JP2008159990A - Manufacturing method for heat-dissipating member - Google Patents

Manufacturing method for heat-dissipating member Download PDF

Info

Publication number
JP2008159990A
JP2008159990A JP2006349333A JP2006349333A JP2008159990A JP 2008159990 A JP2008159990 A JP 2008159990A JP 2006349333 A JP2006349333 A JP 2006349333A JP 2006349333 A JP2006349333 A JP 2006349333A JP 2008159990 A JP2008159990 A JP 2008159990A
Authority
JP
Japan
Prior art keywords
resin
base material
manufacturing
metal oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349333A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006349333A priority Critical patent/JP2008159990A/en
Publication of JP2008159990A publication Critical patent/JP2008159990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a heat-dissipating member made of a resin composite material, having high thermal conductivity and high tensile extension ratio. <P>SOLUTION: The manufacturing method for the heat dissipating member is provided, the heat dissipating member including a base material, and a composite layer formed on the base material and made of a metal-oxide-resin composite material. The manufacturing method includes a step of forming a porous layer on the surface of a first base material that is a base material made of ceramics, resin, or metal, with the porous layer being formed of a pillar-like metal oxide growing vertically to the base material surface; a step of filling gaps in the porous layer with a resin to form the composite layer; a step of gluing a second base material to the surface of the composite layer; and a step of eliminating the first base material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は放熱用材料の製造方法に関し、詳しくは、高い熱伝導率と高い引っ張り伸び率を有し、電子部品用の放熱デバイス等に用いられる放熱材の製造方法に関する。   The present invention relates to a method for manufacturing a heat dissipation material, and more particularly to a method for manufacturing a heat dissipation material having high thermal conductivity and high tensile elongation and used for a heat dissipation device for electronic components.

パーソナルコンピュータやモバイル電子機器の高機能化に伴い、CPU等の発熱源の発熱量が飛躍的に増大しており、放熱デバイスの高性能化が求められている。放熱手法の一つとして簡易でかつ効果的な方法は、発熱源の表面に放熱シートや接着剤を貼り付けて放熱する方法である。多くの電子機器の放熱の場合、放熱シートや接着剤には非導電性が要求される場合が多い。   As the functions of personal computers and mobile electronic devices become higher, the amount of heat generated by a heat source such as a CPU has increased dramatically, and there is a need for higher performance heat dissipation devices. A simple and effective method as one of the heat dissipation methods is a method of dissipating heat by attaching a heat dissipation sheet or an adhesive to the surface of the heat source. In the case of heat dissipation of many electronic devices, non-conductivity is often required for the heat dissipation sheet and the adhesive.

これらの材料は、一般的には樹脂中に高熱伝導率の粒子を分散した材料である。高熱伝導率粒子としては、熱伝導率が400W/mK程度あるAgやCuなどの金属粒子、Al2やAlNなどのセラミックス粒子が用いられることが多いが、それぞれ課題がある

これらの複合材料において高い熱伝導率を発現させるためには、高熱伝導率の分散粒子の体積含有率を高く設定しなければならない。すなわち、ある程度、分散粒子がお互いに接触し、金属相のネットワークを形成させることである程度の熱伝導率が発現する。例えば、Ag粒子を分散した場合は、9W/mK程度が得られる(特許文献1)。しかし、熱伝導率は満足できるレベルにない、比重が大きく重い、導電性である、という課題がある。
These materials are generally materials in which particles having high thermal conductivity are dispersed in a resin. As the high thermal conductivity particles, metal particles such as Ag and Cu having a thermal conductivity of about 400 W / mK, and ceramic particles such as Al 2 O 3 and AlN are often used, but each has a problem.
In order to develop high thermal conductivity in these composite materials, the volume content of dispersed particles having high thermal conductivity must be set high. That is, to some extent, the dispersed particles come into contact with each other to form a metal phase network, so that a certain degree of thermal conductivity is exhibited. For example, when Ag particles are dispersed, about 9 W / mK is obtained (Patent Document 1). However, there are problems that the thermal conductivity is not satisfactory, the specific gravity is large and heavy, and the conductivity is high.

一方、セラミックス粒子分散型複合材料の場合は、セラミックス粒子自体の熱伝導率が低い。例えば、絶縁性材料である焼結Al、AlNセラミックスの熱伝導率は、それぞれ50、170W/mK程度である。これらの値は、あくまで十分に焼結させて結晶性を高くし、かつ結晶中の不純物を減らした焼結体での値であり、これらのセラミックスを粒子にした場合の熱伝導率はこれらの値よりも遙かに低い。従って、上記金属粒子分散型複合材料と同様の構造体を作製した場合(特許文献2)には熱伝導率はずっと低いという課題がある。 On the other hand, in the case of a ceramic particle dispersed composite material, the thermal conductivity of the ceramic particles themselves is low. For example, the thermal conductivity of sintered Al 2 O 3 and AlN ceramics, which are insulating materials, is about 50 and 170 W / mK, respectively. These values are values for sintered bodies that have been sufficiently sintered to increase crystallinity and reduce impurities in the crystals, and the thermal conductivity when these ceramics are made into particles is these values. Much lower than the value. Therefore, when a structure similar to the metal particle-dispersed composite material is produced (Patent Document 2), there is a problem that the thermal conductivity is much lower.

