m &lt; &lt; &lt; &lt; CQ CQ &lt; 03 m 握= κ荽 | 29.22 63.18 ο ΙΛί Ο (Ν s ο »Λ &lt; &lt; &lt; ffl &lt; &lt; &lt; QQ &lt; 闺2 〇\ 76.24 〇 (S Ο Η s ο 〇 〇 cn rn &lt; &lt; &lt; &lt; CQ PQ &lt; CQ QQ 掲二 | 29.22 68.18 ο (Ν s ο &lt; &lt; &lt; &lt; CQ &lt; &lt; &lt; &lt; «莩 1 29.22 ! 6818 Ο ts 沄 ο ro CS &lt; &lt; &lt; &lt; CQ &lt; m m m 97.40 1 沄 ο 〇 〇 »Λ H QQ &lt; &lt; &lt; &lt; QQ &lt; ffl CQ 握乏 W匡 | 19.40 77.90 ο &lt;s 沄 ο 〇 d rn &lt; &lt; &lt; &lt; &lt; CQ C &lt; &lt; | 29.22 : 68.18 ο fS 沄 ο o 〇〇 &lt; QQ &lt; &lt; &lt; &lt; &lt; &lt; «匡 | 29.22 | 68.18 ο (Ν s ο so \d &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; 辑二 «S | 29.22 ! 68.18 Ο (Ν’ g ο »n rn &lt; &lt; &lt; &lt; QQ &lt; &lt; &lt; «5 | 48.70 48.70 Ο ri 沄 ο V&quot;&gt; vd &lt; m &lt; &lt; &lt; &lt; &lt; m &lt; 握二 «匡 | 29.22 1 68.18 ο ίΝ s ο o rn &lt; OQ &lt; &lt; &lt; &lt; CQ &lt; &lt; I N-乙嫌基己內酿胺(Aldrich公司) | 1丙烯醣基嗎啉(acmo:興人公司) 1 1 N_乙烯基甲醣胺(Beam-set770:荒川化學公司) | 1 N-乙烯基耻咯陡銅(曰本觸媒公司) | 丙烯酸苯甲酯(VISCOAT#160:大阪有機化學工業公司 ) 丙烯酸異莰酯(LIGHT ACRYLATE IB-ΧΑ:共榮社化學 公司) 避 fr S MW 鹽* II Η 21¾ 4竖 ttil-K K1 .. ri, 2 II ES 2-丙烯醯氧基乙基號拍酸(HOA-MS:共榮社化學公司 ) X 5 nJ s-/ SSiff a« \\m ii a* 6 &lt; HI ^ 城1 ω 截i百 裝fc Kg II 5 1S in ta 账 § § X 疆 避 m κ m s- ϋ-HI litT 褰觥 ΚΗ li!«* ό .S 1 m ¥ 擀 爾 m Κ) «1 鱷 擀陌 m&lt;A s- λ )1,1^ ^ oa ^ .. &lt;N hJ 丨反應性聚矽氧(Χ-22-164Α:信越化學工業公司) | 非離子系界面活性劑(PAIONIND6112W:竹本油脂公 司) | 黏度(mPa.s、25〇C) 1 1光硬化性 1 旋轉塗布適性 1 狹縫塗布適性 1 圖案形成性 1 對於模仁之附著性 1 基板密着 1 蝕刻性 1 光阻剝離性 1 綜合評估 1 m η 光聚合 引發劑 I聚矽氧| 界面活 性劑 1 。πίίΜ伥裆长嗽蓽创-欢驾。(S)职脈赵赃^蘅#1胆晅晻,蘅龌Γ兩,蘅餾ιιπηφ嵌宋,0酹:拋裝 ά- 201006660 由表1之結果即可明白,本發明之奈米壓印用硬化性 組成物係黏度低、在照射光時則以高反應率硬化、適合於 旋轉塗布或狹縫塗布、可用於形成微細的圖案、對於模仁 之附著已受到抑制、光硬化後對於基板之密著性髙、具有 優越的蝕刻性、且光阻之剝離容易。 此外,經製造由實施例3、5、6之奈米壓印用硬化性 組成物僅排除聚矽氧樹脂的組成物並加以評估結果,皆得 到比較對應的實施例爲旋轉塗布適性、狹縫塗布適性、圖 案形成性、對於模仁之附著性、鈾刻性、光阻剝離性爲差 之結果。尤其是對應於實施例5之組成物,則基板密著性 也更差,由以上結果,可確認到藉由使用聚矽氧樹脂,則 可獲得更進一步良好的奈米壓印用硬化性組成物。 並且,作爲含有長鏈烷基羧酸或其之金屬鹽的化合物 之實例而取代硬脂酸鋅爲實施例6之聚矽氧來製造奈米壓 印用硬化性組成物並加以評估結果,也獲得與實施例6相 Α 同的結果。Am s〇〇〇SO 67.44 〇ΓΠ ο (N Ο 〇〇cr\ &lt;&lt;&lt;&lt; QQ CQ u 03 U u 85.00 12.40 ο (N 沄Ο 〇ΓΛ &lt; CQ &lt; QQ U υ CQ 03 o Example 13 1 28.60 1 66.80 g CS Ο «Ν 沄ο '-Ο ο &lt;&lt;&lt;&lt;&lt; CQ OQ &lt; QQ Example 12 v〇00 73.84 〇ιτΐ Ο (Ν 沄ο 〇〇rs m &lt;&lt;&lt;&lt;&lt; CQ CQ &lt; 03 m grip = κ荽 | 29.22 63.18 ο ΙΛί Ο (Ν s ο »Λ &lt;&lt;&lt; ffl &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt; 闺2 〇\ 76.24 〇(S Ο Η s ο 〇〇cn rn &lt;&lt;&lt;&lt; CQ PQ &lt; CQ QQ 掲二 | 29.22 68.18 ο (Ν s ο &lt;&lt;&lt;&lt; CQ &lt;&lt;&lt;&lt; «莩1 29.22 ! 