TW200933937A - Semiconductor devices having enhanced light emission and associated methods - Google Patents

Semiconductor devices having enhanced light emission and associated methods

Info

Publication number
TW200933937A
TW200933937A TW97145408A TW97145408A TW200933937A TW 200933937 A TW200933937 A TW 200933937A TW 97145408 A TW97145408 A TW 97145408A TW 97145408 A TW97145408 A TW 97145408A TW 200933937 A TW200933937 A TW 200933937A
Authority
TW
Taiwan
Prior art keywords
refractive index
light
diamond
resin
layer
Prior art date
Application number
TW97145408A
Other languages
Chinese (zh)
Inventor
Ming-Ji Gan
Shao-Zhong Hu
jian-min Song
Original Assignee
Ming-Ji Gan
Shao-Zhong Hu
jian-min Song
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Ji Gan, Shao-Zhong Hu, jian-min Song filed Critical Ming-Ji Gan
Publication of TW200933937A publication Critical patent/TW200933937A/en

Links

Abstract

Methods of improving the efficiency of light-emitting semiconductor devices and the associated device are provided. In one aspect, for example, a method for enhancing light extraction from a light-emitting semiconductor device may include minimizing refraction of light emitted from a light-emitting surface of a light-emitting semiconductor through an encapsulating material by substantially matching a first refractive index of the light-emitting surface to a second refractive index of the encapsulating material by disposing an equalizing material there between that has a third refractive index that is intermediate between the first and second refractive indexes. In one specific aspect, the material is a layer of diamond. In another specific aspect, the layer of diamond is a layer of diamond-like carbon.

Description

200933937 六、發明說明: 【發明所屬之技術領域】 本發明通常係有⑽半㈣裝置及相關方法,因此 本發明涉及電子以及材料科學領域。 【先前技術】 ❹ ❹ 在很多已開發國家中,大部分的人口認為電子 他們的生活而言係*可龍的。這種增加的㈣率及依賴 度已經產生對於電子裝置更小、更快速的需求。當電子 路的速度增加而尺寸減少時,這種裝置的冷卻就成了問題。 電子裝置通t包含整體連接+元件的印刷電路 板,提供該裝置具有整體性的功能,這些電子元件(如處理 機、y日體、電阻器、電容器、發光二極體(LEDs)等)會產 生大量的熱量’當熱量增加,其會產生各種與此電子元件 有關的熱問題(the_i prQblem),顯著的熱量會影響—電 子裝置的可靠性,或甚至使該電子裝置因為例如在電子元 件本身内部以及該印刷電路板之表面的燒毀或短路而損 壞。因此,熱量的增加最後影響該電子裝置的作用壽命, 此特別對於具有高功率與高電流需求的電子元件以及對於 支撐該等電子元件的印刷電路板是個難題。 各種冷卻裝置,如風扇、散熱器、Pemer散熱器、水 冷裝置等均已被使用以用於減少mi中之熱累積。當 '曰力的速度以及功率消耗使得熱量累積提高,這種冷卻裝 置通常必須增力σ尺寸以達到效果,@可能纟需要較大的功 率來操作。例如’風扇必須增加尺寸以及速度以增加氣流, 而散熱盗必須增加尺寸,以增加熱容量以及表面積。然而, 4 200933937 對於較小之電子裝置的需求不僅須排除這種冷卻裝置尺寸 的增加’也還需要有顯著縮小的體積。 【發明内容】 因此,本發明提供光發射半導體裝置以及相關方法。 例如在一態樣中係提供用於增進從一光發射半導體裝置中 的光取出量之方法,這種方法可包括透過一包覆材料 (encapsu丨ating materia丨)使從一光發射半導體之光發射表 Φ射出的折射光最小化,其係藉由設置—具有第三折射率 之均質材料(equalizing materia丨)於其中而使得該放光表面 之第一折射率實質上匹配該包覆材料之第二折射率,該第 三折射率係介於該第一與第二折射率之間。在一特定態樣 中,該均質材料係一層鑽石;在另一態樣中,該層鑽石係 一層類鑽碳。 在各種材料之間折射率之差異可依照各種因素而有所 不同,包括所用的材料以及該裝置的預期使用。然而在— 態樣中,第一折射率以及第三折射率之間的差值和第二折 射率以及第三折射率之間的差值係小於或等於〇 7。在另— 態樣中,第一折射率以及第三折射率之間的差值和第二折 射率以及第三折射率之間的差值係小於或等於0 5。在又— 態樣中,第一折射率以及第三折射率之間的差值和第二折 射率以及第三折射率之間的差值係小於或等於0.3。 本發明也提供光發射半導體裝置。例如在一態樣中, 這種裝置可包括設置在一光發射半導體之光發射表面上的 一類鑽碳層以及設置於該類鑽碳層上的包覆材料,該包覆 材料具有滲入其中的鑽石顆粒。在另一態樣中,該光發射 5 200933937 表面的第一折射率、該包覆材料之第二折射率以及該類鑽 碳層的第三折射率係實質上匹配的。 各種包覆材料皆可用於製造本發明之各種態樣的裝 置。所用的特定材料可依照該裝置所預期的應用以及使用 於建構該裝置的特定材料而決定。然而在一態樣中,該包 覆材料非限制性的範例可包括胺基樹脂(amino resins)、壓 克力樹脂(acrylate resins)、醇酸樹脂(alkyd resins)、聚酯 樹脂(polyester resins)、聚醯胺樹脂(polyamide resins)、 聚亞醢胺(polyimide resins)、聚氨醋(polyurethane resins)、酚醛樹脂(phenolic resins)、酚醛/乳膠樹脂 (phenolic/latex resins)、環氧樹脂(epoxy resins)、異氰酸 樹脂(isocyanate resins)、異氰酸酯樹脂(isocyanurate resins)、聚梦氧烧樹脂(p〇|ysil〇xane resins)、反應性乙烯 基樹脂(reactive vinyl resins)' 聚乙烯樹脂(polyethylene resins)、聚丙稀樹脂(polypropylene resins)、聚苯乙烯樹 脂(polystyrene resins)、聚苯氧基樹脂(phenoxy resins)、 二萘嵌苯樹脂(perylene resins)、聚砜樹脂(polysu丨fone resins)、丙烯-丁二稀苯乙烯樹脂(acrylonitrile-butadiene-styrene resins)、矽樹脂 (silicon resins)、 丙烯 酸樹脂 (acrylic resins)、聚碳酸醋樹月旨(polycarbonate resins)以及及其組 合。在一特定態樣中,該包覆材料包括環氧樹脂。在另一 特定態樣中,該包覆材料包括矽樹脂。在又一特定態樣中, 該包覆材料包括聚亞醯胺。 可預期地,各種尺寸之鑽石顆粒亦包含於本發明之範 疇中。該顆粒之尺寸可依照所使用於包覆該裝置的材料種 6 200933937 類以及該裝置預期操作的溫度而有所不同。例如在一態樣 中,該等鑽石顆粒為奈米鑽石顆粒。在另一態樣中,該鑽 石顆粒的尺寸係從約10 nm至約100 在又一態樣中, 該鑽石顆粒的尺寸係從約10 nm至約1 &quot;m。又另一態樣 中’该鑽石顆粒的尺寸係從約i &quot; m至約彳〇〇从m。同樣 地’滲入該包覆材料中的鑽石顆粒的比例也能各有不同·, 例如在一態樣中’該包覆材料包括從約1至約70 vol〇/〇的 鑽石顆粒。在另一態樣中,該包覆材料包括從約5至約3〇 vol%的鑽石顆粒。 本發明也提供一種根據各種在此所述之各種態樣製造 裝置的方法。例如在一態樣中,製造一光發射半導體裝置 的方法可包括在一光發射半導體裝置之光發射表面上設置 一類鑽碳層、在該類鑽碳層上設置一層未硬化的包覆材料 (該未硬化之包覆材料具有滲入其中的鑽石顆粒)以及硬化該 未硬化的包覆材料以形成具有滲入之鑽石顆粒的包覆高分 子。在一態樣中,該包覆材料圍繞該光發射半導體露出表 面區域之實質部分。 現在僅概括性且較廣地描述出本發明的各種特徵,因 此在接下來的詳細說明中可更進一步地理解,並且在本領 域所做的貢獻可能會有更佳的領會,而本發明的其他特徵 將會從接下來的詳細說明及其附圖和申請專利範圍中變得 更為清楚’也可能在實行本發明時得知。 【實施方式】 定義 在本發明的敘述與申請專利範圍中,以下術語會依照 200933937 以下所提出的定義而被使用。 單數型態字眼如「一」和「該」除非在上下文申请聲 指明為單數,不然亦包括複數對象,因此例如「一熱源」 包括一個或多個這樣的熱源;「該鑽石層」包括一個或多 個這樣的層狀結構。 和「熱傳輸(heat transmission)」可互換使用,其係指熱從 溫度較高的區域轉移至溫度較低的區域。熱的轉移是指包 ® 括任何於所屬技術領域具有通常知識者所知的熱轉移機 制’例如但不限制於傳導、對流以及輻射等。 「發射(emitting)」是指熱或光從固體材料轉移至空氣 的過程。 「發光表面(light-emitting surface)」是指有光從其有 意發射的裝置或物體的表面。光可包括可見光或在紫外光 譜中的光。一發光表面的例子可包括但不限制在光能從其 發射的LED氮化物層,或在結合至|_ED半導體層的氣化物 層。 「折射(refraction)」係指因為光波行經—介質至另一 介質時速度的改變而使光波方向改變。因此,「折射率 (refractive index)」係作為衡量在所給予的介質中光速改變 的多寡’一介質的折射率(η)可根據式一計算:200933937 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to (10) a half (four) device and related methods, and thus the present invention relates to the field of electronics and materials science. [Prior Art] ❹ ❹ In many developed countries, most of the population believes that their lives are electronic. This increased (four) rate and dependency has created a smaller, faster need for electronic devices. Cooling of such devices becomes a problem as the speed of the electronic circuit increases and the size decreases. The electronic device includes a printed circuit board that is integrally connected to the component, providing the device with a holistic function, such as a processor, a y-body, a resistor, a capacitor, a light-emitting diode (LEDs), etc. Producing a large amount of heat' as heat increases, it produces various thermal problems associated with this electronic component (the_i prQblem), significant heat can affect the reliability of the electronic device, or even make the electronic device because, for example, in the electronic component itself The interior and the surface of the printed circuit board are damaged by burnout or short circuit. Therefore, the increase in heat ultimately affects the operational life of the electronic device, which is particularly problematic for electronic components having high power and high current requirements and for printed circuit boards supporting such electronic components. Various cooling devices, such as fans, radiators, Pemer radiators, water cooling devices, etc., have been used to reduce heat buildup in the mi. When the speed of the force and the power consumption increase the heat accumulation, such a cooling device usually has to increase the σ size to achieve the effect, and @ may require a large power to operate. For example, fans must increase in size and speed to increase airflow, while heatsinks must be increased in size to increase heat capacity and surface area. However, 4 200933937 the need for smaller electronic devices not only eliminates the increase in the size of such cooling devices, but also requires a significantly reduced size. SUMMARY OF THE INVENTION Accordingly, the present invention provides a light emitting semiconductor device and related methods. For example, in one aspect, a method for increasing the amount of light extracted from a light-emitting semiconductor device is provided, the method comprising: transmitting light from a light-emitting semiconductor through a cladding material (encapsu丨ating materia) The refracted light emitted by the emission table Φ is minimized by providing a uniform material having a third refractive index therein such that the first refractive index of the light-emitting surface substantially matches the cladding material a second refractive index, the third refractive index being between the first and second refractive indices. In one particular aspect, the homogeneous material is a layer of diamond; in another aspect, the layer of diamond is a layer of diamond-like carbon. The difference in refractive index between the various materials can vary depending on various factors, including the materials used and the intended use of the device. However, in the aspect, the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index are less than or equal to 〇 7. In another aspect, the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 0 5 . In the again aspect, the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 0.3. The present invention also provides a light emitting semiconductor device. For example, in one aspect, the apparatus may include a diamond-like layer disposed on a light-emitting surface of a light-emitting semiconductor and a cladding material disposed on the diamond-like carbon layer, the cladding material having penetration therein Diamond particles. In another aspect, the first index of refraction of the surface of the light emission 5 200933937, the second index of refraction of the cladding material, and the third index of refraction of the carbonaceous layer of the type are substantially matched. Various coating materials can be used to make the various aspects of the present invention. The particular materials used may be determined by the intended application of the device and the particular materials used to construct the device. In one aspect, however, non-limiting examples of the coating material may include amino resins, acrylate resins, alkyd resins, polyester resins. , polyamide resins, polyimide resins, polyurethane resins, phenolic resins, phenolic/latex resins, epoxy resins (epoxy) Resins),isocyanate resins,isocyanurate resins,p〇|ysil〇xane resins,reactive vinyl resins'polyethylene resins Resins), polypropylene resins, polystyrene resins, phenoxy resins, perylene resins, polysu丨fone resins, Acrylonitrile-butadiene-styrene resins, silicon resins, acrylic resins Polycarbonate tree months purpose (polycarbonate resins) and combinations thereof. In a particular aspect, the cladding material comprises an epoxy resin. In another specific aspect, the cladding material comprises a resin. In yet another particular aspect, the coating material comprises polyamidamine. It is contemplated that diamond particles of various sizes are also included in the scope of the present invention. The size of the particles may vary depending on the type of material used to coat the device 6 200933937 and the temperature at which the device is intended to operate. For example, in one aspect, the diamond particles are nanodiamond particles. In another aspect, the diamond particles have a size from about 10 nm to about 100. In yet another aspect, the diamond particles have a size from about 10 nm to about 1 &quot; m. In still another aspect, the size of the diamond particles ranges from about i &quot; m to about 彳〇〇 from m. Similarly, the proportion of diamond particles that are infiltrated into the coating material can vary, for example, in one aspect, the coating material comprises diamond particles from about 1 to about 70 vol〇/〇. In another aspect, the coating material comprises from about 5 to about 3 vol% diamond particles. The present invention also provides a method of manufacturing a device in accordance with various aspects described herein. For example, in one aspect, a method of fabricating a light-emitting semiconductor device can include disposing a diamond-like layer on a light-emitting surface of a light-emitting semiconductor device, and providing an unhardened cladding material on the carbon-like layer ( The uncured cladding material has diamond particles impregnated therein and the uncured cladding material is cured to form a coated polymer having infiltrated diamond particles. In one aspect, the cladding material exposes a substantial portion of the surface region around the light emitting semiconductor. The various features of the present invention are now described broadly and broadly, and thus may be further understood in the following detailed description, and the <RTIgt; Other features will become apparent from the following detailed description and the appended claims and claims. [Embodiment] Definitions In the description of the present invention and the scope of the patent application, the following terms will be used in accordance with the definitions set forth below in 200933937. The singular type of words such as "a" and "the" are used in the singular unless the context is applied to the singular, and the plural is also included, for example, "a heat source" includes one or more of such heat sources; "the diamond layer" includes one or A plurality of such layered structures. It is used interchangeably with "heat transmission", which refers to the transfer of heat from a higher temperature zone to a lower temperature zone. Thermal transfer refers to any thermal transfer mechanism known to those of ordinary skill in the art, such as, but not limited to, conduction, convection, and radiation. "Emission" refers to the process by which heat or light is transferred from a solid material to the air. "Light-emitting surface" means the surface of a device or object from which light is intentionally emitted. Light can include visible light or light in the ultraviolet spectrum. Examples of a light emitting surface may include, but are not limited to, an LED nitride layer from which light energy is emitted, or a vapor layer bonded to the |_ED semiconductor layer. "Refraction" means the direction of the light wave changes as the speed of the light travels through the medium to the other medium. Therefore, the "refractive index" is a measure of the change in the speed of light in a given medium. The refractive index (η) of a medium can be calculated according to Equation 1:

