TW200929117A - Simultaneous light collection and illumination on an active display - Google Patents

Simultaneous light collection and illumination on an active display Download PDF

Info

Publication number
TW200929117A
TW200929117A TW097144259A TW97144259A TW200929117A TW 200929117 A TW200929117 A TW 200929117A TW 097144259 A TW097144259 A TW 097144259A TW 97144259 A TW97144259 A TW 97144259A TW 200929117 A TW200929117 A TW 200929117A
Authority
TW
Taiwan
Prior art keywords
light
display
film
collection
display device
Prior art date
Application number
TW097144259A
Other languages
Chinese (zh)
Other versions
TWI467523B (en
Inventor
Kasra Khazeni
Manish Kothari
Original Assignee
Qualcomm Mems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/941,851 external-priority patent/US20090126792A1/en
Application filed by Qualcomm Mems Technologies Inc filed Critical Qualcomm Mems Technologies Inc
Publication of TW200929117A publication Critical patent/TW200929117A/en
Application granted granted Critical
Publication of TWI467523B publication Critical patent/TWI467523B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

In various embodiments described herein, a display device comprising a light collection film and a photovoltaic device disposed on an edge of the collection film. The collection film has a plurality of light-turning features for redirecting light between the front and back surface of the collection film and the photovoltaic device. In some embodiments, a light source is also disposed on an edge of the collection film and emits light which is turned by the light-turning features toward the display.

Description

200929117 九、發明說明: 【發明所屬之技術領域】 本發明係關於微機電系統(MEMS)。 本申請案主張2008年9月2曰申請之美國臨時申請案第 61/093,686號及20〇7年11月16日申請之美國專利申請案第 . 1 1/941,851號之權利。本申請案與2008年9月9曰申請之美 國專利申請案第12/207,270號有關。 【先前技術】 ® 微機電系統(MEMS)包括微機械元件、致動器及電子設 備。微機械元件可使用沈積、蝕刻,及/或蝕刻掉基板及/ 或所沈積材料層之部分或添加層之其他微加工製程以形成 電氣及機電裝置來形成。一類型之MEMS裝置稱為干涉調 變器("IMOD")。如本文中所使用,術語"干涉調變器"、 干涉光調變器"或"IMOD"係指使用光干涉原理有選擇地吸 收及/或反射光之裝置。在某些實施例中,干涉調變器可 _ 包含一對傳導板,其中一或兩者可為完全或部分透明及/ 或反射的且能夠在施加適當電信號後即相對運動。在特定 實施例中,一板可包含沈積於基板上之固定層且另一板可 -包含藉由氣隙與固定層隔開的金屬膜。如本文中更詳細地 描述’一板相對於另一板之位置可改變入射於干涉調變器 上之光的光干涉。200929117 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to microelectromechanical systems (MEMS). The present application claims the benefit of U.S. Patent Application Serial No. 61/093,686, filed on Sep. 2, 2008, filed on Jan. This application is related to U.S. Patent Application Serial No. 12/207,270, filed on Sep. 9, 2008. [Prior Art] ® Microelectromechanical systems (MEMS) include micromechanical components, actuators, and electronics. The micromechanical elements can be formed using deposition, etching, and/or etching of portions of the substrate and/or deposited material layers or other micromachining processes to add layers to form electrical and electromechanical devices. One type of MEMS device is called an interference modulator ("IMOD"). As used herein, the term "interference modulator", an interferometric modulator" or "IMOD" refers to a device that selectively absorbs and/or reflects light using the principle of optical interference. In some embodiments, the interferometric modulator can include a pair of conductive plates, one or both of which can be fully or partially transparent and/or reflective and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a fixed layer deposited on the substrate and the other plate may comprise a metal film separated from the fixed layer by an air gap. As described in more detail herein, the position of one plate relative to the other can change the optical interference of light incident on the interferometric modulator.

IMOD可以可定址陣列排列以形成主動式顯示器。類似 地,諸如液晶顯示器(LCD)、發光二極體(LED)(包括有機 LED(OLED))、電泳及場致發射顯示器(FED)之其他MEMS 136170.doc 200929117 及非MEMS技術均用作用於電視、電腦監視器、蜂巢式電 話或個人數位助理(PDA)螢幕等之主動式顯示器。此等裝 置具有廣泛範圍之應用,且在此項技術中利用及/或修改 此等類型之裝置的特性以使得其特徵可在改良現有產品及 开> 成尚未開發之新產品的過程中採用將為有益的。 【發明内容】 徑顯不褒置包括 王動顯示像素陣 在一實施例中The IMODs can be arranged in an addressable array to form an active display. Similarly, other MEMS 136170.doc 200929117 and non-MEMS technologies such as liquid crystal displays (LCDs), light emitting diodes (LEDs) including organic LEDs (OLEDs), electrophoresis and field emission displays (FED) are used for Active display such as television, computer monitor, cellular phone or personal digital assistant (PDA) screen. Such devices have a wide range of applications, and the features of such devices are utilized and/or modified in the art such that their features can be employed in the process of improving existing products and developing new products that have not yet been developed. Will be beneficial. SUMMARY OF THE INVENTION The display of the display includes a matrix of display pixels in an embodiment.

列,其具有一面向觀察者之前顯示表面及一後顯示表面; 至少-收集膜’其鄰近於前顯示表面或後顯示表面中之一 者,該收集膜具有前收集膜表面、後收集膜表面、至少一 邊緣及複數個光轉向特徵’其中光轉向特徵經組態以將在 前收集膜表面或後收集臈表面與收集臈之_邊緣之間的光 重定向;及-光伏打裝置,其安置於收集膜之邊緣上且經 導向以接收自光轉向特徵橫向透射穿過收集膜之光。 在另-實㈣中’-種顯示裝置包括—顯示像素陣列。 至少-收集膜接近顯示像素陣列而安置。收集膜具有複數 個光轉向特徵’其中光轉向特徵經組態以將在前收集膜表 面或後收集膜表面與收集膜之邊緣之間的光重定向。至少 伏打裝置安置於收集膜之一邊緣上1中光伏打裝置 以接收自光轉向特徵橫向透射穿過收集膜之光。至 '光源女置於-邊緣上’纟中光源發射橫向穿過收集膜 的光以待由光轉向特徵朝向顯示像素陣列轉向。 、 在另-實施财,—種顯示裝置包括—用於在顯 陣列上顯示影像之構件、一用於將光能轉換成替代形式之 136170.doc 200929117 能量的構件,及—用 以,_ 於將先自入射於顯示表面上之方向轉 向至沿顯示表面朝向將处 ^ '此*轉換成替代形式之能量的構件 的横向方向的構件。 在另一實施例中,一種車# '、先及影像顯示方法包括在影像 &域中主動地顯示影像, 影像區域之光,將光自 l像區域轉向至影像區域 流。 氤夕邊緣,及將光轉換成電 在另一實施例中,一種劁抨翻_ 〇 禋裂每顯不裝置之方法包括將收集 膜可刼作地耦合至主動顯示像 n陴列之刖顯不表面或後顯 不表面。收集膜具有前收集膜表面、後收集媒表面、至少 一邊緣’及複數個光轉向特徵。該方法亦包括使光伏打裝 ,、收集膜之邊緣對準,以使得光轉向特徵將環境光自前 收集膜表面重定向至收集膜之邊緣處的光伏打裝置以轉換 成電能。 【實施方式】 ❹以下實施方式係針對本發明之某些特定實施例u, 本發明可以眾多不同方式具體化。在此描述中,參看圖 式’其令貫穿全文以相似數字指定相似部分。如自以下描 ' ㈣而易見’實施例可實施於經組態以可程式化地顯示影 . 像之任何裝置中,無論該影像為運動影像(例如,視訊)還 是固定影像(例如,靜止影像),且無論其為文字影像還是 圖形影像。更特定言之’預期實施例可實施於諸如(但不 限於)以下各者的多種電子裝置中或與其相關聯··行動電 話、無線裝置、個人資料助理(pDA)、手持式或攜帶型電 136170.doc 200929117 腦、GPS接收器/導航器、. ^相機、MP3播放器、可攜式攝像 機、遊戲控制台、腕錶、睥鏟 ^日寻鐘、計算器、電視監視器、平 板顯示器、電腦監視器、、、与击 ^飞車顯不器(例如’里程錶顯示 :等)座艙控制器及/或顯示器、相機視域顯示器(例如, 運載工具中之後視相機之顯示器)、電子照片、電子廣告 牌或標牌、投影儀、諌筑&圾 俄建築結構、封裝及美學結構(例如, 一件珠寶上之影像顯示)。a column having a front facing surface and a rear display surface facing the viewer; at least a collecting film 'which is adjacent to one of the front display surface or the rear display surface, the collecting film having a front collecting film surface and a rear collecting film surface At least one edge and a plurality of light turning features 'where the light turning features are configured to redirect light between the front collecting film surface or the rear collecting surface and the edge of the collecting crucible; and - a photovoltaic device Disposed on the edge of the collection film and directed to receive light that is transmitted laterally through the collection film from the light turning feature. In the other embodiment, the display device includes a display pixel array. At least - the collection film is placed close to the display pixel array. The collection film has a plurality of light turning features 'where the light turning features are configured to redirect light between the front collecting film surface or the trailing collecting film surface and the edge of the collecting film. At least the voltaic device is disposed on one of the edges of the collection membrane 1 in the photovoltaic device to receive light that is transmitted laterally through the collection film from the light turning feature. To the 'light source female on-edge', the light source emits light that traverses the collection film to be diverted by the light turning features toward the display pixel array. In another implementation, the display device includes: a component for displaying an image on the display array, a component for converting light energy into an alternative form, and a component for use, and, for, The member is first deflected from the direction incident on the display surface to a lateral direction of the member along the display surface that is to convert the energy into an alternative form. In another embodiment, a vehicle #', first and image display method includes actively displaying an image, light in an image area, and diverting light from the image area to the image area stream in the image & Edge of the eve, and converting light into electricity. In another embodiment, a method of flipping 〇禋 每 每 显 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每 每No surface or no surface. The collection membrane has a front collection membrane surface, a rear collection media surface, at least one edge', and a plurality of light turning features. The method also includes aligning the edges of the photovoltaic film with the photovoltaic film, such that the light turning features redirect ambient light from the front collecting film surface to the photovoltaic device at the edge of the collecting film for conversion to electrical energy. [Embodiment] The following embodiments are directed to certain specific embodiments of the present invention, and the present invention may be embodied in many different forms. In this description, reference is made to the drawings, and the like, As can be seen from the following description (4), an embodiment can be implemented in any device configured to programmatically display an image. Whether the image is a moving image (eg, video) or a fixed image (eg, still) Image), whether it is a text image or a graphic image. More specifically, the contemplated embodiment can be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs), handheld or portable devices. 136170.doc 200929117 brain, GPS receiver / navigator, ^ camera, MP3 player, camcorder, game console, watch, shovel, day clock, calculator, TV monitor, flat panel display, Computer monitors, , and squad display devices (eg 'odometer display: etc.') cockpit controls and/or displays, camera field of view displays (eg, rear view cameras in vehicles), electronic photos , electronic billboards or signs, projectors, 諌 &&;; Russian construction, packaging and aesthetic structure (for example, an image on a piece of jewelry).

本發明之某些實施例係針對與光伏打裝置耦合之收集 臈其用於採集穿過主動式顯示區域之光且將光轉換成電 能;置放於顯示像素陣列上方或下方的收集膜具有光轉向 特徵’其將接收於主動式顯示區域上之光中的一些重定向 且使光分路至收集臈之定位有至少—光伏打裝置的邊緣。 在二實施例中,諸如LED之光源亦置放於同一媒之邊緣 處且發射由光轉向特徵重定向以照明顯示器的光。 儘管圖8至圖20之實施例可結合多種顯示技術使用收集 臈與光伏打裝置,但圖i至圖7E說明對圖8至圖2Q之實㈣ 有用的干涉調變器(IM0D)顯示技術。 圖1中說明一包含干涉MEMS顯示元件之干涉調變器顯 示器實施例。在此等裝置中’像素處於亮或暗狀態。在亮 (接通或"開啟")狀態中,顯示元件將大部分入射可見光 反射至使用者。在處於暗(”關斷”或”關閉")狀態中時,顯 示元件將極少入射可見光反射至使用者。視實施例而定, 了逆轉接通,及"關斷"狀態之光反射性質。Mems像素可 經組態以主要反射選定色彩,從而允許除黑及白之外的色 136170.doc 200929117 彩顯示。 圖1為描繪視覺顯示器之—系列像素中之兩個鄰近像素 的等角視圖’纟中每"'像素包含MEMS干涉調變器。在— t實施例中,干涉調變器顯示器包含此等干涉調變器之列/ 行陣列。每-干涉調變器包括彼此以可變及可控距離定位 以形成具有至少—可變尺寸之共振光學間隙的一對反射 S在f施例中,反射層中之一者可在兩個位置之間移 動。在本文中稱為祕位置之第—位置中,活動反射層定 位於距較部分反射層之相對A距離處。在本文中稱為致Certain embodiments of the present invention are directed to a collection coupled to a photovoltaic device for collecting light passing through an active display region and converting the light into electrical energy; the collection film disposed above or below the display pixel array has light The turning feature 'redirects some of the light received on the active display area and splits the light into the collection pupils at least - the edge of the photovoltaic device. In a second embodiment, a light source such as an LED is also placed at the edge of the same medium and emits light redirected by the light turning features to illuminate the display. Although the embodiment of Figures 8 through 20 can be used in conjunction with a plurality of display technologies to collect germanium and photovoltaic devices, Figures i through 7E illustrate an interference modulator (IMOD) display technique useful for the actual (d) of Figures 8 through 2Q. An embodiment of an interferometric modulator display including an interferometric MEMS display element is illustrated in FIG. In such devices the 'pixel is in a bright or dark state. In the on (on or "on") state, the display element reflects most of the incident visible light to the user. When in a dark ("off" or "off" state, the display element reflects very little incident visible light to the user. Depending on the embodiment, reverse turn-on, and "shutdown" state light Reflective properties. Mems pixels can be configured to primarily reflect selected colors, allowing color 136170.doc 200929117 to be displayed in addition to black and white. Figure 1 is a depiction of a visual display - two adjacent pixels in a series of pixels, etc. The angular view 'each of the 'pixels' includes a MEMS interferometric modulator. In an embodiment, the interferometric modulator display includes a column/row array of such interferometric modulators. Each permutation modulator includes each other Positioning at a variable and controllable distance to form a pair of reflections S having at least a variable size resonant optical gap. In an embodiment, one of the reflective layers is movable between two positions. In the first position of the secret position, the active reflective layer is positioned at a relative A distance from the more partially reflective layer.