特開2002−003829号公報JP 2002-003829 A 特開2005−139267号公報JP 2005-139267 A

本発明は、熱伝導率の高い柱状金属酸化物が特定方向に配向していることにより、高い熱伝導率と高い引っ張り伸び率を持つ樹脂系複合材料からなる放熱材の製造方法を提供することを目的とする。   The present invention provides a method for producing a heat dissipation material composed of a resin-based composite material having a high thermal conductivity and a high tensile elongation, because columnar metal oxides having high thermal conductivity are oriented in a specific direction. With the goal.

本発明はこの課題を解決すべくなされたものであり、金属酸化物−樹脂複合材料において、柱状金属酸化物の長さ方向を、熱伝導率が要求される方向にほぼ平行に配向させた構造を持つ放熱用材料やシートを簡便に作製する方法に関するもので、以下の特徴を持つ。   The present invention has been made to solve this problem. In the metal oxide-resin composite material, the length direction of the columnar metal oxide is oriented substantially parallel to the direction in which the thermal conductivity is required. It relates to a method for easily producing a heat-dissipating material and sheet having the following characteristics.

(1)本発明は、基材とその表面に形成された柱状金属酸化物−樹脂系複合材料からなる複合層を有する放熱用材料の製法であって、第一の基材であるセラミックス、ガラス、樹脂、または金属基材の表面に、基材面に対して略垂直方向に成長した柱状金属酸化物から
なる多孔質層を形成する工程と、該多孔質層の隙間に樹脂を充填して複合層を形成する工程と、該複合層の表面に第二の基材を接着する工程と、を有する放熱材の製造方法である。
(2)前記第二の基材を接着する工程の後、第一の基材を除去する工程を有することを特徴とする前記(1)に記載の放熱材の製造方法。
(3)前記複合層を形成する工程において、前記第一の基材側から紫外線又は可視光を照射して充填された前記樹脂を硬化する工程を含み、かつ前記第一の基材が紫外線または可視光を透過する透明基材であり、樹脂として紫外線硬化樹脂又は可視光硬化樹脂を用いることを特徴とする前記(1)又は(2)に記載の放熱材の製造方法。
(4)前記柱状金属酸化物の製造方法として、気化させた原料をキャリヤーガスとともに大気開放下に加熱された基材表面に吹付けて基材表面に柱状金属酸化物を堆積させることを特徴とする前記(1)〜(3)のいずれか一に記載の放熱材の製造方法。
(5)前記柱状金属酸化物−樹脂系複合材料からなる複合層は、基材に対して垂直方向の熱伝導率が5〜50W/mKであることを特徴とする前記(1)〜(4)のいずれか一に記載の放熱材の製造方法。
(1) The present invention is a method for producing a heat-dissipating material having a base material and a composite layer made of a columnar metal oxide-resin composite material formed on the surface of the base material. A step of forming a porous layer made of a columnar metal oxide grown in a direction substantially perpendicular to the surface of the substrate on the surface of the resin or metal substrate, and filling the gap between the porous layers with the resin It is a manufacturing method of the heat dissipation material which has the process of forming a composite layer, and the process of adhere | attaching a 2nd base material on the surface of this composite layer.
(2) The method for manufacturing a heat dissipation material according to (1), further including a step of removing the first base material after the step of bonding the second base material.
(3) The step of forming the composite layer includes a step of curing the filled resin by irradiating ultraviolet light or visible light from the first base material side, and the first base material is UV light or The method for producing a heat-radiating material according to (1) or (2), wherein the method is a transparent base material that transmits visible light, and an ultraviolet curable resin or a visible light curable resin is used as the resin.
(4) The columnar metal oxide is produced by spraying the vaporized raw material together with a carrier gas on the surface of the substrate heated to the atmosphere to deposit the columnar metal oxide on the surface of the substrate. The manufacturing method of the thermal radiation material as described in any one of said (1)-(3) to do.
(5) The composite layer made of the columnar metal oxide-resin composite material has a thermal conductivity in a direction perpendicular to the substrate of 5 to 50 W / mK, (1) to (4) ). The manufacturing method of the heat dissipation material as described in any one of.

(6)前記柱状金属酸化物が、ZnOであることを特徴とする前記(1)〜(5)のいずれか一に記載の放熱材の製造方法。
(7)前記柱状金属酸化物が、さらに添加物としてLiを含むことを特徴とする前記(6)に記載の放熱材の製造方法。
(8)前記第二の基材が、Cuであることを特徴とする前記(1)〜(7)のいずれか一に記載の放熱材の製造方法。
(9)前記放熱材の少なくとも一面に粘着層を形成する工程を有することを特徴とする前記(1)〜(8)のいずれか一に記載の放熱材の製造方法。
(10)前記第二の基材の最表面に熱放射層を有することを特徴とする前記(1)〜(9)のいずれか一に記載の放熱材の製造方法。
(6) The method for manufacturing a heat dissipation material according to any one of (1) to (5), wherein the columnar metal oxide is ZnO.
(7) The method for manufacturing a heat dissipation material according to (6), wherein the columnar metal oxide further contains Li as an additive.
(8) The method for manufacturing a heat dissipation material according to any one of (1) to (7), wherein the second base material is Cu.
(9) The method of manufacturing a heat dissipation material according to any one of (1) to (8), further including a step of forming an adhesive layer on at least one surface of the heat dissipation material.
(10) The method for producing a heat dissipation material according to any one of (1) to (9), wherein a heat radiation layer is provided on the outermost surface of the second base material.