6818 Ο ts 沄ο ro CS &lt;&lt;&lt;&lt; CQ &lt; mmm 97.40 1 沄ο 〇〇»Λ H QQ &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt; Grip W匡| 19.40 77.90 ο &lt;s 沄ο 〇d rn &lt;&lt;&lt;&lt;&lt; CQ C &lt;&lt; | 29.22 : 68.18 ο fS 沄ο o 〇〇&lt; QQ &lt;&lt;&lt;&lt;&lt;&lt;&lt;& «匡| 29.22 | 68.18 ο (Ν s ο so \d &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&&&&&&&&&&&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp; »n rn &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; «匡| 29.22 1 68.18 ο ίΝ s ο o rn &lt; OQ &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt;&lt;&lt;&lt;&gt;&lt;&lt;&lt;&gt; Acmo: Xingren Company) 1 1 N_vinyl methamine (Beam-set770: Arakawa Chemical Co., Ltd.) | 1 N-vinyl yoghurt steep copper (曰本触媒公司) | Benzyl acrylate (VISCOAT#160 : Osaka Organic Chemical Industry Co., Ltd.) phthalocyanine acrylate (LIGHT ACRYLATE IB-ΧΑ: Kyoeisha Chemical Co., Ltd.) Avoiding fr S MW Salt* II Η 213⁄4 4 Vertical ttil-K K1 .. ri, 2 II ES 2-Acrylonitrile Oxyethyl ethyl ketone acid (HOA-MS: Kyoeisha Chemical Co., Ltd.) X 5 nJ s-/ SSiff a« \\m ii a* 6 &lt; HI ^ City 1 ω truncated i hundred fc Kg II 5 1S In ta account § § X 避 避 m κ m s- ϋ-HI litT 褰觥ΚΗ l i!«* ό .S 1 m ¥ 擀尔 m Κ) «1 crocodile mm&lt;A s- λ )1,1^ ^ oa ^ .. &lt;N hJ 丨Reactive polyoxo (Χ-22 -164Α: Shin-Etsu Chemical Co., Ltd.) | Non-ionic surfactant (PAIONIND6112W: Takemoto Oil Co., Ltd.) | Viscosity (mPa.s, 25〇C) 1 1 Photocuring 1 Rotating coating suitability 1 Slit coating suitability 1 Pattern formation Properties 1 Adhesion to the mold core 1 Substrate adhesion 1 Etchability 1 Photoresist peelability 1 Comprehensive evaluation 1 m η Photopolymerization initiator I polyfluorene | Surfactant 1 . ίίίΜ伥裆长嗽荜创-欢欢. (S) 职脉赵赃^蘅#1 胆晅, 蘅龌Γ二, 蘅 ι ιιπηφ embedded song, 0酹: throwing ά - 201006660 It can be understood from the results of Table 1 that the nanoimprint of the present invention The curable composition has low viscosity, is hardened with high reaction rate when irradiated with light, is suitable for spin coating or slit coating, can be used to form fine patterns, has been inhibited from adhesion to the mold core, and is cured for the substrate after photohardening. The adhesiveness is excellent, the etching property is excellent, and the peeling of the photoresist is easy. Further, the curable composition for nanoimprinting of Examples 3, 5, and 6 was produced, and only the composition of the polyoxynoxy resin was excluded, and the results were evaluated, and the corresponding examples were obtained as spin coating suitability and slit. The coating suitability, pattern formability, adhesion to the mold core, uranium engraving property, and photoresist peeling property were poor. In particular, in the case of the composition of Example 5, the substrate adhesion was also inferior. From the above results, it was confirmed that a more excellent hardenability composition for nanoimprinting can be obtained by using a polyoxyxylene resin. Things. Further, as an example of a compound containing a long-chain alkyl carboxylic acid or a metal salt thereof, zinc stearate is substituted for the polyfluorene oxide of Example 6, and a curable composition for nanoimprinting is produced and evaluated. The same results as in Example 6 were obtained.