動位置之第二位置中,活動反射層更緊密地鄰近於部分反 射層而定位。視活動反射層之位置而冑,自兩個層反射之 入射光相長或相消地干涉,從而產生每一像素之全反射或 非反射狀態。 圖1中之像素陣列之所描繪部分包括兩個鄰近干涉調變 器12a及12b。在左方之干涉調變器12a中,活動反射層玉乜 經說明為處於距包括部分反射層之光學堆疊16a預定距離 處的鬆弛位置中。在右方之干涉調變器12b中,活動反射 層14b經說明為處於鄰近於光學堆疊16b之致動位置中。 如本文中七及之光學堆疊16a及16b(共同稱為光學堆疊 16)通常包含若干融合層,該等融合層可包括諸如氧化銦 錫(ITO)之電極層、諸如鉻之部分反射層及透明介電質。 光學堆疊16由此為導電的、部分透明的及部分反射的,且 可(例如)藉由將以上層中之一或多者沈積於透明基板2〇上 而製造。部分反射層可由部分反射之多種材料(諸如,各 136170.doc •10- ❹ ❹ 200929117 、半導體及介電質)形成。部分反射 =材料形成’且…每一者可由單一材料或材料二多 在一些實㈣巾,光學堆#16之層_案化 帶,且可形成如下文進一步描述之顯示裝置中之列電極条 活動反射層ua、14b可形成為沈積於柱18及在柱18之間沈 積的介入犧牲材料之頂部上之一或多個沈積金屬層的一系 列平行條帶(與16a、16b之列電極正交在蝕刻掉犧牲材 料時’活動反射層14a、14b藉由經界定之間隙㈣光學堆 疊16a、16b分隔。諸如紹之高導電及反射材料可用於反射 層14,且此等條帶可形成顯示裝置中之行電極。 如圖1中之像素12a所說明,在無外加電壓的情況下,間 隙19保留在活動反射層14a與光學堆疊16&之間,活動反射 層14a處於機械鬆弛狀態中。然而,在將電位差施加至選 疋歹j及行時,在相應像素處在列及行電極之交點處形成的 電容器變得帶電’且靜電力將電極牽拉在一起。若電壓為 足夠问的,則活動反射層14變形且經迫使抵靠光學堆疊 16。光學堆疊16内之介電層(此圖中未說明)可防止短路且 控制層14與16之間的間距,如由圖丨中右方之像素12b所說 明。不管外加電位差之極性,該行為為相同的。以此方 式’可控制反射對非反射像素狀態之列/行致動在許多方 面與習知LCD及其他顯示技術中使用之列/行致動類似。 圖2至圖5B說明一用於在顯示應用中使用干涉調變器之 陣列的例示性過程及系統。 136170.doc 200929117 圖2為說明可併有本發明之態樣的電子裝置之一實施例 的系統方塊圖。在例示性實施例中,電子裝置包括處理器 21,其可為任何通用單或多晶片微處理器,諸如續、 —⑧、Pentium „⑧、Pentium m⑧、卩⑧、 Permurn® Pro、8051、Mlps⑧、ρ〇_ %②、ALpHA⑧:或 任何專用微處理器’諸如數位信號處理器、微控制器或可 程式化閘陣列。如在此項技術中習知,處理器。可經组離In the second position of the moving position, the active reflective layer is positioned more closely adjacent to the partially reflective layer. Depending on the position of the active reflective layer, the incident light reflected from the two layers interferes constructively or destructively, resulting in a totally reflective or non-reflective state for each pixel. The depicted portion of the pixel array of Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the left interfering modulator 12a, the movable reflective layer is illustrated as being in a relaxed position at a predetermined distance from the optical stack 16a including the partially reflective layer. In the right interfering modulator 12b, the active reflective layer 14b is illustrated as being in an actuated position adjacent to the optical stack 16b. Optical stacks 16a and 16b (collectively referred to as optical stacks 16) as used herein generally comprise a plurality of fused layers, which may include electrode layers such as indium tin oxide (ITO), partially reflective layers such as chrome, and transparent Dielectric. The optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and can be fabricated, for example, by depositing one or more of the above layers on a transparent substrate 2 . The partially reflective layer can be formed from a variety of materials that are partially reflective (such as 136170.doc •10- ❹ ❹ 200929117, semiconductors and dielectrics). Partial reflection = material formation 'and each can be composed of a single material or material in some real (four) towels, layers of optical stack #16, and can form column electrodes in a display device as further described below. The movable reflective layers ua, 14b may be formed as a series of parallel strips deposited on the pillars 18 and deposited on the top of the intervening sacrificial material between the pillars 18 or a plurality of deposited metal layers (with the electrodes of 16a, 16b) The active reflective layers 14a, 14b are separated by a defined gap (four) optical stack 16a, 16b when etching away the sacrificial material. Highly conductive and reflective materials such as can be used for the reflective layer 14, and such strips can be formed into a display Row electrodes in the device. As illustrated by pixel 12a in Figure 1, with no applied voltage, gap 19 remains between active reflective layer 14a and optical stack 16& and active reflective layer 14a is in a mechanically relaxed state. However, when a potential difference is applied to the gates j and rows, the capacitors formed at the intersections of the column and the row electrodes at the respective pixels become charged 'and the electrostatic force pulls the electrodes together. If the voltage is sufficient The active reflective layer 14 is deformed and forced against the optical stack 16. The dielectric layer (not illustrated in this figure) within the optical stack 16 prevents shorting and controls the spacing between layers 14 and 16, as illustrated by The middle right pixel 12b illustrates that the behavior is the same regardless of the polarity of the applied potential difference. In this way, the controllable reflection versus non-reflective pixel state column/row actuation is in many respects with conventional LCDs and other display technologies. The column/row actuation is similar. Figure 2 through Figure 5B illustrate an exemplary process and system for using an array of interferometric modulators in a display application. 136170.doc 200929117 Figure 2 is an illustration of the present invention. A system block diagram of one embodiment of an electronic device. In an exemplary embodiment, the electronic device includes a processor 21, which can be any general purpose single or multi-chip microprocessor, such as continued, -8, Pentium „ 8. Pentium m8, 卩8, Permurn® Pro, 8051, Mlps8, ρ〇_%2, ALPHA8: or any special microprocessor such as a digital signal processor, microcontroller or programmable gate array. item In conventional surgery, the processor may be set off by

以執行-或多個軟體模^除執行作業系統之外,處理器 可經組態以執行一或多個軟體應用程式,包括網路劉覽 器、電話應用程式、電子郵件程式或任何其他軟體應用程 式。 在一實施例中,處理器21亦經組態以與陣列驅動器咖 信。在-實施例中,陣列驅動器22包括向顯示陣列或面板 30提供信號之列驅動電路24及行驅動電路26。圖j中說明 之陣列之橫截面藉由圖2中之線1-丨展示。對於MEMS干涉 調變器而言,列/行致動協定可利用圖3中說明之此等裝置 之滯後性質。可能需要(例如)10伏特電位差以使活動層自 鬆弛狀態變形至致動狀態。然而,在電壓自彼值減小時, 活動層隨著電壓降低回至1 〇伏特以下而維持其狀態。在圖 3之例示性實施例中,活動層直至電壓降低至2伏特以下時 才完全鬆弛。因此,在圖3中說明之實例中存在約3 v至γ V之外加電壓窗,在該窗内,裝置在鬆弛或致動狀態下為 穩定的。此在本文中稱為"滯後窗"或"穩定窗”。對於具有 圖3之滯後特性的顯示陣列而言,可設計列/行致動協定以 136170.doc -12- 200929117 使得在列選通期間’選通列中待致動之像素暴露於約1〇伏 特之電屢差’且待鬆弛之像素暴露於接近於零伏特之電廢 差。在選通之後’像素暴露於約5伏特之穩態電壓差,以 使得其保持於列選通使其處於之任何狀態中。在寫入之 後,每一像素經歷此實例中3至7伏特之"穩定窗,,内的電位 差。此特徵使得圖1中說明之像素設計在相同外加電壓條 件下穩定於致動或鬆弛之預先存在之狀態中。因為干涉調 變器之每一像素(無論處於致動還是鬆弛狀態中)本質上為 由固定及移動反射層形成之電容器,所以此穩定狀態可在 為乎無功率耗散的情況下保持於滯後窗内之電壓下。若外 加電位固定,則本質上無電流流入至像素中。 在典型應用中,可藉由根據第一列中之致動像素之所需 集合來斷定行電極集合而形成顯示圖框。接著將列脈衝施 加至第1列電極,從而致動與所斷定行線對應之像素。接 著將行電極之所斷定集合改變為與第二列中之致動像素之 所需集合對應。接著將脈衝施加至第2列電極,從而根據 所斷定行電極致動第2列中之適當像素。第丨列像素不受第 2列脈衝影響,且保持在其在第丨列脈衝期間所設定之狀態 中。此可以順序型式對於全部系列之列重複以產生圖框。 大體而言,藉由在每秒某一所需數目之圖框下連續地重複 此過程來以新顯示資料再新及/或更新圖框。用於驅動像 素陣列之列及行電極以產生顯示圖框之廣泛多種協定亦為 熟知的且可結合本發明使用。 圖4、圖5A及圖5B說明一用*在圖2之3>〇陣列上形成顯 136170.doc 13 200929117 示圖框之可能致動協定。圖4說明可用於展現圖3之滯後曲 線之像素的行及列電壓位準之可能集合β在圖4實施例 中’致動像素涉及將適當行設定成_Vbias,且適當列設定 成+Δν,-\^135及+Δν可分別與-5伏特及+5伏特對應。使像 素鬆他係藉由將適當行設定成+ Vbias,且將適當列設定成 相同+Δν ’從而產生跨越像素之零伏特電位差來實現。在 列電壓保持於零伏特下之彼等列中,無論行處於+%心還 疋-Vbi as ’像素穩疋於其最初所處之任何狀態中。亦如圖4 中說明’應瞭解,可使用具有與如上所述彼等電壓相反之 極性的電壓,例如致動像素可涉及將適當行設定成 +vbias,且適當列設定成-Δν。在此實施例中,釋放像素係 藉由將適當行设定成-Vbias,且適當列設定成相同_Δν,從 而產生跨越像素之零伏特電位差來實現。 圖5Β為展示施加至圖2之3χ3陣列的將產生圖5Α中說明 之顯示配置的一系列列及行信號的時序圖,其中致動像素 為非反射的。在寫入圖5A中說明之圖框之前,像素可處於 任何狀態,且在此實例中,所有列處於〇伏特,且所有行 處於+5伏特。在此等外加電壓下,所有像素穩定於其現有. 致動或鬆弛狀態中。 在圖5A圖框中,致動像素(U)、(1,2)、(2,2)、(3,2)及 (3,3)。為實現此,在第丨列之"線時間"期間,將第丨及2行 設定成-5伏特,且第3行設定成+5伏特。此不改變任何像 素之狀態’因為所有像素保持在3至7伏特穩定窗中。接著 第1列以自0伏特開始達至5伏特且返回至零的脈衝來選 136170.doc 14 200929117The processor can be configured to execute one or more software applications, including a network browser, a phone application, an email program, or any other software, in addition to executing the operating system or executing multiple operating systems. application. In one embodiment, processor 21 is also configured to communicate with the array driver. In an embodiment, array driver 22 includes a column drive circuit 24 and a row drive circuit 26 that provide signals to display array or panel 30. The cross section of the array illustrated in Figure j is illustrated by lines 1-丨 in Figure 2. For MEMS interferometric modulators, the column/row actuation protocol can utilize the hysteresis properties of the devices illustrated in Figure 3. A potential difference of, for example, 10 volts may be required to deform the active layer from a relaxed state to an actuated state. However, as the voltage decreases from the value, the active layer maintains its state as the voltage drops back below 1 volt. In the exemplary embodiment of Figure 3, the active layer is completely relaxed until the voltage drops below 2 volts. Thus, in the example illustrated in Figure 3, there is a voltage window of about 3 volts to gamma V, in which the device is stable in the relaxed or actuated state. This is referred to herein as "hysteresis window" or "stability window." For display arrays having the hysteresis characteristics of Figure 3, the column/row actuation protocol can be designed to be 136170.doc -12-200929117 During column strobe, the pixel in the strobe column is exposed to an electrical hysteresis of approximately 1 volt volt and the pixel to be relaxed is exposed to an electrical waste difference close to zero volts. After strobing, the pixel is exposed to approximately A steady-state voltage difference of 5 volts such that it remains in the column strobe in any state. After writing, each pixel experiences a potential difference of 3 to 7 volts in this example. This feature allows the pixel design illustrated in Figure 1 to be stable in a pre-existing state of actuation or relaxation under the same applied voltage conditions, because of the nature of each pixel of the interferometric modulator (whether in an actuated or relaxed state) The upper part is a capacitor formed by a fixed and moving reflective layer, so this steady state can be maintained at a voltage within the hysteresis window with no power dissipation. If the applied potential is fixed, essentially no current flows into the pixel. In a typical application, a display frame can be formed by determining a set of row electrodes based on a desired set of actuated pixels in the first column. A column pulse is then applied to the first column of electrodes, thereby actuating and asserting a pixel corresponding to the row line. The determined set of row electrodes is then changed to correspond to the desired set of actuated pixels in the second column. A pulse is then applied to the second column of electrodes to actuate the row electrode according to the assertion The appropriate pixels in the 2 columns. The third column of pixels are not affected by the second column of pulses and remain in the state they were set during the third column of pulses. This can be repeated for all series of columns to produce a frame. In general, the new display data is renewed and/or updated by continuously repeating the process under a certain number of frames per second. It is used to drive the columns of the pixel array and the row electrodes to produce a display. A wide variety of protocols are also well known and can be used in conjunction with the present invention. Figures 4, 5A and 5B illustrate the possibility of forming a 136170.doc 13 200929117 frame on the 3> Initiation agreement 4 illustrates a possible set of row and column voltage levels that can be used to represent the pixel of the hysteresis curve of FIG. 3. In the embodiment of FIG. 4, 'actuating a pixel involves setting the appropriate row to _Vbias, and the appropriate column is set to +Δν. , -\^135 and +Δν can correspond to -5 volts and +5 volts, respectively, so that the pixel is made to be across the pixel by setting the appropriate row to +Vbias and setting the appropriate column to the same +Δν'. The zero volt potential difference is achieved. In the columns where the column voltage is kept at zero volts, the line is at +% and the 疋-Vbi as 'pixel is stable in any state it was originally in. Also in Figure 4 DESCRIPTION 'It should be appreciated that voltages having polarities opposite to their voltages as described above may be used, for example, actuating a pixel may involve setting the appropriate row to +vbias and the appropriate column to -Δν. In this embodiment, the release of the pixel is achieved by setting the appropriate row to -Vbias and the appropriate column to the same _Δν, resulting in a zero volt potential difference across the pixel. Figure 5A is a timing diagram showing a series of column and row signals applied to the array of Figure 3 of Figure 2 that will result in the display configuration illustrated in Figure 5, wherein the actuated pixels are non-reflective. Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, and in this example, all columns are in volts and all rows are at +5 volts. At these applied voltages, all pixels are stable in their existing, actuated or relaxed state. In the frame of Fig. 5A, pixels (U), (1, 2), (2, 2), (3, 2) and (3, 3) are actuated. To achieve this, during the "line time" of the third column, the third and second rows are set to -5 volts, and the third row is set to +5 volts. This does not change the state of any pixel' because all pixels remain in the 3 to 7 volt stabilization window. Then the first column is selected with a pulse starting at 0 volts and reaching 5 volts and returning to zero. 136170.doc 14 200929117