本発明の放熱用材料の製造方法により、熱伝導率の高い柱状金属酸化物が特定方向に配向しているため、高い熱伝導率と高い引っ張り伸び率を持つ樹脂系複合材料からなる放熱用材料を提供することができる。   Since the columnar metal oxide having high thermal conductivity is oriented in a specific direction by the manufacturing method of the heat dissipation material of the present invention, the heat dissipation material is made of a resin composite material having high thermal conductivity and high tensile elongation. Can be provided.

次に、本発明に係る放熱材の製造方法の一例について説明する。
まず柱状金属酸化物が樹脂中に分散した微細構造を持ち、該柱状金属酸化物が特定の方向に配向している柱状金属酸化物−樹脂系複合材料部位を作製するには以下の手法が有効である。
Next, an example of a method for manufacturing a heat dissipation material according to the present invention will be described.
First, the following technique is effective for producing a columnar metal oxide-resin composite material part having a microstructure in which columnar metal oxide is dispersed in a resin and the columnar metal oxide is oriented in a specific direction. It is.

これは大気開放型CVD法と呼ばれるプロセスで、気化させた原料をキャリヤーガスとともに大気開放下に室温〜数百℃程度に加熱された基材表面に吹付けて基材表面に柱状金属酸化物からなる多孔質層を堆積させる。柱状金属酸化物は、その長さ方向が基材面にほぼ垂直に堆積する。多孔質層の気孔率は、柱状金属酸化物の配列間隔を変えることで制御できる。例えば、柱状金属酸化物として柱状セラミックスを作製した場合、大気開放CVDで作製された柱状セラミックスは結晶性が高く、高温で焼結されたセラミックス焼結体に匹敵する高熱伝導率を持つ。   This is a process called the open-air CVD method, in which the vaporized raw material is sprayed onto the substrate surface heated to room temperature to several hundreds of degrees Celsius with the carrier gas open to the atmosphere, from the columnar metal oxide to the substrate surface. A porous layer is deposited. The columnar metal oxide is deposited with its length direction substantially perpendicular to the substrate surface. The porosity of the porous layer can be controlled by changing the arrangement interval of the columnar metal oxides. For example, when columnar ceramics are produced as columnar metal oxides, the columnar ceramics produced by atmospheric open CVD have high crystallinity and a high thermal conductivity comparable to a ceramic sintered body sintered at a high temperature.

次に、該多孔質層の隙間に樹脂を含浸させる。柱状金属酸化物の直径や長さは、製膜条件を変えることで任意に制御できるが、樹脂との複合材料にすることを考えると、直径が10〜20μm程度、長さは数十μm〜200μm程度が好ましいと考えられる。このような構造を持つ複合材料は柱状金属酸化物の長さ方向に高い熱伝導率を持つ。シート形状
にした場合は、シートの厚み方向に高い熱伝導率を持つことになる。
Next, the gap between the porous layers is impregnated with resin. The diameter and length of the columnar metal oxide can be arbitrarily controlled by changing the film forming conditions. However, considering the use of a composite material with a resin, the diameter is about 10 to 20 μm and the length is several tens of μm to About 200 μm is considered preferable. The composite material having such a structure has a high thermal conductivity in the length direction of the columnar metal oxide. In the case of a sheet shape, it has a high thermal conductivity in the thickness direction of the sheet.

柱状金属酸化物の体積含有率が低いと相対的に樹脂の含有率が高くなり熱伝導率は低いが柔軟性に富む複合材料となる。逆に柱状金属酸化物の体積含有率が高いと熱伝導率は高くなるが、柔軟性が低下する。熱伝導率と柔軟性のバランスを考えると、柱状金属酸化物の体積含有率は20〜80%が好ましい。   When the volume content of the columnar metal oxide is low, the resin content is relatively high and the composite material is rich in flexibility although the thermal conductivity is low. Conversely, when the volume content of the columnar metal oxide is high, the thermal conductivity increases, but the flexibility decreases. Considering the balance between thermal conductivity and flexibility, the volume content of the columnar metal oxide is preferably 20 to 80%.

柱状金属酸化物としては、高熱伝導材料であれば種類を問わず、SiCやAlNなどのようなセラミックスでもかまわないが、大気開放CVD法を用いた作製ではAl、Y、ZnO等の酸化物に限定される。特に、ZnOは結晶性が高く、熱伝導率が高いので好ましい。ZnOは、種々の添加物をドープすることにより材料の比抵抗を変化させることができる。例えば、Alをドープすると10−4Ω・cmの値が得られ材料は導電性になり、Liをドープすると1010Ω・cmになり絶縁性になる。大気開放型CVD法の原料には、一般的なアルコキシドを原料として用いることができる。金属酸化物の種類にもよるが、柱状金属酸化物の配向方向と平行な方向の熱伝導率は5〜50W/mKになる。 The columnar metal oxide may be of any kind as long as it is a highly heat conductive material, and ceramics such as SiC and AlN may be used, but Al 2 O 3 , Y 2 O 3 , It is limited to oxides such as ZnO. In particular, ZnO is preferable because of high crystallinity and high thermal conductivity. ZnO can change the specific resistance of the material by doping with various additives. For example, when Al is doped, a value of 10 −4 Ω · cm is obtained and the material becomes conductive, and when Li is doped, it becomes 10 10 Ω · cm and becomes insulating. A general alkoxide can be used as a raw material for the open-air CVD method. Although it depends on the type of metal oxide, the thermal conductivity in the direction parallel to the orientation direction of the columnar metal oxide is 5 to 50 W / mK.

