TW200944774A - Electrodynamic vibration test equipment - Google Patents

Electrodynamic vibration test equipment Download PDF

Info

Publication number
TW200944774A
TW200944774A TW098113448A TW98113448A TW200944774A TW 200944774 A TW200944774 A TW 200944774A TW 098113448 A TW098113448 A TW 098113448A TW 98113448 A TW98113448 A TW 98113448A TW 200944774 A TW200944774 A TW 200944774A
Authority
TW
Taiwan
Prior art keywords
electric
actuator
movable
vibration test
movable block
Prior art date
Application number
TW098113448A
Other languages
Chinese (zh)
Inventor
Sigeru Matsumoto
Hiroshi Miyashita
Kazuhiro Murauchi
Masanobu Hasegawa
Original Assignee
Kokusai Keisokuki Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Keisokuki Kk filed Critical Kokusai Keisokuki Kk
Publication of TW200944774A publication Critical patent/TW200944774A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

Provided is an electrodynamic vibration test equipment which comprises: first and second electrodynamic actuators that can vibrate a table in first and second directions orthogonal to each other; a first coupling means for enabling the table to slide in the second direction with respect to the first electrodynamic actuator; and a second coupling means for enabling the table to slide in the first direction with respect to the second electrodynamic actuator. Each actuator can slide with respect to the table in the direction orthogonal to the vibration direction of the actuator, so that even when the table is vibrated by one of the actuators, since the table slides with respect to the other actuator, the other actuator is not displaced and the vibration direction of the other actuator is not changed. Thus, crosstalk does not occur, so that the electrodynamic vibration test equipment vibrates a table in orthogonal two-axis directions or three-axis directions.

Description

200944774 六、發明說明: 【發明所屬之技術領域】 動之馬繼檢體施加振 【先如技術】 ❹ ❹ ^泛利用喊於日本特2刪_21 振動測試裝置,其在指定方向= ==部安裝於固定工作 由對該可移動線圈供匕口於’其次藉 流之艏蛮桩如命去父机電流,而使工作台以交流電 由供給到可移動線圈^^試裝置如前述’因為係藉 以特別適於以數百〜數千赫兹以上之高 動時觀察以更複雜之振動波形使受檢體振 如!:進行此種測試,電動型振動測 褒^且為不僅疋如則述公報之—軸方向,還可在正交 t (Χ'Υ、Ζ軸方向)使受檢體振動。 ;疋’僅在玉作台連結三個電動型致動器的構成的情況 使個電動型致動器驅動時,在其他電動型致動器 驅動軸上施加彎曲轉矩而發生所謂串擾卜讎碰), 所以無法使受檢體在三軸方向振動。 3 200944774 【發明内容】 本發明係為了解決前述問題而形成者 。亦即,本私 明之目的,提供一種可對工作台及其上之受檢體施^ 振動於正父之一轴或三軸方向的電動型振動測試袭置。 為了達成前述目的,本發明之實施形態的電動 動測試裝置具有:第一及第二電動型致動器,其係可乂 別使工作台振動於彼此正交之第一及第二方向;第 結手段,其係可使工作台相對第一電動型致動器滑動於 第一方向,及第二連結手段,其係可使工作台相對第二 電動型致動器滑動於第一方向。 — 如此,在本發明之實施形態中,各致動器可對工作 台滑動於與該致動器之施加振動之方向正交的方向。因 而,即使以某個致動器使工作台振動,工作台亦相對其 他致動器滑動,因此雖然其他致動器移位,其他致動器 之施加振動之方向不致變化。因此,依據本發明之實施 形態,因為不發生串擾,所以實現使工作台在正交之二 軸或三軸方向振動的電動型振動測試裝置。 例如第一及第二連結手段分別具有配置於第一及 第二電動型致動器與前述工作台之間的中間載台 (stage),第一連結手段之中間載台僅在垂直於第一方: 的一個方向可相對工作台滑動’且僅在垂直於該一個方 向與第一方向兩者的方向可相對第一電動型致動器滑 動,第二連結手段之中間載台僅在垂直於第二方向的一 個方向可相對前述工作台滑動,且僅在垂直於該一個方 4 200944774 向與第二方向兩者的方向可相對第二電動型致動器滑 動。 第一連結手段之中間載台相對工作台及第一電動 型致動為可滑動之二個方向的一方宜-一 連結手段之中間載台相對工作台及且第係二第電-動方:上 可滑動之二個方向的一方宜係第一方向。200944774 VI. Description of the invention: [Technical field to which the invention belongs] The moving horse is subjected to vibration by the specimen [previously as technology] ❹ ❹ ^Using the use of the Japanese special 2 _21 vibration test device, which is in the specified direction === The part is installed in the fixed work by the supply of the movable coil to the second port, such as the second pile, such as the life of the parent machine, so that the workbench is supplied by alternating current to the movable coil ^^ test device as described above It is especially suitable for high-motion observations of hundreds of thousands of kilohertz or more to make the subject vibrate with more complex vibration waveforms!: Performing such tests, electric vibration measurement is not only In the direction of the axis of the bulletin, the subject can be vibrated in the orthogonal t (Χ'Υ, Ζ axis direction).疋 'In the case where the configuration of the three electric actuators is connected only to the jade table, when the electric actuator is driven, bending torque is applied to the drive shaft of the other electric actuator to cause so-called crosstalk. Touch), so the subject cannot be vibrated in the triaxial direction. 3 200944774 SUMMARY OF THE INVENTION The present invention has been made to solve the aforementioned problems. That is, for the purpose of this privacy, an electric vibration test capable of vibrating the workbench and the subject on the one-axis or three-axis direction of the right parent is provided. In order to achieve the above object, an electric motion testing apparatus according to an embodiment of the present invention includes: first and second electric actuators that are capable of discriminating vibration of the table in first and second directions orthogonal to each other; The knot means is configured to slide the table relative to the first electric actuator in the first direction, and the second coupling means for sliding the table relative to the second electric actuator in the first direction. As described above, in the embodiment of the present invention, each actuator can slide the table in a direction orthogonal to the direction in which the actuator applies vibration. Therefore, even if the table is vibrated by an actuator, the table slides relative to the other actuators, so that although the other actuators are displaced, the direction of the vibration applied by the other actuators does not change. Therefore, according to the embodiment of the present invention, since crosstalk does not occur, an electric vibration test apparatus that vibrates the table in the orthogonal two-axis or three-axis direction is realized. For example, the first and second connecting means respectively have an intermediate stage disposed between the first and second electric actuators and the table, and the intermediate stage of the first connecting means is only perpendicular to the first One direction of the square: can slide relative to the table' and can slide relative to the first electric type actuator only in a direction perpendicular to the one direction and the first direction, and the intermediate stage of the second connecting means is only perpendicular to One direction of the second direction is slidable relative to the aforementioned table, and is slidable relative to the second motor-type actuator only in a direction perpendicular to the one side 4 200944774 to both the second direction. The intermediate stage of the first connecting means is opposite to the table and the first electric type, and the one of the two stages of the slidable direction is the intermediate stage of the connecting means and the second stage of the second connecting means: One of the two directions in which the upper side can slide is preferably the first direction.