通。此致動(1,1)及(1,2)像素且使(1,3)像素鬆他。不影響陣 列中之其他像素。為按需要設定第2列將帛2行設定成·5 伏特,且將第1及3行設定成+5伏特。施加至第2列之相同 選通將接著致動像素(2,2)且使像素(2,〗)及(2,3)鬆弛。又, 不〜響陣列之其他像素1 3列係藉由將第2及3行設定成 5伏特且第1行叹疋成+5伏特來類似地設定。如圖$钟 所示’第3列選通較第3列像素。在寫人圖框之後,列電 位為零,且行電位可保持在+5或_5伏特下,且接著顯示器 穩定於圖5Α之配置中。應瞭解,同—程序可用於幾十或幾 百列及行之陣列。亦應瞭解,用於執行列及行致動之電壓 的時序、序列及位準可在以上概述之—般原理内廣泛變 化,且以上實例僅為例示性的,且任何致動電壓方法可與 本文中描述之系統及方法一起使用。 圖6Α及圖6Β為說明顯示裝置4〇之一實施例 « ^ ^ ^ m 7] 3¾ 圖。顯示裝置40可為(例如)蜂巢式或行動電話。然而顯 不裝置4G之㈣組件或其輕微變化亦說明諸如電視及攜帶 型媒體播放器之各種類型的顯示裝置。 顯示裝置40包括外殼41、顯示器3〇、天線& 45、輸入裝置48及麥克風46。外殼41大體由熟習 術 :所熟知之多種製造過程中之任一者(包括射出成形及真 工成型)形成。另外,外殼41可由包括(但不限於)塑膠、金 屬、玻璃、橡膠及陶变或其組合之多種材料中之任— 成。在-實施例中,外殼41包括可與具有 不同標誌、圖片戋符號玷甘灿u々入 心或3有 圃月4符號的其他可移除部分互換的可移除部 136170.doc 15 200929117 分(未圖示)。 例示性顯示裝置40之顯示器3〇可為包括雙穩顯示器之多 種顯示器中之任-者,如本文中描述。在其他實施例中, 顯示器30包括如上所述之平板顯示器,諸如電漿顯示器、 EL、OLED、STN LCD或TFT LCD ;或熟習此項技術者所 • 熟知之非平板顯示器,諸如CRT或其他管裝置。然而,出 . 於描述本實施例的目的,顯示器30包括如本文中描述之干 涉調變器顯示器。 ® 例不性顯示裝置40之一實施例的組件苹意性地說明於囷 6B中。所說明之例示性顯示裝置4〇包括外殼〇且可包括至 少部分封閉於其中之額外組件。舉例而言,在一實施例 中,例示性顯示裝置40包括網路介面27,其包括耦接至收 發器47之天線43。收發器47連接至處理器21,該處理器21 連接至調節硬體52。調節硬體52可經組態以調節信號(例 如,濾波信號)。調節硬體52連接至揚聲器45及麥克風 φ 46。處理器21亦連接至輸入裝置48及驅動控制器29。驅動 控制器29耦接至圖框緩衝器28及陣列驅動器22,該陣列驅 動器22又耦接至顯示陣列3〇。如特定例示性顯示裝置4〇設 計所需要,電源50向所有組件提供電力。 -網路介面27包括天線43及收發器47,以使得例示性顯示 裝置40可經由網路與一或多個裝置通信。在一實施例中, 網路介面27亦可具有減輕處理器21之需求之一些處理能 力。天線43為熟習此項技術者已知用於傳輸及接收信號之 任何天線。在一實施例中,天線根據IEEE 8〇2.n標準(包 136170.doc -16 - 200929117 括IEEE 802.1 1(a)、(b)或(g))傳輸及接收RF信號。在另一 實施例中’天線根據BLUETOOTH(藍芽)標準傳輸及接收 RF信號。在蜂巢式電話之情況下,天線經設計以接收用來 在無線行動電話網路内通信之CDMA、GSM、AMPS或其 他已知信號。收發器47預處理自天線43接收之信號,以使 得其可由處理器21接收且進一步操縱。收發器47亦處理自 處理器21接收之信號,以使得其可自例示性顯示裝置4〇經 由天線43傳輸。 ❹ ❹ 在替代性實施例中,收發器47可由接收器替換。在又一 替代性實施例中’網路介面27可由影像源替換,該影像源 可儲存或產生待發送至處理器21之影像資料。舉例而言, 影像源可為含有影像資料之數位視訊光碟(dvd)或硬碟驅 動器’或產生影·像資料之軟體模組。 理器2 1大體控制例示性顯示裝置4〇之總操作。處理器 21接收來自網路介面27或影像源之諸如壓縮影像資料之資 料,且將資料處理成原始影像資料或容易處理成原始影像through. This activates (1, 1) and (1, 2) pixels and loosens (1, 3) pixels. Does not affect other pixels in the array. To set the second column as needed, set 帛2 lines to 5 volts, and set lines 1 and 3 to +5 volts. The same strobe applied to the second column will then actuate the pixel (2, 2) and relax the pixels (2, 〗) and (2, 3). Further, the other pixels of the array are not similarly set by setting the second and third rows to 5 volts and the first row to sing to +5 volts. As shown in the $clock, the third column is strobed by the third column of pixels. After the person frame is written, the column potential is zero and the line potential can be maintained at +5 or _5 volts, and then the display is stabilized in the configuration of Figure 5. It should be understood that the same procedure can be used for arrays of tens or hundreds of columns and rows. It should also be understood that the timing, sequence, and level of voltages used to perform the column and row actuations can vary widely within the general principles outlined above, and the above examples are merely illustrative and that any actuation voltage method can be used with The systems and methods described herein are used together. 6A and 6B are diagrams showing an embodiment of the display device 4's « ^ ^ ^ m 7] 33⁄4. Display device 40 can be, for example, a cellular or mobile phone. However, the (4) components of the display device 4G or minor variations thereof also illustrate various types of display devices such as televisions and portable media players. The display device 40 includes a housing 41, a display 3, an antenna & 45, an input device 48, and a microphone 46. The outer casing 41 is generally formed by any of a variety of well-known manufacturing processes, including injection molding and fabrication. Alternatively, the outer casing 41 can be made of any of a variety of materials including, but not limited to, plastic, metal, glass, rubber, and ceramic or combinations thereof. In an embodiment, the outer casing 41 includes a removable portion 136170.doc 15 200929117 which can be interchanged with other removable portions having different signs, pictorial symbols, or 3 symbols of the month 4 (not shown). The display 3 of the exemplary display device 40 can be any of a variety of displays including a bistable display, as described herein. In other embodiments, display 30 includes a flat panel display such as a plasma display, EL, OLED, STN LCD or TFT LCD as described above; or a non-flat panel display such as a CRT or other tube known to those skilled in the art. Device. However, for purposes of describing the present embodiment, display 30 includes a interfering modulator display as described herein. The components of one embodiment of the exemplary display device 40 are schematically illustrated in 囷 6B. The illustrated exemplary display device 4 includes an outer casing and may include additional components that are at least partially enclosed therein. For example, in one embodiment, exemplary display device 40 includes a network interface 27 that includes an antenna 43 coupled to a transceiver 47. The transceiver 47 is coupled to a processor 21 that is coupled to the conditioning hardware 52. The conditioning hardware 52 can be configured to condition a signal (e. g., a filtered signal). The adjustment hardware 52 is connected to the speaker 45 and the microphone φ 46. Processor 21 is also coupled to input device 48 and drive controller 29. The drive controller 29 is coupled to the frame buffer 28 and the array driver 22, which in turn is coupled to the display array 3. Power source 50 provides power to all components as required by a particular exemplary display device. The network interface 27 includes an antenna 43 and a transceiver 47 to enable the illustrative display device 40 to communicate with one or more devices via a network. In an embodiment, the network interface 27 may also have some processing power to alleviate the need for the processor 21. Antenna 43 is any antenna known to those skilled in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals in accordance with the IEEE 8〇2.n standard (packets 136170.doc -16 - 200929117 including IEEE 802.1 1(a), (b) or (g)). In another embodiment, the antenna transmits and receives RF signals in accordance with the BLUETOOTH (Bluetooth) standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals for communication within the wireless mobile telephone network. Transceiver 47 preprocesses the signals received from antenna 43 so that it can be received by processor 21 and further manipulated. The transceiver 47 also processes the signals received from the processor 21 such that it can be transmitted from the exemplary display device 4 via the antenna 43. ❹ ❹ In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, the network interface 27 can be replaced by an image source that can store or generate image material to be sent to the processor 21. For example, the image source may be a digital video disc (dvd) or a hard disk drive containing image data or a software module that produces video and image data. The processor 2 1 generally controls the overall operation of the exemplary display device 4〇. The processor 21 receives information such as compressed image data from the network interface 27 or the image source, and processes the data into original image data or is easily processed into the original image.