次に、このような構造を持つ放熱シートの製法例を説明する。
ここでは、大気開放CVD法を用いて、柱状金属酸化物(セラミックス)としてZnOウィスカーを作製した例について説明する。
まず、第一の基材である石英ガラスの表面に、基材面に対して垂直方向に成長した柱状金属酸化物からなる多孔質層を形成する。大気開放型CVD法を用いる場合、一般的には500℃以上が必要となるので、第一の基材としては少なくとも500℃に耐熱性を有する材質であれば特に限定されない。しかしながら、製膜時に基材温度が高いほどウィスカーが成長しやすく、また、成長速度も大きいので、第一の基材には耐熱性が良好なセラミックスや金属、ガラスが好ましい。また、後述する樹脂を硬化させる工程において、光硬化を利用する場合には、第一基材は透光性に優れていることが好ましい。ここでは、透光性の高い石英ガラスを用いた例を説明する。
Next, an example of manufacturing a heat dissipation sheet having such a structure will be described.
Here, an example in which ZnO whiskers are produced as columnar metal oxides (ceramics) using the atmospheric open CVD method will be described.
First, a porous layer made of a columnar metal oxide grown in a direction perpendicular to the substrate surface is formed on the surface of quartz glass as the first substrate. When using the open-air CVD method, generally 500 ° C. or higher is required, so the first substrate is not particularly limited as long as it is a material having heat resistance at least 500 ° C. However, the higher the substrate temperature during film formation, the easier the whisker grows and the greater the growth rate. Therefore, the first substrate is preferably a ceramic, metal, or glass with good heat resistance. In addition, in the step of curing the resin described later, when using photocuring, the first base material is preferably excellent in translucency. Here, an example using quartz glass with high translucency will be described.

次に、該多孔質層の隙間に樹脂を充填して複合層を形成する。
樹脂としては紫外線硬化型樹脂を用いる。液体状の樹脂を多孔質層に含浸させる。含浸は、例えば、形成したウィスカーからなる多孔質層表面に樹脂を滴下し、デシケータ等の容器に装填した後、デシケータ内部を真空にすることで含浸がしやすくなる。
Next, a resin is filled in the gap between the porous layers to form a composite layer.
As the resin, an ultraviolet curable resin is used. The porous layer is impregnated with a liquid resin. The impregnation is facilitated by, for example, dropping the resin onto the surface of the formed porous layer made of whiskers and loading it in a container such as a desiccator and then evacuating the inside of the desiccator.

次に、樹脂を含浸して複合化した層の表面に第二の基材であるCu箔を接着させる。接着方法としては、第二の基材を重ねた後、基材の上からローラー等で平坦化することで、ちょうどウィスカーの先端部と第二の基材が接触して、余分な樹脂を除去することができる。このようにして、石英ガラス/複合層/Cu箔の積層構造を持つ構造体ができる。第二の基材としては、Cu箔の他にも、Al箔のような金属箔に加え、ポリイミド等の樹脂箔も好ましく用いることができる。また、柱状金属酸化物が配向した部位と金属層は直接接触していることが好ましいが、柱状金属酸化物と金属層との間に薄い樹脂層があってもよい。この場合は、柱状金属酸化物と金属層との接着力を高めることができるが、熱伝導率の面から厚くなりすぎないことが好ましい。   Next, Cu foil as the second base material is adhered to the surface of the layer impregnated with the resin to form a composite. As an adhesion method, after the second base material is stacked, the top of the base material is flattened with a roller or the like, so that the tip of the whisker is in contact with the second base material to remove excess resin. can do. In this way, a structure having a laminated structure of quartz glass / composite layer / Cu foil is obtained. As the second substrate, in addition to the Cu foil, a resin foil such as polyimide can be preferably used in addition to a metal foil such as an Al foil. Further, it is preferable that the portion where the columnar metal oxide is oriented and the metal layer are in direct contact, but a thin resin layer may be provided between the columnar metal oxide and the metal layer. In this case, although the adhesive force between the columnar metal oxide and the metal layer can be increased, it is preferable that the thickness is not excessively increased in terms of thermal conductivity.

次に、この構造体の石英ガラス側から紫外線を照射する。この処理により、樹脂が硬化する時に、樹脂成分と石英ガラス間、および樹脂成分とCu箔間が接着される。本発明により製造される放熱材の第一の基材が残った状態の概念図を図1に示す。なお、図1は柱状金属酸化物と金属層とが直接接触している場合、図2は柱状金属酸化物と金属層との間に樹脂のみの層がある場合を示している。   Next, ultraviolet rays are irradiated from the quartz glass side of the structure. By this treatment, when the resin is cured, the resin component and the quartz glass and the resin component and the Cu foil are bonded. The conceptual diagram of the state with which the 1st base material of the heat sink manufactured by this invention remained is shown in FIG. 1 shows a case where the columnar metal oxide and the metal layer are in direct contact, and FIG. 2 shows a case where there is a resin-only layer between the columnar metal oxide and the metal layer.