W 〔產業上之利用可能性〕 本發明之奈米壓印用硬化性組成物係可作爲在製造如 下所述各構件時,用於形成微細圖案所需之光奈米壓印光 阻組成物而廣泛使用於各式各樣的用途上。該各構件係包 括:例如,半導體積體電路、平面螢幕、微機電系統( MEMS)、感測器元件、光碟、高密度記憶體磁碟等之磁 記錄媒體、繞射光柵或製版全像片等之光學構件、奈米裝 置、光學裝置、用於製造平型面板顯示器之光學薄膜或偏 -54- 201006660 有機電晶體、彩色濾 肋材、微透鏡陣列、 應器、奈米生物裝置 光元件、液晶顯示器之薄膜電晶體、 光片、表塗層、柱材、液晶配向用之 免疫分析晶片、DNA分離晶片、微β 、光波導、光學濾光片、光子液晶等 【圖式簡單說明】 Μ 〇 【主要元件符號說明】W [Industrial Applicability] The curable composition for nanoimprint of the present invention can be used as a photon imprinting resist composition required for forming a fine pattern when manufacturing each member as described below. It is widely used in a wide variety of applications. The components include, for example, a semiconductor integrated circuit, a planar screen, a microelectromechanical system (MEMS), a sensor element, a magnetic recording medium such as a high-density memory disk, a diffraction grating, or a plate-making hologram. Optical components, nanodevices, optical devices, optical films for manufacturing flat panel displays or partial-54-201006660 organic transistors, color filter ribs, microlens arrays, reactors, nano-device optical components , thin film transistor for liquid crystal display, light sheet, surface coating, column, immunoassay wafer for liquid crystal alignment, DNA separation wafer, micro β, optical waveguide, optical filter, photonic liquid crystal, etc. [Simplified illustration] Μ 〇 [Main component symbol description]