C η=; 式一 其中c為光在真空中的速度,而ν係光在介質裡被量 測的速度。 「鑽石(diamond)」是指一種碳原子鍵結至在四角晶格 200933937 之結晶形態(即sp3鍵結型態)中其他碳原子的結晶型態,特 別的是每一碳原子被其他四個各位於正四面體冬四角的碳 原子圍繞並鍵結’此外,儘管實驗結果的差值报小,但在 室溫下實驗後之任兩個碳原子的鍵長為1.54埃,其鍵角為 1 09度28分1 6秒,而鑽石的結構與性質,包括許多其物 理及電學性質已為習知的技術,故在此不贅述。 「扭曲四面體配位結構(diSt〇rted tetrahedral coordination)」是指不規則碳原子的於四面體鍵結配位結 ® 構,或具有脫離了上述正常的鑽石四面體型態,這種扭曲 通常是由於一些鍵被拉長,而其他被縮短,而鍵之間的鍵 角差異也是原因之一。除此之外,這種四面體的扭曲結構 改變了碳的特徵與性質,以有效介於以sP3結構鍵結的碳(即 鑽石)以及以sp2結構鍵結的碳(即石墨)之間的特徵,舉例 來說,一個具有鍵結在扭曲四面體鍵結中之碳原子的材料 為非晶鑽石》 ◎ 「類鑽碳(diamond-like carbon)」是指主要組成物為 碳原子,且大量的這種碳原子鍵結於一扭曲四面體配位結 構的含碳物質,雖然CVD或其他方法也能使用(如氣相沉 積法)’但類鑽碳通常能夠以PVD法所形成。尤其各種其 他包括在類鑽碳材料中的元素為不純物或摻雜物,包括但 不限制為氫、硫、攝、蝴、氮、碎、鶴等。 「非晶鐵石(amorphous diamond)」係屬於類鑽碳的— 種,其主要組成物為碳原子,且大量碳原子鍵結於一扭曲 四面體配位結構。一方面,在非晶鑽石中的碳原子含量至 少約為90%,其中至少約20。/。的碳原子係屬於扭曲四面體 200933937 配位結構。非晶鑽石的原子密度比一般鑽石(176 at〇ms/cm3) 尚,而且非晶鑽石與錯石材料會在惊化時收縮。 「氣相沉積物(vapor deposited)」是指一種藉由氣相 沉積法所形成的材料’ 「氣相沉積法」是指一種藉由氣體 相將物質沉澱在基材上的方法,其包括任何例如,但不限 制為化學氣相沉積法(chemical vapor deposition,CVD)和 物理氣相沉積法(physical vapor deposition, PVD),每一 氣相沉積法的使用皆可由於本領域具通常知識者在不改變 主要原理的情況下做變動,因此該氣相沉積法的例子包括 熱燈絲化學氣相沉積法(fMament CVD)、射頻化學氣相沉積 法(rf-CVD)、雷射化學氣相沉積法(|aser CVD,LCVD)、雷 射剝離法(laser ablation)、同構型鑽石塗佈方法(conforma| diamond coating processes)、金屬有機物化學氣相沉積法 (metahorganic CVD,M0CVD)、濺鍍、熱蒸發物理氣相沉 積法(thermal evaporation PVD)、離子化金屬物理氣相沉 ◎ 積法(ionized meta丨PVD,IMPVD)、電子束氣相沉積法 (electron beam PVD, EBPVD)以及反應氣相沉積法 (reactive PVD)等其他類似的方法。 「化學氣相沉積(chemica丨vapor deposition)」或 「CVD」係指任何以氣相狀態化學沉積鑽石顆粒於一表面 的方法。各種CVD係所屬技術領域具有通常知識者所知悉 的。 「物理氣相沉積(physical vapor deposition)」或 「PVD」係指任何以氣相狀態物理沉積鑽石顆粒於一表面 的方法。各種PVD係所屬技術領域具有通常知識者所知悉 200933937 的0 「奈米顆粒(nano-particle、丨在社a 士 士, pumche)」係指具有奈米範圍之尺 寸的顆粒,範圍可依照顆粒的使用而有所不同。缺而 在一態樣中’奈米顆粒的尺寸範圍可從約麵⑽至約, nm;在另一態樣中,夺来顆^ 不木顆粒的尺寸範圍可從約1 〇〇 nm 至約10nm;在又一離槐中,太虫粧心, ‘ 7中不未顆粒的尺寸範圍可從約5〇 nm至約20 nm。這種奈米顆粒可具有各種的形狀,包括圓 ❹ 形、橢圓形(〇b丨〇ng)、方形、自形㈣他叫等且其 單晶或多晶。 參入(impregnate)」以及「滲入的(impregnated)」 係指第-材料中有引入第二材料至其中,或此種引入的動 作。例如,厂鑽石渗入的(diam〇nd jmpregnated)」指材料 具有鑽石顆粒摻入其中。藉由如下非限制性的示範方法, -材料可藉由提供-材料(如粉末狀的黏著材料)而使鑽石或 奈米鑽石帛粒滲a ’職著粉末材料接著與鑽石或奈米鑽 石顆粒混合且熔融或液化而形成混合物。 「基材(substrate)」係指可供許多材料結合的一支撐 表面,以形成鑽石底半導體裝置。本發明有用的基材可為 各種形狀、厚度或材料’其係可在某種程度上支樓超研磨 顆粒以足夠提供有用於達到所欲達成之目的的工具。該基 材包括但不限制在金屬、合金、陶瓷材料以及其混合物。 再者,在一些方面,該基材可為一個已存在的半導體裝置 或晶圓,或者可是能夠與適合裝置結合的材料。 「實質上地(substantia丨丨y)」是指步驟、特性、性質、 狀態、結構、項目或結果的完全、接近完全的範圍或程度。 11 200933937 例如,一實質上」被包覆的物體係指該物體完全被包覆 或幾乎完全被古覆·。而離絕對,完全確實可允許的偏差可在 不同情況下依照特定上下文來決定。然而,通常來說接近 完全就如同獲得絕對或完整的完全具有相同的總體結果。 所用的實質上地」在當使用於負面含意亦同等適用,以 表不完全或接近完全缺乏步驟、特性、性質、狀態、結構、 項目或、结果。舉例來說,—Γ實質上沒有(substantia||y f「ee of)」顆粒的組成可為完全缺乏顆粒,或者非常近乎完全缺 乏顆粒,而其影響會如同完全缺乏顆粒一樣❶換句話說, 一「實質上沒有」一成分或元素的組成只要在所關注的特 性上沒有可測量到的影響,可實際上依然包含這樣的物質。 「大約(about)」係可在邊界值「高一些」或「低一些」 的數值,以用於提供一數值範圍之邊界值的彈性。 這裡所述的複數個物品、結構元件、組成元素和/或材 料,基於方便可出現在一般的常見列舉中,然而這些列舉 〇 可解釋為列舉中的單一構件單獨或個別地被定義,因此, 這樣列舉中的單一構件不能視為任何單獨基於在一般族群 中無相反表示之解釋的相同列舉中實際上相等的其他構 件。 浪度、數量以及其他數值上的資料可是以範圍的形式 來加以呈現或表示,而需要瞭解的是這種範圍形式的使用 僅基於方便性以及簡潔,因此在解釋時,應具有相當的彈 性,不僅包括在範圍中明確顯示出來以作為限制之數值, 同時亦可包含所有個別的數值以及在數值範圍中的次範 圍,如同每—個數值以及次範圍被明確地引述出來—般。 12 200933937 例如一個數值範圍「約1微米到約5微米」應該解釋成不 -僅僅包括明硌引述出來的約1到約5,同時還包老查生指_ 定範圍内的每一個數值以及次範圍,因此,包含在此一數 值範圍中的每一個數值,例如2、3及4,或例如1 、2-4 以及3-5的次範圍等,以及個別的1、2、3、4和5。 此相同原則適用在僅有引述一數值的範圍中,再者, 這樣的說明應該能應用於無論是一範圍的幅度或所述的特 徵中。 ❹ 本發明 本發明提供光發射半導體裝置以及相關方法。半導體 裝置經常面臨的考驗就是冷卻,特別是那些發光的半導體 裝置。許多由半導體裝置產生的熱傾向於累積在半導體層 中,因此影響該裝置的效率。例如,一 LED可由複數氮化 物層排列所組成以自一光發射表面發光,當該等半導體裝 置在電子裝置和發光裝置中日益重要,LED持續發展而有 更大的功率需求,加大功率的趨勢使得這種裝置產生冷卻 的問題,這些冷卻問題會因為這些裝置通常為小尺寸的緣 故而更加嚴重’這些裝置會讓具有傳統鋁鰭散熱器因本身 體積龐大的因素而無法作用;此外,這種傳統的散熱器若 施加在該LED的發光表面上,則可能阻礙光的發射。 除了冷卻的問題外,很多光發射半導體裝置的物理構 造會使得在發光時造成大部分光損失。很多裝置在光發射 半導體材料上使用包覆材料,其具有與該半導體不同的折 射率。例如,很多光發射半導體材料具有、約2.5的折射率; 另外很夕如環氧樹脂的包覆材料具有約1.5的折射率。 13 200933937 由於此差異,半導體材料中產生的光大部分由該半導體以 —…—及該包覆材料之間的邊界折射,因此i法良該裝置洼發电。 目前發現從-光發射半導體裝置中的光取出量或射出 量會因為該半導體材料以及該包覆材料之折射率實質上的 匹配而增加。當這種材料相匹配時,較少比例的光會從該 半導體材料/包覆材料界面折射,因此使得該半導體材料產 生的光能有較大比例由該包覆材料射出。除此之外,為了 匹配而使用具有良好熱導體的材料,光發射半導體裝置也 可產生更有效率的冷卻效果。 因此在一態樣中係提供一種提高從一光發射半導體 裝置之光取出量的方法,$種方法可包括使一&amp;覆材料使 從一光發射半導體之光發射表面射出之光的折射最小化, 其係藉由設置具有第三折射率之均質材料於其中而使得該 放光表面之第-#射率t質上匹配該包覆材料之第二折射 率,該第三折射率係介於該第一與第二折射率之間。藉由 〇 使得二層狀結構的折射率實質上匹配,在該等層狀結構之 邊界的光折射就會最小化;換句話說,藉由使得在該等層 狀結構之邊界的光折射偏折的量最小化’就會有更多比例 的光能穿透該等層狀結構之界面,因此增加或提高從該光 發射半導體所發出的光取出量。 在相鄰層狀結構位置材料之折射率之間的可接受的差 值範圍能依照一特定裝置的預期用途和/或所欲達成的效率 而有所不同。在許多情形中,在該等折射率之間的差值越 小,所能增加的光取出量則越多。例如在一態樣中,該第 一折射率與第三折射率之間的差值係小於或等於〇7,而該 200933937 第一折射率與第二折射率之間的差值係小於或等於〇·7。在 .一另〆態樣中’該第一折射·率與第_ ·三折射率之-間的差值係小 於或等於0.5,而該第二折射率與第三折射率之間的差值係 小於或等於0.5。在又一態樣中,該第一折射率與第三折射 率之間的差值係小於或等於0.3,而該第二折射率與第三折 射率之間的差值係小於或等於〇. 3。在一態樣中,該第一折 射率以及第三折射率之間的差值和該第二折射率以及第三 折射率之間的差值之總和為小於或等於1 〇。再另一態樣 〇 中,該第一折射率以及第三折射率之間的差值和該第二折 射率以及第三折射率之間的差值之總和為小於或等於0 7。 再又一態樣中,該第一折射率以及第三折射率之間的差值 和該第二折射率以及第三折射率之間的差值之總和為小於 或等於0·5。再X另-態樣中’該第—折射率以及第三折射 率之間的差值和該第二折射率以及第三折射率之間的差值 之總和為小於或等於0.3。尚於另一態樣中,該第一折射率 以及第三折射率之間的差值和該第二折射率以及第三折射 Ο 率之間的差值之總和為小於或等於0.2。 鑽石材料係有用於作為使折射率匹配,且能冷卻报多 光發射半導體裝置的一介質材料。例如在一態樣中,其係 顯示於第一圖中,一光發射半導體裝置(1〇)可包括設置於 光發射半導體(16)之光發射表面(14)的一類鑽碳層(12)以 及設置於該類鑽碳層(12)上的一包覆材料(18),該包覆材料 (18)具有鑽石顆粒(未示)滲入其中。一類鑽碳膜的折射率範 2可依照各種因素而從約16至約2 3,此外,滲入鑽石或 不米鑽石之包覆材料的折射率範圍可依照包覆材料以及 15 200933937 石材料滲入其中的比例而從約1.5至約2.4。因此一類鑽碳 層以及一鑽石-滲入-之r包覆材.科可建構為具有能使光發射半 導體材料以及包覆材料之間的驟變(abrupt transiti〇n)最小 化的折射率。應注意的是’雖然已敘述單一類鑽碳層,但 也能考慮複數具有不同折射率的類鑽碳層可連續性地沉積 在該光發射表面,以提供折射率的更緩和的改變。同樣地, 複數層具有不同滲入鑽石顆粒之比例的包覆材料能同樣地 連續性沉積,且亦提供更多折射率的逐步轉變。 光發射半導體材料係於所述技術領域中具有通常知識 者所熟知的,且可包括各種這樣有用於這種裝置之建構的 材料。例如在一態樣中,有用於製造LED的半導體材料可 包括排列和建構以產生光之複數氮化物層。如上所述,在 很多這種氮化層基底的LED中,該半導體材料的折射率約 為2_5。光發射半導體裝置也可包括任何已知的光發射裝 置例如包括LED、雷射二極體(丨ase「djode)等。 鍍於該半導體材料之光發射表面上的該層鑽石材料係 用於使該半導體材料之折射率和該包覆材料之折射率的差 值相同。因為該鑽石層係鍍於該裝置的光發射表面上,其 有助於該鑽石層將光傳遞過去,因此,在一態樣中,該鑽 石層對光可為透明的(transpa「ent t〇 |jght);在另一態樣中, 該鑽石層可至少對光是半透明的。此外,該鐵石材料可使 得自該半導體之光發射表面之熱傳遞有些許加速。 許多鑽石材料可被用作使該半導體以及包覆材料之間 之折射率均等化。這種鑽石#料非限制性的範例包括鑽石、 DLC、非晶鑽石以及其組合。不同的鑽石層可依照所使用 16 200933937 鑽石材料之型態以及其製造的過程而有不同的折射率,例 如在—態樣-中…一鑽石-層可具有從約i. 6至約2.3的柝辟 率;在另一態樣中’ 一鑽石層可具有從約1·7至約1.9的 折射率。 通常,鑽石層可藉由任何已知的方法形成,包括各種 乳相沉積法。任何的已知氣相沉積法皆可用於形成這種鑽 石層。右要獲得類似的性質和結果,雖然任何類似的方法 皆能使用’但最常見的為氣相沉積法包括CVD和pVD。在 一態樣中’ CVD法如可使用熱燈絲氣相沉積法(fnament CVD)、微波電漿氣相沉積…扣⑴^)、乙炔火 焰氣相沉積法(〇xyacety|ene f丨ame)、射頻化學氣相沉積法 (rf-CVD)、雷射化學氣相沉積法(丨aser cvD,LCVD)、金屬 有機物化學氣相沉積法(metah〇rganjc Cvd,MOCVD)、雷 射剝離法(丨aser ablation)、同構型鑽石鍍膜方法(conforma| diamond coating processes)以及直流電弧技術(direct current arc techniques)。一般的CVD法係使用氣體反應 劑來沉積該鑽石或類鑽碳為層狀或膜狀結構,這些氣體通 常包括以氫氣稀釋之少量(即少於約5〇/0)的碳化物材料,如 曱烷。各種特定的CVD製程(包括儀器和條件)以及使用於 氣化删層的CVD製程皆係所屬技術領域中具有通常知識者 所熟知的。在另一態樣中,可使用PVD技術如濺鍍、陰極 電弧法以及熱蒸鑛法。再者’為了沉積確切種類之材料特 定的沉積條件可為了調整要被沉積之材料的確切種類(無論 是DLC、非晶鑽石或純鑽石)而使用,應注意的是很多半導 體裝置(如LED)會因高溫而衰退(degracj),在鑽石沉積時必 17 200933937 須小心以低溫沉積以避免損壞。例如,若該半導體包含氮 e〇〇〇ctllLl-; (GaN)的情形下,層狀結構 …穂疋至約100CTC。除此之 外,預先形成的層狀結構可用硬谭、膠黏或其他不會過度 干擾鑽石層熱轉移或該裝置光發射之固定方法。 ⑽=發明之—態樣中,該鑽石層可為同構型鐵石層, 同構i鑽石鑛膜法能提供比既有鑽石薄膜法更多。 Ο 〇 同構型鑽石㈣法能在各種基材上操作,包括非平面基材; 生長表面能在無施以偏壓的鑽石生長條件下預先處理以 形成一碳膜’該鑽石生長條件能為既有無施加偏壓之CVD :積鑽石條件,因此,形成-通常少於約100埃之碳薄膜 (卜雖然預處理步驟較佳之溫度為低於約5〇〇它以下但 其幾乎能在任何生長溫度(如從約2〇(rc至約9〇〇。〇下實 施。並無結合任何特定的理論,一碳薄膜會在短時間出現 而生成,如少於一小時’則其為一帶有氫末端之非晶碳。 在該薄的碳膜形成之後,該光發射表面可接著在鑽石 生長條件下形成鑽石膜,其為一同構型鑽石帛。該鑽石生 長條件可為—般使詩傳統cvd鑽石生長的條件。然而, 不像既有的鑽石膜生長,該鑽石膜係使用以上預處理步驟 所製造而產生—同構型鐵石膜’再者’該鑽石膜通常開始 實質地生長於整個基材上,且實質上沒有潛伏期;除此之 外,一連續性膜(如實質上無晶界)能在約8〇nm以内生長。 —鑽石層可為任何能讓一光發射半導體裝置根據本發 明之方法和裝置作用之厚度,根據其應用以及半導體裝置 的構形而有各種不同的厚度。例如在一態樣中,該鑽石層 18 200933937 可具有從約0.1微米至約5微米的厚度;在另一態樣中, ...........該鑽石層可具有從約0_1微米至約0_-5微米.的厚度。 如前所述,該光發射半導體材料係被一施加於錢石層 的材料所包覆。如第一圖所示,該包覆材料(1 8)之一態樣 可環繞或接觸該光發射半導體材料(16)之暴露表面至少一 實質《I3刀,a亥包覆材料(18)也可接觸一供該光發射半導禮 材料(16)沉積於其上的支撐結構(2〇)。 該包覆材料本身通常具有與該半導體材料相當差異性 〇 之折射率,例如,—折射率通常大料1.5的環氧樹脂材 料。藉由滲入鑽石顆粒於包覆材料中,該折射率能依照鑽 石顆粒在包覆材料中的比例而增加至約16至約2·4的範 圍中’因此’鑽石顆粒的比例能有不同,使得該包覆材料 的折射率更佳匹配於該鑽石層的折射率,因此提供前述裝 置中光取出量之增加。 〇 各種包覆材料可使用於結合該等鑽石顆粒以及環設於 該光發射半導體材料。在一態樣中,這種材料非限制性的 例可包括胺基樹脂、壓克力樹脂、醇酸樹脂、聚酯樹脂、 聚醯胺樹脂、聚亞酿胺、聚氨醋,樹脂、細乳膠樹 脂、環氧樹脂、異氰酸樹月旨、異氛酸醋樹脂、聚石夕氧燒樹 脂、反應性乙烯基樹脂、聚乙稀樹脂、聚丙_脂、 乙稀樹脂、4聚苯氧基樹脂、二萘嵌苯樹脂、聚㈣脂、丙 稀-丁 '一稀-本乙稀樹脂、石々Hfc* -Γ 广月曰石夕樹月曰、丙烯酸樹脂、聚碳酸醋樹 特定態樣中,_劑可包括環氧樹·。 在另-特疋態樣中’該黏著劑可包括石夕樹脂。在又 中,該黏著劑可包括環氧樹脂與石夕樹脂的組合。 -樣 19 200933937 如别所述,鑽石顆粒係分散或渗入該 以增加該包覆材料轉射率和導抓^ 的熱導性和使其適合合併於半導體裝置(如L ”有良 出現在半導體裝置中的熱傳遞能因此加速, 的性質, 置於該包覆材料中的鑽石顆粒。此加過設 根據本發明之態樣,任何種類的熱和光傳導 類鑽碳材料可為顆粒。例如,鑽石顆粒可為任㈣ 2C η =; Equation 1 where c is the velocity of light in a vacuum and the velocity at which ν is measured in the medium. "Diamond" means a crystal form in which a carbon atom is bonded to other carbon atoms in the crystalline form of the tetragonal lattice 200933937 (ie, sp3 bonding type), in particular, each carbon atom is replaced by four other carbon atoms. The carbon atoms located in the four corners of the regular tetrahedron are surrounded and bonded. 