又[οι作台及中間載台具有第1性引導機構其 係具有.安裝於其-方之執條;及安裝於其另一方且 卡合於該轨條之活動塊;電動型致動器及中間載台 為具有第二線性引導機構之構成,該第二線性引導 具有:安裝於其一方之執條;及安裝於其另一方,且 合於該軌條之活動塊。 又,活動塊宜為具有以下元件之構成:溝’其係、儿 著活動塊之移動方向形成於凹部;避開路徑,其係形^ 於活動塊之内部,以與溝形成封閉迴路之方式,而與 之前述移動方向兩端連繫;及複數個滾珠,其係在圭^/ 迴路中循環,並且在位於溝時,與軌條抵接。為此』= 成時,可使活動塊不致晃動且順利地沿著軌條移動。構 即,可使工作台順利地振動。 亦 進一步,較佳為,在活動塊形成有四個封閉迴路, 且分別配置於四個封閉迴路中之二個封閉迴路的溝 滾珠相對前述活動塊之徑向方向具有概略±45。之接2 角,分別配置於其他二個封閉迴路之溝的滾珠相對活 塊之反徑向方向具有概略±45°之接觸角的構成。為此 構成時,活動塊分別在控向方向、反徑向方向及;^方^ 5 200944774 可承受大荷重’即使將前述方向之大荷重從 滾子(roller)而施加於滾子塊(r〇Uer bl〇ck),活塊仍不 破損,又,W軌條糊地㈣。w仍不致 或是,活動塊亦可架構為具有:凹部,I 條;複數個滾子,其係g己置成其圓筒面夾在 凹部之間;滾子保持構件,其係安裝於 且j ❹ ,’該轉動溝引導滾子之軸方向兩 動於活動塊之滑動方向;及避開路徑 =子轉 塊之内部,以與轉動溝形成封閉迴路之方式^ =動 溝之前述滑動方向兩端連繫;且複數 =轉動 中循環。並宜為在活動塊形成有四個封^=封閉迴路 置於四個封閉迴路之四列滾子配置盥=別配 溝中之前料域與祕動 如此構成之線性引導機構中即使 ^未以下。 活動塊上,仍可使活動塊沿著軌條順利:重施加在 滾子與執條及活動塊啸大之接觸面 。又,各 致動器之振動不致回應緩慢地傳達至工作a可使來自 使工作台以數_以上之較高的頻率振動:。因而,可 又,更宜為架構成在鄰接之二個滾 於防止該各滾子接觸之保持器。進— 4,设有用 與滾子之圓筒面抵接的圓筒凹面。,且為保持器具有 不具保持器之線性引導機構中 之接觸面積而接觸,所以有大的應 子係以較小 對於此,本發明之實施形態的線“機:Jg:、相 6 200944774 持器之各圓筒面以較 =於滾子的應力維持得較小。^觸’藉由該接觸而 線性以,較,可抑制滚子=具保持器之 子不直接接觸。各】==性引導機構為各滾 了保持器,所以可 ❿ ❹ 孔,在各個貫穿:中:d向而排列的複數個貫穿 台上固定執條,螺栓^安王,而在工作台或中間載 如此之ΐ裝間,執條寬度之_%。 曲之前接 ’、之女裝間隔比較短,執條在不致撓 之别k下強固地固定於工作台或中間載台。 A並2二、本發明之實施形態的電動型振動測試農置更宜 二步具有:第三電動型致動器,其係可在垂 叙.、第一方向兩者的第三方向上使工作台振 ,及弟二連結手段,其係可使工作台相對第三電動型 致動器滑動於第一及第二方向,且使工作台連結到第三 電動型致動器;且第一及第二連結手段分別可使工作台 相對第一及第二電動型致動器滑動於第三方向,且使工 作台連結到第一及第二電動型致動器。 又,例如第三連結手段具有配置於第三電動型致動 器與工作台之間的中間載台,第三連結手段之中間載台 僅在垂直於第三方向之一個方向可對工作台滑動,且僅 在垂直於該一個方向與第三方向兩者的方向,可對第一 200944774 電動型致動器滑動。在此,例如第三連結手段之中間載 台可對工作台滑動之二個方向係該第一及第二方向。 又,例如第三方向係垂直方向。在此,第三連結手 段之中間載台與第三電動型致動器宜為架構成藉由彼 此平行地配置之複數個軌條與卡合於複數個執條各自 的複數個活動塊而可滑動地連結。又,工作台與中間載 台宜為架構成藉由彼此平行地配置之複數個執條與卡 合於複數個軌條各自的複數個活動塊而可滑動地連 © 結。進一步,第三電動型致動器宜具有複數個中間載 台。第三連結手段中雖有工作台及受檢體等大荷重作 用,不過採用此種構成時,因為荷重分散於複數個活動 塊及中間載台,所以可防止活動塊因大荷重而破損等。 又,電動型致動器例如由以下元件構成:筒狀之固 定部,其係藉由磁性材料而形成;及可移動部,其係可 移動於固定部之軸方向地***固定部之中空處;在固定 部之内部設置固定線圈,在可移動部設置可移動線圈, 直流電流流入固定線圈時,在可移動線圈之徑向方向發 生磁場,在該狀態下,電流流入可移動線圈時,於軸方 向上發生勞侖茲力,藉此,作為使前述工作台滑動於第 一、第二或第三方向的驅動力。 【實施方式】 以下,就本發明之實施形態,使用圖式詳細作說 明。第一圖及第二圖係分別顯示本實施形態之電動型振 動測試裝置的俯視圖及侧視圖。又,第十三圖係本實施 200944774 形態之電動型振動測試裝置的方塊圖。如第—圖及 圖所示’本實施形態之振動測試裝置丨將身為振動2 對象之受檢體固定於工作台100之上,而使用第_/、' 參[οι 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台 台And the intermediate stage is configured to have a second linear guide having: a strip mounted on one of the strips; and a movable block mounted on the other side and engaging the rail. In addition, the movable block should have the following components: the groove 'the movement direction of the movable block is formed in the concave portion; the path is avoided, and the structure is formed inside the movable block to form a closed loop with the groove. And connected to the two ends of the moving direction; and a plurality of balls, which circulate in the loop of the ^^/, and abut the rail when the groove is located. For this purpose, the active block can be moved without moving and smoothly along the rail. That is, the table can be smoothly vibrated. Further, it is preferable that four closed circuits are formed in the movable block, and the groove balls of the two closed circuits respectively disposed in the four closed circuits have a profile of ±45 with respect to the radial direction of the movable block. At the two corners, the balls disposed in the grooves of the other two closed loops have a contact angle of ±45° with respect to the radial direction of the movable block. For this purpose, the movable block is in the steering direction, the reverse radial direction, and the ^^^^ 200944774 can withstand a large load' even if the large load in the aforementioned direction is applied to the roller block from the roller (r 〇Uer bl〇ck), the live block is still not damaged, and the W track is smeared (4). w still does not, or the movable block can also be constructed with: a recess, I; a plurality of rollers, the g is placed between its cylindrical surface sandwiched between the recesses; the roller retaining member is mounted on j ❹ , 'The rotation groove guides the direction of the roller in the direction of the sliding direction of the movable block; and avoids the path = the inside of the sub-turn block to form a closed loop with the rotating groove ^ = the aforementioned sliding direction of the moving groove Connected at both ends; and complex = cycle in rotation. And it is preferable to form four seals in the movable block, and the closed circuit is placed in the four rows of roller arrangements of the four closed circuits. . On the moving block, the moving block can still be smoothly along the track: it is applied to the contact surface between the roller and the bar and the moving block. Moreover, the vibration of each actuator is not slowly transmitted to the work a to cause the table to vibrate at a higher frequency of several tens or more: Therefore, it is more preferable that the frame be formed in the adjacent two of the holders for preventing the rollers from coming into contact. In 4, there is a cylindrical concave surface that abuts against the cylindrical surface of the roller. And the contact is in contact with the contact area in the linear guiding mechanism without the retainer, so there is a large strainer to be smaller. For this, the line of the embodiment of the present invention is "Jg:, phase 6 200944774" The cylindrical surfaces of the device are kept smaller than the stress of the roller. The contact is linear by the contact, and the roller can be suppressed from being in direct contact with the holder. The guiding mechanism rolls the holders so that the holes can be , ,, and the slats are fixed on the plurality of penetrating stages arranged in each of the through: d, the bolts are ampoules, and in the table or the middle are so Between the clothes, the width of the bar is _%. The dress is connected before the song, the women's interval is relatively short, and the bar is firmly fixed to the workbench or the intermediate stage without being scratched. A and 2, the invention The electric vibration test of the embodiment is more suitable for the two-step process: the third electric actuator, which can be used to illuminate the worktable in the third direction of the first direction, and the second connection means , which can slide the table relative to the third electric actuator a second direction, and connecting the table to the third electric actuator; and the first and second coupling means respectively slid the table relative to the first and second electric actuators in the third direction, and The table is coupled to the first and second electric actuators. Further, for example, the third coupling means has an intermediate stage disposed between the third electric actuator and the table, and the intermediate stage of the third coupling means The table can be slid only in one direction perpendicular to the third direction, and the first 200944774 electric actuator can be slid only in a direction perpendicular to both the one direction and the third direction. Here, for example, The intermediate stage of the three-linking means can be in the first and second directions for the two directions in which the table slides. Further, for example, the third direction is a vertical direction. Here, the intermediate stage of the third connecting means and the third electric unit Preferably, the frame is slidably coupled to the frame by a plurality of rails arranged in parallel with each other and a plurality of movable blocks that are engaged with the plurality of bars. Further, the table and the intermediate stage are preferably framed. By paralleling each other The plurality of actuators are arranged to be slidably coupled to the plurality of movable blocks of the plurality of rails, and further, the third electric actuator preferably has a plurality of intermediate carriers. In the case of such a configuration, since the load is dispersed in a plurality of movable blocks and the intermediate stage, the movable block can be prevented from being damaged due to a large load, etc. The actuator is composed of, for example, a cylindrical fixing portion formed of a magnetic material, and a movable portion that is movable in a hollow direction of the fixing portion in the axial direction of the fixing portion; A fixed coil is disposed inside, and a movable coil is disposed in the movable portion. When a direct current flows into the fixed coil, a magnetic field is generated in a radial direction of the movable coil. In this state, when the current flows into the movable coil, the axial direction occurs. The Lorentz force is thereby used as a driving force for sliding the aforementioned table in the first, second or third directions. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail using the drawings. The first and second drawings respectively show a plan view and a side view of the electric vibration test apparatus of the present embodiment. Further, the thirteenth diagram is a block diagram of the electric vibration test apparatus of the present embodiment of the present invention. As shown in Fig. 1 and Fig., the vibration test apparatus of the present embodiment fixes the subject which is a subject of vibration 2 on the table 100, and uses the _/, '