最後に、第一の基材である石英ガラスを除去する。石英ガラスのみを除去するためには石英ガラスと樹脂間の密着力を、Cu箔と樹脂の密着力に比べて小さくしておけばよい。例えば、Cu箔の表面粗度を石英ガラスの表面粗度よりも大きくしておくと、アンカー効果により密着力が大きくなった樹脂−Cu箔間は剥離しにくくなる。その他の方法として、樹脂を含浸する際に、ウィスカーの先端部よりも若干高い位置まで樹脂を存在させることにより、樹脂との接触面積が増大するCu箔−樹脂間の密着力を増大させる等の方法もある。   Finally, the quartz glass that is the first substrate is removed. In order to remove only the quartz glass, the adhesion between the quartz glass and the resin may be made smaller than the adhesion between the Cu foil and the resin. For example, if the surface roughness of the Cu foil is made larger than the surface roughness of the quartz glass, the resin-Cu foil whose adhesion is increased by the anchor effect is difficult to peel. As another method, when the resin is impregnated, the presence of the resin to a position slightly higher than the tip of the whisker increases the adhesion between the Cu foil and the resin, which increases the contact area with the resin, etc. There is also a method.

このように、樹脂を紫外線で硬化させる場合は、第一の基材は紫外線を透過できる透明度を持つ必要がある。一般に、紫外線硬化は波長が364nm又はこれより短い波長の紫外線を用いるので、この波長周辺の光をよく通す基材が好ましい。石英ガラスやサファイア基材は透過率が90%以上あるので最適であるが、普通のソーダライムガラスでも364nmの紫外線に対して60%程度は透過するので、紫外線の照射時間を長くする等の手法で対応できる。また、可視光線で硬化する樹脂の場合には、一般に青色の光(460nm以下)を利用するため、波長がこれ以下の可視光線を透過する基板及び可視光照射により硬化する樹脂を用いてもよい。   Thus, when the resin is cured with ultraviolet rays, the first base material needs to have transparency that allows ultraviolet rays to pass therethrough. In general, since ultraviolet curing uses ultraviolet light having a wavelength of 364 nm or shorter, a base material that allows light around this wavelength to pass through is preferable. Quartz glass and sapphire base materials are optimal because they have a transmittance of 90% or more, but ordinary soda lime glass also transmits about 60% of 364 nm ultraviolet light, so the method of extending the ultraviolet irradiation time, etc. It can respond. In the case of a resin that cures with visible light, blue light (460 nm or less) is generally used. Therefore, a substrate that transmits visible light with a wavelength shorter than this and a resin that cures with visible light irradiation may be used. .

紫外線硬化樹脂の中で、硬化後でも柔らかい樹脂を用いることが好ましい、なぜなら、このような放熱シートには、熱源となる部品の形状に対する追従性が要求されるためである。すなわち、柔らかいほど、発熱部品の表面との隙間ができにくく、その隙間に存在する空気による熱輸送の損失が少ない。樹脂の柔らかさは、一般には引っ張り試験時の伸び率が目安になる。伸び率としては50%以上が好ましい。例えば、主鎖がポリイソプレンからなり、主鎖の両端にアクリル系二重結合を持つウレタンアクリレート系樹脂などがある。そのほかの樹脂でももちろんかまわない。本発明のセラミックス−樹脂複合材料は、柱状セラミックスがシートの厚さ方向に沿って垂直に成長しているため、隣の柱状セラミックスとは独立して存在している。そのため、樹脂を含浸した後も、シートの面内方向の伸びに対しての抵抗が小さいという特徴がある。すなわち、引っ張り伸び率の高いシートとなるのである。
これに対して、通常のセラミックス多孔質体は三次元的に連結した構造になっているため、変形しにくく、複合材料とした場合に引っ張り伸び率が小さくなる。
Among the ultraviolet curable resins, it is preferable to use a soft resin even after curing, because such a heat-dissipating sheet is required to follow the shape of a part that becomes a heat source. That is, the softer the harder is the gap with the surface of the heat-generating component, and the less the heat transport loss due to the air present in the gap. The softness of the resin is generally based on the elongation rate during the tensile test. The elongation is preferably 50% or more. For example, there is a urethane acrylate resin having a main chain made of polyisoprene and acrylic double bonds at both ends of the main chain. Of course, other resins may be used. In the ceramic-resin composite material of the present invention, the columnar ceramics grow vertically along the thickness direction of the sheet, and therefore exist independently of the adjacent columnar ceramics. Therefore, even after impregnating the resin, there is a feature that resistance to elongation in the in-plane direction of the sheet is small. That is, the sheet has a high tensile elongation rate.
On the other hand, since a normal ceramic porous body has a three-dimensionally connected structure, it is difficult to be deformed, and the tensile elongation is reduced when a composite material is used.

このような放熱用シートを熱源に貼り付けると、熱は熱伝導率の高い複合材料の厚み方向に沿って、熱伝導率の極めて高いCu箔に伝達される。その際に、例えばCu箔のような第二の基材として高熱伝導率の金属層があると、複合材料から伝えられた熱は、Cu箔の厚み方向に加えて、Cu箔の面内方向にも伝達されるので、放熱効果は極めて大きくなる。
Cu箔に対向する面に粘着層があると発熱源への貼り付け・剥がしが容易になるので好ましい。Cu箔のような第二の基材の最表面に熱放射層を有すると、表面からの輻射によっても放熱できるので好ましい。熱放射層としては、熱を赤外線として大気中に放射できるものであれば特に限定されない。セラミックス等も好ましく用いることができる。
When such a heat-dissipating sheet is attached to a heat source, heat is transmitted to the Cu foil having an extremely high thermal conductivity along the thickness direction of the composite material having a high thermal conductivity. At that time, for example, when there is a metal layer having a high thermal conductivity as a second base material such as a Cu foil, the heat transferred from the composite material is in the in-plane direction of the Cu foil in addition to the thickness direction of the Cu foil. Therefore, the heat dissipation effect becomes extremely large.
An adhesive layer on the surface facing the Cu foil is preferable because it can be easily attached to and peeled off from the heat source. It is preferable to have a heat radiation layer on the outermost surface of the second base material such as a Cu foil because heat can be radiated by radiation from the surface. The heat radiation layer is not particularly limited as long as it can radiate heat into the atmosphere as infrared rays. Ceramics or the like can also be preferably used.