'In addition, although the difference in experimental results is small, the bond length of any two carbon atoms after the experiment at room temperature is 1.54 angstrom, and the bond angle is 1 09 degrees 28 minutes and 16 seconds, and the structure and nature of diamonds, including many of its physical and electrical properties, are well known and will not be described here. "DiSt〇rted tetrahedral coordination" refers to a tetrahedral bond coordination structure of an irregular carbon atom, or a tetrahedral type that deviates from the normal above. This distortion is usually It is because some keys are elongated, while others are shortened, and the difference in bond angle between the keys is also one of the reasons. In addition, the twisted structure of this tetrahedron changes the characteristics and properties of carbon to effectively lie between the carbon bonded by the sP3 structure (ie, diamond) and the carbon bonded by the sp2 structure (ie, graphite). The feature, for example, a material having a carbon atom bonded in a twisted tetrahedral bond is an amorphous diamond. ◎ "Diamond-like carbon" means that the main constituent is a carbon atom and a large amount This carbon atom is bonded to a carbonaceous material in a twisted tetrahedral coordination structure, although CVD or other methods can be used (such as vapor deposition), but diamond-like carbon can usually be formed by PVD. In particular, various other elements included in the diamond-like carbon material are impurities or dopants, including but not limited to hydrogen, sulfur, photo, butterfly, nitrogen, broken, crane, and the like. "Amorphous diamond" is a type of diamond-like carbon whose main constituent is a carbon atom and a large number of carbon atoms are bonded to a twisted tetrahedral coordination structure. In one aspect, the carbon atom content in the amorphous diamond is at least about 90%, wherein at least about 20. /. The carbon atom belongs to the twisted tetrahedron 200933937. Amorphous diamonds have a higher atomic density than normal diamonds (176 at 〇ms/cm3), and amorphous diamonds and streak materials shrink when they are shaken. "Vapor deposited" means a material formed by vapor deposition. 'Vapor deposition method' means a method of depositing a substance on a substrate by a gas phase, including any For example, but not limited to chemical vapor deposition (CVD) and physical vapor deposition (PVD), each vapor deposition method can be used by those skilled in the art. The change is made in the case of changing the main principle, and thus examples of the vapor deposition method include hot filament chemical vapor deposition (fMament CVD), radio frequency chemical vapor deposition (rf-CVD), and laser chemical vapor deposition ( |aser CVD, LCVD), laser ablation, conforma| diamond coating processes, metal organic chemical vapor deposition (M0CVD), sputtering, thermal evaporation Physical vapor deposition (thermal evaporation PVD), ionized metal physical vapor deposition (ionized meta丨PVD, IMPVD), electron beam vapor deposition (electron beam PVD) EBPVD) and other similar methods such as reactive vapor deposition (reactive PVD). "Chemical vapor deposition" or "CVD" refers to any method of chemically depositing diamond particles on a surface in a gaseous state. A variety of CVD systems are known to those of ordinary skill in the art. "Physical vapor deposition" or "PVD" means any method of physically depositing diamond particles on a surface in a gas phase state. 0. "Nano-particles, pumche" refers to particles having a size in the nanometer range, which can be in accordance with the particle size. It varies depending on the use. In a single aspect, the size of the nanoparticle can range from about (10) to about nm; in another aspect, the size of the non-wood particles can range from about 1 〇〇 nm to about 10 nm; in another separation, the worm's makeup, the size of the particles in '7 can range from about 5 〇 nm to about 20 nm. The nanoparticles can have various shapes including a circular shape, an elliptical shape, a square shape, a self-shape (four), and the like, and their single crystal or polycrystal. &quot;impregnated&quot; and &quot;impregnated&quot; refer to the act of introducing a second material into a material, or such introduction. For example, diam〇nd jmpregnated means that the material has diamond particles incorporated therein. By means of the following non-limiting exemplary method, the material can be made by providing a material (such as a powdery adhesive material) such that the diamond or nano-diamond is infiltrated with a powder material and then with diamond or nano-diamond particles. Mix and melt or liquefy to form a mixture. "Substrate" means a support surface that can be joined by a number of materials to form a diamond-bottom semiconductor device. The substrates useful in the present invention can be of a variety of shapes, thicknesses or materials&apos; which can be somewhat superfibrillated with particles to provide a means for achieving the desired purpose. The substrate includes, but is not limited to, metals, alloys, ceramic materials, and mixtures thereof. Moreover, in some aspects, the substrate can be an existing semiconductor device or wafer, or can be a material that can be combined with a suitable device. "Substantia丨丨y" means the complete, near-complete extent or extent of a step, characteristic, property, state, structure, project, or result. 11 200933937 For example, a substantially "covered system" means that the object is completely covered or almost completely covered. Definitely, the deviations that are absolutely permissible can be determined in different situations depending on the specific context. However, in general it is almost as complete as obtaining absolute or complete results with the same overall result. The use of "substantially" when applied to a negative meaning is equally applicable to the incomplete or near complete absence of steps, characteristics, properties, states, structures, items or results. For example, - Γ substantially no (substantia||yf "ee of"" particles may be completely devoid of particles, or very nearly completely lacking particles, and its effect will be as completely lacking particles, in other words, "Substantially no" The composition of a component or element may actually contain such a substance as long as it has no measurable effect on the property of interest. "About" is a value that can be "higher" or "lower" at the boundary value to provide flexibility for the boundary value of a range of values. The plurality of articles, structural elements, constituent elements and/or materials described herein may be present in a common list of commons based on convenience. However, these enumerations may be construed as a single component in the list being individually or individually defined, and therefore, A single component in such a list is not to be considered as any other component that is substantially equivalent based on the same enumeration that is not interpreted in the general group. Waves, quantities, and other numerical data can be presented or represented in a range, and it is important to understand that the use of this range of forms is based on convenience and simplicity, so it should be fairly flexible when interpreted. Not only are the values explicitly indicated in the range as a limitation, but also all individual values and sub-ranges in the range of values, as each of the numerical and sub-ranges are explicitly recited. 