二、第三致動器200、300、400使工作台100及其上之 受檢體於正交之三轴方向振動。又,如第十三圖^斤示之 第一、第二及第三致動器200、300、400受到控制^置 10的控制’藉由控制裝置10控制輸入於第一、第二及 第三致動器200、300及400之可移動線圈的交流電流 (後述)之大小及頻率,可以希望之振幅及頻率使工作 台100振動。又,在工作台100中設有振動拾取器 (vibration pick-up)等計測器20,可藉由計測器2〇計測 工作台之振動程度(速度、加速度、振幅等)。又,控 制裝置10可依據計測器20之計測結果調整輸入於第 一、第二及第三致動器200、300及400之可移動線圈 的交流電流(後述)之大小及頻率。例如控制裝置10 可以工作台100之最大速度的指定方向成分成為指定大 小之方式,控制各致動器200、300、400。另外,控制 裝置10、計測器20及各致動器200、300、400架構成 接受來自電源裝置30之電力供給而被驅動。 在以下之說明中,將第一致動器200使工作台100 振動之方向(第一圖中之上下方向)定義為X轴方向’ 將第二致動器300使工作台1〇〇振動之方向(第一圖中 之左右方向)定義為γ轴方向,將第三致動器400使工 作台振動之方向,亦即將垂直方向(第一圖中與紙面正 交之方向)定義為Z轴方向。 9 200944774 第一、第二、第三致動器200、300、400分別藉由 第一、第二、第三固定塊210、310、410而固定於裝置 基座2。具體而言,係藉由塊固定用螺栓匕而將第一、 第二、第三固定塊210、310、410固定於裝置基座2, 且藉由致動器固定用螺栓B2(第二圖)將第一、第二、 第三致動器200、300、400分別固定於第一、第二、第 三固定塊210、310、410。 又’如第一圖及第二圖所示,在第一致動器200之 © Y軸方向兩端形成伸展於Z軸方向的溝202。該溝202 之底面形成概略平行於XZ平面之平面狀。在第一固定 塊210中形成寬度及高度分別與溝202之寬度及最大高 度概略相等的突出部212。突出部212之頂面(突出於 Y軸方向之突出部212的上端側之面)也與χζ平面概 略平行,突出部212幾乎無間隙地嵌入溝202,溝202 之底面與突出部212之頂面抵接。如此,在突出部212 嵌入溝202之狀態下,以致動器固定用螺栓B2將第一 致動器200固定於第一固定塊210時,溝202與突出部 ® 212卡合。進一步,因為藉由旋緊螺栓B2而使具有廣面 積之突出部212的頂面概略整面地對溝202之底面施 力’所以溝202及第一固定塊210不致由於集中荷重而 大幅變形。結果第一致動器200被強固地固定。 另外’第二及第三致動器300、400中亦設有與溝 202同樣之溝302、402’且在第二及第三固定用塊310、 410中形成分別對應於此等溝302、402之突出部312、 412。因此,第二及第三致動器3〇〇及400也藉由溝302、 200944774 402與突出部312、412之卡合而強固地固定。 其次’就第一、第二及第三致動器200、300、400 之構造說明於下。另外,因為第一、第二及第三致動器 200、300、400僅對工作台1〇〇之安裝方向不同,而用 於驅動工作台100之構成相同,所以,以下之說明係僅 進行就第一致動器之說明。 第三圖係第一致動器200之剖面圖。如第三圖所 示,第一致動器200具有:具有筒狀體222之固定部 220,及收容於該固定部220之筒内’可相對固定部220 滑動於X軸方向之可移動部23〇。可移動部230具有: 漸縮圓筒形狀之可移動框架232,與固定於可移動框架 232之工作台1〇〇側端部的頂板231。頂板231上藉由 複數個桿236而固定中間工作台233。 在可移動框架232之與頂板231相反側的端部,藉 由可移動線圈保持構件237而安裝有可移動線圈251。 可移動線圈251與可移動框架232概略同轴地配置。 又,在固定部220之筒狀體222的内部固定著與筒 狀體222同轴地形成之圓筒形狀的内侧磁極225。内侧 磁極225之外徑比可移動線圈251之内徑小,可移動線 圈251配置於内側磁極225之外周面與筒狀體222之内 周面之間。 广在筒狀體222之内周面設有複數個朝向筒狀體222 之徑向方向外側而凹陷的凹部222a,在該凹部222a各 自之内。卩女裝有將筒狀體222之徑向方向作為中心而捲 繞導線所形成之固定線圈252。在此,筒狀體222及内 11 200944774 侧磁極225均以強磁性體或亞鐵磁性體而形成,直流電 流流入固定線圈252時,在筒狀體222之徑向方向亦即 在可移動線圈251之徑向方向上發生磁場。 在該狀態下電流流入可移動線圈251時,在可移動 線圈251之轴方向,亦即在垂直方向發生勞侖茲力可 將可移動部230驅動於X軸方向。本實施形態之電動型 振動測試裝置1中,藉由在可移動線圈251中供給交流 ❹Second, the third actuators 200, 300, and 400 cause the table 100 and the subject thereon to vibrate in the orthogonal three-axis direction. Moreover, as shown in the thirteenth figure, the first, second, and third actuators 200, 300, and 400 are controlled by the control unit 10, and are controlled by the control device 10 to input the first, second, and The size and frequency of the alternating current (described later) of the movable coils of the three actuators 200, 300, and 400 can cause the table 100 to vibrate with a desired amplitude and frequency. Further, the table 100 is provided with a measuring device 20 such as a vibration pick-up, and the degree of vibration (speed, acceleration, amplitude, etc.) of the table can be measured by the measuring device 2〇. Further, the control device 10 can adjust the magnitude and frequency of an alternating current (described later) input to the movable coils of the first, second, and third actuators 200, 300, and 400 in accordance with the measurement result of the measuring device 20. For example, the control device 10 can control the actuators 200, 300, 400 so that the specified direction component of the maximum speed of the table 100 becomes a designated size. Further, the control device 10, the measuring device 20, and the actuators 200, 300, and 400 are configured to receive power supply from the power supply device 30 and are driven. In the following description, the direction in which the first actuator 200 vibrates the table 100 (the upper and lower directions in the first drawing) is defined as the X-axis direction. The second actuator 300 vibrates the table 1 The direction (the left-right direction in the first figure) is defined as the γ-axis direction, and the direction in which the third actuator 400 vibrates the table, that is, the vertical direction (the direction orthogonal to the plane of the drawing in the first figure) is defined as the Z-axis. direction. 9 200944774 The first, second, and third actuators 200, 300, and 400 are fixed to the apparatus base 2 by the first, second, and third fixed blocks 210, 310, and 410, respectively. Specifically, the first, second, and third fixing blocks 210, 310, and 410 are fixed to the device base 2 by the block fixing bolts, and the actuator fixing bolts B2 are used (second drawing) The first, second, and third actuators 200, 300, and 400 are respectively fixed to the first, second, and third fixed blocks 210, 310, and 410. Further, as shown in the first figure and the second figure, grooves 202 extending in the Z-axis direction are formed at both ends of the first actuator 200 in the Y-axis direction. The bottom surface of the groove 202 is formed in a planar shape substantially parallel to the XZ plane. A protrusion 212 having a width and a height substantially equal to the width and maximum height of the groove 202 is formed in the first fixed block 210. The top surface of the protruding portion 212 (the surface on the upper end side of the protruding portion 212 protruding in the Y-axis direction) is also substantially parallel to the meandering plane, and the protruding portion 212 is embedded in the groove 202 with almost no gap, and the bottom surface of the groove 202 and the top of the protruding portion 212 Face to face. In this manner, when the first fixing member 200 is fixed to the first fixing block 210 by the actuator fixing bolt B2 in a state where the protruding portion 212 is fitted into the groove 202, the groove 202 is engaged with the protruding portion ® 212. Further, since the top surface of the wide projection portion 212 is urged over the entire surface of the groove 202 by tightening the bolt B2, the groove 202 and the first fixed block 210 are not greatly deformed by the concentrated load. As a result, the first actuator 200 is firmly fixed. Further, the second and third actuators 300 and 400 are also provided with grooves 302 and 402' similar to the grooves 202, and are formed in the second and third fixing blocks 310 and 410, respectively. Protrusions 312, 412 of 402. Therefore, the second and third actuators 3A and 400 are also strongly fixed by the engagement of the grooves 302, 200944774 402 with the protruding portions 312, 412. Next, the construction of the first, second, and third actuators 200, 300, and 400 will be described below. In addition, since the first, second, and third actuators 200, 300, and 400 only have different mounting directions for the table 1 and the same structure for driving the table 100, the following description is only performed. As for the description of the first actuator. The third figure is a cross-sectional view of the first actuator 200. As shown in the third figure, the first actuator 200 has a fixing portion 220 having a cylindrical body 222, and a movable portion that is slidable in the X-axis direction with respect to the fixing portion 220 in the tube of the fixing portion 220. 23〇. The movable portion 230 has a movable frame 232 of a tapered cylindrical shape, and a top plate 231 fixed to the side of the side of the table 1 of the movable frame 232. The intermediate table 233 is fixed to the top plate 231 by a plurality of rods 236. At the end of the movable frame 232 opposite to the top plate 231, a movable coil 251 is attached by the movable coil holding member 237. The movable coil 251 is disposed substantially coaxially with the movable frame 232. Further, a cylindrical inner magnetic pole 225 formed coaxially with the cylindrical body 222 is fixed to the inside of the cylindrical body 222 of the fixing portion 220. The outer diameter of the inner magnetic pole 225 is smaller than the inner diameter of the movable coil 251, and the movable coil 251 is disposed between the outer circumferential surface of the inner magnetic pole 225 and the inner circumferential surface of the cylindrical body 222. A plurality of concave portions 222a recessed toward the outer side in the radial direction of the cylindrical body 222 are provided on the inner circumferential surface of the cylindrical body 222, and the concave portions 222a are formed therein. The enamel wearer has a fixed coil 252 formed by winding a wire around the radial direction of the cylindrical body 222. Here, the cylindrical body 222 and the inner 11 200944774 side magnetic poles 225 are each formed of a ferromagnetic material or a ferrimagnetic body, and when a direct current flows into the fixed coil 252, the movable coil is in the radial direction of the cylindrical body 222. A magnetic field occurs in the radial direction of 251. When current flows into the movable coil 251 in this state, the movable portion 230 can be driven in the X-axis direction by the Lorentz force occurring in the axial direction of the movable coil 251, that is, in the vertical direction. In the electric vibration test apparatus 1 of the present embodiment, an alternating current is supplied to the movable coil 251.

電流,使可移動框架232在X軸方向往返運動,可使中 間工作台233振動於X轴方向。 一“一 τ队椚殳氣彈黃261。空氣彈 簣261之-端(圖中之上侧)固定於固定部22〇。又, 空氣彈簧261與可移動框架232 #由從空氣彈筹261之 之下側)#展於垂直上方的連結桿234而 連、,,口猎由工t彈|261施加於可移動框架说之乂轴 正或向的荷重’於電流未流入可移動線圈251時, 使可?動框架232在指定之位置靜止。又,内藏於The current causes the movable frame 232 to reciprocate in the X-axis direction, so that the intermediate table 233 can vibrate in the X-axis direction. A "one τ team 椚殳 弹 黄 261. The end of the air magazine 261 - the upper side of the figure is fixed to the fixed portion 22 又. In addition, the air spring 261 and the movable frame 232 # by the air 261 The lower side)# is connected to the connecting rod 234 vertically above, and the stalk is applied to the movable frame to say that the positive or negative load of the shaft is not flowing into the movable coil 251. At the same time, the movable frame 232 is allowed to stand at the designated position.

ΪΪΪ:00之空氣彈簧從下支撐第三致動器400之可; 動框架及工作台_等。因而f U 移動線圈X舰給祕產生料使其可 1 工作:100移位所需的勞侖兹力之電流;可,而盔須 動框架及工作台10。浮起的大直流成;I給 中而二結可移動框架232之 只慨附近,可移動框架 結桿234藉由伸展於可移動框㈣之徑== 12 200944774 支標235而連結。 又,在内侧磁極225之内部空間固定著使連結桿234 之移動方向僅為X軸方向地支撐的軸承238。 如第一圖及第二圖所示,本實施形態中,第一、第 二、第三致動器200、300、400與工作台100分別藉由 第一、第二及第三連結部240、340、440而連結。就該 第一、第二及第三連結部240、340、440之構成說明於 下。 第四圖係第一連結部240之俯視圖。又,第五圖係 從Y軸方向觀察第一連結部240之側視圖。第一連結部 具有:Z軸軌條用間隔物241、Z轴軌條244、中間載台 245及Y軸軌條248。 Z軸轨條用間隔物241具有:與中間工作台233正 交地焊接於中間工作台233的平板部241a;及焊接於藉 由平板部241a與中間工作台233而形成之角落的肋條 241b。平板部241a與ZX平面平行地配置,在其X軸正 之方向侧(從第一致動器200朝向工作台1〇〇之侧。第 四圖之下側’第五圖之右侧)的端部,亦即在固定於中 間工作台233之一侧的相反侧之端部固定著z轴軌條 244。Z轴執條244係伸展於Z轴方向之執條。另外,γ 軸執條248係固定於工作台100中與中間工作台233相 對之端面、且伸展於Y軸方向的轨條,且固定於工作台 100之X轴負的方向側(從工作台1〇〇朝向第一致動器 200之侧。第四圖之上侧,第五圖之左側)的端部。中 間載台245中’與Z軸執條244卡合的z轴活動塊246 13 200944774 是設於z轴負的方向側的塊狀體,與γ軸執條248卡合 之Υ軸活動塊247設於X軸正之方向侧的塊狀體。因 而,中間載台245分別相對Ζ軸執條244可在ζ軸方向, 相對Υ軸執條248可在γ軸方向滑動。換言之,可以說 中間載台245相對工作台100可在γ軸方向滑動,且相 對第一致動器200可在ζ軸方向滑動。因此,第一致動 器200相對工作台1〇〇可在γ軸方向及乙軸方向上滑動。 々因而’即使工作台100由於第二致動器300及/或 第二致動器400而於γ軸方向及/或ζ轴方向振動,也 不致因此在第一致動器200上受到γ軸方向及ζ轴方向 荷重之作用,所以因工作台1〇〇在丫軸方向及/或ζ軸 方向之移位引起之彎曲應力不致施加於第一致動器2〇〇 之可移動部230 (第三圖)等。 第二連結部340與以上說明之第一連結部240相比 除了設置之方向不同(將X軸與Υ軸調換)之外,係同 一構造。因此’省略第二連結部340之說明。 其次’就第三連結部440之構成作說明。如第一圖 及第二圖所示’第三連結部440具有:一對Υ軸軌條 444、一對X軸執條448及複數個中間載台445。 一對Υ軸軌條444均係伸展於Υ軸方向之軌條,且 並列於X軸方向而固定於第三致動器400之中間工作台 433的上面。又,一對X轴執條448均係伸展於X轴方 向之轨條’且並列於γ軸方向而固定於工作台100的下 面。中間載台445中與X轴執條448卡合之X轴活動塊 447是設於上部,與γ軸軌條444卡合之Υ轴活動塊446 200944774 是設於下部的塊狀體。因此,中間載台445可相對X轴 執條448及Y軸軌條444兩者滑動。另外,中間載台445 在X轴軌條448與Y轴軌條444交又之每個位置各設置 一個。由於X軸軌條448與Y軸轨條444分別各設置二 個,因此X軸軌條448與Y轴軌條444在四處交叉。因 此,本實施形態中係使用四個中間載台445。 如此,各個中間載台445相對工作台100可在X軸ΪΪΪ: The air spring of 00 supports the third actuator 400 from below; the moving frame and the table _ and the like. Therefore, the f U moving coil X ship gives the secret material the material to make it work: 100 currents required for the displacement of the Lorentz force; and the helmet must move the frame and the table 10. The large DC is floated; I is given to the middle and the second junction movable frame 232 is only nearby, and the movable frame 237 is connected by extending the movable frame (4) diameter == 12 200944774 235. Further, a bearing 238 that supports the movement direction of the connecting rod 234 in the X-axis direction is fixed to the internal space of the inner magnetic pole 225. As shown in the first and second figures, in the present embodiment, the first, second, and third actuators 200, 300, and 400 and the table 100 are respectively connected by the first, second, and third connecting portions 240. 340, 440 and connected. The configuration of the first, second, and third connecting portions 240, 340, and 440 will be described below. The fourth drawing is a plan view of the first joint portion 240. Further, the fifth diagram is a side view of the first connecting portion 240 as seen from the Y-axis direction. The first joint portion has a Z-axis rail spacer 241, a Z-axis rail 244, an intermediate stage 245, and a Y-axis rail 248. The Z-axis rail spacer 241 has a flat plate portion 241a that is orthogonally welded to the intermediate table 233 to the intermediate table 233, and a rib 241b that is welded to a corner formed by the flat plate portion 241a and the intermediate table 233. The flat plate portion 241a is disposed in parallel with the ZX plane, and is on the side of the positive X-axis side (the side from the first actuator 200 toward the table 1 。. The lower side of the fourth figure is the right side of the fifth figure) The z-axis rail 244 is fixed to the end portion on the opposite side fixed to one side of the intermediate table 233. The Z-axis bar 244 is a bar that extends in the Z-axis direction. Further, the γ-axis bar 248 is fixed to a rail extending in the Y-axis direction on the end surface of the table 100 opposite to the intermediate table 233, and is fixed to the negative X-axis side of the table 100 (from the table) 1〇〇 is toward the side of the first actuator 200. The upper side of the fourth figure, the left side of the fifth figure). The z-axis movable block 246 13 200944774 in the intermediate stage 245 that is engaged with the Z-axis bar 244 is a block body provided on the negative z-axis side, and the z-axis movable block 247 is engaged with the γ-axis bar 248. A block body provided on the positive side of the X-axis. Therefore, the intermediate stage 245 can be slid in the y-axis direction with respect to the y-axis bar 244 with respect to the y-axis bar 244, respectively. In other words, it can be said that the intermediate stage 245 is slidable in the γ-axis direction with respect to the table 100, and the first actuator 200 is slidable in the z-axis direction. Therefore, the first actuator 200 is slidable in the γ-axis direction and the E-axis direction with respect to the table 1A. Therefore, even if the table 100 vibrates in the γ-axis direction and/or the ζ-axis direction due to the second actuator 300 and/or the second actuator 400, the γ-axis is not thereby received on the first actuator 200. The direction and the load in the x-axis direction are applied, so that the bending stress caused by the displacement of the table 1〇〇 in the x-axis direction and/or the z-axis direction is not applied to the movable portion 230 of the first actuator 2 ( The third picture) and so on. The second joint portion 340 has the same structure as the first joint portion 240 described above except that the direction in which it is disposed is different (the X-axis and the x-axis are exchanged). Therefore, the description of the second joint portion 340 is omitted. Next, the configuration of the third connecting portion 440 will be described. As shown in the first and second figures, the third joint portion 440 has a pair of ram shafts 444, a pair of X-axis bars 448, and a plurality of intermediate stages 445. Each of the pair of yoke rails 444 is a rail extending in the yaw axis direction and is fixed to the upper surface of the intermediate table 433 of the third actuator 400 in the X-axis direction. Further, the pair of X-axis bars 448 are stretched in the X-axis direction rails ‘and are arranged in the γ-axis direction and fixed to the lower surface of the table 100. The X-axis movable block 447 of the intermediate stage 445 that is engaged with the X-axis bar 448 is provided on the upper portion, and the x-axis movable block 446 200944774 that is engaged with the γ-axis rail 444 is a block body provided at the lower portion. Therefore, the intermediate stage 445 can slide relative to both the X-axis bar 448 and the Y-axis rail 444. Further, the intermediate stage 445 is provided one at each of the positions where the X-axis rail 448 and the Y-axis rail 444 intersect. Since the X-axis rail 448 and the Y-axis rail 444 are respectively disposed two, the X-axis rail 448 and the Y-axis rail 444 intersect at four places. Therefore, in the present embodiment, four intermediate stages 445 are used. As such, each intermediate stage 445 can be on the X-axis relative to the table 100.