Si:式。處理器21接著將經處理資料發送至驅動控制 賞傻緩衝器28以用於储存。原始資料通常係指識別 : 每一位置處之影像特性的資訊。舉例而言,此等 影像特性可包括色彩、飽和度及灰度級。 -在一實施例中’處理器21包括微控制器、CPU或邏輯單 g控制例示性顯示裝置40之操作。調節硬體 用於將信號傳輸至揚聲器45及用於接收來自麥克風2 號的放W波ϋ。㈣硬體52可為例示性顯示裝置t 136170.doc 200929117 内之離散組件,或可併入於處理器21或其他組件内。 驅動控制器29直接自處理器21或自圖框緩衝器28取得由 處理器21產生之原始影像資料,且適當地將原始影像資料 重新格式化以用於尚速傳輸至陣列驅動器22。特定言之, 驅動控制器29將原始影像資料重新格式化成具有光柵樣格 式之資料流,以使得其具有適合於跨越顯示陣列掃描的 .時間次序。接著,驅動控制器29將經格式化的資訊發送至 陣列驅動器22。儘管諸如LCD控制器之驅動控制器29常常 與作為獨立積體電路(IC)之系統處理器21相關聯,但是此 等控制器可以許多方式實施。其可作為硬體嵌入於處理器 21中,作為軟體嵌入於處理器以中,或與陣列驅動器22一 起完全整合於硬體中。 通常,陣列驅動器22接收來自驅動控制器29之經格式化 的資訊且將視訊資料重新格式化成每秒多次施加至來自顯 示器之χ-y像素矩陣之數百及有時數千個引線的平行波形 5 H ° 在一實施例中,驅動控制器29、陣列驅動器22及顯示陣 列30適於本文中描述之顯示器類型中之任一者。舉例而 δ,在一實施例中,驅動控制器29為習知顯示控制器或雙 穩顯不控制器(例如,干涉調變器控制器)。在另一實施例 中’陣列驅動器22為習知驅動器或雙穩顯示驅動器(例 干以調變器顯示器)。在一實施例中,媒動控制器29 -^列驅動器22整合。此實施例在諸如蜂巢式電話、腕錶 及其他小面積顯示器之高整合系統中為常見的。在又一實 136170.doc •18· 200929117 施例中,顯示陣列30為典型顯示陣列或雙穩顯示陣列(例 如,包括干涉調變器之陣列的顯示器)。 輸入裝置48允許使用者控制例示性顯示裝置4〇之操作。 在一實施例中,輸入裝置48包括諸如QWERTY鍵盤或電話 小鍵盤之小鍵盤、按鈕、開關、觸敏螢幕,或壓敏或熱敏 膜。在一實施例中,麥克風46為例示性顯示裝置4〇之輸入 . 裝置。在使用麥克風46將資料輸入至裝置時,可由使用者 ❹ 提供語音命令以用於控制例示性顯示裝置40之操作。 電源50可包括如在此項技術中熟知之多種能量儲存裝 置。舉例而言,在一實施例中,電源5〇為可再充電電池, 諸如鎳鎘電池或鋰離子電池。在另一實施例中,電源5〇為 可再生旎源、電容器,或包括塑膠太陽能電池及太陽能電 池漆之太陽能電池。在另一實施例中,電源5〇經組態以接 收來自壁式插座之電力。 在一些實施例中,如上所述,控制可程式化性駐留於可 〇 位於電子顯示系統之若干位置中之驅動控制器中。在一些 實施例中’控制可程式化性駐留於陣列驅動器22中。熟習 此項技術者將認識到,以上描述之最佳化可於任何數目之 硬體及/或軟體組件中且以各種組態實施。 •根據以上闡述之原理操作之干涉調變器的結構之細節可 廣泛地變化。舉例而言,圖7A至圖7E說明活動反射層“ 及其支撐結構的五個不同實施例。圖7A為圖〗之實施例之 橫截面,其中金屬材料條帶14沈積於正交延伸之支撐物U 上。在圖7B中,活動反射層14僅在轉角處在繫拴32上附著 136170.doc -19- 200929117 至支撐物。在圖7C中,活動反射層14自可包含可撓性金屬 之可變形層34懸置。可變形層34圍繞可變形層34之周邊直 接或間接地連接至基板2〇。此等連接在本文中稱為支撐物 18,其可採取柱、支柱、軌或壁的形式。圖7D中說明之實 施例具有可變形層34擱置於上面之支撐柱塞42。如在圖7八 至圖7C中,活動反射層14保持懸置於間隙上,但是可變形 層34並未藉由填充可變形層34與光學堆疊丨6之間的孔而形 成支撐柱。而是,支撐物18由用來形成支撐柱塞42之平坦 化材料形成。圖7E中說明之實施例基於圖7D中展示之實 施例’但是亦可經調適以與圖7A至圖7c中說明之實施例 中之任一者,以及未圖示之額外實施例一起工作。在圖7E 中展示之實施例中’額外金屬或其他導電材料層已用來形 成匯流排結構44。此允許沿干涉調變器之背部之信號投 送,從而消除可能另外必須在基板2〇上形成之多個電極。 在諸如圖7A至圖7E中展示之彼等實施例的實施例中, 干涉調變器充當直觀式裝置,其中自透明基板2〇之前側 (與上面排列有調變器之側相對之側)檢視影像。在此等實 施例中,反射層14光學上屏蔽反射層之與基板20相對之側 上的干涉調變器之部分,包括可變形層34。此允許在不負 面影響影像品質的情況下組態及操作屏蔽區域。此屏蔽允 許圖7E中之匯流排結構44,其提供將調變器之光學性質與 調變器之機電性質(諸如,定址及由彼定址引起之移動)分 離的能力。此可分離的調變器架構允許用於調變器之機電 態樣及光學態樣之結構設計及材料彼此獨立地選擇及起作 136170.doc •20- 200929117 用。此外,圖7C至圖7E中展示之實施例具有由反射層14之 光學性質與其由可變形層34執行之機械性質的去耦所導出 之額外益處。此允許用於反射層14之結構設計及材料關於 光學性質經最佳化,且用於可變形層34之結構設計及材料 關於所需機械性質經最佳化。 在如圖8及圖9中所示之一些實施例中,前收集膜8〇安置 於顯示像素陣列82之前側之上或安置於顯示像素陣列82之 前側上。後收集膜84安置於顯示像素陣列82之後側之下或 安置於顯示像素陣列82之後側上。顯示像素陣列82可為反 射的且採取LCD、MEMS裝置(例如,干涉調變器或im〇d 顯示器)、電泳裝置或反射來自前側或檢視側之光之任何 其他類型之顯示技術的形式。顯示像素陣列82可為發射的 且採取液晶顯示器(LCD)、發光二極體(LED)、有機發光二 極體(OLED)、場發射顯示器(fed)、背光微機電系統 (MEMS)裝置(例如’透射反射及背光干涉調變器顯示器 (IMOD)),或内部產生及發射光之任何其他類型之顯示技 術的形式。如本文中所使用,"發射"顯示技術包括背光技 術。 在某些實施例中,顯示裝置85可經形成為僅具有前收集 膜80。在其他實施例中,顯示裝置85可經形成為僅具有後 收集膜84。圖8說明前收集膜80及後收集膜M各自具有安 置在收集膜80、84之邊緣88上之光伏打(pV)裝置%的一實 施例。圖8為示意性的且大體傳達收集膜、pv裝置及主動 式顯示器之相對位置,以使得亦將由顯示器或影像區域接 136170.doc 200929117 收之光的部分分路至pv裝置。 圖9說明光伏打裝置86及光源9G均安置在收集臈8〇、84 之邊緣88上之另一實施例。在一些實施例中,光伏打裝置 86及光源9G可彼此接近安置。在其他實施例中光伏打 (PV)裝置86及光源9G安置在收集膜8G、84之邊緣88上之不 • @位置中。如同圖8-樣,該裝置可包括前側收集膜80、 . 後側收集膜84,或如所示包括兩者。類似於圖8,將來自 &至主動式顯不器之影像區域的光之部分分路至影像區域 it緣上之PV裝置;另外,收集膜將來自邊緣處之光源的光 中之一些轉向顯示陣列82之影像區域。注意,pv裝置“及 光源90無需處於收集膜8〇、84之同一邊緣或邊緣88之同一 側。 在由圖9表示之實施例中,收集膜80、84可具有與圖8之 彼等結構類似之結構。然而,就來自光源9〇之光在與到達 光伏打裝置86之光相反的方向上行進而言,此等膜8〇、84 〇 亦可充當照明膜。如將自以下論述之圖11A至圖13B更好 地理解,收集膜8〇、84包括光轉向特徵。該光源可包含 (例如)發光二極體(LED)。 收集膜80、84各自包含兩個表面。上表面經組態以接收 環境光。底表面安置於上表面下。收集膜8〇、84在周圍由 邊緣88定界。通常,收錢8Q、84之長度及寬度實質上大 於收集膜80、84之厚度。收集膜8〇、84之厚度可自(例 如)〇.5111111變化至1〇111„1。收集膜8〇'84之主表面之面積可 自〇.〇1 cm2變化至10,_⑽2。在一些實施例中’構成收 136170.doc -22· 200929117 集臈80、84之材料的折射率可顯菩古认阳 顯考阿於周圍介質,以便在 收集膜80、84内藉由全内反射汀川彳道力, 久射(UR)導引大部分環境光。 圖〗0A至圖〗0C說明將光伏打裝罟 %队玎衮置86及光源90兩者置放 於收集膜80、84之邊緣88上之各種組態。在一些實施例 中,可省略光源90。在如圖10Α所示之實施例令光伏打 裝置86及光源90並排安置於收集膜8〇、討之一轉角92處。 - 收集膜8〇、84包含光轉向特徵94 ,其由收集臈8〇、84之表 ®上之弧示意性地說明。光轉向特徵可為稜鏡特徵、繞射 特徵、王息特徵,或用於將光自入射至收集膜8〇、84之上 或下表面上之方向轉向至橫向朝向收集膜8〇、84之邊緣Μ 之方向的任何其他機構。在一些實施例中,光伏打裝置% 及/或光源90可沿邊緣88之一側中央安置,而非收集膜 80、84之轉角92。儘管圖ι〇Α論證彼此接近置放之光伏打 裝置86及光源90 ’但是如在圖10Β及圖1〇c中所見,光伏 打裝置86及光源90亦可為同心的或重疊的,或可排列在收 ❹ 集膜80、84之邊緣88上之不同位置處,例如彼此對置。在 一些實施例中’收集膜80、84具有置放在收集膜80、84之 邊緣88上之各個位置中的複數個光伏打裝置86及/或光源 * 90 〇 圖11A至圖13B說明具有可用於顯示裝置85之集光及光 電轉換或集光及照明兩者之光轉向特徵的收集膜之實例。 圖11A中展示用於將環境光可操作地耦合至光伏打裝置 中之稜鏡收集膜之一實施例。稜鏡光導收集器基於互反原 理。換言之’光可沿稜鏡收集膜之表面與邊緣之間的路徑 136170.doc -23- 200929117 在前向及反向方向上行進。圖11A說明包含相對於光伏打 裝置100安置之收集膜104之實施例的側視圖。在一些實施 例中,收集膜104包含基板105及形成於其上或其中之複數 個稜鏡特徵108。收集膜104可包含頂表面13〇及底表面 14〇,及位於其間的複數個邊緣n〇。入射於收集膜1〇4上 之光112可由複數個棱鏡特徵1〇8重定向至收集膜1〇4中且 - 由頂及底表面處之多次全内反射在收集膜1〇4内橫向導 引。收集膜104可包含對在光伏打裝置敏感的一或多個波 ® 長下之輻射為可穿透的光學透射材料。舉例而言,在一實 施例中’收集膜104對可見及近紅外區域中之波長可為可 穿透的。在其他實施例中,收集膜丨04對紫外或紅外區域 中之波長可為可穿透的。收集膜104可由諸如玻璃或丙烯 酸系物之剛性或半剛性材料形成,以便向實施例提供結構 穩定性。或者,收集膜104可由諸如可撓性聚合物之可撓 性材料形成。 ❿ 在一實施例中,如圖11A中所示,呈稜鏡特徵108形式之 光轉向特徵位於基板105之底表面14〇上或遠離光源。稜鏡 特徵108大體為形成於基板105之底表面14〇上之狹長凹 槽。凹槽可填充有光學透射材料。稜鏡特徵1〇8可藉由模 製、壓印、蝕刻或其他替代技術形成於基板1〇5之底表面 上。或者,稜鏡特徵108可安置於可層疊於基板1〇5之底表 之膜上在包含稜鏡膜之一些實施例中,光可單獨在 稜鏡臈内經導引。在此等實施例中,練1〇5可單獨提供 結構穩定性。棱鏡特徵108可包含多種形狀。舉例而言, 136170.doc -24- 200929117 稜鏡特徵1G8可為線性^^型凹槽或裂隙。或者,稜鏡特徵 108可包含曲線凹槽或非線性形狀。 圖11Β展示呈線性,凹槽116形式之稜鏡特徵之放大 圖。如圖11Β中所示,ν型凹槽U6包含兩個平坦小面以及 F2,在其間配置有α角度。小面之間的角距“可視收集膜 104或周圍介質之折射率而定且可自15度變化至㈣度。在 一些實施例中,小面^及^可具有相等長度。在所說明之 $對稱實施例中,小面中之—者的長度大於另-者。兩個 連續ν型凹槽之間的距離,a,可在〇〇1爪爪至爪爪之間變 化。由,b·指示之v型凹槽寬度可在〇 〇〇1 mm至〇 1〇〇爪爪之 間變化,而由’(1,指示之v型凹槽深度可在〇 〇〇1 mm至〇 5 mm之間變化。 圖11C展不呈不對稱裂隙1〇8形式之稜鏡特徵的放大圖。 裂隙108包含與收集膜表面成β角度配置之兩個實質上平行 的平坦小面F3及F4。收集膜表面與裂隙之間的角度ρ可視 ρ 收集膜104或周圍介質之折射率而定且可自5度變化至7〇 度。平坦小面F3藉由前收集膜表面13〇及後收集膜表面14〇 處之多次内反射將來自前收集膜表面丨3〇之光橫向朝向收 集膜104之一邊緣110重定向。平坦小面以藉由前收集膜表 面130及後收集膜表面140上之多次内反射將來自後收集膜 表面140之光112重定向至收集膜ι〇4之相對邊緣11〇。 參看圖11Α及圖11C,光伏打裝置100相對於收集膜ι〇4 橫向地、與膜104之邊緣11〇鄰近而安置。光伏打裝置ι〇〇 經組態且經導向以接收藉由稜鏡特徵1 〇8穿過收集膜104重 136170.doc -25- 200929117 定向之光。光伏打裝置100可包含單或多層P_n接合且可由 矽、非晶矽或諸如碲化鎘之其他半導體材料形成。在一些 實施例中,光伏打裝置100可基於光電化學電池、聚合物 或奈米技術。光伏打裝置100亦可包含薄多光譜層。多光 譜層可進一步包含分散於聚合物中之奈米晶體。若干多光 譜層可經堆疊以增加光伏打裝置1〇〇之效率。圖丨1A及圖 11B展示光伏打裝置100沿收集膜104之一邊緣i 10(例如, 在收集膜1〇4之左側)安置之實施例。然而,另一光伏打裝 置亦可安置於收集膜104之另一邊緣處(例如,在收集膜 104之右側)^如圖1 ic中所示,多個光伏打裝置可安置於 收集膜104之相對邊緣處(例如,收集膜1〇4之左側及右 側)。光伏打裝置100相對於收集膜104定位的其他組態亦 為可能的。 入射於收集膜104之上表面上之光如光路徑11 2指示而透 射穿過收集膜104。在觸碰稜鏡特徵108之小面後,光即藉 由來自收集膜104之上表面130及底表面140之多次反射而 全部内反射。在觸碰收集膜104之邊緣1 10之後,光線出射 於收集膜104且光學耦合至光伏打裝置1〇〇〇透鏡或光管可 用以將來自收集膜104之光光學耦合至光伏打裝置100。在 一實施例中,舉例而言,在朝向較接近光伏打裝置1〇〇之 末端處’收集膜104可無稜鏡特徵108。無任何稜鏡特徵之 收集膜104部分可充當光管。可收集且導引穿過收集膜之 光之量將視稜鏡特徵之幾何形狀、類型及密度而定。所收 集之光之量亦將視光導材料之判定數值孔徑之折射率而 136170.doc • 26· 200929117 定。 光由此藉由全内反射(TIR)導引穿過收集臈1 〇4。儘管任 何特定射線可以相對於上或下表面之角度而導向,但是最 終重定向(net redirection)係自入射於膜之主要(頂或底)表 面之方向至朝向膜104之邊緣110、大體與光入射於上面之 表面平行的橫向方向。所導引之光可能歸因於收集膜中之 - 吸收及自其他小面散射而遭受損失。為減少所導引之光中 ❹ 之此損失,需要將收集膜104之橫向長度限制至數十吋或 更小以便減少反射的次數。然而,限制收集膜104之長度 可能減小於上面收集光之面積。因此,在一些實施例中, 收集膜104之長度可增加至大於數十吋。在一些其他實施 例中,可將光學塗層沈積在收集膜1〇4之表面上以減少費 埋(Fresnel)損失。 在光線觸碰無稜鏡特徵1〇8之收集膜1〇4部分(其通常將 占膜表面之大多數)時,其可透射穿過收集膜且不轉向至 〇 &集膜中。在以下所述之需要允許大部分之入射光穿過膜 的實施例中’透射光可照明主動式顯示器。然而,可能需 #調諸經轉向之光之量以增加光伏打裝置100的收集。為 增加朝向光伏打裝置100分路之光之量,堆叠包含棱鏡特 • 冑之若干收集膜層可能為有利的,其中如圖11D中說明, 稜鏡特徵相對於彼此偏移。圖11D說明包含具有棱鏡特徵 208之第-收集膜層2()4及具有稜鏡特徵216之第二收集膜 層212的實施例。光伏打裝置相對於兩個收集膜層⑽ 及212橫向安置。稜鏡特徵208及216經設計成相對於彼此 136t70.doc •27· 200929117 偏移或經隨機化以具有光轉向特徵未對準之高可能性。如 上所述將光線220轉向且導引穿過第一收集膜2〇4。將在A 點處穿過第一收集膜204之光線224轉向且導引穿過第二收 集膜212。以此方式使稜鏡特徵2〇8及216偏移減小特徵之 間的間隔且增加稜鏡特徵之密度。使特徵偏移可增加光學 耦合至光伏打裝置之光之量,藉此增加光伏打裝置之電輸 • 出(以透射光為代價)。因為收集膜層204、212可為薄的, ❿ 所以堆疊多個收集膜層且增加耦合至PV電池的光之量係可 ㉟的。可堆疊在一起之層的數目除針對所需應用(例如, 透過層來檢視顯示裝置)之透射光之可容許損失之外,視 每一層之大小及/或厚度及每一層之界面處的費涅損失而 定。在一些實施例中,兩個至十個收集臈層可堆疊在一 起。 使用稜鏡光導板、片或臈以收集、集中光且將其向光伏 打裝置導引之優點為可能需要較少的光伏打裝置來達成所 ❿ 需電輸出。因此’此技術有可能會減少以光伏打裝置產生 能量的成本。另一優點為收集光以用於產生電力而光至反 n顯示m任何類型之顯示器之透射不會過度減 能力。 ’ 圖12說明另一收集獏,其中轉向特徵包含繞射特徵308 而非稜鏡特徵。在各種較佳實施例中,繞射特徵3〇8經组 態以成某一角度將入射於收集联104上之光(例如,射線 312)重定向’光經由該角度在收集膜1〇4内傳播離開收集 膜1〇4之邊緣110且進入光伏打裝置刚中。光可(例如)經由 136170.doc •28· 200929117 全内反射以(例如)約4〇〇哎更大 面之㈣It ㈣⑼自收集膜HM之表 面之法線量測)沿收集臈1〇4的長度傳播 : 斯奈爾定律建立之臨用厪了為藉由 之臨界角或大於藉由斯奈爾 界角。經繞射之射線3】2錄舌—^ ^ 还立之臨 .線312經重疋向接近與收集臈1〇4之長度 正父。繞射特徵3〇8可包含夹面士 ^ ^ 3表面或體積繞射特徵。繞射特 徵可匕括於收集膜1〇4之第一側13〇上之繞射轉向膜 上。繞射特徵可包含全息特徵。同樣,在一些實施例中、 繞射轉向膜可包含令《自+入Si: Formula. Processor 21 then sends the processed data to drive control alert buffer 28 for storage. Source material usually refers to the identification: information about the image characteristics at each location. For example, such image characteristics can include color, saturation, and gray levels. - In an embodiment the processor 21 comprises a microcontroller, CPU or logic unit g to control the operation of the exemplary display device 40. The adjustment hardware is used to transmit signals to the speaker 45 and to receive the W wave from the microphone No. 2. (d) The hardware 52 can be a discrete component within the exemplary display device t 136170.doc 200929117, or can be incorporated into the processor 21 or other components. The drive controller 29 retrieves the raw image data generated by the processor 21 directly from the processor 21 or from the frame buffer 28 and reformats the original image data for later transfer to the array driver 22. In particular, drive controller 29 reformats the raw image data into a raster-like data stream such that it has a chronological order suitable for scanning across the display array. Drive controller 29 then sends the formatted information to array driver 22. Although the drive controller 29, such as an LCD controller, is often associated with the system processor 21 as a separate integrated circuit (IC), such controllers can be implemented in a number of ways. It can be embedded in the processor 21 as a hardware, embedded in the processor as a software, or fully integrated with the array driver 22 in the hardware. Typically, array driver 22 receives the formatted information from drive controller 29 and reformats the video data into parallels of hundreds and sometimes thousands of leads applied to the χ-y pixel matrix from the display multiple times per second. Waveform 5 H ° In an embodiment, drive controller 29, array driver 22, and display array 30 are suitable for any of the types of displays described herein. By way of example, δ, in one embodiment, drive controller 29 is a conventional display controller or a bistable display controller (e.g., an interferometric modulator controller). In another embodiment, the array driver 22 is a conventional driver or a bistable display driver (for example, a modulator display). In an embodiment, the media controller 29 - column driver 22 is integrated. This embodiment is common in highly integrated systems such as cellular phones, wristwatches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bistable display array (e.g., a display including an array of interferometric modulators). Input device 48 allows the user to control the operation of exemplary display device 4. In one embodiment, input device 48 includes a keypad such as a QWERTY keyboard or telephone keypad, buttons, switches, touch sensitive screens, or pressure sensitive or thermal sensitive films. In one embodiment, the microphone 46 is an input to an exemplary display device 4''. When data is input to the device using the microphone 46, a voice command can be provided by the user 用于 for controlling the operation of the exemplary display device 40. Power source 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, the power source 5 is a rechargeable battery, such as a nickel cadmium battery or a lithium ion battery. In another embodiment, the power source 5 is a renewable power source, a capacitor, or a solar cell including a plastic solar cell and a solar battery paint. In another embodiment, the power source 5 is configured to receive power from a wall outlet. In some embodiments, as described above, control programmability resides in a drive controller that can be located in several locations of the electronic display system. In some embodiments, the control programability resides in the array driver 22. Those skilled in the art will recognize that the above described optimizations can be implemented in any number of hardware and/or software components and in a variety of configurations. • The details of the structure of the interference modulator operating in accordance with the principles set forth above may vary widely. For example, Figures 7A-7E illustrate five different embodiments of the active reflective layer "and its support structure. Figure 7A is a cross-section of an embodiment of the Figure, in which the strip of metal material 14 is deposited on the support of orthogonal extension. On Figure U. In Figure 7B, the movable reflective layer 14 attaches 136170.doc -19-200929117 to the support only at the corners. In Figure 7C, the movable reflective layer 14 can itself comprise a flexible metal. The deformable layer 34 is suspended. The deformable layer 34 is directly or indirectly connected to the substrate 2A around the perimeter of the deformable layer 34. These connections are referred to herein as supports 18, which may take the form of pillars, struts, rails or The form of the wall. The embodiment illustrated in Figure 7D has a support plunger 42 on which the deformable layer 34 rests. As in Figures 7-8-7C, the movable reflective layer 14 remains suspended over the gap, but the deformable layer 34 does not form a support post by filling a hole between the deformable layer 34 and the optical stack 6. Instead, the support 18 is formed from a planarizing material used to form the support plunger 42. The implementation illustrated in Figure 7E The example is based on the embodiment shown in Figure 7D but can also be adapted Working with any of the embodiments illustrated in Figures 7A through 7c, and additional embodiments not shown. In the embodiment illustrated in Figure 7E, an additional layer of metal or other conductive material has been used to form the confluence Row structure 44. This allows signal delivery along the back of the interferometric modulator, thereby eliminating multiple electrodes that may otherwise have to be formed on substrate 2A. Implementation of embodiments such as shown in Figures 7A-7E In an example, the interferometric modulator acts as an intuitive device in which the image is viewed from the front side of the transparent substrate 2 (the side opposite the side on which the modulator is arranged). In these embodiments, the reflective layer 14 is optically shielded. The portion of the reflective layer on the side opposite the substrate 20, including the deformable layer 34. This allows the shielded area to be configured and operated without adversely affecting image quality. This shield allows the confluence in Figure 7E. A row structure 44 that provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and movement caused by the addressing. This separable modulator architecture allows for modulation The structural design and materials of the electromechanical and optical aspects are selected and produced independently of each other 136170.doc • 20-200929117. Furthermore, the embodiment shown in Figures 7C to 7E has the optical properties of the reflective layer 14 and An additional benefit derived from the decoupling of the mechanical properties performed by the deformable layer 34. This allows for structural design and material optimization of the reflective layer 14 with respect to optical properties, and for structural design and materials for the deformable layer 34. The desired mechanical properties are optimized. In some embodiments as shown in Figures 8 and 9, the front acquisition film 8 is disposed on the front side of the display pixel array 82 or on the front side of the display pixel array 82. The rear collection film 84 is disposed below the rear side of the display pixel array 82 or on the rear side of the display pixel array 82. Display pixel array 82 can be reflective and take the form of an LCD, MEMS device (e.g., an interferometer or im 〇d display), an electrophoretic device, or any other type of display technology that reflects light from the front side or view side. Display pixel array 82 can be emitted and employs a liquid crystal display (LCD), a light emitting diode (LED), an organic light emitting diode (OLED), a field emission display (fed), a backlight microelectromechanical system (MEMS) device (eg, 'Transflective and backlight interference modulator display (IMOD)), or any other type of display technology that internally generates and emits light. As used herein, "emission" display technology includes backlighting techniques. In some embodiments, display device 85 can be formed to have only front collection film 80. In other embodiments, display device 85 can be formed to have only rear collection film 84. Figure 8 illustrates an embodiment in which the front collection membrane 80 and the rear collection membrane M each have a photovoltaic (pV) device % disposed on the edge 88 of the collection membranes 80, 84. Figure 8 is a schematic and generally communicated relative position of the collection film, the pv device, and the active display such that the portion of the light received by the display or image area is also shunted to the pv device. FIG. 9 illustrates another embodiment in which photovoltaic device 86 and light source 9G are both disposed on edges 88 of collection ports 8 and 84. In some embodiments, photovoltaic device 86 and light source 9G can be placed in close proximity to one another. In other embodiments, photovoltaic (PV) device 86 and light source 9G are disposed in a non-@ position on edge 88 of collection films 8G, 84. As with Figure 8, the device can include a front side collection film 80, a back side collection film 84, or both as shown. Similar to Figure 8, the portion of the light from the & image area of the active display is shunted to the PV device on the edge of the image area; in addition, the collection film diverts some of the light from the source at the edge The image area of array 82 is displayed. Note that the pv device "and the light source 90 need not be on the same side of the collection film 8", 84 or the same side of the edge 88. In the embodiment illustrated by Figure 9, the collection films 80, 84 may have the same structure as Figure 8. A similar structure. However, as the light from the source 9 行进 travels in the opposite direction to the light reaching the photovoltaic device 86, the films 8〇, 84 〇 can also serve as an illumination film, as will be discussed below. 11A-13B, the collection film 8A, 84 includes a light turning feature. The light source can comprise, for example, a light emitting diode (LED). The collecting films 80, 84 each comprise two surfaces. Configuring to receive ambient light. The bottom surface is disposed below the upper surface. The collection membranes 8A, 84 are bounded by edges 88. Typically, the length and width of the collections 8Q, 84 are substantially greater than the thickness of the collection membranes 80, 84. The thickness of the collecting film 8〇, 84 can vary from, for example, 〇.5111111 to 1〇111„1. The area of the main surface of the collection membrane 8〇'84 can vary from 〇1 cm2 to 10, _(10)2. In some embodiments, the refractive index of the material constituting the collection 136170.doc -22·200929117 臈 80, 84 can be expressed in the surrounding medium in the collection film 80, 84. Reflecting the Tingchuan ramp, the long-range (UR) guides most of the ambient light. Figure 0A to Figure 0C illustrates various configurations for placing both the photovoltaic device 罟 % 玎衮 86 and the light source 90 on the edges 88 of the collection films 80, 84. In some embodiments, light source 90 can be omitted. In the embodiment shown in Fig. 10A, the photovoltaic device 86 and the light source 90 are placed side by side at the collection film 8 and at a corner 92. - The collecting membranes 8A, 84 comprise light turning features 94, which are schematically illustrated by the arcs on the top of the collection 臈8〇, 84. The light turning feature can be a 稜鏡 feature, a diffractive feature, a repulsive feature, or used to divert light from a direction incident on the upper or lower surface of the collecting film 8 〇 84 to a laterally facing collecting film 8 〇 84 Any other mechanism in the direction of the edge Μ. In some embodiments, the photovoltaic device % and/or light source 90 can be disposed along the center of one side of the edge 88 rather than the corners 92 of the collection films 80, 84. Although the diagrams demonstrate that the photovoltaic device 86 and the light source 90' are placed close to each other, as seen in FIGS. 10A and 1c, the photovoltaic device 86 and the light source 90 may be concentric or overlapping, or may be Arranged at different locations on the edge 88 of the collecting film 80, 84, for example opposite one another. In some embodiments, the collection membranes 80, 84 have a plurality of photovoltaic devices 86 and/or light sources * 90 disposed in various locations on the edges 88 of the collection membranes 80, 84. Figures 11A-13B illustrate the availability of An example of a collection film for light-grating features of both the light collection and photoelectric conversion of the display device 85 or both light collection and illumination. One embodiment of a ruthenium collection membrane for operatively coupling ambient light into a photovoltaic device is shown in Figure 11A. The 稜鏡 light guide collector is based on the reciprocal principle. In other words, light can travel in the forward and reverse directions along the path 136170.doc -23- 200929117 between the surface and the edge of the ruthenium collection film. FIG. 11A illustrates a side view of an embodiment including a collection film 104 disposed relative to a photovoltaic device 100. In some embodiments, the collection film 104 includes a substrate 105 and a plurality of tantalum features 108 formed thereon or therein. The collection film 104 can include a top surface 13 〇 and a bottom surface 14 〇 with a plurality of edges n 位于 therebetween. The light 112 incident on the collecting film 1〇4 can be redirected by the plurality of prismatic features 1〇8 into the collecting film 1〇4 and − laterally within the collecting film 1〇4 by multiple total internal reflections at the top and bottom surfaces guide. The collection film 104 can comprise an optically transmissive material that is permeable to radiation that is sensitive to one or more wavelengths of the photovoltaic device. For example, in one embodiment, the collection film 104 can be permeable to wavelengths in the visible and near infrared regions. In other embodiments, the collection membrane 丨04 may be permeable to wavelengths in the ultraviolet or infrared region. The collection film 104 may be formed of a rigid or semi-rigid material such as glass or acrylic to provide structural stability to the embodiment. Alternatively, the collection film 104 may be formed of a flexible material such as a flexible polymer. ❿ In one embodiment, as shown in Figure 11A, the light turning features in the form of a germanium feature 108 are located on or away from the bottom surface 14 of the substrate 105. The 稜鏡 feature 108 is generally an elongated recess formed in the bottom surface 14 of the substrate 105. The grooves can be filled with an optically transmissive material. The 稜鏡 feature 1 〇 8 can be formed on the bottom surface of the substrate 1 〇 5 by molding, stamping, etching or other alternative techniques. Alternatively, the haptic feature 108 can be disposed on a film that can be laminated to the bottom surface of the substrate 1 〇 5 in some embodiments including a ruthenium film that can be individually guided within the raft. In these embodiments, the practice of 1〇5 provides structural stability alone. The prism feature 108 can comprise a variety of shapes. For example, 136170.doc -24- 200929117 稜鏡 feature 1G8 can be a linear groove or crack. Alternatively, the haptic feature 108 can comprise a curved groove or a non-linear shape. Figure 11A shows an enlarged view of the 稜鏡 feature in the form of a linear, groove 116. As shown in Fig. 11A, the v-shaped groove U6 includes two flat facets and F2 with an angle α disposed therebetween. The angular separation between the facets "depends on the refractive index of the collection film 104 or the surrounding medium and can vary from 15 degrees to (four) degrees. In some embodiments, the facets and ^ can have equal lengths. In the symmetrical embodiment, the length of the facets is greater than the other. The distance between the two consecutive v-shaped grooves, a, can vary from 〇〇1 claw to paw. By, b · The indicated v-groove width can vary from 〇〇〇1 mm to 〇1〇〇 claws, and by '(1, the indicated v-groove depth can be from 〇〇〇1 mm to 〇5 mm Figure 11C shows an enlarged view of the 稜鏡 feature in the form of an asymmetric slit 1 〇 8. The crevice 108 comprises two substantially parallel flat facets F3 and F4 arranged at a β angle to the surface of the collecting film. The angle ρ between the film surface and the crack may be determined by the refractive index of the collecting film 104 or the surrounding medium and may vary from 5 degrees to 7 degrees. The flat face F3 collects the film surface by collecting the film surface 13 and collecting the film surface. Multiple internal reflections at 14 turns redirect the light from the front collection film surface laterally toward one of the edges 110 of the collection film 104. The facet is redirected by the multiple internal reflections on the front collection film surface 130 and the rear collection film surface 140 to the opposite edge 11 of the collection film ι4. See Figure 11 And in Fig. 11C, the photovoltaic device 100 is disposed laterally adjacent to the collecting film ι4, adjacent to the edge 11 of the film 104. The photovoltaic device is configured and guided to receive the feature 1 8 passes through the collection film 104 weighs 136170.doc -25- 200929117 directional light. The photovoltaic device 100 may comprise single or multiple layers of P_n bonding and may be formed of tantalum, amorphous germanium or other semiconductor materials such as cadmium telluride. For example, the photovoltaic device 100 can be based on a photoelectrochemical cell, polymer or nanotechnology. The photovoltaic device 100 can also comprise a thin multi-spectral layer. The multi-spectral layer can further comprise nanocrystals dispersed in the polymer. The spectral layers can be stacked to increase the efficiency of the photovoltaic device. Figures 1A and 11B show the photovoltaic device 100 disposed along one edge i 10 of the collection film 104 (e.g., to the left of the collection film 1〇4). Embodiment. However, Another photovoltaic device can also be disposed at the other edge of the collection film 104 (eg, to the right of the collection film 104). As shown in FIG. 1ic, a plurality of photovoltaic devices can be disposed on opposite edges of the collection film 104. It is also possible (for example, collecting the left and right sides of the film 1〇4). Other configurations of the photovoltaic device 100 positioned relative to the collecting film 104 are also possible. Light incident on the upper surface of the collecting film 104 is as a light path 11 2 The indication is transmitted through the collection film 104. After touching the facets of the haptic feature 108, the light is totally internally reflected by multiple reflections from the upper surface 130 and the bottom surface 140 of the collection film 104. After touching the edge 1 10 of the collection film 104, light exits the collection film 104 and is optically coupled to the photovoltaic device. The lens or light pipe can be used to optically couple light from the collection film 104 to the photovoltaic device 100. In one embodiment, for example, the collection film 104 may be free of features 108 toward the end that is closer to the photovoltaic device 1'. The portion of the collection film 104 that does not have any defects can function as a light pipe. The amount of light that can be collected and directed through the collection film will depend on the geometry, type, and density of the features. The amount of light collected will also depend on the refractive index of the photoconductive material determined by the numerical aperture 136170.doc • 26· 200929117. Light is thus directed through the collection 臈1 〇4 by total internal reflection (TIR). Although any particular ray may be directed at an angle relative to the upper or lower surface, the net redirection is from the direction of the primary (top or bottom) surface incident on the film to the edge 110 of the film 104, generally and light. A transverse direction parallel to the surface incident on the top surface. The guided light may be attributable to the absorption in the collection film and the loss from other facet scattering. In order to reduce this loss in the guided light, it is necessary to limit the lateral length of the collecting film 104 to tens of inches or less in order to reduce the number of reflections. However, limiting the length of the collection film 104 may be reduced to the area of light collected above. Thus, in some embodiments, the length of the collection film 104 can be increased to greater than a few tens of inches. In some other embodiments, an optical coating can be deposited on the surface of the collection film 1〇4 to reduce the loss of the Fresnel. When the light touches the portion of the collection film 1〇4 of the innocent feature 1〇8, which will typically occupy the majority of the film surface, it can be transmitted through the collection film and not into the 〇 & In the embodiments described below where it is desirable to allow most of the incident light to pass through the film, the transmitted light illuminates the active display. However, it may be necessary to adjust the amount of diverted light to increase the collection of photovoltaic device 100. To increase the amount of light that is split towards the photovoltaic device 100, it may be advantageous to stack a plurality of collection layers comprising prisms, wherein the features are offset relative to one another as illustrated in Figure 11D. Figure 11D illustrates an embodiment comprising a first acquisition film layer 2() 4 having prismatic features 208 and a second acquisition film layer 212 having germanium features 216. The photovoltaic device is placed laterally relative to the two acquisition membrane layers (10) and 212. The 稜鏡 features 208 and 216 are designed to be offset relative to each other 136t70.doc • 27· 200929117 or randomized to have a high probability of misalignment of the light turning features. Light ray 220 is diverted and directed through first collection film 2〇4 as described above. Light ray 224 passing through first collection film 204 at point A is diverted and directed through second collection film 212. In this way, the 稜鏡 features 2 〇 8 and 216 are offset to reduce the spacing between features and increase the density of the 稜鏡 features. Offseting the feature increases the amount of light that is optically coupled to the photovoltaic device, thereby increasing the electrical output of the photovoltaic device (at the expense of transmitted light). Because the collection film layers 204, 212 can be thin, a plurality of collection film layers can be stacked and the amount of light coupled to the PV cells can be increased. The number of layers that can be stacked together, in addition to the allowable loss of transmitted light for the desired application (eg, viewing the display device through the layer), depends on the size and/or thickness of each layer and the cost at the interface of each layer. It depends on the loss of Nie. In some embodiments, two to ten collection layer layers can be stacked together. The advantage of using a neon light guide, sheet or crucible to collect, concentrate, and direct light to the photovoltaic device is that fewer photovoltaic devices may be required to achieve the desired electrical output. Therefore, this technology has the potential to reduce the cost of generating energy from photovoltaic devices. Another advantage is the ability to collect light for power generation and to display the transmission of any type of display without over-reducing the ability. FIG. 12 illustrates another collection raft in which the turning feature includes a diffractive feature 308 rather than a squat feature. In various preferred embodiments, the diffractive features 3〇8 are configured to redirect light (e.g., ray 312) incident on the collection 104 at a certain angle via the angle at the collection film 1〇4 The inner wave exits the edge 110 of the collecting film 1〇4 and enters the photovoltaic device just in time. Light can be collected, for example, via 136170.doc •28· 200929117 total internal reflection (for example) about 4 〇〇哎 larger face (4) It (four) (9) measured from the normal of the surface of the collecting film HM) along the collection 臈1〇4 Length Propagation: The use of Snell's Law is based on the critical angle or greater than by the Snell boundary. The diffracted ray 3] 2 recorded tongue - ^ ^ is still standing. Line 312 is approached and collected by the length of 臈1〇4. The diffractive features 3〇8 may include a mezzanine ^^3 surface or volume diffraction feature. The diffractive features can be included on the diffractive turning film on the first side 13 of the collecting film 1〇4. The diffractive features can include holographic features. Also, in some embodiments, the diffractive turning film can include "self-in"