12 200933937 For example, a range of values "about 1 micron to about 5 microns" should be interpreted as not - including only about 1 to about 5 quoted by alum, and also include each value in the range of the old search and the number of times. Range, therefore, each value included in this range of values, such as 2, 3, and 4, or sub-ranges such as 1, 2, and 3-5, and individual 1, 2, 3, 4, and 5. This same principle applies to the range in which only one value is recited. Further, such description should be applicable to either a range of magnitudes or the stated features. ❹ The present invention provides a light-emitting semiconductor device and related methods. The test that semiconductor devices often face is cooling, especially those that emit light. Many of the heat generated by semiconductor devices tends to accumulate in the semiconductor layer, thus affecting the efficiency of the device. For example, an LED may be composed of a plurality of nitride layer arrangements to emit light from a light emitting surface. As these semiconductor devices are increasingly important in electronic devices and light emitting devices, LEDs continue to develop and have greater power requirements, increasing power. Trends have caused cooling problems in such devices, which are exacerbated by the fact that these devices are typically small in size. These devices would render conventional aluminum fin heat sinks ineffective due to their bulky size; A conventional heat sink, if applied to the light emitting surface of the LED, may hinder the emission of light. In addition to the problem of cooling, many light-emitting semiconductor devices have a physical structure that causes most of the light loss when illuminating. Many devices use a cladding material on a light-emitting semiconductor material that has a different refractive index than the semiconductor. For example, many light-emitting semiconductor materials have a refractive index of about 2.5; in addition, a coating material such as an epoxy resin has a refractive index of about 1.5. 13 200933937 Due to this difference, most of the light generated in the semiconductor material is refracted by the semiconductor between the ... and the boundary between the cladding materials, so that the device generates electricity. It has been found that the amount of light extraction or the amount of light emitted from the light-emitting semiconductor device is increased by the substantial matching of the refractive index of the semiconductor material and the cladding material. When the materials match, a lesser proportion of light is refracted from the semiconductor material/cladding material interface, thus causing a greater proportion of the light energy produced by the semiconductor material to be ejected from the cladding material. In addition to this, a light-emitting semiconductor device can also produce a more efficient cooling effect by using a material having a good thermal conductor for matching. Accordingly, in one aspect, there is provided a method of increasing the amount of light extracted from a light-emitting semiconductor device, the method comprising: causing a &amp; cladding material to minimize refraction of light emitted from a light-emitting surface of a light-emitting semiconductor By setting a homogeneous material having a third refractive index therein such that the first-th order rate t of the light-emitting surface is qualitatively matched to the second refractive index of the cladding material, the third refractive index is introduced Between the first and second refractive indices. By 〇 making the refractive indices of the two-layer structure substantially match, the light refraction at the boundary of the layered structures is minimized; in other words, by refracting the light at the boundary of the layered structures Minimizing the amount of folding 'will result in a greater proportion of light energy penetrating the interface of the layered structures, thus increasing or increasing the amount of light extracted from the light-emitting semiconductor. The range of acceptable differences between the indices of refraction of adjacent layered material locations can vary depending on the intended use of the particular device and/or the efficiency desired. In many cases, the smaller the difference between the refractive indices, the more light extraction can be increased. For example, in an aspect, the difference between the first refractive index and the third refractive index is less than or equal to 〇7, and the difference between the first refractive index and the second refractive index of the 200933937 is less than or equal to 〇·7. In a different aspect, the difference between the first refractive index and the third refractive index is less than or equal to 0.5, and the difference between the second refractive index and the third refractive index The system is less than or equal to 0.5. In another aspect, the difference between the first refractive index and the third refractive index is less than or equal to 0.3, and the difference between the second refractive index and the third refractive index is less than or equal to 〇. 3. In one aspect, the sum of the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 1 〇. In still another aspect, the sum of the difference between the first index of refraction and the third index of refraction and the difference between the second index of refraction and the third index of refraction is less than or equal to 0.7. In still another aspect, the sum of the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 0.5. Further, the sum of the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 0.3. In still another aspect, the sum of the difference between the first refractive index and the third refractive index and the difference between the second refractive index and the third refractive index is less than or equal to 0.2. The diamond material is used as a dielectric material for matching the refractive index and for cooling the multi-light-emitting semiconductor device. For example, in one aspect, which is shown in the first figure, a light-emitting semiconductor device (1) may include a type of carbon-drilled layer (12) disposed on the light-emitting surface (14) of the light-emitting semiconductor (16). And a covering material (18) disposed on the diamond-like carbon layer (12), the cladding material (18) having diamond particles (not shown) infiltrated therein. The refractive index range of a type of drilled carbon film may be from about 16 to about 23 according to various factors. In addition, the refractive index range of the coated material of the diamond or the non-meter diamond may be infiltrated into the cladding material according to the cladding material and 15 200933937 stone material. The ratio ranges from about 1.5 to about 2.4. Thus, a type of drilled carbon layer and a diamond-infiltrated-r-coated material can be constructed to have a refractive index that minimizes abrupt transit between the light-emitting semiconductor material and the cladding material. It should be noted that although a single diamond-like carbon layer has been described, it is also contemplated that a plurality of diamond-like carbon layers having different refractive indices may be continuously deposited on the light-emitting surface to provide a more gradual change in refractive index. Similarly, a plurality of layers of cladding material having different ratios of infiltrated diamond particles can be deposited in a continuous manner and also provide a stepwise transition of more refractive indices. Light emitting semiconductor materials are well known to those skilled in the art and may include a variety of materials that are useful in the construction of such devices. For example, in one aspect, a semiconductor material used to fabricate an LED can include a plurality of nitride layers arranged and structured to produce light. As described above, in many of these nitride layer-based LEDs, the semiconductor material has a refractive index of about 2_5. The light-emitting semiconductor device may also include any known light-emitting device including, for example, an LED, a laser diode, etc. The layer of