<柱状セラミックスの合成>
第一の基材として、直径10mm、厚さ1mmの石英ガラスまたはソーダライムガラスの基板を用いた。
図2に示す大気開放型CVD装置を使用した。気化器にアセチルアセトナト亜鉛(Zn(C)を装填し115℃で気化させた。
加熱台を600〜1000℃に加熱した。吹き出しスリットの下、20mmの位置に基板を置いた。気化器に乾燥Arガスを流量1.5 l/minで導入し、アセチルアセトナト亜鉛を大気圧雰囲気に放出し、基板表面に所定の長さになるまで吹き付けた。スリッ
トを移動させながら基板全体に亘ってウィスカーを成長させた。アセチルアセトナト亜鉛は大気中で反応しZnOとなり、これが基板上に堆積し、ウィスカーを所定の長さまで成長させた。ウィスカーの生成間隔(ピッチ)は、スリットの移動速度を調整することで変化させた。
一部の試料では、気化器2を使用し、Li(OC)を原料として、100℃で気化させた。気化器に乾燥Arガスを流量0.04 l/minで導入し、途中でZn原料ガスと合流するようにした。X線回折でウィスカーの成長方向を測定した結果、作製したZnOウィスカーは(001)方位に成長していた。図3に作製したウィスカーのSEM写真の一例を示す。
<Synthesis of columnar ceramics>
A quartz glass or soda lime glass substrate having a diameter of 10 mm and a thickness of 1 mm was used as the first base material.
The atmospheric open type CVD apparatus shown in FIG. 2 was used. A vaporizer was charged with acetylacetonato zinc (Zn (C 5 H 7 O 2 ) 2 ) and vaporized at 115 ° C.
The heating table was heated to 600-1000 ° C. The substrate was placed at a position of 20 mm under the blowing slit. Dry Ar gas was introduced into the vaporizer at a flow rate of 1.5 l / min, and acetylacetonato zinc was released into the atmospheric pressure atmosphere and sprayed onto the substrate surface until a predetermined length was reached. Whiskers were grown over the entire substrate while moving the slit. The acetylacetonato zinc reacted in the atmosphere to become ZnO, which was deposited on the substrate and allowed to grow whiskers to a predetermined length. The whisker generation interval (pitch) was changed by adjusting the moving speed of the slit.
In some samples, vaporizer 2 was used and vaporized at 100 ° C. using Li 2 (OC 2 H 5 ) as a raw material. Dry Ar gas was introduced into the vaporizer at a flow rate of 0.04 l / min, and was merged with Zn source gas in the middle. As a result of measuring the growth direction of whiskers by X-ray diffraction, the produced ZnO whiskers were grown in the (001) direction. FIG. 3 shows an example of an SEM photograph of the produced whisker.

<樹脂の含浸>
樹脂として2種を用いた。
[1]昭和高分子製のビニルエステル樹脂:商品名:リポキシVR−77−80EAC
[2]昭和高分子製のビニルエステル樹脂:商品名:リポキシPH−300A
これらの樹脂に樹脂の1wt%の重合開始剤(IRGACRE184:チバ・スペシャルティ・ケミカルズ製)を添加、攪拌後、ウィスカーを成長させた第一基板表面に滴下した。これを真空オーブンに入れ、ロータリーポンプで真空にしながら室温で樹脂を含浸させた。複合材料のセラミックスの含有率は、複合材料の比重から計算した。
<Resin impregnation>
Two kinds of resins were used.
[1] Vinyl ester resin made by Showa Polymer: Product name: Lipoxy VR-77-80EAC
[2] Vinyl ester resin made by Showa Polymer: Product name: Lipoxy PH-300A
A 1 wt% polymerization initiator (IRGACRE184: manufactured by Ciba Specialty Chemicals) of the resin was added to these resins, stirred, and then dropped onto the surface of the first substrate on which whiskers were grown. This was placed in a vacuum oven and impregnated with resin at room temperature while being evacuated with a rotary pump. The ceramic content of the composite material was calculated from the specific gravity of the composite material.

<第二の基材の積層>
第二の基材として、各種厚さの金属箔または樹脂箔による基板を用い、各箔の一面を#1000のダイヤモンドラップ紙で研磨した。樹脂を含浸した後のZnO−樹脂複合層の表面に第二基板箔の研磨面を重ねた後、箔の上に回転ローラーを接触させ、回転させながら平坦化させた。
<Lamination of second substrate>
A substrate made of metal foil or resin foil of various thicknesses was used as the second substrate, and one surface of each foil was polished with # 1000 diamond wrap paper. After the polishing surface of the second substrate foil was superposed on the surface of the ZnO-resin composite layer after impregnating the resin, a rotating roller was brought into contact with the foil and flattened while rotating.