方向滑動’且相對第三致動器4〇〇可在Y軸方向滑動。 亦即,工作台100對第三致動器400可在X軸方向及γ 軸方向滑動。因而’即使工作台10〇由於第一致動器200 及/或第二致動器3〇〇而振動於X軸方向及/或γ軸方 向,也不致因此在第三致動器400上施加X轴方向及γ 轴方向之荷重’所以因工作台100在X軸方向及/或γ 軸方向之移位的彎曲應力不致施加於第三致動器400之 可移動部等。 又,本實施形態中’第三致動器400為了支稽重量 較大之工作台100及受檢體’而各設置由X軸軌條448 及Y軸軌條444構成之一對軌條,且在每一個X轴軌條 448與Y軸軌條444交叉的部分配置中間載台445。 ' 如前述’在第三致動器400上施加受檢體及大重量 之工作台1 〇〇的荷重。因而,工作台100之重心由於X 軸及Y軸方向的外加振動而從第三致動器400之可移 部的中心軸偏移,而在可移動部上施加大的轉起。本 施形態中如第一圖所示,為了不使可移動部因轅轉起實 傾倒,係藉由具有伸展於Z轴方向之軌條451,以及= 15 200944774 該軌條451卡合、可沿著軌條451而進退的活動塊452 之線性引導機構450,而支撐第三致動器4〇〇之可移動 部。The direction slides ' and is slidable in the Y-axis direction with respect to the third actuator 4'. That is, the table 100 is slidable in the X-axis direction and the γ-axis direction with respect to the third actuator 400. Therefore, even if the table 10 is vibrated in the X-axis direction and/or the γ-axis direction due to the first actuator 200 and/or the second actuator 3, it is not applied to the third actuator 400. The load in the X-axis direction and the γ-axis direction is not applied to the movable portion of the third actuator 400 due to the bending stress of the table 100 displaced in the X-axis direction and/or the γ-axis direction. Further, in the present embodiment, the "third actuator 400 is provided with a pair of rails composed of the X-axis rail 448 and the Y-axis rail 444 for each of the table 100 and the object to be examined having a large weight. And an intermediate stage 445 is disposed in a portion where each of the X-axis rails 448 and the Y-axis rails 444 intersect. As described above, the load of the test object and the large weight table 1 is applied to the third actuator 400. Therefore, the center of gravity of the table 100 is offset from the central axis of the movable portion of the third actuator 400 by the applied vibration in the X-axis and Y-axis directions, and a large turn is applied to the movable portion. In the present embodiment, as shown in the first figure, in order not to cause the movable portion to be tilted due to the turning, the rail 451 is extended by the rail in the Z-axis direction, and = 15 200944774, the rail 451 is engaged. The linear guide mechanism 450 of the movable block 452 advancing and retreating along the rail 451 supports the movable portion of the third actuator 4''.