diamond material plated on the light-emitting surface of the semiconductor material is used to make The difference between the refractive index of the semiconductor material and the refractive index of the cladding material is the same. Because the diamond layer is plated on the light emitting surface of the device, it helps the diamond layer to transmit light, thus, In the aspect, the diamond layer may be transparent to light (transpa "ent t〇|jght"; in another aspect, the diamond layer may be at least translucent to light. In addition, the stone material may be self-contained The heat transfer of the light-emitting surface of the semiconductor is somewhat accelerated. Many diamond materials can be used to equalize the refractive index between the semiconductor and the cladding material. Non-limiting examples of such diamonds include diamonds, DLC, Amorphous diamonds and combinations thereof. Different diamond layers may have different refractive indices depending on the type of diamond material used and the process of their manufacture, for example, in the -state-...one diamond-layer may have A ratio of about i. 6 to about 2.3; in another aspect, a diamond layer can have a refractive index of from about 1.7 to about 1.9. Typically, the diamond layer can be formed by any known method. Including various emulsion phase deposition methods. Any known vapor deposition method can be used to form this diamond layer. Right to obtain similar properties and results, although any similar method can be used 'but the most common is vapor deposition The method includes CVD and pVD. In one aspect, the CVD method can be performed by using thermal filament vapor deposition (fnament CVD), microwave plasma vapor deposition (deduction (1)^), acetylene flame vapor deposition (〇xyacety| Ene f丨ame), radio frequency chemical vapor deposition (rf-CVD), laser chemical vapor deposition (丨aser cvD, LCVD), metal organic chemical vapor deposition (metah〇rganjc Cvd, MOCVD), thunder丨aser ablation, conforma| diamond coating processes, and direct current arc techniques. The general CVD method uses a gas reactant to deposit the diamond or diamond-like carbon. a layered or membranous structure, this These gases typically include a small amount (i.e., less than about 5 Å/0) of carbide material, such as decane, diluted with hydrogen. Various specific CVD processes (including instruments and conditions) and CVD processes for gasification and delamination are used. It is well known to those of ordinary skill in the art. In another aspect, PVD techniques such as sputtering, cathodic arcing, and thermal evaporation can be used. Further, in order to deposit the exact type of material-specific deposition conditions In order to adjust the exact type of material to be deposited (whether DLC, amorphous diamond or pure diamond), it should be noted that many semiconductor devices (such as LEDs) will degrade due to high temperatures, during diamond deposition. Must 17 200933937 Care must be taken to deposit at low temperatures to avoid damage. For example, if the semiconductor contains nitrogen e?ctllLl-; (GaN), the layered structure ... is about 100 CTC. In addition, the pre-formed layered structure may be provided by hard tan, adhesive or other fixing means that does not excessively interfere with the thermal transfer of the diamond layer or the light emission of the device. (10) = Invented - In this aspect, the diamond layer can be a homogeneous iron layer, and the isomorphic i diamond film method can provide more than the existing diamond film method. Ο 〇 isomorphic diamond (IV) can be operated on a variety of substrates, including non-planar substrates; the growth surface can be pre-treated under unbiased diamond growth conditions to form a carbon film There are both CVD-free diamond conditions without biasing, thus forming a carbon film that is typically less than about 100 angstroms (although the pretreatment step preferably has a temperature below about 5 〇〇, but it can be grown in almost any way) Temperature (eg from about 2 〇 (rc to about 9 〇〇. 〇 under the 。. Without any specific theory, a carbon film will appear in a short time, such as less than one hour' then it is a hydrogen The amorphous carbon at the end. After the formation of the thin carbon film, the light emitting surface can then form a diamond film under the condition of diamond growth, which is an isomorphic diamond crucible. The growth condition of the diamond can be a general poetry cvd The condition for the growth of diamonds. However, unlike the existing diamond film growth, the diamond film is produced using the above pretreatment steps - the isomorphic iron film 'again' the diamond film usually begins to grow substantially throughout the base. material And substantially no latency; in addition, a continuous film (such as substantially no grain boundaries) can grow within about 8 〇 nm. - The diamond layer can be any light emitting semiconductor device according to the present invention. The thickness of the method and device action varies depending on its application and the configuration of the semiconductor device. For example, in one aspect, the diamond layer 18 200933937 can have a thickness of from about 0.1 micron to about 5 microns; In one aspect, the diamond layer may have a thickness of from about 0_1 micrometers to about 0-5 micrometers. As previously described, the light-emitting semiconductor material is applied to The material of the rock stone layer is coated. As shown in the first figure, one aspect of the cladding material (18) can surround or contact at least one substantial "I3 knife" of the exposed surface of the light-emitting semiconductor material (16). The ai cladding material (18) may also be in contact with a support structure (2〇) on which the light-emitting semi-conductive material (16) is deposited. The cladding material itself generally has considerable differences from the semiconductor material. Refractive index, for example, an epoxy tree with a refractive index of 1.5 By infiltrating the diamond particles into the coating material, the refractive index can be increased to a range of about 16 to about 2.4 in accordance with the proportion of the diamond particles in the coating material. Therefore, the ratio of the diamond particles can be different. The refractive index of the cladding material is better matched to the refractive index of the diamond layer, thus providing an increase in the amount of light extraction in the device. 〇 Various coating materials can be used to bond the diamond particles and the ring is disposed on the light. A semiconductor material is emitted. In one aspect, non-limiting examples of such materials may include amine based resins, acrylic resins, alkyd resins, polyester resins, polyamidamine resins, polyaramines, polyurethanes. , resin, fine latex resin, epoxy resin, isocyanate, imonic acid vinegar resin, poly-stone oxide resin, reactive vinyl resin, polyethylene resin, polypropylene resin, ethylene resin, 4 polyphenoxy resin, perylene resin, poly(tetra) resin, propylene-butyl'-diene-benzo resin, Dendrobium Hfc*-Γ 广月曰石夕树月曰, acrylic resin, polycarbonate In a tree-specific aspect, the agent may include an epoxy tree . In another embodiment, the adhesive may include a stone resin. In still, the adhesive may comprise a combination of an epoxy resin and a Lithium resin. - Sample 19 200933937 As described elsewhere, the diamond particles are dispersed or infiltrated to increase the thermal conductivity of the cladding material and the thermal conductivity of the conductive material and make it suitable for incorporation in semiconductor devices (such as L). The heat transfer energy in the device is thus accelerated, the nature of the diamond particles placed in the cladding material. This addition, according to the aspect of the invention, any kind of thermal and light-conducting diamond-like carbon material may be particles. For example, Diamond particles can be any (four) 2