^全息圖或全息膜。視材料之相對折射率 或反射率而定,繞射微結構可處於收集媒1〇4之頂部、底 部或側面上。 “ 圖13A及圖ι3Β說明包含另一類型之光轉向元件w之收 集膜240的實施例。㈣向元件2们可為微結構化薄膜。在 -些實施例中,光轉向元件242可包含體積或表面繞射特 徵或全息圖。光轉向元件242可為薄板、片或膜。在一些 實施例中,⑽向元件242之厚纟可在約i _至約1〇〇 _ 之範圍内,但是可更大或更小。在一些實施例中光轉向 元件或層242之厚度可在5 μιη與50 μιη之間。在一些其他實 施例中,光轉向元件或層242之厚度可在i 4111與1〇 ^^之 間。光轉向元件242可藉由黏著劑而附著至收集膜24〇之基 板244上的層。黏著劑可與構成基板244之材料折射率匹 配。在一些實施例中,黏著劑可與構成光轉向元件242之 材料折射率匹配。在一些實施例中,光轉向元件242可層 疊於基板244上以形成收集膜240。在某些其他實施例中, 體積或表面繞射特徵或全息圖可藉由沈積或其他製程形成 136170.doc -29- 200929117 於基板244之上或下表面上。 體積或表面繞射元件或全息圖可以透射或反射模式操 作°透射繞射元件或全息圖大體包含光學透射材料且使穿 過其之光繞射。反射繞射元件及全息圖大體包含反射材料 且使自彼反射之光繞射。在某些實施例中,體積或表面繞 • 射元件/全息圖可為透射及反射結構之混合。繞射元件/全 • 息圖可包括彩虹全息圖、電腦產生之繞射元件或全息圖, 或其他類型之全息圖或繞射光學元件。在一些實施例中 ® (例如,在顯示器之後側上),在應將高比例之入射光分路 至光伏打裝置(及在一些實施例中,來自光源)時,反射全 息圖可較優於透射全息圖,因為反射全息圖可能能夠比透 射全息圖更好地收集及導引白光。在需要較高透明度之彼 等實施例中(例如,在顯示器之前側上),可使用透射全息 圖。在包含多個層之實施例中,透射全息圖可較優於反射 全息圖。在以下所述之某些實施例中,透射層之堆疊對於 〇 增加光學效能尤其有用。如所提,透射層對於收集膜覆蓋 顯示器前側之實施例亦可為有用的,以使得高比例之入射 光可穿過收集膜向及自位於收集臈τ方之顯示器傳遞。 以下參看圖13Α及圖13Β解釋光轉向元件242之一可能優 點圖13Α展不光轉向几件冰包含透射全息圖且安置於基 板244之上表面上以报士、 . $成收集骐240的實施例。環境光線 246i以入射角Q丨入射於光链& —从。 尤轉向το件242之頂表面上。光轉向 元件242使入射光線246轉向或繞射。繞射光線2·入射於 基板244上以使付在基板2料中之射線2价之傳播角度為 136170.doc • 30. 200929117 Θ"!,其大於0T1R。因此’在無光轉向元件242的情況下會 自收集膜240中透射出且不會在基板244内橫向導引的光線 246i現在在存在光轉向元件242的情況下得以收集且在收 集膜240内橫向導引。因此’光轉向元件242可增加收集膜 240之收集效率。相反’來自膜240之邊緣處之光源的光更 可能轉向上表面。 圖13B說明光轉向元件242包含反射全息圖且安置於基板^ Hologram or holographic film. Depending on the relative refractive index or reflectivity of the material, the diffractive microstructure can be on the top, bottom or side of the collection medium 1〇4. 13A and 3B illustrate an embodiment of a collection film 240 that includes another type of light redirecting element w. (4) The element 2 may be a microstructured film. In some embodiments, the light redirecting element 242 may comprise a volume. Or a surface diffraction feature or hologram. The light turning element 242 can be a thin plate, sheet or film. In some embodiments, the thickness of the (10) to element 242 can range from about i _ to about 1 〇〇 _, but It may be larger or smaller. In some embodiments the thickness of the light turning element or layer 242 may be between 5 μηη and 50 μηη. In some other embodiments, the thickness of the light turning element or layer 242 may be at i 4111 and Between the two, the light redirecting element 242 can be adhered to the layer on the substrate 244 of the collecting film 24 by an adhesive. The adhesive can be index matched to the material constituting the substrate 244. In some embodiments, the adhesive The agent can be index matched to the material comprising light redirecting element 242. In some embodiments, light turning element 242 can be stacked on substrate 244 to form collection film 240. In certain other embodiments, volume or surface diffraction features Or a hologram can be deposited by deposition or Process formation 136170.doc -29- 200929117 on or below substrate 244. Volume or surface diffractive elements or holograms may be operated in transmissive or reflective mode. Transmissive diffractive elements or holograms generally comprise optically transmissive material and are worn The light is diffracted. The reflective diffractive element and the hologram generally comprise a reflective material and diffract the light reflected therefrom. In some embodiments, the volume or surface wraparound element/hologram can be transmitted and reflected. A hybrid of structures. The diffractive elements/full maps may include rainbow holograms, computer generated diffractive elements or holograms, or other types of holograms or diffractive optical elements. In some embodiments, (for example, in On the rear side of the display), when a high proportion of incident light should be shunted to the photovoltaic device (and in some embodiments, from the light source), the reflection hologram may be superior to the transmission hologram because the reflection hologram may be capable of Better collection and guidance of white light than transmission holograms. In embodiments where higher transparency is required (eg, on the front side of the display), a transmission hologram can be used In embodiments comprising multiple layers, the transmission hologram may be superior to the reflection hologram. In some embodiments described below, the stack of transmission layers is particularly useful for increasing optical performance of germanium. As mentioned, transmission The layer may also be useful for embodiments in which the collection film covers the front side of the display such that a high proportion of incident light can pass through the collection film and from the display located on the collection 。. The light deflection is explained below with reference to Figures 13A and 13B. One of the possible advantages of element 242 is that FIG. 13 not only turns to several embodiments in which the ice contains a transmission hologram and is disposed on the upper surface of the substrate 244 to report to the collector 240. The ambient light 246i is incident at an incident angle Q丨. In the light chain & - from. In particular, it is turned to the top surface of the το member 242. Light turning element 242 diverts or diffracts incident light 246. The diffracted ray 2 is incident on the substrate 244 such that the radiance of the ray 2 in the substrate 2 is 136170.doc • 30. 200929117 Θ"!, which is greater than 0T1R. Thus, the light 246i that would be transmitted from the collection film 240 and not laterally guided within the substrate 244 in the absence of the light turning element 242 is now collected in the presence of the light redirecting element 242 and within the collection film 240 Horizontal guidance. Thus, the 'light turning element 242 can increase the collection efficiency of the collecting film 240. Conversely, light from a source at the edge of film 240 is more likely to turn to the upper surface. Figure 13B illustrates light redirecting element 242 comprising a reflection hologram and disposed on a substrate