具體而言,如第一圖所示,在第三致動器4〇〇之固 定部420的上面423上固定有l字狀之引導框架453, 延伸於Z軸方向之軌條451固定於該引導框架453之直 立部453a(從固定部420之上面423垂直地站立之平板) 的一面。又’與該軌條451卡合之活動塊452固定於第 二致動器400之中間工作台433。線性引導機構45〇在 將第二致動器之中心軸作為中心的圓周上每隔約9〇。設 置一組,合計有四組,第三致動器4〇〇之可移動部可被 該四組從四個方向引導。 如以上之說明,本實施形態中,在各個致動器與工 作台100之間至少設置一對正交之軌條與架構成相對該 執條兩者可滑動之中間载台。藉此,工作台1〇〇相對各 致動器可在垂直於其致動器之驅動方向的面上之任意 方向滑動。因而,即使工作台1〇〇藉由某個致動器而^ =,因該移位引起之荷重及轉矩也不致施加於其他致動 器,且維持其他致動器與工作台1〇〇藉由中間載台而卡 合的狀態。亦即,即使工作台移位到任意之位置,仍維 持各致動器可使工作台移位的狀態。因而,本實施形態 中使三個致動器200、300、400同時驅動,可使工作台 100及固定於其上之受檢體振動於三軸方向。 其次’就第一、第二及第三連結部240、340、440 之線性引導機構及線性引導機構450之軌條及活動塊的 16 200944774 構成,使用圖式詳細作說明。另外,以下係舉第一連尹 部240之軌條244及活動塊246為例作說明,不過其: 之執條及活動塊也成為同樣之構造。 第六圖係在垂直於軌條244之長軸方向的一面(亦 即XY平面)切斷第一連結部240之軌條244及活動塊 246畫出的剖面圖,第七圖係第六圖之ι—Ι剖面圖。如 苐六圖及第七圖所示’在活動塊246中以包圍執條244 之方式形成有凹部’在該凹部形成有延伸於軌條244之 © 轴方向的四條溝246a、· 246a,。在該溝246a、246a,中收 納多數個不銹鋼製的滚珠246b。在軌條244中,在與活 動塊246之溝246a、246a’相對的位置分別設有溝244a、 244a' ’滾珠246b夾在溝246a與溝244a,或是溝246a, 與溝244a’之間。溝246a、246a'、244a、244a'之剖面形 狀係圓弧狀’其曲率半徑與滚珠246b之半徑概略相等。 因而’滚珠246b係在幾乎無游隙之狀態下密合於溝 246a、246a,、244a、244a,。 在活動塊246之内部,設置與溝246a、246a,各自 概略平行的四條滾珠避開路徑246c、246c’。如第七圖 所示,溝246a與避開路徑246c在各自之兩端藉由U字 形路徑246d而連接,並藉由溝246a、溝244a、避開路 徑246c及U字形路徑246d而形成用於使滚珠246b循 環之循環路徑。亦可藉由溝246a,、溝244a,及避開路徑 246c’而形成同樣之循環路徑。 因而’活動塊246相對軌條244移動時,許多滾珠 246b係在溝246a、246a’、244a、244a’中轉動而在循環 17 200944774 ^循%°因而’即使在執條轴方向以外之方向施加 ^重’由於可以許多滾珠支樓活動塊,並且滾珠246b ’所以在軌條軸方向之阻力維持得小,因此可使活 動塊2一46相對軌條244順利地移動。 另外,避開路徑246c 及U子形路技246d之内徑比滾珠246b之直徑稍大。因 而’發生於避開路徑246c及U字形路徑246d與滚珠 246b之間的摩擦力極小’藉此不致妨礙滾珠246b之循 環。 如圖不’夹在溝246a與244a之二列滾珠246b之列 形成接觸角概略為±45度之正面組合㈣角接觸球轴 承。此時所謂接觸角,係溝246a及244a與滾珠246b 接觸之各接觸點的連線相對軌條244、活動塊24ό之徑 向方向(係從活動塊向軌條之方向,且為第六圖中之上 方/向)所形成的角度。如此形成之角接觸球軸承可支撐 反徑向方向(從軌條朝向活動塊之方向,且為第六圖; 之下方向)及橫方向(與徑向方向及活動塊之進退方向 兩者正交之方向,且為第六圖中之左右方向)的荷重°。 同樣地’失在溝246a,與244a,之二列滾珠246b之 列形成接觸角(溝246a,及244a,與滚珠246b接觸之各 接觸點的連線相對線性引導器之反徑向方向所形成的 角度)概略為±45。之正面組合型的角接觸球輛承。. 接觸球軸承可支撐徑向方向及橫方向的荷重。μ 又’分別爽在溝246a與244a之一方(圖中右侧) 以及溝246a’與244a,之一方(圖中右侧)的二列滾珠 246b之列’亦是形成正面組合型之角接觸球軸承。同樣 200944774 地,分別失在溝246a與244a夕s 及溝24如,與2術,之另一方(圖中左侧)以 二:二= 合型之角接觸球軸承。 反實態中,對分別作用於徑向方向、 正面組合型的角接觸球軸承來 夕;之 ^ ,. 求支撐,而可充分支撐施加 於軌條軸方向以外之方向的大荷重。 ❹ 構造實施形態之線性引導機構的執條之安裝 241 第八圖係顯示安褒於Z轴軌條用間隔物 就本眚#、,的立體圖。另外’該執條之安裝構造, 樣本實施形紅振動賴裝置巾使㈣其他執條亦同 如第八圖所示,在軌條244中形成並列配置於其轴 °的複數個貫穿孔244b。又,在z軸執條用間隔物 1之平板部241a對應於貫穿孔244b之位置形成複數 ^螺栓孔,不過並未顯示於圖中。軌條244藉由在貫穿 i 244b中使螺栓244c通過且旋入平板部241a之螺栓 子’而固定於Z軸軌條用間隔物241。 本實施形態中,執條244之貫穿孔244b的間隔(及 貝板之螺栓孔的間隔)s較短,而為軌條244之寬度w 的50〜,並宜為60〜70%。如此,藉由使螺栓244c 之安裝間隔較短,軌條244不致撓曲,而強固地固定於 Z輪軌條用間隔物241。 在以上說明之本實施形態的線性引導機構中,係藉 由滚珠246b之轉動’而使活動塊246相對軌條244滑 200944774 動’不過本發明之實施形態並非限定於前述之構成。如 以下說明之變形例’亦可使用一種線性引導機構:使用 滚子1246b取代滾珠246b,藉由該滾子12461)之轉動, 而使活動塊1246相對軌條1244滑動。 ΟSpecifically, as shown in the first figure, a 1-shaped guide frame 453 is fixed to the upper surface 423 of the fixed portion 420 of the third actuator 4, and the rail 451 extending in the Z-axis direction is fixed to the rail 451. One side of the upright portion 453a of the guide frame 453 (a flat plate standing vertically from the upper surface 423 of the fixed portion 420). Further, the movable block 452 engaged with the rail 451 is fixed to the intermediate table 433 of the second actuator 400. The linear guide mechanism 45 is approximately 9 inches on the circumference centered on the central axis of the second actuator. A set is provided, and there are four groups in total, and the movable portion of the third actuator 4 can be guided by the four groups from four directions. As described above, in the present embodiment, at least a pair of orthogonal rails and frames are provided between the respective actuators and the table 100 to constitute an intermediate stage that is slidable with respect to both of the bars. Thereby, the table 1 is slidable in any direction on the face perpendicular to the driving direction of the actuator with respect to the respective actuators. Therefore, even if the table 1 is controlled by an actuator, the load and torque caused by the displacement are not applied to other actuators, and other actuators and the table 1 are maintained. The state of being engaged by the intermediate stage. That is, even if the table is displaced to an arbitrary position, the state in which the actuators can shift the table is maintained. Therefore, in the present embodiment, the three actuators 200, 300, and 400 are simultaneously driven, and the table 100 and the subject fixed thereto can be vibrated in the three-axis direction. Next, the linear guide mechanism of the first, second, and third joint portions 240, 340, and 440 and the rail and the movable block of the linear guide mechanism 450 are constructed in detail, and will be described in detail using the drawings. In addition, the rail 244 and the movable block 246 of the first continuation unit 240 are exemplified below, but the fulfilment and the movable block have the same structure. The sixth figure is a cross-sectional view of the rail 244 and the movable block 246 of the first joint 240 cut off on one side (ie, the XY plane) perpendicular to the long axis direction of the rail 244, and the seventh diagram is a sixth diagram. The ι-Ι section view. As shown in Fig. 6 and Fig. 7, a recessed portion is formed in the movable block 246 so as to surround the bar 244. Four recesses 246a, 246a extending in the ©-axis direction of the rail 244 are formed in the recess. A plurality of stainless steel balls 246b are accommodated in the grooves 246a and 246a. In the rail 244, grooves 244a, 244a' are respectively provided at positions opposite to the grooves 246a, 246a' of the movable block 246. The balls 246b are sandwiched between the grooves 246a and 244a, or between the grooves 246a and the grooves 244a'. . The grooves 246a, 246a', 244a, and 244a' have a cross-sectional shape that is arcuate in shape and has a radius of curvature substantially equal to the radius of the balls 246b. Therefore, the ball 246b is in close contact with the grooves 246a, 246a, 244a, 244a in a state where there is almost no play. Inside the movable block 246, four ball avoiding paths 246c, 246c' which are substantially parallel to the grooves 246a, 246a are provided. As shown in the seventh figure, the groove 246a and the avoidance path 246c are connected at their respective ends by a U-shaped path 246d, and are formed by the groove 246a, the groove 244a, the avoidance path 246c, and the U-shaped path 246d. The circulation path that causes the balls 246b to circulate. The same circulation path can also be formed by the groove 246a, the groove 244a, and the avoidance path 246c'. Thus, when the movable block 246 moves relative to the rail 244, a plurality of balls 246b are rotated in the grooves 246a, 246a', 244a, 244a' and are applied in the direction of the cycle 17 200944774. ^Heavy 'Because there are many ball strut movable blocks, and the balls 246b', the resistance in the direction of the rail axis is kept small, so that the movable blocks 2 to 46 can be smoothly moved relative to the rails 244. Further, the inner diameter of the avoidance path 246c and the U sub-path 246d is slightly larger than the diameter of the ball 246b. Therefore, the friction occurring between the avoidance path 246c and the U-shaped path 246d and the ball 246b is extremely small, thereby preventing the circulation of the balls 246b from being hindered. As shown in the figure, the pair of balls 246b sandwiched by the grooves 246a and 244a form a frontal combination (four) angular contact ball bearing having a contact angle of ±45 degrees. At this time, the contact angle, the line connecting the contact points of the groove 246a and 244a with the ball 246b is opposite to the radial direction of the rail 244 and the movable block 24 (from the movable block to the rail, and is the sixth figure). The angle formed by the upper/middle). The angular contact ball bearing thus formed can support the reverse radial direction (from the direction of the rail toward the movable block, and is the sixth figure; the downward direction) and the lateral direction (both with the radial direction and the advancing and retracting direction of the movable block) The direction of intersection, and the load in the left and right directions in the sixth figure). Similarly, 'missing groove 246a' forms a contact angle with 244a, the row of balls 246b (grooves 246a, and 244a), and the line connecting the contact points of ball 246b is formed in the opposite radial direction of the linear guide. The angle) is roughly ±45. The front combined angular contact ball bearing. The contact ball bearing can support the load in the radial direction and the lateral direction. μ is also in the groove 246a and 244a (the right side in the figure) and the grooves 246a' and 244a, one of the two rows (the right side of the figure) of the two rows of balls 246b 'is also form the front combined angular contact Jack joint. Similarly, 200944774 ground, respectively, lost in the groove 246a and 244a s and groove 24, and 2, the other side (left side in the figure) contact the ball bearing at the angle of two: two = fit. In the anti-real state, the angular contact ball bearings respectively acting on the radial direction and the front combined type are used for the support of the angular contact ball bearing, and the large load applied in the direction other than the direction of the rail axis can be sufficiently supported.安装 Installation of the linear guide mechanism of the construction embodiment 241 The eighth diagram shows a perspective view of the spacers for the Z-axis rails. Further, in the mounting structure of the strip, the sample is subjected to a red vibrating device, and (4) the other strips are also formed as a plurality of through holes 244b arranged in parallel with each other in the rail 244 as shown in Fig. 8 . Further, a plurality of bolt holes are formed in the position of the flat plate portion 241a of the z-axis spacer 1 corresponding to the through hole 244b, but are not shown in the drawing. The rail 244 is fixed to the Z-axis rail spacer 241 by passing the bolt 244c through the bolt 244c and screwing it into the flat portion 241a. In the present embodiment, the interval between the through holes 244b of the bar 244 (and the interval of the bolt holes of the baffle plate) s is short, and is 50 to 90, and preferably 60 to 70%, of the width w of the rail 244. Thus, by making the mounting interval of the bolts 244c short, the rails 244 are strongly fixed to the Z-wheel rail spacers 241 without being bent. In the linear guide mechanism of the present embodiment described above, the movable block 246 is slid with respect to the rail 244 by the rotation of the balls 246b. However, the embodiment of the present invention is not limited to the above configuration. As the modification described below, a linear guiding mechanism may be used in which the roller 1246b is used instead of the ball 246b, and the movable block 1246 is slid relative to the rail 1244 by the rotation of the roller 12461). Ο