然或合成制石材料,其可用以冷卻—半導體|置二也於 增加該包覆材料的折射率i石材料可為微米或奈米鑽: 顆粒。例如在-態樣中,該等鑽石顆粒可具有從約τ 1〇⑽ 至約⑽_的尺寸;纟另一態樣中,該等鑽石顆粒可呈 有從約10nm至約]的尺寸;在又一態樣中,該等鑽 石顆粒可具有從約1从m至約100 的尺寸。再者, 在一態樣中,該黏著劑可含包括從約1至約70 v〇|%的鑽 石顆粒;在另一態樣中,該黏著劑可含約5至約3〇 v〇|% 的鑽石顆粒。 如前所述’該光發射半導體裝置的熱傳導能加速從光 發射表面穿過該鑽石層以及滲入於該包覆材料中的鑽石顆 粒。應該注意的是本發明並無限制特定的熱傳送理論,因 此’在一態樣中,由於熱能橫向地移動穿越錢石層使至少 部分之熱能可加速移動並遠離光發射表面,由於鑽石的熱 導性質,熱能可快速地橫向散佈並跨越該半導體裝置的表 面而穿過該鑽石層,且從該鑽石層進入該鑽石顆粒。 本發明額外提供根據在此所呈現之態樣而製造裝置的 方法。例如在一態樣中係提供製造一光發射半導體裝置的 20 200933937 方法,這種方法可包括在一光發射半導體裝置之光發射表 面上設! 一齋鑽碳層…以.及.在該類鑽碳層上設置—層未硬化 的包覆材料,該未硬化之包覆材料依預期之折射率而混入 一定比例之鑽石具有滲入其中的鑽石顆粒;該未硬化之包 覆材料接著被硬化而形成具有鑽石滲入其t的硬化包覆材 料。該未硬化包覆材料的硬化依照所要硬化之材料的性質 而可藉由各種技術達成,這種技術可包括但不限制在熱塑 性和熱固性反應、聚合或其他化學反應、乾燥或其他被動 〇 製程等。 實施例 以下例子係說明根據本發明之態樣增進如一 LED之光 發射半導體效率的各種技術,但必須瞭解的是以下例子僅 為依本發明原則之應用的示範與說明,許多修飾以及具選 擇性的組成、方法和系統在不脫離本發明精神與範疇的情 況下皆可被於本領域具通常知識者所能推想出來的,所附 的申請專利範圍係用於包括這些修飾與安排,本發明特徵 已於上所陳述,以下例子會更詳細連結本發明多個特定實 施例。 例1 一未硬化的矽包覆材料係由包含5〜2〇 v〇|%之微 求的鑽石顆粒設置於其中。當該材料硬化時其折射率為約 1.7 至約 2.1。 例2 一 DLC膜係藉由一電衆輔助化學氣相沉積(pECVD)在 LED晶片上。肖DLC膜的厚度約為該LED波長之四分 21 200933937 之一(1/4人)。在例!中一層未硬化之矽膠包覆材料係沉積 —―脅該DLC層土…且在15『C硬化30分鐘。該膜的折 射率⑻為、約1.7至約1-9。該DLC膜的透明度係大於約8〇 %。 當然,需要瞭解的是以上所述之安排皆僅是在描述本 發明原則的應用,許多改變及不同的安排亦可以在不脫離 本發明之精神和範圍的情況下被於本領域具通常知識者所 設想出來,而申請範圍也涵蓋上述的改變和安排。因此, 儘管本發明被特定及詳述地描述呈上述最實用和最佳實施 例,於本領域具通常知識者可在不偏離本發明的原則和觀 點的情況下做許多如尺寸、材料、形狀、樣式、功能、操 作方法、组裝和使用等變動。 【圖式簡單說明】 第一圖係本發明一實施例之光發射半導體裝置的剖面 圖。 【主要元件符號說明】 〇 (1〇)光發射半導體裝置 (12)類鑽碳層 (14)光發射表面 (16)光發射半導體 (18)包覆材料 (20)支樓結構 22Alternatively, or synthetic stone materials, which can be used for cooling - semiconductors - are also used to increase the refractive index of the cladding material. The i-stone material can be micron or nanodiameter: particles. For example, in the aspect, the diamond particles may have a size from about τ 1 〇 (10) to about (10) _; in another aspect, the diamond particles may have a size of from about 10 nm to about Å; In still another aspect, the diamond particles can have a size from about 1 to about 100. Furthermore, in one aspect, the adhesive may comprise diamond particles comprising from about 1 to about 70 v〇|%; in another aspect, the adhesive may comprise from about 5 to about 3 〇v〇| % of diamond particles. The heat transfer energy of the light-emitting semiconductor device as described above accelerates the diamond particles passing through the diamond layer from the light-emitting surface and penetrating into the cladding material. It should be noted that the present invention does not limit the specific heat transfer theory, so that in one aspect, as the thermal energy moves laterally across the rock stone layer, at least part of the thermal energy can accelerate and move away from the light emitting surface due to the heat of the diamond. Inductive properties, thermal energy can be rapidly spread laterally across the surface of the semiconductor device through the diamond layer and from the diamond layer into the diamond particles. The invention additionally provides a method of manufacturing a device in accordance with the aspects presented herein. For example, in one aspect, a method of manufacturing a light-emitting semiconductor device 20 200933937 can be provided, which can be included on the light-emitting surface of a light-emitting semiconductor device! A carbon layer is formed on the carbon layer of the type of carbonaceous layer, and a layer of uncured coating material is added. The uncured coating material is mixed with a certain proportion of the diamond according to the expected refractive index and has a diamond infiltrated therein. The granules; the uncured clad material is then hardened to form a hardened clad material having diamond infiltrated into its t. The hardening of the uncured coating material can be achieved by various techniques depending on the nature of the material to be hardened, and the techniques can include, but are not limited to, thermoplastic and thermosetting reactions, polymerization or other chemical reactions, drying or other passive processes, etc. . EXAMPLES The following examples illustrate various techniques for enhancing the efficiency of a light-emitting semiconductor such as an LED in accordance with aspects of the present invention, but it must be understood that the following examples are merely exemplary and illustrative of the application of the principles of the present invention, many modifications and selectivity. The composition, method and system of the present invention can be devised by those skilled in the art without departing from the spirit and scope of the invention, and the appended claims are intended to cover such modifications and arrangements. The features have been set forth above, and the following examples will more closely link various specific embodiments of the invention. Example 1 An uncured enamel coating material was provided with diamond particles containing 5 to 2 〇 v 〇 |%. The material has a refractive index of from about 1.7 to about 2.1 when it hardens. Example 2 A DLC film was fabricated on an LED wafer by a power assisted chemical vapor deposition (pECVD). The thickness of the modal DLC film is about one of the four wavelengths of the LED 21 200933937 (1/4 person). In the case! The middle layer of unhardened silicone coating material is deposited - threatening the DLC layer of soil... and hardening at 15 "C for 30 minutes. The film has a refractive index (8) of from about 1.7 to about 1-9. The transparency of the DLC film is greater than about 8%. Of course, it is to be understood that the above-described arrangements are merely illustrative of the application of the principles of the present invention, and many variations and arrangements may be employed in the field without departing from the spirit and scope of the invention. Imagine it, and the scope of the application also covers the changes and arrangements mentioned above. Therefore, the present invention has been described in detail and the preferred embodiments of the present invention, and those of ordinary skill in the art can make many such as dimensions, materials, and shapes without departing from the principles and concepts of the invention. Changes in style, function, method of operation, assembly and use. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a cross-sectional view of a light-emitting semiconductor device according to an embodiment of the present invention. [Description of main component symbols] 〇 (1〇) light-emitting semiconductor device (12) Diamond-like carbon layer (14) Light-emitting surface (16) Light-emitting semiconductor (18) Cladding material (20) Branch structure 22