e 244之底表面上的實施例。射線248以角度Θ!入射於收集膜 240之上表面上,以使得射線248之折射角為θ丨,。在經折射 之射線248r觸碰光轉向元件242後,其由光轉向元件242以 大於基板244之臨界角eTiR的角度0丨"反射成射線248b。因 為角度θι"大於臨界角0TIR,所以射線248b隨後經由多次全 内反射在收集膜240内導引。因此,原本不會由基板244導 引之光線248ι現在由於存在光轉向元件242而在收集膜24〇 内導引。相反,來自膜240之邊緣處之光源的光更可能轉 向上表面。 圖14說明顯示裝置85之一實施例,其中收集膜8〇安置於 反射式顯示器82之主動像素陣列之前顯示表面上。在所說 明之實施例中,反射式顯示器82包含主動MEMS陣列,且 更特定言之如卩上關於圖i至圖7E所揭示之具有以陣列排 列之可個別定址之像素的主動干涉調變器⑽QD)。在其 他實施例中’反射式顯示器82可包含LCD、DLp或電泳主 動式顯不技術。圖14中展示之反射式顯示器82包括上面附 有收集膜80之則顯不表面。前顯示表面藉由間隔物及, 136170.doc •31 - 200929117 或圍繞顯示像素陣列82之支承玻璃料(seating frit)連接至 背板87。陣列82包括基板20、包括固定(透明)電極之光學 堆疊16’及藉由支撐物18連接至基板20之活動電極或鏡 14。出於說明之目的’圖14及圖15中之IMOD陣列藉由單 一 IMOD示意性地表示。 在圖14之實施例中,前收集膜80具有前收集膜表面8〇a 及後收集膜表面80b及至少一邊緣88。光伏打裝置86安置 在收集膜80之邊緣88上且光源90接近光伏打裝置86或在另 一邊緣位置處定位。前收集膜表面80a接收環境光95。收 集膜80之光轉向特徵94將環境光95定向朝向膜80之邊緣88 以藉由光伏打裝置86接收及轉化為電能。光源9〇發射藉由 光轉向特徵94轉向反射式顯示器82之光以在無充足環境光 95的情況下照明顯示器82 ’或結合環境光95使反射式顯示 器82變亮。在一些實施例中,可省略光源9〇。 圖1 5說明反射式顯示裝置85之另一實施例,其中相似元 件藉由相似參考數字指示’其中具有前收集膜表面84a及 後收集膜表面84b之收集膜84安置於顯示器82之主動像素 陣列的後側上。環境光95穿過支撐物18或顯示器82之主動 區域之間的其他透明、非主動區域以由後收集膜84之前收 集膜表面84a接收。收集膜84之光轉向特徵94將光95朝向 收集膜84之邊緣88重定向以藉由光伏打裝置86轉換成電 能。 圖16說明反射式顯示器82之像素161之陣列的平面圖。 顯示像素1 61以列1 62及行163排列。列162及行163之間的 136170.doc •32- 200929117 區域’或非主動區域包括支撐物18及間隙164。通常,諸 如支撐物18及間隙164之非主動區域以黑色遮罩遮蔽以便 最小化來自此等區域之反射、最小化顯示像素161之對比 率’及改良效能。在顯示像素161為反射像素之本發明之 一些實施例中,光可經由反射式顯示器82之列162及行163 ' 之間的柱18及間隙164穿過至後收集膜84 ^轉向特徵可與 • 非主動區域對準以便最大化光之收集或照明,無論收集膜 在顯示器82之前側還是後側上。因此可消除黑色遮罩,此 係因為通常由黑色遮罩吸收之光替代地分路至收集膜8〇、 84之邊緣上之光伏打裝置86。由此減少自此等區域之反射 及對比度損失,同時在此等區域中接收之光可用於產生電 力。藉由消除黑色遮罩材料、黑色遮罩沈積及圖案化步 驟,可減少製造顯示裝置85之總成本。在收集膜84在後側 上時(圖1 5),可在列或行之間的間隙丨64中之電極條帶中形 成開口 165,以增加光的透射。因為圖16說明列電極162為 ❹ 透明之IMOD實例,所以僅反射行電極163在行電極163跨 越列162之間的間隙164的位置中需要具有開口 165。圖16 之行電極163與圖14及圖15之活動電極或鏡14對應,同時 圖16之列電極162與圖14及圖15之光學堆疊16(併有固定透 • 明電極)對應。 圖17A示意性地說明透射反射顯示器82,,其中一些光穿 過顯示器82,且一些光在主動更改之影像中自顳示器82,之 像素反射。在某些實施例中,穿過主動顯示像素陣列之可 見光的百分比在約5〇/。至約50%之範圍内。圖17中說明之顯 136170.doc •33· 200929117 不器82’為在圖式中藉由包含基板17〇、吸收層17丨、光學共 振腔172、部分反射層173及光源m之單一 IM〇D表示之透 明干涉調變器(IMOD)的陣列。基板丨7〇為至少部分光學透 明的°吸收層171定位在基板17〇下,且吸收層ι71為部分 光學透射的。反射層173定位在基板170下且在吸收層ι71 定位在基板170與反射層173之間的情況下與吸收層m間 * 隔開。根據以上描述之IMOD,部分反射體173可在光學腔 ❹ I72中移動。反射層173亦為部分反射及部分透射的。光源 174相對於基板170定位,以使得吸收層171及反射層^位 於基板170與光源174之間《儘管未圖示,但是背板可定位 在部分反射體173與背光174之間。 在某些實施例中,在第一方向175上自顯示器82,發射之 光包含光之第一部分、光之第二部分,及光之第三部分。 在第一方向175上,光之第一部分入射於基板17〇上透射穿 過基板170、透射穿過吸收層171、藉由反射層173反射、 ❹ 透射穿過吸收層171、透射穿過基板17〇,且自基板17〇發 射。在第一方向175上,光之第二部分入射於基板17〇上、 透射穿過基板170、藉由吸收層171反射、透射穿過基板 170,且自基板170發射。在第一方向175上,光之第三部 分來自光源丨74且入射於反射層173上、透射穿過反射層 173、透射穿過吸收層171、透射穿過基板17〇,且自基板 170發射。 土 在某些實施例中,基板170包含破璃或塑膠材料。在某 些實施例中,吸收層171包含鉻。在某些實施例中,反射 136170.doc -34- 200929117 層173包含金屬層(例如,具有小於300埃之厚度的銘層) 在某些實施例中,反射層173之透射率視反射層173之厚度 而定。 對於所說明之透射反射IMOD,吸收層丨71及反射層173 中之至少一者可選擇性地移動以便改變吸收層171與反射 層173之間的間距’以使得使用干涉原理選擇性地產生兩 種光學狀態。在某些實施例中,顯示裝置85包含顯示系統 之可致動元件(例如,像素或子像素)。An embodiment on the bottom surface of e 244. The ray 248 is incident on the upper surface of the collecting film 240 at an angle Θ! such that the refracting angle of the ray 248 is θ 丨. After the refracted beam 248r touches the light redirecting element 242, it is reflected by the light turning element 242 at an angle greater than the critical angle eTiR of the substrate 244 into a ray 248b. Since the angle θι" is greater than the critical angle 0TIR, the ray 248b is then guided within the collection film 240 via multiple total internal reflections. Therefore, the light 248 ι which would otherwise not be guided by the substrate 244 is now guided within the collection film 24 由于 due to the presence of the light redirecting element 242. Conversely, light from a source at the edge of film 240 is more likely to turn to the upper surface. Figure 14 illustrates an embodiment of a display device 85 in which a collection film 8 is disposed on a display surface prior to an active pixel array of a reflective display 82. In the illustrated embodiment, the reflective display 82 includes an active MEMS array, and more particularly, an active interference modulator having individually arrayable pixels arranged in an array as disclosed with respect to Figures i through 7E. (10) QD). In other embodiments, 'reflective display 82 can include LCD, DLp, or electrophoretic active display technology. The reflective display 82 shown in Figure 14 includes a surface that is provided with a collection film 80 thereon. The front display surface is connected to the backing plate 87 by spacers and 136170.doc • 31 - 200929117 or a supporting frit surrounding the display pixel array 82. The array 82 includes a substrate 20, an optical stack 16' including fixed (transparent) electrodes, and a movable electrode or mirror 14 connected to the substrate 20 by a support 18. For purposes of illustration, the IMOD arrays of Figures 14 and 15 are schematically represented by a single IMOD. In the embodiment of Figure 14, the front acquisition membrane 80 has a front collection membrane surface 8a and a rear collection membrane surface 80b and at least one edge 88. Photovoltaic device 86 is disposed on edge 88 of collection film 80 and source 90 is positioned adjacent to photovoltaic device 86 or at another edge location. The front collection film surface 80a receives ambient light 95. The light turning feature 94 of the collection film 80 directs the ambient light 95 toward the edge 88 of the film 80 for receipt and conversion to electrical energy by the photovoltaic device 86. The light source 9A emits light that is diverted to the reflective display 82 by the light turning feature 94 to illuminate the display 82' or to illuminate the reflective display 82 in combination with ambient light 95 without sufficient ambient light 95. In some embodiments, the light source 9〇 can be omitted. Figure 15 illustrates another embodiment of a reflective display device 85 in which similar elements are indicated by similar reference numerals to an active pixel array in which the collection film 84 having the front collection film surface 84a and the rear collection film surface 84b is disposed on the display 82. On the back side. Ambient light 95 passes through other transparent, inactive regions between the support 18 or the active regions of display 82 to be received by the collection membrane surface 84a prior to collection of the film 84. The light turning feature 94 of the collection film 84 redirects the light 95 toward the edge 88 of the collection film 84 for conversion to electrical energy by the photovoltaic device 86. 16 illustrates a plan view of an array of pixels 161 of reflective display 82. Display pixels 1 61 are arranged in columns 1 62 and 163. 136170.doc • 32- 200929117 between column 162 and row 163 The region or inactive region includes support 18 and gap 164. Typically, inactive regions such as support 18 and gap 164 are masked with black masks to minimize reflections from such regions, minimize contrast ratio of display pixels 161, and improve performance. In some embodiments of the invention in which display pixel 161 is a reflective pixel, light can pass through post 18 and gap 164 between row 162 and row 163' of reflective display 82 to rear collection film 84. • Inactive area alignment to maximize light collection or illumination, whether the collection film is on the front or back side of display 82. The black mask can thus be eliminated, as the light normally absorbed by the black mask is instead shunted to the photovoltaic device 86 on the edge of the collection film 8 〇 84. This reduces the reflection and contrast losses from such areas, while the light received in such areas can be used to generate electrical power. By eliminating black mask material, black mask deposition, and patterning steps, the overall cost of manufacturing display device 85 can be reduced. When the collection film 84 is on the back side (Fig. 15), an opening 165 may be formed in the electrode strips in the gaps 64 between the columns or rows to increase the transmission of light. Since Fig. 16 illustrates an example of an IMOD in which the column electrode 162 is ❹ transparent, only the reflective row electrode 163 needs to have an opening 165 in the position where the row electrode 163 crosses the gap 164 between the columns 162. The row electrode 163 of Fig. 16 corresponds to the movable electrode or mirror 14 of Figs. 14 and 15, and the column electrode 162 of Fig. 16 corresponds to the optical stack 16 of Fig. 14 and Fig. 15 (with a fixed transparent electrode). Figure 17A schematically illustrates a transflective display 82 in which some of the light passes through the display 82 and some of the light is reflected from the pixels of the display 82 in the actively altered image. In some embodiments, the percentage of visible light that passes through the active display pixel array is about 5 Å/. Up to about 50%. The Illustrator 136170.doc • 33· 200929117 is not illustrated in FIG. 17 by a single IM 包含 including a substrate 17 〇, an absorbing layer 17 丨, an optical resonant cavity 172, a partially reflective layer 173, and a light source m in the drawing. D denotes an array of transparent interference modulators (IMODs). The substrate 丨7〇 is at least partially optically transparent. The absorbing layer 171 is positioned under the substrate 17 and the absorbing layer ι 71 is partially optically transmissive. The reflective layer 173 is positioned under the substrate 170 and spaced apart from the absorbing layer m with the absorbing layer ι 71 positioned between the substrate 170 and the reflective layer 173. According to the IMOD described above, the partial reflector 173 is movable in the optical cavity 72 I72. The reflective layer 173 is also partially reflective and partially transmissive. The light source 174 is positioned relative to the substrate 170 such that the absorbing layer 171 and the reflective layer are positioned between the substrate 170 and the light source 174. Although not shown, the backing plate can be positioned between the partial reflector 173 and the backlight 174. In some embodiments, the light emitted from display 82 in first direction 175 includes a first portion of light, a second portion of light, and a third portion of light. In a first direction 175, a first portion of the light is incident on the substrate 17, transmitted through the substrate 170, transmitted through the absorbing layer 171, reflected by the reflective layer 173, transmitted through the absorbing layer 171, and transmitted through the substrate 17. 〇, and emitted from the substrate 17〇. In a first direction 175, a second portion of the light is incident on the substrate 17(R), transmitted through the substrate 170, reflected by the absorbing layer 171, transmitted through the substrate 170, and emitted from the substrate 170. In a first direction 175, a third portion of the light is from the source 丨 74 and is incident on the reflective layer 173, transmitted through the reflective layer 173, transmitted through the absorbing layer 171, transmitted through the substrate 17 〇, and emitted from the substrate 170 . Soil In certain embodiments, the substrate 170 comprises a glass or plastic material. In some embodiments, the absorbent layer 171 comprises chromium. In some embodiments, the reflection 136170.doc -34 - 200929117 layer 173 comprises a metal layer (eg, a layer having a thickness of less than 300 angstroms). In some embodiments, the transmittance of the reflective layer 173 is a reflective layer 173. Depending on the thickness. For the illustrated transflective IMOD, at least one of the absorber layer 71 and the reflective layer 173 is selectively movable to change the spacing between the absorber layer 171 and the reflective layer 173 to selectively generate two using the principle of interference. Optical state. In some embodiments, display device 85 includes an actuatable element (e.g., a pixel or sub-pixel) of the display system.