將使用於本實施形態之變形例的線性引導機構顯 示於第九圖至第十二圖。除了以下說明之線性引導機構 之外,本變形例之構成與前述實施形態相同。第九圖係 在垂直於軌條1244之長轴方向的一面切斷活動塊1246 及執條1244畫出的剖面圖。第十圖及第十一圖分別係 第九圖之II — II剖面圖及ΙΠ— ΠΙ剖面圖。如第九圖所 示,在活動塊1246以包圍軌條1244之方式形成凹部 1246e。在該凹部I246e與執條1244之外周面之間夾著 滾子保持構件1246f。藉由該滾子保持構件1246f而在凹 部1246e與軌條1244之外周面的間隙形成延伸於軸方向 之四條轉動溝1246a、1246a,。在該轉動溝1246a、1246a, 中收納許多不銹鋼製之滾子1246b。滾子12461)萨 子保持構件1246f保持其軸方向兩端,而圓筒面^接於 活動塊1246之凹部與執條1244之外周面兩者。活换 1246之凹部與執條1244之外周面的間隔與滾子以 = ,等’滾子議在幾乎無游隙之狀態下密 口於活動塊1246之凹部1246e及軌條1244之外周面。 …Ϊ活動塊1246之内部設置二條與轉動溝i246a各白 略之執條避開路徑1246c,。如第十圖所示 5係將收容滾子1246b之軟管f曲成C字形ΐ >。轉動溝1246a與避開路徑1246c,在各個兩^連 20 200944774 接’而形成用於使滚子1246b循環之循環路徑。又,如 第十一圖所示’在活動塊1246之内部設置二條與轉動 溝1246a’各自概略平行的避開路徑1246C,避開路徑 1246c及轉動溝1246a’亦是形成同樣之循環路徑。 因而,活動塊1246對執條1244移動時,許多滾子 1246b在轉動溝1246a、1246a’中轉動而在循環路徑中循 環。因而’即使在軌條轴方向以外之方向施力口大荷重, 仍可以許多滾子1246b支撐活動塊1246’並且藉由滚子 1246b轉動而使執條轴方向之阻力維持得小,因此可使 活動塊1246相對軌條1244順利地移動。 本實施形態中,活動塊1246之凹部I246e與執條 1244之外周面的間隔d (第十圖、第十一圖)成為比滾 子1246b之直徑稍微(1微米以下)大之程度的長度。 在此種狀態下,在活動塊1246及執條1244施加來自滾 子1246b之預負載(preload),而成為滾子1246b之外周 面密合於活動塊1246之凹部1246e及軌條1244之外周 面的狀態。而後’軌條1244之軸方向以外的方向之荷 重施加於活動塊1246及軌條1244之一方時,其荷重藉 由滾子1246b,幾乎不致引起回應遲緩地傳達至另一 方。因而,即使使致動器200〜400以數kHz程度之高頻 率往返驅動,其振動藉由中間載台而確實地傳達至工作 台100。亦即,藉由本實施形態之振動測試裝置1時, 可使工作台1〇〇以高頻振動。 如第九圖所示,配置於四條轉動溝1246a、1246a, 之四列滾子1246b係配置成其軸在與轨條1244之軸正 21 200944774 交的面上間隔90。。 因為各滾子1246b如此地配置,所以施加從活動塊 1246朝向軌條1244之上面的方向(第九圖中為從下向 上的方向)之荷重時,該荷重主要由配置於二條轉動溝 1246a之二列滾子1246b承受。又,在活動塊1246上施 加從軌條1244之上面離開的方向(第九圖中為從上向 下的方向)之荷重時,該荷重主要由配置於二條轉動溝 1246a’之二列滾子1246b承受。 又,在活動塊1246上施加從其一方之侧面(圖中 左侧)朝向另一方侧面之方向(圖中右侧)的荷重時, 其荷重主要由配置於轉動溝1246a,及1246a之活動塊一 方侧(圖中左側)的二列滚子1246b承受。另外,在活 動塊1246上施加從其另一方侧面向一方側面之方向的 荷重時,其荷重主要由配置於轉動溝1246a,及1246a之 活動塊另一方側(圖中右側)的二列滚子1246b承受。 進一步,在活動塊1246上施加轨條1244之軸方向 周圍的扭曲荷重時,其扭轉荷重之方向係第九圖中順時 鐘方向時’其荷重主要由配置於轉動溝1246a之一方(圖 中左侧)的滾子1246b,與配置於轉動溝1246a,之另一 方(圖中右侧)的滾子1246b承受。扭轉荷重之方向係 第九圖中逆時鐘方向時’其荷重主要由配置於轉動溝 1246a之另一方的滾子1246b與配置於轉動溝1246a,之 一方的滾子1246b承受。 如此’本實施形態中’即使在活動塊1246上施加 第九圖中上下方向、左右方向、扭轉方向的任何荷重 22 200944774 時’此等荷重始終有二列之滚子1246b承受。因而,本 實施形態之線性引導機構即使在此等方向上施加大荷 重’荷重僅施加於特定列之滾子1246b,滾子1246b不 致破損且可順利地轉動,活動塊1246可藉由滾子1246b 而沿著執條1244順利地移動。 ❹ ❹ 將活動塊1246之滚子1246b的立體圖顯示於第十 二圖。如第十二圖所示,在使用於本實施形態之振動測 試裝置1的活動塊之各滚子之間設置保持器1246g,保 持器1246g具有與鄰接之二支滾子1246b的外周面抵接 之二個圓筒面,保持器1246g藉由該圓筒面而接觸於滚 子1246b。保持器1246g之二個圓筒面之輛彼此平行\ 而後,因為保持器1246g在其前後接觸於滾子124处, 所以循環職巾之滾子1246b係錄方向平行地整赢排 ^環因而,滾子1246b在循環路徑内不致晃動而順二地 又,不具保持器1246g之線性引導機構中, 子1246b係以較小之接觸面積而接觸,所以 & 加大的應力。相對於此,*實施形態的線性 = 滾子腦與保持器1246g之各圓筒面=為 積而接觸,藉由該接觸施加於滾子1246b的 觸面 較小。因而’本實施形態之線性引導機構與;且徂m 的機構比較,可抑制滾子1246b之破損及磨耗了 ’、寺器 進一步,本實施形態的線性引導機 1246b不直接接觸。各滚子1246b直 ·^滚子 音’而在本實施形態中’因為在滾子=¾ 23 200944774 持器1246g,所以可抑制此種噪音。 【圖式簡單說明】 第一圖係本發明之實施形態的電動型振動測試裝 置之俯視圖。 第二圖係本發明之實施形態的電動型振動測試裝 置之前視圖。 第三圖係本發明之實施形態的電動型振動測試裝 ❹ 置之第一致動器的剖面圖。 第四圖係本發明之實施形態的電動型振動測試裝 置之第一連結部的俯視圖。 第五圖係從Y軸方向觀察本發明之實施形態的電動 型振動測試裝置之第一連結部的側視圖。 第六圖係使用於本發明之實施形態的電動型振動 測試裝置之第一連結部的執條與活動塊之剖面圖。 第七圖係第六圖之1一1剖面圖。 Ο 第八圖係顯示本發明之實施形態的線性引導機構 的軌條之安裝構造的立體圖。 第九圖係在本發明之實施形態的振動測試裝置之 另外實施例中,在垂直於軌條之長軸方向的一面切斷活 動塊及軌條之剖面圖。 第十圖係第九圖之II— II剖面圖。 第十一圖係第九圖之III —III剖面圖。 第十二圖係設於本發明之實施形態的變形例所使 用之線性引導機構的活動塊之滾子的立體圖。 24 200944774 第十三圖係本發明之實施形態的電動型振動測試 裝置之方塊圖。The linear guide mechanism used in the modification of the embodiment is shown in the ninth to twelfth drawings. The configuration of this modification is the same as that of the above embodiment except for the linear guiding mechanism described below. The ninth diagram cuts a cross-sectional view of the movable block 1246 and the bar 1244 on one side perpendicular to the long axis direction of the rail 1244. The tenth and eleventh figures are the II-II section view and the ΙΠ-ΠΙ section view of the ninth figure. As shown in the ninth figure, a recess 1246e is formed in the movable block 1246 in such a manner as to surround the rail 1244. A roller holding member 1246f is interposed between the recessed portion I246e and the outer peripheral surface of the bar 1244. By the roller holding member 1246f, four rotation grooves 1246a and 1246a extending in the axial direction are formed in the gap between the concave portion 1246e and the outer peripheral surface of the rail 1244. A plurality of stainless steel rollers 1246b are housed in the rotation grooves 1246a and 1246a. The roller 12461) holds the holder member 1246f at both ends in the axial direction, and the cylindrical surface is joined to both the concave portion of the movable block 1246 and the outer peripheral surface of the bar 1244. The interval between the concave portion of the live change 1246 and the outer peripheral surface of the retaining strip 1244 and the roller are sealed at the outer peripheral surface of the concave portion 1246e and the rail 1244 of the movable block 1246 in a state of almost no play. ...the inside of the movable block 1246 is provided with two strips 1246c for each of the rotation grooves i246a. As shown in Fig. 10, the hose f of the housing roller 1246b is bent into a C-shape ΐ >. The rotation groove 1246a and the avoidance path 1246c are connected to each of the two joints 20 200944774 to form a circulation path for circulating the rollers 1246b. Further, as shown in Fig. 11, "there are two avoidance paths 1246C which are substantially parallel to the rotation grooves 1246a' in the movable block 1246, and the same circulation path is formed in the avoidance path 1246c and the rotation groove 1246a'. Thus, as the movable block 1246 moves toward the bar 1244, a plurality of rollers 1246b rotate in the rotating grooves 1246a, 1246a' to circulate in the circulation path. Therefore, even if the load is large in the direction other than the direction of the rail axis, a plurality of rollers 1246b can support the movable block 1246' and the rotation of the roller 1246b can maintain the resistance in the direction of the shaft axis small, thereby The movable block 1246 moves smoothly with respect to the rail 1244. In the present embodiment, the distance d (tenth, eleventh) between the concave portion I246e of the movable block 1246 and the outer peripheral surface of the bar 1244 is a length slightly larger than the diameter of the roller 1246b (1 μm or less). In this state, the preload from the roller 1246b is applied to the movable block 1246 and the bar 1224b, and the outer peripheral surface of the roller 1246b is adhered to the concave portion 1246e of the movable block 1246 and the outer circumference of the rail 1244. status. When the load in the direction other than the axial direction of the rear rail 1244 is applied to one of the movable block 1246 and the rail 1244, the load thereof is hardly transmitted to the other side by the roller 1246b. Therefore, even if the actuators 200 to 400 are reciprocally driven at a high frequency of several kHz, the vibration is reliably transmitted to the table 100 by the intermediate stage. That is, with the vibration test apparatus 1 of the present embodiment, the table 1 can be vibrated at a high frequency. As shown in the ninth figure, the four rows of rollers 1246b disposed in the four rotation grooves 1246a and 1246a are arranged such that their axes are spaced apart by 90 on the plane intersecting the axis of the rail 1244. . Since each of the rollers 1246b is disposed in such a manner that when a load is applied from the movable block 1246 toward the upper side of the rail 1244 (the direction from the bottom to the top in the ninth diagram), the load is mainly disposed in the two rotation grooves 1246a. The two rows of rollers 1246b are tolerated. Further, when the load from the upper side of the rail 1244 (the direction from the top to the bottom in the ninth drawing) is applied to the movable block 1246, the load is mainly composed of the two rows of rollers disposed in the two rotating grooves 1246a'. 1246b bears. Further, when a load is applied to the movable block 1246 from the side (the left side in the drawing) toward the other side (the right side in the drawing), the load is mainly caused by the movable block disposed in the rotating groove 1246a and 1246a. The two rows of rollers 1246b on one side (the left side in the figure) are received. Further, when the load from the other side surface to the one side surface is applied to the movable block 1246, the load is mainly composed of the two rows of rollers disposed on the other side (the right side in the figure) of the movable block 1246a and 1246a. 1246b bears. Further, when the torsional load around the axial direction of the rail 1244 is applied to the movable block 1246, the direction of the torsional load is the clockwise direction in the ninth figure. The load is mainly disposed on one side of the rotating groove 1246a (left in the figure) The roller 1246b on the side is received by the roller 1246b disposed on the other side (the right side in the drawing) of the rotation groove 1246a. When the direction of the torsional load is reversed in the ninth diagram, the load is mainly received by the roller 1246b disposed on the other of the rotation grooves 1246a and the roller 1246b disposed on one of the rotation grooves 1246a. Thus, in the present embodiment, even if any load 22 200944774 in the vertical direction, the left-right direction, and the twist direction in the ninth drawing is applied to the movable block 1246, the load is always received by the rollers 1246b of the two rows. Therefore, even if the linear guiding mechanism of the present embodiment applies a large load in the directions to which only the roller 1246b of the specific row is applied, the roller 1246b is not damaged and can be smoothly rotated, and the movable block 1246 can be driven by the roller 1246b. And move smoothly along the bar 1244. ❹ 立体 A perspective view of the roller 1246b of the movable block 1246 is shown in Fig. 12 . As shown in Fig. 12, a retainer 1246g is provided between the rollers of the movable block used in the vibration testing device 1 of the present embodiment, and the retainer 1246g has abutment with the outer peripheral surface of the adjacent two rollers 1246b. The two cylindrical faces, the retainer 1246g is in contact with the roller 1246b by the cylindrical surface. The two cylindrical faces of the retainer 1246g are parallel to each other. Then, since the retainer 1246g is in contact with the roller 124 at its front and rear, the rollers 1246b of the cycle towel are aligned in a row to win the ring in parallel. The roller 1246b does not sway in the circulation path, and in turn, in the linear guiding mechanism without the holder 1246g, the sub 1246b is contacted with a small contact area, so & increased stress. On the other hand, the linearity of the embodiment = the cylindrical surface of the roller and the holder 1246g are in contact with each other, and the contact surface applied to the roller 1246b by the contact is small. Therefore, the linear guide mechanism of the present embodiment can suppress the breakage and wear of the roller 1246b as compared with the mechanism of 徂m, and the temple device further does not directly contact the linear guide 1246b of the present embodiment. Each of the rollers 1246b has a straight sound, and in the present embodiment, "because the roller = 3⁄4 23 200944774 holder 1246g, such noise can be suppressed. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a plan view of an electric vibration test apparatus according to an embodiment of the present invention. The second drawing is a front view of an electric vibration test apparatus according to an embodiment of the present invention. Fig. 3 is a cross-sectional view showing the first actuator of the electric vibration test apparatus according to the embodiment of the present invention. The fourth drawing is a plan view of the first joint portion of the electric vibration test apparatus according to the embodiment of the present invention. The fifth drawing is a side view of the first connecting portion of the electric vibration test apparatus according to the embodiment of the present invention as seen from the Y-axis direction. Fig. 6 is a cross-sectional view showing a strip and a movable block of the first joint portion of the electric vibration test apparatus according to the embodiment of the present invention. The seventh figure is a sectional view of the first figure of the sixth figure.第八 Eighth is a perspective view showing a mounting structure of a rail of a linear guide mechanism according to an embodiment of the present invention. In a ninth embodiment, in another embodiment of the vibration testing apparatus according to the embodiment of the present invention, a cross-sectional view of the movable block and the rail is cut in a direction perpendicular to the long axis direction of the rail. The tenth figure is a sectional view of II-II of the ninth figure. The eleventh figure is a sectional view of the III-III of the ninth figure. Fig. 12 is a perspective view showing a roller of a movable block of a linear guide mechanism used in a modification of the embodiment of the present invention. 24 200944774 A thirteenth diagram is a block diagram of an electric vibration test apparatus according to an embodiment of the present invention.