<樹脂の硬化>
その後、第一基板面に波長が365nmの紫外線を50mW/cmの光強度で照射して樹脂を硬化させた後、第一基板を剥離させた。
<Curing of resin>
Thereafter, the resin was cured by irradiating the first substrate surface with ultraviolet light having a wavelength of 365 nm at a light intensity of 50 mW / cm 2 , and then the first substrate was peeled off.

<熱伝導率測定>
[1]樹脂複合材料自体の熱伝導率
樹脂含浸後の試料を第一基板から引き剥がし、直径10mmに加工し、周期加熱法により熱伝導率を測定した。
[2]金属基板を含む熱伝導率
セラミックス−樹脂複合層と金属箔の積層板を直径10mmに加工し、周期加熱法により熱伝導率を測定した。
<Measurement of thermal conductivity>
[1] Thermal conductivity of resin composite material itself The sample after resin impregnation was peeled off from the first substrate, processed to a diameter of 10 mm, and the thermal conductivity was measured by a periodic heating method.
[2] Thermal conductivity including metal substrate A laminate of a ceramic-resin composite layer and a metal foil was processed to a diameter of 10 mm, and the thermal conductivity was measured by a periodic heating method.

比較として、平均粒径8.6μmのZnO粉末をプレス成形して成形体を作製し、温度600℃で2hr大気中で焼結させて、気孔率が53%の多孔体を作製した。これに、同様の方法で樹脂を含浸して複合材料とし、熱伝導率を測定した。   As a comparison, a ZnO powder having an average particle size of 8.6 μm was press-molded to produce a compact, and sintered in the atmosphere at a temperature of 600 ° C. for 2 hours to prepare a porous body having a porosity of 53%. This was impregnated with a resin in the same manner to obtain a composite material, and the thermal conductivity was measured.

結果を表1に示す。
セラミックス含有率が高いほど、熱伝導率は高くなった。
Liを添加した試料のみの電気伝導性を測定した結果、1×1010Ω・cm以上の比抵抗を示し、絶縁性が高いことが分かった。
積層構造にした場合でも、本発明によるセラミックス−樹脂複合材料層の場合は高い熱伝導率を示す。また、引っ張り伸び率も高い。
The results are shown in Table 1.
The higher the ceramic content, the higher the thermal conductivity.
As a result of measuring the electrical conductivity of only the sample to which Li was added, it was found that the specific resistance was 1 × 10 10 Ω · cm or more and the insulation was high.
Even in the case of a laminated structure, the ceramic-resin composite material layer according to the present invention exhibits high thermal conductivity. Also, the tensile elongation is high.

本発明により製造される放熱材の第一の基材が残った状態の概念図。The conceptual diagram of the state in which the 1st base material of the heat sink manufactured by this invention remained. 本発明により製造される放熱材の第一の基材が残った状態の別の概念図。The another conceptual diagram of the state with which the 1st base material of the heat sink manufactured by this invention remained. 大気開放型CVD装置の概念図。The conceptual diagram of an atmospheric open type CVD apparatus. 走査型電子顕微鏡によるZnOウィスカーの写真。Photo of ZnO whiskers by scanning electron microscope.

Claims (10)