Claims (1)

200933937 七、申請專利範圍: …1-. 一種增進光發射半導體裝,置焱致率的方法,包括: 透過一包覆材料使從一光發射半導體之光發射表面射 出的折射光最小化,其係藉由設置於其中且具有第三折射 率之均質材料而使得該光發射表面之第一折射率實質上匹 配該包覆材料之第二折射率,.該第三折射率係介於該第一 與第二折射率之間。 ❺200933937 VII. Patent application scope: ...1-. A method for improving the rate of light emission of a light-emitting semiconductor device, comprising: minimizing refracted light emitted from a light-emitting surface of a light-emitting semiconductor through a coating material, Passing a first refractive index of the light emitting surface substantially matching the second refractive index of the cladding material by a homogeneous material disposed therein and having a third refractive index, the third refractive index being between the Between one and the second refractive index. ❺ 2·如申請專利範圍第1項所述之方法,其中該均質材 料係一層鑽石。 如申請專利範圍第2項所述之方法,其中該層鑽石 係一層類鑽碳。 4. 如申請專利範圍第1項所述之方法,其中該第一折 射率以及第三折射率之間的差值和該第二折射率以及第三 折射率之間的差值係小於或等於0.7。 5. 如申請專利範圍第1項所述之方法,其中該第一折 射率以及第三折射率之間的差值和該第二折射 折射率之間的差值係小於或等於〇·5。 6·如申請專利範圍第1項所述之方法,其中該第一折 射率以及第三折射率之間的差值和該第二折射率以及第三 折射率之間的差值係小於或等於〇.3。 7·如申請專利範圍第1項所述之方法,其中該第一折 射率以及第三折射率之間的差值和該第二折射率以及第三 折射率之間的差值之總和為小於或等於1 .〇。 8·如申請專利範圍第彳項所述之方 ^ 7古,其中該第一折 射率以及第三折射率之間的差值和該第- π—折射率以及第三 23 200933937 折射率之間的差值之總和為小於或等於0.7。 9·如申請專利範圍第1項所述之方法,其中該第一折 射率以及第三折射率之間的差值和該第二折射率以及第三 折射率之間的差值之總和為小於或等於〇.5。 10_ —種光發射半導體裝置,其包括 一類鑽碳層,其係設置在一光發射半導體之光發射表 面上的;以及 一包覆材料’其係設置於該類鑽碳層上,該包覆材料 具有渗入其中的鐵石顆粒。 11. 如申請專利範圍第10項所述之裝置,其中該光發 射表面的第一折射率、該包覆材料之第二折射率以及該類 鑽碳層的第三折射率係實質上匹配的。 12. 如申請專利範圍第1〇項所述之裝置,其中該類錢 碳層具有從約1.6至約2.3的折射率。 13_如申請專利範圍第1〇項所述之裝置,其中該類鐵 碳層具有從約1.7至約1.9的折射率》 〇 14·如申請專利範圍第1〇項所述之裝置,其中該類鑽 碳層具有至少能透過70%之可見光的透明度。 15. 如申請專利範圍第10項所述之裝置,其中該類鑽 碳層具有至少能透過8〇%之可見光的透明度。 16. 如申請專利範圍第10項所述之裝置,其中該類 鑽碳層具有從約0.1微米至約5微米的厚度。 17·如申請專利範圍第10項所述之裝置,其中該類鑽 碳層具有從約〇〇*!微米至約〇.5微米的厚度。 18.如申請專利範圍第1〇項所述之裝置,其中胺基樹 24 200933937 脂、壓克力樹脂、醇酸樹脂、聚醋樹脂、聚醯胺樹脂、聚 亞醯胺 ' 聚氨H搭樹脂、盼搭/乳膠樹脂、冑氧樹脂、 異氰酸樹脂、冑氰酸醋樹脂、聚矽氧燒樹脂、反應性乙烯 基樹脂、》乙烯樹脂、聚丙烯樹脂、聚笨乙烯樹脂、聚苯 氧樹a —萘嵌苯樹脂、聚碾樹脂、丙稀_丁二浠_苯乙烯 樹月曰夕樹知、丙稀酸樹脂、聚碳酸醋樹脂及其組今。 19. 如申請專利範圍第1〇項所述之裝置,其中該鑽石 顆粒的尺寸係從約10 nm至約1 〇〇私m。 20. 如申請專利範圍第10項所述之裝置,其中該鑽石 顆粒的尺寸係從約10 nm至約1从m。 21. 如申請專利範圍第10項所述之裝置,其中該鑽石 顆粒的尺寸係從約1 至約1〇〇 μΓη。 22. 如申請專利範圍第1〇項所述之裝置,其中該包覆 材料含有從約1至約70 vol%的鑽石顆粒。 23. 如申請專利範圍第1〇項所述之裝置,其中該包覆 材料包括從約5至約30 vol%的鑽石顆粒。 24. —種製造一光發射半導體裝置的方法,包括: 在一光發射半導體裝置之光發射表面上設置一類鑽碳 層; 在該類鑽碳層上設置一層未硬化的包覆材料,該未硬 化之包覆材料具有滲入其中的鑽石顆粒;以及 硬化該未硬化之包覆材料以形成具有滲入之鑽石顆粒 的硬化包覆材料。 25·如申請專利範圍第24項所述之方法,其中該包覆 材料圍繞該光發射半導體實質上部份的露出之表面區域。 252. The method of claim 1, wherein the homogeneous material is a layer of diamond. The method of claim 2, wherein the layer of diamond is a layer of diamond-like carbon. 4. The method of claim 1, wherein a difference between the first refractive index and the third refractive index and a difference between the second refractive index and the third refractive index is less than or equal to 0.7. 5. The method of claim 1, wherein the difference between the first refractive index and the third refractive index and the second refractive index is less than or equal to 〇·5. 6. The method of claim 1, wherein a difference between the first refractive index and the third refractive index and a difference between the second refractive index and the third refractive index is less than or equal to 〇.3. 7. The method of claim 1, wherein a sum of a difference between the first refractive index and the third refractive index and a difference between the second refractive index and the third refractive index is less than Or equal to 1. 〇. 8. The method as recited in claim 3, wherein the difference between the first index of refraction and the third index of refraction and the refractive index of the first π-refractive index and the third 23 200933937 The sum of the differences is less than or equal to 0.7. 9. The method of claim 1, wherein a sum of a difference between the first refractive index and the third refractive index and a difference between the second refractive index and the third refractive index is less than Or equal to 〇.5. 10_ a light-emitting semiconductor device comprising a diamond-like carbon layer disposed on a light-emitting surface of a light-emitting semiconductor; and a cladding material disposed on the diamond-like carbon layer, the cladding The material has iron particles that penetrate into it. 11. The device of claim 10, wherein the first refractive index of the light emitting surface, the second refractive index of the cladding material, and the third refractive index of the diamond-like carbon layer are substantially matched . 12. The device of claim 1, wherein the carbon layer has a refractive index of from about 1.6 to about 2.3. The apparatus of claim 1, wherein the iron-carbon layer has a refractive index of from about 1.7 to about 1.9, wherein the apparatus is as described in claim 1, wherein The diamond-like carbon layer has a transparency that transmits at least 70% of visible light. 15. The device of claim 10, wherein the carbon-drilled layer has a transparency that is at least 8% visible light. 16. The device of claim 10, wherein the diamond-like carbon layer has a thickness of from about 0.1 micron to about 5 microns. The device of claim 10, wherein the carbon-drilled layer has a thickness of from about !*! micron to about 〇5 micrometers. 18. The device according to claim 1, wherein the amine tree 24 200933937 grease, acrylic resin, alkyd resin, polyester resin, polyamide resin, polyamidamine 'polyamine H resin , hope to take / latex resin, epoxy resin, isocyanate resin, guanidine cyanate resin, polyoxynoxy resin, reactive vinyl resin, "ethylene resin, polypropylene resin, polystyrene resin, polyphenylene oxide Tree a - naphthene resin, poly-rolled resin, propylene - butyl bismuth - styrene tree 曰 曰 知 、, acrylic resin, polycarbonate resin and its group. 19. The device of claim 1, wherein the diamond particles have a size ranging from about 10 nm to about 1 mm. 20. The device of claim 10, wherein the diamond particles have a size ranging from about 10 nm to about 1 and from m. 21. The device of claim 10, wherein the diamond particles have a size of from about 1 to about 1 〇〇 μΓη. 22. The device of claim 1 wherein the coating material comprises from about 1 to about 70 vol% diamond particles. 23. The device of claim 1, wherein the coating material comprises from about 5 to about 30 vol% diamond particles. 24. A method of fabricating a light-emitting semiconductor device, comprising: disposing a diamond-like layer on a light-emitting surface of a light-emitting semiconductor device; and providing an unhardened cladding material on the carbon-like layer The hardened cladding material has diamond particles infiltrated therein; and the hardened cladding material is hardened to form a hardened cladding material having infiltrated diamond particles. The method of claim 24, wherein the cladding material surrounds an exposed portion of the surface of the light-emitting semiconductor. 25
TW97145408A 2007-11-26 2008-11-25 Semiconductor devices having enhanced light emission and associated methods TW200933937A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US99022107A 2007-11-26 2007-11-26