【主要元件符號說明】 1 振動測試裝置 237 可移動線圈保持構件 2 裝置基座 238 軸 10 控制裝置 240 第一連結部 20 計測器 241 Z軸軌條用間隔物 30 電源裝置 241a 平板部 100 工作台 241b 肋條 200 第一致動器 244 Z軸執條 202 溝 244a 、244a’ 溝 210 第一固定塊 244b 貫穿孔 212 突出部 244c 螺栓 220 固定部 245 中間載台 222 筒狀體 246 Z軸活動塊 222a 凹部 246a, 246a’ 溝 225 内側磁極 246b 滚珠 230 可移動部 246c 、246c’ 避開路徑 231 頂板 246d U字形路徑 232 可移動框架 247 Y軸活動塊 233 中間工作台 248 Y軸軌條 234 連結桿 251 可移動線圈 235 樑 252 固定線圈 236 桿 261 空氣彈簧 25 200944774[Description of main component symbols] 1 Vibration test device 237 Removable coil holding member 2 Device base 238 Axis 10 Control device 240 First connection portion 20 Measuring device 241 Z-axis rail spacer 30 Power supply device 241a Flat plate portion 100 Table 241b rib 200 first actuator 244 Z-axis bar 202 groove 244a, 244a' groove 210 first fixing block 244b through hole 212 protruding portion 244c bolt 220 fixing portion 245 intermediate stage 222 cylindrical body 246 Z-axis movable block 222a Recessed portion 246a, 246a' groove 225 inner magnetic pole 246b ball 230 movable portion 246c, 246c' avoiding path 231 top plate 246d U-shaped path 232 movable frame 247 Y-axis movable block 233 intermediate table 248 Y-axis rail 234 connecting rod 251 Movable coil 235 Beam 252 Fixed coil 236 Rod 261 Air spring 25 200944774

300 第二致動器 448 X軸軌條 302 溝 450 線性引導機構 310 第二固定塊 451 執條 312 突出部 452 活動塊 340 第二連結部 453 引導框架 400 第三致動器 453a 直立部 402 溝 1244 軌條 410 第三固定塊 1246 活動塊 412 突出部 1246a 、1246a’轉動溝 420 固定部 1246b 滾子 423 上面 1246c 避開路徑 433 中間工作台 1246c’ 軌條避開路徑 440 第三連結部 1246e 凹部 444 Y軸軌條 1246f 滾子保持構件 445 中間載台 1246g 保持器 446 Y軸活動塊 B! 塊固定用螺栓 447 X軸活動塊 b2 致動器固定用竭 26300 second actuator 448 X-axis rail 302 groove 450 linear guiding mechanism 310 second fixing block 451 bar 312 protruding portion 452 movable block 340 second connecting portion 453 guiding frame 400 third actuator 453a upright portion 402 groove 1244 rail 410 third fixed block 1246 movable block 412 protruding portion 1246a, 1246a' rotating groove 420 fixing portion 1246b roller 423 upper 1246c avoiding path 433 intermediate table 1246c' rail avoiding path 440 third connecting portion 1246e recess 444 Y-axis rail 1246f Roller retaining member 445 Intermediate stage 1246g Holder 446 Y-axis movable block B! Block fixing bolt 447 X-axis movable block b2 Actuator fixing exhaust 26

Claims (1)