-55--55-

Claims (1)

201006660 七、申請專利範圍: 1.—種奈米壓印用硬化性組成物,其係包含87質量%以上 之單官能聚合性化合物及光聚合引發劑。 2·如申請專利範圍第1項所述之奈米壓印用硬化性組成物 ’其係包含兩種以上之單官能聚合性化合物。 3 ·如申請專利範圍第2項之奈米壓印用硬化性組成物,其 在該兩種以上之單官能聚合性化合物之中,一種單官能 φ 聚合性化合物所具有的聚合性官能基係與其他之一種單 官能聚合性化合物所具有的聚合性官能基不同。 4.如申請專利範圍第2或3項之奈米壓印用硬化性組成物 ,其中該兩種以上之單官能聚合性化合物係至少包含: (1) 一種以上之丙烯酸酯化合物、與(2)丙烯醢胺化 合物或N-乙烯基化合物。 5·如申請專利範圍第1至4項中任一項之奈米壓印用硬化 性組成物,其中進一步包含聚矽氧樹脂。 φ 6.如申請專利範圍第1至5項中任一項之奈米壓印用硬化 性組成物,其中進一步包含長鏈烷基羧酸或其之金屬鹽 、或羧酸長鏈烷基酯。 7. 如申請專利範圍第1至6項中任一項之奈米壓印用硬化 性組成物,其中進一步包含非離子系界面活性劑。 8. 如申請專利範圍第1至7項中任一項之奈米壓印用硬化 性組成物,其在25°C之黏度爲2至40 mPa · s。 9. 一種圖案形成方法,其特徵爲適用於光奈米壓印光刻’ 且係包括:塗布如申請專利範圍第1至8項中任一項之 -56- 201006660 、 奈米壓印用硬化性組成物並加以硬化以形成膜厚爲0.03 至40ym之膜之步驟、以及在所形成之膜上形成圖案之 步驟。 10.—種光阻圖案形成方法,其係包括: 塗布如申請專利範圍第1或8項中任一項之奈米壓印 用硬化性組成物之步驟; 將光透射性模仁加壓於基板上之光阻層,使得該奈米 壓印用硬化性組成物變形之步驟;以及 ® 從模仁背面或基板背面照射光使得塗膜硬化,以形成 用於嵌合所欲之圖案的光阻圖案之步驟。 Φ -57- 201006660 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: Μ 〇 j\\\201006660 VII. Patent application range: 1. A curable composition for nanoimprinting, which comprises 87% by mass or more of a monofunctional polymerizable compound and a photopolymerization initiator. 2. The curable composition for nanoimprint described in the first aspect of the invention, which comprises two or more monofunctional polymerizable compounds. 3. The curable composition for nanoimprinting according to the second aspect of the invention, wherein the monofunctional φ polymerizable compound has a polymerizable functional group among the two or more monofunctional polymerizable compounds. It is different from the polymerizable functional group which the other monofunctional polymerizable compound has. 4. The curable composition for nanoimprinting according to claim 2, wherein the two or more monofunctional polymerizable compounds comprise at least: (1) one or more acrylate compounds, and (2) An acrylamide compound or an N-vinyl compound. The hardenable composition for nanoimprinting according to any one of claims 1 to 4, further comprising a polyoxynoxy resin. The sclerosing composition for nanoimprinting according to any one of claims 1 to 5, further comprising a long-chain alkyl carboxylic acid or a metal salt thereof, or a long-chain alkyl carboxylic acid ester . 7. The hardenable composition for nanoimprinting according to any one of claims 1 to 6, which further comprises a nonionic surfactant. 8. The hardenable composition for nanoimprinting according to any one of claims 1 to 7, which has a viscosity at 25 ° C of 2 to 40 mPa · s. 9. A pattern forming method, which is characterized by being suitable for photon imprint lithography&apos; and comprising: coating as described in any one of claims 1 to 8 - 56-201006660, hardening of nanoimprinting The step of hardening the composition to form a film having a film thickness of 0.03 to 40 μm, and forming a pattern on the formed film. 10. A method of forming a photoresist pattern, comprising: a step of coating a hardenable composition for nanoimprinting according to any one of claims 1 or 8; and pressurizing the light transmissive mold a photoresist layer on the substrate to deform the hardenable composition for the nanoimprint; and a light that is irradiated from the back of the mold or the back of the substrate to harden the coating to form a light for fitting the desired pattern The step of blocking the pattern. Φ -57- 201006660 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: Μ 〇 j\\\ 五 本案若有化學式時,請揭示最能顯示發明特徵的化學式:5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW098120195A 2008-06-18 2009-06-17 Curable composition for nanoimprint, pattern formation method TW201006660A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159203A JP2010000612A (en) 2008-06-18 2008-06-18 Nanoimprinting curable composition and pattern forming method