Publications (1)

Publication Number Publication Date
TW200933937A true TW200933937A (en) 2009-08-01

Family

ID=44866111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145408A TW200933937A (en) 2007-11-26 2008-11-25 Semiconductor devices having enhanced light emission and associated methods

Country Status (1)

Country Link
TW (1) TW200933937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777823B (en) * 2020-11-25 2022-09-11 中國商蘇州晶湛半導體有限公司 Photoelectric device and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777823B (en) * 2020-11-25 2022-09-11 中國商蘇州晶湛半導體有限公司 Photoelectric device and method of making the same

Similar Documents

Publication Publication Date Title
JP6802808B2 (en) Manufacturing method of carbon nanotube composite material and carbon nanotube composite material
TWI378497B (en)
US7569425B2 (en) Method for manufacturing thermal interface material with carbon nanotubes
JP4653029B2 (en) Thermally conductive material and method for producing the same
US7160620B2 (en) Thermal interface material and method for manufacturing same
US5604037A (en) Diamond/carbon/carbon composite useful as an integral dielectric heat sink
US20060118791A1 (en) Thermal interface material and method for manufacturing same
TW201121371A (en) Electronic substrate having low current leakage and high thermal conductivity and associated methods
TWI725130B (en) Raising method of carbon nanotube structure, method for producing carbon nanotube srtucture and carbon nanotube structure
CN108430919B (en) Carbon nanotube bonding sheet and method for producing carbon nanotube bonding sheet
TW200836596A (en) Methods and devices for cooling printed circuit boards
CN101989614A (en) Semiconductor substrate and associated method
CN104393128A (en) Nitride LED epitaxial structure with SiC substrate and preparation method of nitride LED epitaxial structur
Shan et al. Designing New‐Generation Piezoelectric Transducers by Embedding Superior Graphene‐Based Thermal Regulators
TW201133945A (en) Diamond LED devices and associated methods
US20120280253A1 (en) Stress Regulated Semiconductor Devices and Associated Methods
TW200933937A (en) Semiconductor devices having enhanced light emission and associated methods
US7867620B1 (en) Composite plate comprising carbon nanotube bundles with high thermal conductivity and method for making the same
TW201027680A (en) Diamond insulated circuits and associated methods
JP2016050213A (en) Thermally conductive filler, thermally conductive fiber and thermally conductive resin
JP2010045184A (en) Thermally conductive plate component and electronic component with the same
El-ladan et al. Growth and performance analysis of BAlN alloy thin film on Al substrate as a heat spreader for effective thermal management applications on white-based high-power LED
JP2008159990A (en) Manufacturing method for heat-dissipating member
Walker et al. Application of amorphous diamond materials to provide a reliable, electrically insulating, thermal interface for IC devices for electronics applications in harsh environments
US9006086B2 (en) Stress regulated semiconductor devices and associated methods