ν 在某些實施例中,根據關於圖1至圖7E論述之正常IM〇D 操作’光之第一部分與光之第二部分干涉以產生具有第一 色彩之光。第一色彩視可在至少兩種狀態之間改變之光學 腔大小而定。 在某些實施例中,光源174可選擇性地更改光之第一部 为與第一部为之干’歩總和的色彩。光源1 7 4可經接通以形 成產生不同色彩之第二狀態。然而’可在無環境光的情況 &下產生不同色彩。 在某些實施例中’顯示裝置85可自第一方向175及大體 與第一方向相反之第二方向176兩者檢視。舉例而言,某 些此等實施例之顯示裝置85可自顯示裝置85之第一側上的 第一位置及自顯示裝置85之第二側上的第二位置檢視。在 某些實施例中’在第二方向176上自顯示裝置85發射之光 包含光之第四部分、光之第五部分,及光之第六部分。在 某些實施例中,在第二方向176上,光之第四部分入射於 基板170上、透射穿過基板丨7〇、透射穿過吸收層ι71、透 136170.doc -35- 200929117 射穿過反射層173,且自顯示裝置85發射。在某些實施例 中’在第二方向176上,光之第五部分入射於反射層173 上、透射穿過反射層173、自吸收層171反射、透射穿過反 射層173,且自顯示裝置85發射。在某些實施例中,在第 二方向176上’光之第六部分入射於反射層^上、自反射 層173反射’且自顯示裝置85發射。在某些實施例中,光 之第五部分包含藉由光源174發射之光且光之第六部分包 含藉由光源174發射之光。如同前側一樣,視背光174接通 還是關斷及是否存在環境光而定,額外色彩狀態自後側或 第二方向176可見。 參看圖1 7B ’圖1 7A之背光可由後收集膜84替換,該後 收集膜84接收來自光源90之光(例如,沿收集膜84之邊緣 88注入)、沿收集膜84導引光,且將光重定向且向透射反 射顯不器8 2之像素發射’藉此提供後侧照明。收集膜8 4可 包括定位在收集膜84内或定位在收集膜84上之轉向特徵, 其中斷光在收集膜84内之傳播以跨越後收集膜84之前表面 84a向顯示器82'之前表面均一地發射。此外,可藉由自光 源90之前向照亮結合透射反射im〇D顯示器82,之前侧上的 前收集/照明膜80產生額外色彩狀態。可在前側收集膜8〇 或後側收集膜84上提供光伏打裝置86。 圖18說明具有安置於發射顯示器82"之前顯示表面82a上 之前收集膜80的顯示裝置85之一實施例。顯示器82"之像 素為發射式的,諸如LCD、LED、OLED、FED技術,或顯 示器82"包括背光。在一些實施例中,顯示像素為透射反 136170.doc •36· 200929117 射式的,諸如圖17A或圖17B之背光式IM〇D ,其允許一些 光穿過顯示器82"之主動像素區域。 環境光95由前收集臈80之前收集膜表面8〇a接收且經由 光轉向特徵94重定向至收集膜80之邊緣88以藉由光伏打裝 置86轉換成電能。來自發射顯示器82”之光發射由前收集 膜80之後收集膜表面80b接收之光。光轉向特徵94將光朝 向收集膜80之邊緣88重定向以藉由光伏打裝置86轉換成電 能。來自發射顯示器82"之光發射穿過轉向特徵84之間的 光,其可照明顯示裝置85。 圖19說明顯示裝置85之一實施例,其中後收集膜84安置 在發射顯示器82"下。如所說明’與圖17B之透射反射 IMOD 82·類似,後收集膜84耦合至光源90且充當集光單元 及背光兩者。併有圖19之背光的發射顯示器82"可使用任 何背光主動顯示技術,諸如背光LCD。 如圖19中所見’環境光95穿過顯示器82"且經由光轉向 特徵94自後收集膜84之前收集膜表面84a重定向至後收集 膜84的邊緣88 ’以藉由光伏打裝置86轉換成電能。光源9〇 安置在後收集膜84之邊緣88上且發射經由光轉向特徵94朝 向顯示器82"重定向之光,以便照明顯示裝置85。 圖20說明安置在發射顯示器82"與發射顯示器82"之背光 174之間的後收集膜84。環境光95穿過顯示器82"以由後收, 集膜84之前收集膜表面84a接收且經由光轉向特徵94重定 向至後收集膜84之邊緣88,以藉由光伏打裝置86轉換成電 能。背光174發射由後收集膜84之後收集膜表面84b接收之 136170.doc •37- 200929117 光’其中光亦藉由光轉向特徵94重定向至後收集膜84之邊 緣88以藉由光伏打裝置86(或藉由不同邊緣上之不同pv裝 置)轉換成電能。背光1 74亦定向光穿過顯示器82"以照明 顯示裝置85。將收集臈84置放在發射顯示器82"與背光174 之間且使光轉向特徵與顯示裝置85之非主動區域對準可替 換顯示像素161上之黑色遮罩,此係因為環境光95及發射 - 光分路至收集膜84之邊緣處的光伏打裝置86以轉換成電 ©能’從而減少自非主動區域反射或透射至觀察者之光。黑 色遮罩減少褪色(亦即,增加主動像素之對比度)的功能可 藉由收集膜滿足,同時產生電力,且省略形成黑色遮罩之 步驟。如先前所論述’消除黑色遮罩可減少總加工成本及 製造時間。 圖21說明具有安置於反射式顯示器82上之前收集膜8〇的 實施例。如在此實施例中說明,前收集膜8〇包含諸如圖 1 ic之彼等光轉向特徵的不對稱光轉向特徵1〇8。環境光95 ❿ 由别收集膜80之前收集膜表面80a接收且藉由光轉向特徵 108重定向至該收集膜8〇之一邊緣88,以藉由光伏打裝置 86轉換成電能。光源9〇位於前收集膜8〇之另一相對邊緣處 且發射藉由光轉向特徵1〇8朝向顯示器82重定向之光,以 便照明顯示裝置85 » 儘管上述實施方式揭示本發明之若干實施例,但是應理 解,此揭不内容僅為說明性的且不限制本發明。應瞭解, 所揭不之特定組態及操作可不同於如上所述之組態及操 作,且本文中描述之方法可用於除製造半導體裝置以外的 136170.doc •38· 200929117 情形中。 【圖式簡單說明】 圖1為描繪干涉調變器顯示器之一實施例之一部分的等 角視圖,其中第一干涉調變器之活動反射層處於鬆弛位置 中且第二干涉調變器之活動反射層處於致動位置中。 • 圖2為說明併有3x3干涉調變器顯示器之電子裝置之一實 施例的系統方塊圖。 圖3為圖1之干涉調變器之一例示性實施例的活動鏡位置 ^ 對外加電壓之圖。 圖4為可用來驅動干涉調變器顯示器之一組列及行電壓 的說明。 圖5A說明圖2之3x3干涉調變器顯示器中之一例示性顯 示資料圖框。 圖5B說明可用來寫入圖5八之圖框之列及行信號的一例 示性時序圖β Φ 圖6八及^為說明包含複數個干涉調變器之視覺顯示裝 置之一實施例的系統方塊圖。 圖7Α為圖1之裝置的橫截面。 圖7Β為干涉調變器之—替代性實施例之橫截面。 冑7C為干涉調變器之另一替代性實施例之橫截面。 圖7D為干涉調變器之又—替代性實施例之橫截面。 圓7Ε為干涉調變器之額外替代性實施例之橫截面。 圖8為上覆於顯示像素陣列之收集膜及相關聯光伏打裝 置以及下伏於顯示像素陣列的另一此收集膜之橫截面的示 136170.doc -39- 200929117 意性說明。 圖9為上覆於顯示像素陣列之收集膜及相關聯光伏打裝 置及光源以及下伏於顯示像素陣列的另一此收集膜之橫截 面的示意性說明。 圖10A為具有光轉向特徵之收集膜的俯視平面圖,其中 光伏打裝置及光源在收集膜之一轉角處彼此接近安置。 圖10B為具有光伏打裝置及光源之收集膜之一實施例的 轉角之示意性說明。 圖10C為展示光伏打裝置及光源組態之額外實施例的示 意性說明。 圖11A為包含複數個稜鏡特徵以收集光及將其導引至光 伏打裝置之稜鏡收集臈的示意性橫載面側視圖。 圖11B為包含複數個稜鏡特徵以收集光及將其導引至光 伏打裝置之稜鏡收集膜的另一示意性截面圖。 圖11C為包含複數個稜鏡裂隙以收集光及將其導引至光 伏打裝置之稜鏡收集膜的另一示意性截面圖。 圖11D說日月包含兩層A有交錯特徵之堆疊棱鏡收集膜以 在更大的效率下收集光及將其導引至光伏打裝置的實施 例。 圖12為包括繞射轉向特徵之收集膜之示意性說明。 圖13A示意性地說明安置於收集膜之上表面上之包含透 射全息圖的光轉向特徵。 圖13B示意性地說明安置於收集膜之下表面上之包含反 射全息圖的光轉向特徵。 136170.doc -40- 200929117 圖14為在前側上具有收集臈之反射干涉調變器顯示器之 一實施例的示意性橫截面。 圖15為在後側上具有收集膜之反射干涉調變器顯示器之 另一實施例的示意性橫截面。 圖16為以列及行排列之主動式顯示像素陣列的示意性平 面圖。 圖17A為併有f光之透射反射干涉調變⑽〇d)顯示器的 示意性橫截面。ν In some embodiments, the first portion of the light, according to the normal IM〇D operation discussed with respect to Figures 1 through 7E, interferes with the second portion of light to produce light having a first color. The first color depends on the size of the optical cavity that can be changed between at least two states. In some embodiments, light source 174 can selectively modify the color of the first portion of the light to be the sum of the first portion. Light source 174 can be turned on to form a second state that produces a different color. However, different colors can be produced in the absence of ambient light. In some embodiments, display device 85 can be viewed from both a first direction 175 and a second direction 176 that is generally opposite the first direction. For example, display device 85 of some of these embodiments can be viewed from a first location on a first side of display device 85 and a second location on a second side of display device 85. In some embodiments, the light emitted from display device 85 in second direction 176 includes a fourth portion of light, a fifth portion of light, and a sixth portion of light. In some embodiments, in the second direction 176, a fourth portion of the light is incident on the substrate 170, transmitted through the substrate 丨7〇, transmitted through the absorbing layer ι71, and penetrated through 136170.doc-35-200929117. The reflective layer 173 is over-reflected and emitted from the display device 85. In some embodiments 'in a second direction 176, a fifth portion of the light is incident on the reflective layer 173, transmitted through the reflective layer 173, reflected from the absorption layer 171, transmitted through the reflective layer 173, and from the display device 85 launches. In some embodiments, the sixth portion of the light in the second direction 176 is incident on the reflective layer, reflected from the reflective layer 173' and is emitted from the display device 85. In some embodiments, the fifth portion of the light comprises light emitted by the source 174 and the sixth portion of the light comprises light emitted by the source 174. As with the front side, depending on whether the backlight 174 is turned "on" or "off" and whether ambient light is present, an additional color state is visible from the back side or second direction 176. Referring to Figure 1 7B, the backlight of Figure 1A can be replaced by a post-collection film 84 that receives light from source 90 (e.g., implanted along edge 88 of collection film 84), directs light along collection film 84, and The light is redirected and transmitted to the pixels of the transflective display 82 to thereby provide rear side illumination. The collection film 84 may include a turning feature positioned within the collection film 84 or positioned on the collection film 84, wherein the propagation of the breakage within the collection film 84 is uniform across the front surface 84a of the rear collection film 84 to the front surface of the display 82'. emission. In addition, an additional color state can be produced by the front collection/illumination film 80 on the front side by illuminating the transmissive reflection-reflecting im D display 82 from the light source 90. A photovoltaic device 86 can be provided on the front side collection film 8 or the back side collection film 84. Figure 18 illustrates an embodiment of a display device 85 having a collection film 80 disposed prior to placement on the display surface 82a of the emissive display 82". The display 82" pixels are emissive, such as LCD, LED, OLED, FED technology, or display 82" including backlighting. In some embodiments, the display pixels are transmissive, such as the backlit IM〇D of Figure 17A or Figure 17B, which allows some of the light to pass through the active pixel area of the display 82". The ambient light 95 is received by the collection membrane surface 8A prior to the front collection port 80 and redirected to the edge 88 of the collection film 80 via the light turning feature 94 for conversion to electrical energy by the photovoltaic device 86. Light from the emission display 82" is emitted by the front collection film 80 and collected by the film surface 80b. The light turning features 94 redirect the light toward the edge 88 of the collection film 80 for conversion to electrical energy by the photovoltaic device 86. From emission Light from display 82" passes through light between turning features 84, which illuminates display device 85. Figure 19 illustrates an embodiment of display device 85 in which rear collection film 84 is disposed under emissive display 82" as illustrated Similar to the transflective IMOD 82· of Figure 17B, the post-collection film 84 is coupled to the light source 90 and functions as both the concentrating unit and the backlight. The emissive display 82" having the backlight of Figure 19 can use any backlight active display technology, such as Backlit LCD. As seen in Figure 19, 'ambient light 95 passes through display 82" and the collection film surface 84a is redirected to the edge 88' of the rear collection film 84 from the rear collection film 84 via the light turning feature 94 to be used by the photovoltaic device 86 is converted to electrical energy. The light source 9 is disposed on the edge 88 of the rear collection film 84 and emits light redirected toward the display via the light turning feature 94 to illuminate the display. 85. Figure 20 illustrates a post-collection film 84 disposed between the emissive display 82" and the backlight 174 of the emissive display 82" ambient light 95 passes through the display 82" to be received by the collection film 84 before the collection film surface 84a receives The edge 88 of the rear collection film 84 is redirected via the light turning feature 94 to be converted to electrical energy by the photovoltaic device 86. The backlight 174 is emitted by the collection film 84 after the collection film surface 84b receives the 136170.doc • 37-200929117 light The light is also redirected to the edge 88 of the rear acquisition film 84 by the light turning feature 94 for conversion to electrical energy by the photovoltaic device 86 (or by different pv devices on different edges). The backlight 1 74 is also oriented through light. The display 82" is used to illuminate the display device 85. The collection cassette 84 is placed between the emission display 82" and the backlight 174 and the light turning features are aligned with the inactive area of the display device 85 to replace the black cover on the display pixel 161. The cover, because the ambient light 95 and the emission-light are shunted to the photovoltaic device 86 at the edge of the collection film 84 to be converted into electrical energy' to reduce light reflected from or transmitted to the non-active region. The black mask reduces the fading (ie, increases the contrast of the active pixels) by collecting the film while generating power, and omitting the step of forming a black mask. As previously discussed, 'eliminating the black mask reduces overall processing. Cost and Manufacturing Time Figure 21 illustrates an embodiment having a collection membrane 8〇 prior to placement on a reflective display 82. As illustrated in this embodiment, the front acquisition film 8A includes optical turning features such as those of Figure 1 ic. Asymmetrical light turning features 1〇8. The ambient light 95 is received by the collection film surface 80a prior to the collection of the film 80 and redirected to one edge 88 of the collection film 8 by the light turning feature 108 for conversion to electrical energy by the photovoltaic device 86. Light source 9A is located at the other opposite edge of front collection film 8〇 and emits light redirected toward display 82 by light turning features 1〇8 to illuminate display device 85 » although the above embodiments disclose several embodiments of the present invention It is to be understood that the disclosure is not intended to be limiting It will be appreciated that the particular configuration and operation disclosed may vary from the configuration and operation described above, and that the methods described herein can be used in the context of 136170.doc • 38· 200929117 in addition to the fabrication of semiconductor devices. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an isometric view of a portion of one embodiment of an interference modulator display in which the active reflective layer of the first interferometric modulator is in a relaxed position and the activity of the second interferometric modulator The reflective layer is in the actuated position. • Figure 2 is a system block diagram illustrating one embodiment of an electronic device having a 3x3 interferometric modulator display. 3 is a diagram of a movable mirror position ^ applied voltage of an exemplary embodiment of the interference modulator of FIG. 1. Figure 4 is an illustration of one of the arrays and row voltages that can be used to drive an interferometric modulator display. Figure 5A illustrates an exemplary display data frame of the 3x3 interferometric modulator display of Figure 2. 5B illustrates an exemplary timing diagram β Φ that can be used to write the columns and rows of the frame of FIG. 5 . FIG. 6 and FIG. 6 are diagrams illustrating an embodiment of an embodiment of a visual display device including a plurality of interferometric modulators. Block diagram. Figure 7 is a cross section of the apparatus of Figure 1. Figure 7 is a cross section of an alternative embodiment of an interference modulator.胄7C is a cross section of another alternative embodiment of the interference modulator. Figure 7D is a cross section of yet another alternative embodiment of the interference modulator. The circle 7 is a cross section of an additional alternative embodiment of the interference modulator. Figure 8 is a schematic illustration of a cross section of a collection film overlying a display pixel array and associated photovoltaic device and another such collection film underlying the display pixel array 136170.doc-39-200929117. Figure 9 is a schematic illustration of a cross section overlying a collection film of an array of display pixels and associated photovoltaic devices and light sources, and another such collection film underlying the array of display pixels. Figure 10A is a top plan view of a collection film having light turning features in which photovoltaic devices and light sources are placed in close proximity to each other at one corner of the collection film. Figure 10B is a schematic illustration of the corners of one embodiment of a collection membrane having a photovoltaic device and a light source. Figure 10C is a schematic illustration showing an additional embodiment of a photovoltaic device and light source configuration. Figure 11A is a schematic cross-sectional side view of a collection raft containing a plurality of ridge features for collecting light and directing it to a voltaic device. Figure 11B is another schematic cross-sectional view of a ruthenium collection film comprising a plurality of ruthenium features to collect light and direct it to a voltaic device. Figure 11C is another schematic cross-sectional view of a ruthenium collection film comprising a plurality of ruthenium fractures to collect light and direct it to a photovoltaic device. Figure 11D shows an embodiment in which the sun and the moon comprise two layers of stacked prism collecting membranes with interlaced features to collect light and direct it to the photovoltaic unit at greater efficiency. Figure 12 is a schematic illustration of a collection film including a diffractive turning feature. Figure 13A schematically illustrates a light turning feature comprising a permeable hologram disposed on an upper surface of a collecting film. Figure 13B schematically illustrates a light turning feature comprising a reflective hologram disposed on a lower surface of the collecting film. 136170.doc -40- 200929117 Figure 14 is a schematic cross section of an embodiment of a reflective interference modulator display with a collection of ridges on the front side. Figure 15 is a schematic cross section of another embodiment of a reflective interference modulator display having a collection film on the back side. Figure 16 is a schematic plan view of an active display pixel array arranged in columns and rows. Figure 17A is a schematic cross section of a display with transflective interferometric modulation (10) 〇d).