Publications (1)

Publication Number Publication Date
TW201006660A true TW201006660A (en) 2010-02-16

Family

ID=41483057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120195A TW201006660A (en) 2008-06-18 2009-06-17 Curable composition for nanoimprint, pattern formation method

Country Status (4)

Country Link
JP (1) JP2010000612A (en)
KR (1) KR20090131648A (en)
CN (1) CN101609255A (en)
TW (1) TW201006660A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084395A1 (en) * 2012-11-30 2014-06-05 Canon Kabushiki Kaisha Imprinting method and curable composition for imprinting
TWI611907B (en) * 2010-03-30 2018-01-21 富士軟片股份有限公司 Nanoimprinting method and method for producing a mold
TWI717379B (en) * 2015-08-26 2021-02-01 日商長瀨化成股份有限公司 Patterning material, patterning method, and patterning apparatus
TWI805865B (en) * 2019-03-22 2023-06-21 南韓商Lg化學股份有限公司 Stripper composition for removing photoresists and method for stripping photoresists using the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898952B2 (en) * 2009-03-24 2016-04-06 株式会社ダイセル Curable composition for nanoimprint and cured product
KR20110015304A (en) * 2009-08-07 2011-02-15 주식회사 동진쎄미켐 Photocurable resin composition for imprint lithography and manufacturing method of imprint mold using same
WO2011129005A1 (en) * 2010-04-15 2011-10-20 東洋合成工業株式会社 Photocurable composition for formation of resin pattern, and pattern formation method using same
JP2012030506A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Process for producing polymer member with rugged surface structure and polymer member
CN103052492B (en) 2010-08-06 2014-12-31 综研化学株式会社 Resin mold for nanoimprinting
US9399693B2 (en) 2011-01-13 2016-07-26 Maruzen Petrochemical Co., Ltd. Resin composition for photoimprinting, pattern forming process and etching mask
JP6108765B2 (en) * 2011-12-19 2017-04-05 キヤノン株式会社 Photocurable composition and pattern forming method
CN105210174B (en) * 2013-04-18 2018-01-30 日产化学工业株式会社 Impression materials
KR102047371B1 (en) * 2013-07-31 2019-11-21 동우 화인켐 주식회사 Colored Photosensitive Resin Composition, Color Filter, and Liquid Crystal Display Device Having the Same
KR101650740B1 (en) * 2014-09-15 2016-08-24 한국화학연구원 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same
AT516559B1 (en) * 2014-12-10 2017-12-15 Joanneum Res Forschungsgmbh A prepolymer composition comprising such composition and use thereof
JP6490194B2 (en) * 2015-03-31 2019-03-27 富士フイルム株式会社 Plating layer forming composition, plated layer precursor film, patterned film with plated layer, conductive film, touch panel
US11360387B2 (en) * 2017-08-04 2022-06-14 Rohm And Haas Electronic Materials Llc Silicon-containing underlayers
JP7120517B2 (en) * 2017-10-27 2022-08-17 エルジー・ケム・リミテッド Random copolymer and pinning composition containing the same
JPWO2019142528A1 (en) * 2018-01-19 2020-12-17 三井化学株式会社 A method for manufacturing an uneven structure, a laminate used in a method for producing an uneven structure, and a method for manufacturing the laminate.
TW202000801A (en) * 2018-06-14 2020-01-01 日商捷恩智股份有限公司 Polymerizable composition, ink, transfer matrix, and method for manufacturing electrode member
JP7064011B2 (en) * 2018-09-28 2022-05-09 富士フイルム株式会社 Curing composition for imprint, manufacturing method of curable composition for imprint, cured product, pattern manufacturing method and semiconductor device manufacturing method
JP7021710B2 (en) * 2018-12-21 2022-02-17 日産化学株式会社 Photocurable composition for imprint
CN110161620B (en) * 2019-07-09 2021-01-29 京东方科技集团股份有限公司 Backlight module, manufacturing method thereof and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084984A (en) * 2006-09-26 2008-04-10 Fujifilm Corp Photocuring composition for optical nano imprint lithography and pattern forming method employing it
JP5196933B2 (en) * 2006-09-27 2013-05-15 富士フイルム株式会社 Curable composition for optical nanoimprint lithography and pattern forming method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611907B (en) * 2010-03-30 2018-01-21 富士軟片股份有限公司 Nanoimprinting method and method for producing a mold
WO2014084395A1 (en) * 2012-11-30 2014-06-05 Canon Kabushiki Kaisha Imprinting method and curable composition for imprinting
TWI717379B (en) * 2015-08-26 2021-02-01 日商長瀨化成股份有限公司 Patterning material, patterning method, and patterning apparatus
TWI805865B (en) * 2019-03-22 2023-06-21 南韓商Lg化學股份有限公司 Stripper composition for removing photoresists and method for stripping photoresists using the same