基材と、その表面に形成された柱状金属酸化物−樹脂系複合材料からなる複合層を有する放熱材の製法であって、第一の基材であるセラミックス、ガラス、樹脂、または金属のいずれか一から選択された基材の表面に、基材面に対して略垂直方向に成長した柱状金属酸化物からなる多孔質層を形成する工程と、該多孔質層の隙間に樹脂を充填して複合層を形成する工程と、該複合層の表面に第二の基材を接着する工程と、を有することを特徴とする放熱材の製造方法。   A method for producing a heat dissipation material having a base material and a composite layer made of a columnar metal oxide-resin composite material formed on the surface thereof, which is any of ceramic, glass, resin, or metal as the first base material A step of forming a porous layer made of a columnar metal oxide grown in a direction substantially perpendicular to the surface of the substrate on the surface of the substrate selected from the above, and filling a gap between the porous layers with a resin Forming a composite layer, and a step of adhering a second base material to the surface of the composite layer. 前記第二の基材を接着する工程の後、第一の基材を除去する工程を有することを特徴とする請求項1に記載の放熱材の製造方法。   The method for manufacturing a heat dissipation material according to claim 1, further comprising a step of removing the first base material after the step of bonding the second base material. 前記複合層を形成する工程が、前記第一の基材側から紫外線又は可視光を照射して充填された前記樹脂を硬化する工程を有し、かつ前記第一の基材が紫外線または可視光を透過する透明基材であり、樹脂としては紫外線硬化樹脂又は可視光硬化樹脂を用いることを特徴とする請求項1又は2に記載の放熱材の製造方法。   The step of forming the composite layer includes the step of curing the filled resin by irradiating ultraviolet rays or visible light from the first substrate side, and the first substrate is ultraviolet rays or visible light. The method according to claim 1 or 2, wherein an ultraviolet curable resin or a visible light curable resin is used as the resin. 前記柱状金属酸化物の製造方法として、気化させた原料をキャリヤーガスとともに大気開放下に加熱された基材表面に吹付けて基材表面に柱状金属酸化物を堆積させることを特徴とする請求項1〜3のいずれか一に記載の放熱材の製造方法。   The columnar metal oxide is produced by spraying a vaporized raw material together with a carrier gas onto a substrate surface heated to the atmosphere to deposit the columnar metal oxide on the substrate surface. The manufacturing method of the thermal radiation material as described in any one of 1-3. 前記柱状金属酸化物−樹脂系複合材料からなる複合層は、基材に対して垂直方向の熱伝導率が5〜50W/mKであることを特徴とする請求項1〜4のいずれか一に記載の放熱材の製造方法。   The composite layer made of the columnar metal oxide-resin composite material has a thermal conductivity in a direction perpendicular to the substrate of 5 to 50 W / mK, according to any one of claims 1 to 4. The manufacturing method of the heat dissipation material of description. 前記柱状金属酸化物が、ZnOであることを特徴とする請求項1〜5のいずれか一に記載の放熱材の製造方法。   The said columnar metal oxide is ZnO, The manufacturing method of the thermal radiation material as described in any one of Claims 1-5 characterized by the above-mentioned. 前記柱状金属酸化物が、さらに添加物としてLiを含むことを特徴とする請求項6に記載の放熱材の製造方法。   The method for manufacturing a heat dissipation material according to claim 6, wherein the columnar metal oxide further contains Li as an additive. 前記第二の基材が、Cuであることを特徴とする請求項1〜7のいずれか一に記載の放熱材の製造方法。   Said 2nd base material is Cu, The manufacturing method of the thermal radiation material as described in any one of Claims 1-7 characterized by the above-mentioned. 前記放熱材の少なくとも一面に粘着層を形成する工程を有することを特徴とする請求項1〜8のいずれか一に記載の放熱材の製造方法。   It has the process of forming the adhesion layer in at least one surface of the said heat radiating material, The manufacturing method of the heat radiating material as described in any one of Claims 1-8 characterized by the above-mentioned. 前記第二の基材の最表面に熱放射層を有することを特徴とする請求項1〜9のいずれか一に記載の放熱材の製造方法。   It has a thermal radiation layer in the outermost surface of said 2nd base material, The manufacturing method of the heat dissipation material as described in any one of Claims 1-9 characterized by the above-mentioned.
JP2006349333A 2006-12-26 2006-12-26 Manufacturing method for heat-dissipating member Pending JP2008159990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349333A JP2008159990A (en) 2006-12-26 2006-12-26 Manufacturing method for heat-dissipating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349333A JP2008159990A (en) 2006-12-26 2006-12-26 Manufacturing method for heat-dissipating member

Publications (1)

Publication Number Publication Date
JP2008159990A true JP2008159990A (en) 2008-07-10

Family

ID=39660550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349333A Pending JP2008159990A (en) 2006-12-26 2006-12-26 Manufacturing method for heat-dissipating member

Country Status (1)

Country Link
JP (1) JP2008159990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131756A (en) * 2012-12-19 2013-07-04 Seiko Epson Corp Heat sink with bonding film, bonding method of bonded body and heat sink, and display device
US11355413B2 (en) 2018-12-28 2022-06-07 Samsung Electronics Co., Ltd. Adhesive film, semiconductor apparatus using the same, and semiconductor package including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131756A (en) * 2012-12-19 2013-07-04 Seiko Epson Corp Heat sink with bonding film, bonding method of bonded body and heat sink, and display device
US11355413B2 (en) 2018-12-28 2022-06-07 Samsung Electronics Co., Ltd. Adhesive film, semiconductor apparatus using the same, and semiconductor package including the same

Similar Documents

Publication Publication Date Title
JP7324783B2 (en) Thermally conductive films and methods of making films based on laminated graphene
JP6703113B2 (en) Shape-adaptive multi-layer composite
Heo et al. Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package
WO2017115832A1 (en) Carbon nanotube composite material and method for producing carbon nanotube composite material
US20080019097A1 (en) Thermal transport structure
US20110117372A1 (en) Graphene or graphite thin film, manufacturing method thereof, thin film structure and electronic device
US7797808B2 (en) Thermal management system and associated method
KR20150048074A (en) Heat-dissipating film, and its production method and apparatus
CN102651961A (en) Heat-conduction heat-dissipation interface material and manufacturing method thereof
JP2001168246A (en) Heat conductive sheet and manufacturing method thereof
JP2008169267A (en) Heat radiator and method for producing the same
CN112996945B (en) Heat conduction and protective coating for electronic equipment
JP6353262B2 (en) Method for producing multilayer graphene
JP2006207012A (en) Yttrium-based ceramic coated material and method of manufacturing the same
WO2018030235A1 (en) Adhesive structure
JP5419868B2 (en) Composite film and manufacturing method thereof
CN109371303B (en) Heat-conducting composite material, preparation method thereof and heat dissipation piece
JP2008159990A (en) Manufacturing method for heat-dissipating member
KR20180130030A (en) Heat radiating member and heat radiating sheet having heat control function and manufacturing method the same
Yoon et al. Development of Al foil-based sandwich-type ZnO piezoelectric nanogenerators
KR102153964B1 (en) Complex powder by surface coating and fabricating method of the same
JP2006199545A (en) Yttrium-based ceramic covering material and method of manufacturing the same
JP2008157555A (en) Radiation material and its manufacturing method
JP2016004937A (en) Method of producing connection member and method of manufacturing electronic apparatus
JP6951657B2 (en) Manufacturing method of inorganic porous sheet