200944774 七、申請專利範圍: 1. 一種電動型振動測試裝置,係藉由音圈馬達而使供安 裝受檢體之工作台振動,且具有: 第一及第二電動型致動器,其係可分別使前述工 作台藉由音圈馬達振動於彼此正交之第一及第二方 向; 第一連結手段,其係可使前述工作台相對前述第 一電動型致動器滑動於第二方向;及 〇 第二連結手段,其係可使前述工作台相對前述第 二電動型致動器滑動於第一方向。 2. 如申請專利範圍第1項之電動型振動測試裝置,其中 前述第一及第二連結手段分別具有配置於前述第一 及第二電動型致動器與前述工作台之間的中間載 台,前述第一連結手段之中間載台僅在垂直於該第一 方向的一個方向可相對前述工作台滑動,且僅在垂直 於該一個方向與該第一方向兩者的方向可相對前述 ©第一電動型致動器滑動,前述第二連結手段之中間載 台僅在垂直於該第二方向的一個方向可相對前述工 作台滑動,且僅在垂直於該一個方向與該第二方向兩 者的方向可相對前述第二電動型致動器滑動。 3.如申請專利範圍第2項之電動型振動測試裝置,其中 前述第一連結手段之中間載台相對前述工作台及前 述第一電動型致動器可滑動之二個方向的一方係該 第二方向,前述第二連結手段之中間載台相對前述工 作台及前述第二電動型致動器可滑動之二個方向的 27 200944774 一方係該第一方向。 4.如申請專利範圍第2項之電動型振動測試裝置,其中 前述工作台及中間載台具有第一線性引導機構,其係 具有:安裝於其一方之執條;及安裝於其另一方,且 與該軌條卡合之活動塊; 前述電動型致動器及中間載台具有第二線性引 導機構,其具有:安裝於其一方之軌條;及安裝於其 另一方,且卡合於該軌條之活動塊。 ❿ 5.如申請專利範圍第4項之電動型振動測試裝置,其中 前述第一及第二線性引導機構之活動塊具有: 溝,其係沿著前述活動塊之移動方向形成於前述 凹部; 避開路徑,其係形成於前述活動塊之内部,以與 前述溝形成封閉迴路之方式,而與前述溝之前述移動 方向兩端連繫;及 複數個滾珠,其係在前述封閉迴路中循環,並且 ©在位於前述溝時,與前述軌條抵接。 6.如申請專利範圍第5項之電動型振動測試裝置,其中 在前述第一及第二線性引導機構之活動塊形成有四 個前述封閉迴路,分別配置於前述四個封閉迴路中之 二個封閉迴路的溝之滾珠相對前述活動塊之徑向方 向具有概略±45°之接觸角,分別配置於其他二個封閉 迴路之溝的滾珠相對前述活動塊之反徑向方向具有 概略±45°之接觸角。 7.如申請專利範圍第4項之電動型振動測試裝置,其中 28 200944774 前述第一及第二線性引導機構之活動塊的構成為具 有: 凹部,其係包圍前述軌條; 複數個滾子,其係配置成其圓筒面夾在前述執條 與前述凹部之間; 滾子保持構件,其係安裝於前述凹部,且形成轉 動溝,該轉動溝引導前述滾子之軸方向兩端,且使該 滚子轉動於前述活動塊之滑動方向;及 ❹ 避開路徑,其係形成於前述活動塊之内部,以與 前述轉動溝形成封閉迴路之方式,而與前述轉動溝之 前述滑動方向兩端連繫; 且前述複數個滾子在前述封閉迴路中循環。 8.如申請專利範圍第7項之電動型振動測試裝置,其中 在前述活動塊形成有四個前述封閉迴路,分別配置於 前述四個封閉迴路之四列滾子配置成其軸方向在與 前述軌條之軸正交的面上間隔90°。 ©9.如申請專利範圍第8項之電動型振動測試裝置,其中 前述滾子之直徑比前述轉動溝中之前述活動塊與前 述執條之間隔小,其差為1微米以下。 10.如申請專利範圍第7項之電動型振動測試裝置,其中 在鄰接之二個滚子之間,設有用於防止該各滾子接觸 之保持器。 11.如申請專利範圍第10項之電動型振動測試裝置,其 中前述保持器具有與前述滾子之圓筒面抵接的圓筒 凹面。 29 200944774 12.如申請專利範圍 前述執條具有/菩ft電動型振動測試裝置,其中 執條之寬度的;)前述螺检之安裝間隔係前述 項之電動型振動測試裝置’其 14 ” 女襄間隔係前述軌條寬度之60〜70%。200944774 VII. Patent application scope: 1. An electric vibration test device which vibrates a table for mounting a test object by a voice coil motor, and has: first and second electric actuators, The working table can be respectively vibrated by the voice coil motor in the first and second directions orthogonal to each other; the first connecting means can slide the working table relative to the first electric type actuator in the second direction And a second connecting means for sliding the table relative to the second electric actuator in the first direction. 2. The electric vibration test apparatus according to claim 1, wherein the first and second connecting means respectively have an intermediate stage disposed between the first and second electric actuators and the table The intermediate stage of the first connecting means is slidable relative to the table only in a direction perpendicular to the first direction, and the direction perpendicular to the one direction and the first direction may be opposite to the foregoing An electric actuator slides, the intermediate stage of the second connecting means is slidable relative to the table only in a direction perpendicular to the second direction, and is only perpendicular to the one direction and the second direction The direction can be slid relative to the aforementioned second electric type actuator. 3. The electric vibration test apparatus according to claim 2, wherein one of the two stages in which the intermediate stage of the first connecting means is slidable relative to the table and the first electric type actuator is In the two directions, the intermediate stage of the second connecting means is in the first direction with respect to 27 200944774 in two directions in which the table and the second electric actuator are slidable. 4. The electric vibration test apparatus according to claim 2, wherein the work table and the intermediate stage have a first linear guide mechanism having: a strip mounted on one side thereof; and being mounted on the other side thereof And the movable block engaged with the rail; the electric actuator and the intermediate stage have a second linear guiding mechanism having: a rail attached to one of the rails; and being mounted on the other side and engaging The active block of the rail. 5. The electric vibration test apparatus of claim 4, wherein the movable blocks of the first and second linear guiding mechanisms have: a groove formed in the concave portion along a moving direction of the movable block; An open path formed inside the movable block to form a closed loop with the groove, and connected to both ends of the moving direction of the groove; and a plurality of balls circulating in the closed loop And © when it is located in the above-mentioned groove, it abuts against the aforementioned rail. 6. The electric vibration test apparatus according to claim 5, wherein the movable blocks of the first and second linear guide mechanisms are formed with four closed circuits, respectively, which are respectively disposed in two of the four closed circuits The balls of the closed loop have a contact angle of ±45° with respect to the radial direction of the movable block, and the balls respectively disposed in the grooves of the other two closed loops have a mean ±45° with respect to the reverse radial direction of the movable block. Contact angle. 7. The electric vibration test apparatus of claim 4, wherein 28 200944774 the movable blocks of the first and second linear guiding mechanisms are configured to have: a recess that surrounds the rail; a plurality of rollers, And the roller holding member is attached to the recess and forms a rotation groove that guides both ends of the roller in the axial direction, and is configured to have a cylindrical surface sandwiched between the strip and the recess; Rotating the roller in a sliding direction of the movable block; and 避 avoiding a path formed inside the movable block to form a closed loop with the rotating groove, and the sliding direction of the rotating groove An end system; and the plurality of rollers are circulated in the closed loop. 8. The electric vibration test apparatus according to claim 7, wherein the movable block is formed with four closed circuits, and the four rows of rollers respectively disposed in the four closed circuits are arranged such that the axial direction thereof is The planes of the axes of the rails are spaced 90° apart. The electric vibration test apparatus according to claim 8, wherein the diameter of the roller is smaller than a distance between the movable block and the aforementioned bar in the rotation groove, and the difference is 1 μm or less. 10. The electric vibration test apparatus according to claim 7, wherein a retainer for preventing contact between the rollers is provided between the adjacent two rollers. 11. The electric vibration test apparatus according to claim 10, wherein the retainer has a cylindrical concave surface that abuts against a cylindrical surface of the roller. 29 200944774 12. As claimed in the patent application, the above-mentioned regulations have a / ft electric vibration test device, in which the width of the strip is made;) the installation interval of the aforementioned screw test is the electric vibration test device of the above item '14' The spacing is 60 to 70% of the width of the aforementioned rail. Ο .具有請糊朗第1項之絲魏動賴裝置,其中 第三電動型致動器’其係可在垂直於該第一及第 二方向兩者的第三方向上使前述工作台振動;及 第三連結手段,其係可使前述工作台相對前述第 三電動型致動器滑動於第一及第二方向,且使前述工 作台連結到前述第彡電動型致動器; 且前述第一及第二連結手段分別可使前述工作 台相對前述第一及第二電動型致動器滑動於第三方 向’且使前述工作台速結到前述第一及第二電動型致 動器。 15.如申請專利範圍第14項之電動型振動測試裝置,其 中前述第三連結手段具有配置於前述第三電動型致 動器與前述工作台之間的中間載台’前述第三連結手 段之中間載台僅在垂直於該第三方向之一個方向可 相對前述工作台滑動,且僅在垂直於該一個方向與該 第三方向兩者的方甸’可相對前述第一電動型致動器 滑動。 30 200944774 圍第15項之電動型 中剛速弟三連結手段之中間载台可:2置,其 滑,之二個方向係該第—及第二目對讀工作台 17. ^料鄉圍第13項之電 中前述第三方向係上下方向。振動科裝置,其 18. ϋ請專利範圍$ 17項之電動型振動測續h :述第三連結手段之中間载述第:叙其具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有And a third connecting means for sliding the table relative to the third electric actuator in the first and second directions, and connecting the table to the second electric actuator; The first and second connecting means respectively allow the table to slide in the third direction ' with respect to the first and second electric actuators, and to cause the table to be fastened to the first and second electric actuators. [15] The electric vibration test apparatus of claim 14, wherein the third connecting means has an intermediate stage disposed between the third electric type actuator and the table, and the third connecting means The intermediate stage is slidable relative to the aforementioned table only in one direction perpendicular to the third direction, and the first electric type actuator is opposite to the front side of only the one direction perpendicular to the one direction and the third direction slide. 30 200944774 The middle stage of the electric connection type of the three-way connection method of the electric motor type can be: 2 sets, the slippery, the two directions are the first and the second head reading the worktable 17. In the electric power of item 13, the aforementioned third direction is the up and down direction. The vibration equipment, 18. The electric vibration test of the patent range of $17 is continued. h: The middle of the third connection means: ❹ 於前述複數個轨條各自的複數軌條與卡合 連結。 後数個^舌動塊而可滑動地 19. 如申請專利範圍第π 以=1與前述中間載台係藉由:二^ ί=Γ 卡合於前述複數個軌條各自的複 數個活動塊而可滑動地連結。 20. 如二請專職圍第17項之電㈣振動測試裝置其 中前述第三電動型致動器具有複數個中間載台。 21. 如申請專利範圍第丨項之電動型振動測試裝置,其中 前述電動型致動器由以下元件構成:筒狀之固定部, 其係藉由磁性材料而形成;及可移動部,其係可移動 於固疋部之轴方向地***該固定部之中空處; 在該固定部之内部設置固定線圈,在前述可移動 部設置可移動線圈,直流電流流入前述固定線圈時, 在可移動線圈之徑向方向發生磁場,在該狀態下,電 流流入可移動線圈時,於前述軸方向上發生勞侖茲 力,藉此,作為使前述工作台滑動於第一、第二或第 31 200944774 三方向的驅動力。复 The respective plurality of rails of the plurality of rails are coupled with the snaps. The latter plurality of tongue-moving blocks are slidably 19. According to the patent application scope π =1, the intermediate intermediate stage is coupled to each of the plurality of movable blocks of the plurality of rails by two: ί=Γ It is slidably connected. 20. For example, please refer to the electric (IV) vibration test device of the full-length section (17), wherein the third electric type actuator has a plurality of intermediate stages. 21. The electric vibration type test apparatus according to claim 2, wherein the electric type actuator comprises: a cylindrical fixing portion formed of a magnetic material; and a movable portion The movable portion can be inserted into the hollow portion of the fixing portion; a fixed coil is disposed inside the fixed portion, and a movable coil is disposed in the movable portion, and when a direct current flows into the fixed coil, the movable coil is A magnetic field is generated in the radial direction. In this state, when a current flows into the movable coil, a Lorentz force occurs in the axial direction, thereby causing the table to slide on the first, second, or 31 200944774. The driving force of the direction. 3232
TW098113448A 2008-04-25 2009-04-23 Electrodynamic vibration test equipment TW200944774A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008116436 2008-04-25
PCT/JP2009/054616 WO2009130953A1 (en) 2008-04-25 2009-03-11 Electrodynamic vibration test equipment

Publications (1)

Publication Number Publication Date
TW200944774A true TW200944774A (en) 2009-11-01

Family

ID=41216694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098113448A TW200944774A (en) 2008-04-25 2009-04-23 Electrodynamic vibration test equipment

Country Status (2)

Country Link
TW (1) TW200944774A (en)
WO (1) WO2009130953A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480122B (en) * 2012-07-13 2015-04-11 Univ Nat Kaohsiung Applied Sci A machine tool's vibrating deck
CN105728305A (en) * 2011-04-26 2016-07-06 国际计测器株式会社 Electrodynamic Actuator And Electrodynamic Excitation Device
CN106605134A (en) * 2014-07-30 2017-04-26 国际计测器株式会社 Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487386A (en) * 1990-07-31 1992-03-19 Toshiba Corp Pulse dye laser system
JP6130892B2 (en) * 2011-04-26 2017-05-17 国際計測器株式会社 Electrodynamic actuator and electrodynamic excitation device
CN104406608B (en) * 2014-11-28 2017-10-20 陕西宝成航空仪表有限责任公司 Gyro static balance shake table
CN105115521A (en) * 2015-08-31 2015-12-02 芜湖宏景电子股份有限公司 Automobile navigation module vibration testing device
KR20210153753A (en) 2016-01-15 2021-12-17 고쿠사이 게이소쿠키 가부시키가이샤 Vibration application device, and electrodynamic actuator
JP7130221B2 (en) * 2016-06-30 2022-09-05 国際計測器株式会社 Vibrator
CN106289696B (en) * 2016-10-10 2019-03-22 镇江高等职业技术学校 The three translational vibration platforms based on parallel institution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2861223B2 (en) * 1990-03-23 1999-02-24 日本精工株式会社 Impact-resistant linear guide device
JP3413482B2 (en) * 1999-10-07 2003-06-03 株式会社サンエス 3-axis vibration test equipment
JP2006234032A (en) * 2005-02-23 2006-09-07 Nsk Ltd Linear guide bearing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728305A (en) * 2011-04-26 2016-07-06 国际计测器株式会社 Electrodynamic Actuator And Electrodynamic Excitation Device
CN105743275A (en) * 2011-04-26 2016-07-06 国际计测器株式会社 Electrodynamic linear actuator and electrodynamic excitation device
TWI559987B (en) * 2011-04-26 2016-12-01 Kokusai Keisokuki Kk Electrodynamic actuator and electrodynamic vibration machine
CN105743275B (en) * 2011-04-26 2020-08-18 国际计测器株式会社 Electric linear actuator and electric excitation device
US11289991B2 (en) 2011-04-26 2022-03-29 Kokusai Keisokuki Kabushiki Kaisha Electrodynamic actuator and electrodynamic excitation device with movable part support mechanism and fixed part support mechanism
US11824416B2 (en) 2011-04-26 2023-11-21 Kokusai Keisokuki Kabushiki Kaisha Electrodynamic actuator and electrodynamic excitation device
TWI480122B (en) * 2012-07-13 2015-04-11 Univ Nat Kaohsiung Applied Sci A machine tool's vibrating deck
CN106605134A (en) * 2014-07-30 2017-04-26 国际计测器株式会社 Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table
CN110530592A (en) * 2014-07-30 2019-12-03 国际计测器株式会社 Exciting device
TWI680810B (en) * 2014-07-30 2020-01-01 日商國際計測器股份有限公司 Vibration generation device
CN110530592B (en) * 2014-07-30 2022-02-22 国际计测器株式会社 Vibration exciter

Also Published As

Publication number Publication date
WO2009130953A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
TW200944774A (en) Electrodynamic vibration test equipment
JP6653735B2 (en) Exciter
JP4782710B2 (en) Stage equipment
JP4723204B2 (en) Integrated large glass handling system
US20150326150A1 (en) Maglev workpiece table with six degrees of freedom
JP2004223647A (en) Positioning device
CN103226296B (en) Rough-fine-movement laminated workbench with laser interferometer measurement
JP2012237736A (en) Electrodynamic actuator and electrodynamic exciter
JP2016136089A (en) Load loading device, load measurement device and load loading method of aircraft
JP2008199726A (en) Linear motor and, tool transfer device equipped with the same
JP2002064968A (en) Slider with built-in moving coil linear motor
JP4717466B2 (en) Transfer device {TRANSFERAPPARATUS}
CN103383526B (en) The dynamic stacking workbench of a kind of thick essence
JP2006322714A (en) Motion stage
JP6239720B2 (en) Liquid analyzer
JPH03178747A (en) Two-dimensional motor type stage device
TWI260646B (en) X-Y axis stage device
CN203275876U (en) Micromotion working platform of silicon wafer platform of a photoetching machine
JP2010074976A5 (en)
JP6723642B2 (en) Stage equipment
JP2006283892A (en) Table device
CN209615416U (en) A kind of gantry is double to drive structure
JP2005091080A (en) Vibration testing system
JP4756446B2 (en) Stage equipment
JP3959316B2 (en) Shaking table device