Also Published As

Publication number Publication date
KR20090131648A (en) 2009-12-29
CN101609255A (en) 2009-12-23
JP2010000612A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
TW201006660A (en) Curable composition for nanoimprint, pattern formation method
JP5306903B2 (en) Curable composition for imprint, cured product using the same, method for producing the same, and member for liquid crystal display device
KR101603616B1 (en) Composition for imprints, pattern and patterning method
JP5243887B2 (en) Curable composition for nanoimprint and pattern forming method
JP2009215179A (en) (meth)acrylate compound, curable composition using the same, composition for optical nano imprinting, and cured products of these curable compositions and its manufacturing method
JP2014170949A (en) Curable composition for imprint, pattern formation method, and pattern
JP2009073078A (en) Curable composition for photo-nanoimprint and member for liquid crystal display using the same
JP2009206197A (en) Curable composition for nanoimprint, and cured body and manufacturing method thereof
JP2011124554A (en) Curable composition for imprint, patterning method and pattern
JP2008105414A (en) Curable composition for optical nano imprint lithography, and pattern forming method using it
TW201005431A (en) Curable composition for nanoimprint, curing object, manufacturing method thereof and member for liquid crystal display device
JP2010006870A (en) Curable composition for nanoimprinting, cured product and method for producing the same
JP2010013514A (en) Curable composition for nano-imprint, cured product using the same, and member for liquid crystal display device
JP2010067621A (en) Curable composition for nanoimprint, cured article, and method for producing same
JP2010113170A (en) Curable composition for optical imprint, cured product using the same, method for producing cured product, and member for liquid crystal display
JP2009203287A (en) Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display
JP2010114209A (en) Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2012094821A (en) Method of producing curable composition for imprint
JP2011231308A (en) Curable composition for imprint and method of producing polymerizable monomer for imprint
KR20090027169A (en) Curable composition for optical nanoimprint, a cured article and a method for making the same
JP5065209B2 (en) Curable composition for nanoimprint, cured product and method for producing the same
JP2009209337A (en) Curable composition for nanoimprint, cured material made using the same, method for producing the material, and member for liquid crystal display
JP5448589B2 (en) Pattern formation method
JP2010106185A (en) Curable composition for photo-imprint, and method for pattern formation using the same
JP2010118434A (en) Curable composition for optical nano-imprint, and cured material and manufacturing method for the same