圖17B為背光由具有轉向特徵之收集/照明膜提供之透射 反射IMOD顯示器的示意性橫截面。 圖18為在前側上具有收集膜之發射 <顯示裝置之一實施 例的示意性橫截面。 圖19為在後側上具有收集臈之發射式顯示裝置之另一實 施例的示意性橫截面。 圖20為在主動式顯示像素與背光之間具有收集膜之發射 式顯示裝置之另一實施例的示意性橫截面。 圖21為具有具不對稱轉向特徵之收集膜的發射式顯示裝 置之另一實施例的示意性橫截面。 【主要元件符號說明】 12a 12b 14 14a 14b 涉調變器/像素 涉調變器/像素 活動反射層/金屬材料條帶/活動電極/鏡 活動反射層 活動反射層 136170.doc 200929117Figure 17B is a schematic cross section of a transflective IMOD display with backlight provided by a collection/illumination film having turning features. Figure 18 is a schematic cross section of one embodiment of an emission <display device having a collection film on the front side. Fig. 19 is a schematic cross section of another embodiment of an emissive display device having a collecting crucible on the rear side. Figure 20 is a schematic cross section of another embodiment of an emissive display device having a collection film between an active display pixel and a backlight. Figure 21 is a schematic cross section of another embodiment of an emissive display device having a collecting film having asymmetric steering characteristics. [Main component symbol description] 12a 12b 14 14a 14b Detector/pixel Dependent variator/pixel Active reflective layer/metal strip/active electrode/mirror Active reflective layer Active reflective layer 136170.doc 200929117

16 光學堆疊 16a 光學堆疊 16b 光學堆疊 18 柱/支撐物 19 間隙 20 透明基板 21 處理器 22 陣列驅動器 24 列驅動電路 26 行驅動電路 27 網路介面 28 圖框緩衝器 29 驅動控制器’ 30 顯示陣列/面板/顯示器 32 繫拴 34 可變形層 40 顯示裝置 41 外殼 42 支撐柱塞 43 天線 44 匯流排結構 45 揚聲器 46 麥克風 47 收發器 136170.doc -42- 200929117 ❹ ❹ 48 輸入裝置 50 電源 52 調節硬體 80 前收集膜/前側收集膜 80a 前收集膜表面 80b 後收集膜表面 82 顯示像素陣列/顯示陣列/反射式顯示器 82' 透射反射顯示器 82" 發射顯示器 82a 前顯示表面 84 後收集膜/後側收集膜 84a 前收集膜表面 84b 後收集膜表面 85 顯示裝置 86 光伏打(PV)裝置 87 背板 88 邊緣 90 光源 92 轉角 94 光轉向特徵 95 環境光 100 光伏打裝置 104 收集膜 105 基板 136170. doc -43 - 200929117 108 稜鏡特徵/裂隙/光轉向特徵 110 邊緣 112 光/光路徑 116 v型凹槽 130 頂表面/前收集膜表面/上表面/第一側 140 底表面/後收集膜表面 161 顯示像素16 Optical Stack 16a Optical Stack 16b Optical Stack 18 Column/Support 19 Gap 20 Transparent Substrate 21 Processor 22 Array Driver 24 Column Drive Circuit 26 Row Driver Circuit 27 Network Interface 28 Frame Buffer 29 Drive Controller ' 30 Display Array / Panel / Display 32 System 34 Deformable Layer 40 Display Unit 41 Enclosure 42 Support Plunger 43 Antenna 44 Bus Bar Structure 45 Speaker 46 Microphone 47 Transceiver 136170.doc -42- 200929117 ❹ ❹ 48 Input Device 50 Power Supply 52 Adjust Hard Body 80 front collection membrane / front side collection membrane 80a front collection membrane surface 80b post collection membrane surface 82 display pixel array / display array / reflective display 82 'transflective display 82 " emission display 82a front display surface 84 after collection film / rear side Collecting film 84a before collecting film surface 84b collecting film surface 85 Display device 86 Photovoltaic (PV) device 87 Back plate 88 Edge 90 Light source 92 Corner 94 Light turning feature 95 Ambient light 100 Photovoltaic device 104 Collecting film 105 Substrate 136170. doc -43 - 200929117 108 稜鏡Characteristic / Crack / Light turning features 110 edge-light / optical path 130 surface / front surface of the collection film 116 v-grooves 112/140 on the bottom surface of the surface / side of the first / after collection 161 pixel display surface of the film

162 163 列/列電極 行/反射行電極 164 間隙 165 開口 170 基板 171 172 173 174 175 176 200 204 208 212 216 220162 163 column/column electrode row/reflective row electrode 164 gap 165 opening 170 substrate 171 172 173 174 175 176 200 204 208 212 216 220

吸收層 光學共振腔/光學腔 部分反射層/部分反射體 光源/背光 第一方向 第二方向 光伏打裝置 第一收集膜層/第一收集膜 棱鏡特徵 第二收集膜層/第二收集膜 稜鏡特徵 光線 136170.doc -44- 200929117Absorbing layer optical resonant cavity / optical cavity partial reflective layer / partial reflector light source / backlight first direction second direction photovoltaic device first collecting film layer / first collecting film prism feature second collecting film layer / second collecting film edge Mirror characteristic light 136170.doc -44- 200929117

224 240 242 244 246 246i 246r 248 248b 248i 248r 300 308 312 FI F2 F3 F4 光線 收集膜 光轉向元件或層 基板 入射光線 環境光線/光線 繞射光線/射線 射線 射線 光線 射線 間隔物 繞射特徵 射線224 240 242 244 246 246i 246r 248 248b 248i 248r 300 308 312 FI F2 F3 F4 Light collecting film Light turning element or layer substrate Incident light Ambient light/ray Diffraction light/ray Rays Rays Rays ray Spacer Diffraction characteristics Rays

surface

surface

surface

面 136170.doc -45-Face 136170.doc -45-

Claims (1)

200929117 十、申請專利範圍·· 1* 一種顯示裝置,其包含: 一主動顯示像素陣列’其具有一面向一觀察者之前顯 示表面及一後顯示表面; 至少一收集膜,其鄰近於該前顯示表面或該後顯示表 面中之一者,該收集膜具有一前收集膜表面、一後收集 膜表面、至少一邊緣,及複數個光轉向特徵,其中該等 光轉向特徵經組態以將在該前收集膜表面或該後收集膜 β 表面與該收集膜之一邊緣之間的光重定向;及 光伏打裝置,其安置於該收集膜之該邊緣上且經導 向以接收自該等光轉向特徵橫向透射穿過該收集膜表面 之光。 如凊求項1之顯不裝置,其進一步包含一安置於該收集 膜之—邊緣上之光源。200929117 X. Patent Application Scope 1· A display device comprising: an active display pixel array having a front display surface facing a viewer and a rear display surface; at least one collection film adjacent to the front display One of a surface or a rear display surface, the collection film having a front collection film surface, a rear acquisition film surface, at least one edge, and a plurality of light turning features, wherein the light turning features are configured to be Light redirecting between the front collecting film surface or the back collecting film β surface and one of the edges of the collecting film; and a photovoltaic device disposed on the edge of the collecting film and guided to receive from the light The turning feature laterally transmits light that passes through the surface of the collecting film. For example, the display device of claim 1 further includes a light source disposed on an edge of the collection film. 其中該收集臈包含一具有一在 mm至1〇 mm之間的厚度之薄膜。 其進一步包含安置於一堆疊結 每收集膜具有一前收集膜表 3·如請求項2之顯示裝置 (LED) 〇 4. 如請求項1之顯示裝置 裝置相同之邊緣上。 5. 如請求項1之顯示裝置 裝置不同之位置處。 6. 如請求項1之顯示裝置 約0.5 7·如請求項1之顯示裝置 構中之複數個收集膜 其中該光源包含一發光二極體 其中該光源安置於與該光伏打 其中該光源安置於與該光伏打 136170.doc 200929117 面、徵, 或該 向。 一後收集膜表面、至少一;軎链·ϋ 取W王V逯緣及複數個光轉向特 其中該等光轉向特徵經組態以將在該前收集膜表面 後收集膜表面與該收集膜之一邊緣之間的光重定 8·如請求項!之顯示裝置’其中該收集膜之該等光轉向特 徵包含若干稜鏡特徵。 9.如請求項8之顯示裝置,其中該等稜鏡特徵為對稱的。 1〇·如請求項8之顯示裝置,其中該等稜鏡特徵為不對稱 的。 11.如請求項10之顯示裝置,其中該等稜鏡特徵包含若干裂 隙。 12_如請求項10之顯示裝置,其中該光伏打裝置及一光源安 置於該收集膜之相對邊緣上且該收集膜之該等不對稱稜 鏡特徵經組態以將來自該前收集膜表面之環境光重定向 至該光伏打裝置且將自該光源發射之光重定向至該後收 集膜表面。 13. 如請求項丨之顯示裝置,其中該等光轉向特徵包含若干 繞射特徵。 14. 如請求項丨之顯示裝置,其中該等光轉向特徵包含若干 全息特徵。 1 5.如請求項i之顯示裝置,其中該主動顯示像素陣列之該 等像素使用一反射式顯示技術。 16.如請求項15之顯示裝置,其中該主動顯示像素陣列之該 等像素併有微機電系統(MEMS)裝置。 136170.doc 200929117 17.如請求項16之顯示裝置 變器(IMOD)。 其中該等MEMS裝置為干涉調 18. 19. 如請求項15之顯示奘番 , 裝置,其中該主動顯示像素陣列之該 等像素併有液晶顯示器(LCD)裝置。 如s月求項1 5之顯示拔罢 丁裝置’其中該收集膜安置於該主動顯 示像素陣列之該前顯示表面上。 20. ❹ 如請求項15之顯示狴里 , — 裝置’其中該收集膜安置於該主動顯 示像素陣列之該後顯示表面上。 ❹ 21. 如請求項2G之顯示裝置,其中1二收集膜安置於該主 動顯示像素陣列之該前顯示表面上。 22. 如請求㈣之顯示裝置,其中環境光可穿過在該陣列之 主動像素區域之間的至少一非主動區域。 23. 如請求項22之顯示裝置,其中該主動顯示像素陣列之該 等像素為透射反射式的,其中一部分環境光穿過主動像 素區域以到達該收集膜。 24. 如晴求項22之顯示裝置,其中該非主動區域包含在若干 像素之間的若干區域。 25. 如§奮求項22之顯示獎罢,甘士 , 心翊不裝置,其中一約5%至約5〇%之百分比 之可見光被允許穿過該主動顯示像素陣列。 26. 如請求们之顯示裝置’其中該主動顯示像素陣列之該 等像素使用一發射式顯示技術。 27. 如凊求項26之顯示裝置,其中該主動顯示像素陣列之該 等像素使用-選自—由LED、〇LED、刚及背光反射技 術組成之群的顯示技術。 I36170.doc 200929117 28.如請求項27之顯示裝置,其中該主動顯示像素陣列之該 等像素併有有機發光二極體(〇LED)裝置。 29_如請求項26之顯示裝置,其中該主動顯示像素陣列之該 等像素併有液晶顯示器(LCD)裝置。 .30·如請求項26之顯示裝置,其中該收集膜安置於該主動顯 • 示像素陣列之該前顯示表面上。 ' 3 L如凊求項26之顯示U,其中該收集膜安置於該主動顯 ❹ 示像素陣列之該後顯示表面上。 32. 如請求項31之顯示裝置,其中一第二收集膜安置於該主 動顯示像素陣列之該前顯示表面上。 33. —種顯示裝置,其包含: 一顯示像素陣列; 至少一收集膜,其接近該顯示像素陣列而安置,該收 集膜具有複數個光轉向特徵,丨中該等光轉向特徵經組 態=將在一前收集膜表面或一後收集膜表面與該收集膜 ❿ 之右干邊緣之間的光重定向; 至J 一光伏打裝置,其安置於該收集膜之一第一邊緣 處”中該光伏打裝置經導向以接收自該等光轉向特徵 穿過該收集膜橫向透射之光;及 &gt;光源,其安置於一第二邊緣處,其中該光源發 射橫向穿過該收集膜的光以待由該等光轉向特徵朝向該 顯不像素陣列轉向。 34. —種顯示裴置,其包含: 一用於顯示及更改影像之構件; 136170.doc 200929117 一用於將光能轉換為一替代 货代形式之能量的構件. 一用於將光自一入射於兮 , 、μ用於顯示影像之構件上之方 向轉向至一沿顯示表面朝向 方 形式之能量之構件的橫向方向的構件。 替代 35. 如請求項34之顯示裝置, 構件。 進步包含一用於發射光之 36. 如請求項34之顯示裝置, 、中該用於顯示影像之構件包 ❹ 3 一具有一前顯示表面、一德 _ 後顯不表面及至少一邊緣之 主動顯示像素陣列。 3 7.如請求項34之顯示裝置, 共中4用於將光能轉換為一替 代形式之能量的構件包含一光伏打裝置。 38. 如請求項34之顯示裝置, 其中該用於將光轉向之構件包 含一具有一前收集臈表面、一 後收集膜表面及複數個光 轉向特徵的收集膜,其中兮莖 γ逆等光轉向特徵經組態以將在 該前收集膜表面或該後收隹胺主工t 傻收集膜表面與該收集膜之一邊緣 之間的光重定向。 39. —種集光及影像顯示方法,其包含: 在一影像區域中主動顯示影像; 收集來自該影像區域之光; 將來自該影像區域之缽水# &amp; ^ A义該光轉向至該影像區域之至少一 邊緣;及 將該光轉換為一電流^ 月长項39之方法,其進一步包含自該影像區域之一邊 緣發射光及將該光轉向至該影像區域。 136170.doc 200929117 41. 如請求項39之方法,其中主動顯示包含移動一微機電系 統(MEMS)面鏡。 42. 如請求項39之方法,其中該影像區域包含一可操作地耦 合至至少一收集膜之顯示像素陣列。 43·種製造一顯示裝置之方法,其包含: 將—收集膜可操作地耦合至一主動顯示像素陣列之一 前顯示表面或一後顯示纟面,㈣集冑具有—前收集膜Wherein the collection crucible comprises a film having a thickness between mm and 1 mm. It further comprises a stacking junction disposed on each of the collection membranes having a front collection membrane. 3. The display device (LED) of claim 2 is on the same edge as the display device of claim 1. 5. Where the display device of claim 1 is at a different location. 6. The display device of claim 1, wherein the light source comprises a plurality of collecting films, wherein the light source comprises a light emitting diode, wherein the light source is disposed in the photovoltaic device, wherein the light source is disposed in the display device With the photovoltaic hit 136170.doc 200929117 face, sign, or the direction. Collecting the surface of the film, at least one; 軎 chain · 取 taking the W king 逯 edge and a plurality of light turning features, wherein the light turning features are configured to collect the film surface and the collecting film after collecting the front surface of the film Light reset between one edge 8 as requested! The display device' wherein the light turning characteristics of the collection film comprise a plurality of defects. 9. The display device of claim 8, wherein the features are symmetrical. 1. The display device of claim 8, wherein the features are asymmetrical. 11. The display device of claim 10, wherein the haptic features comprise a plurality of crevices. 12. The display device of claim 10, wherein the photovoltaic device and a light source are disposed on opposite edges of the collection film and the asymmetrical features of the collection film are configured to be from the front collection film surface The ambient light is redirected to the photovoltaic device and redirects light emitted from the source to the post-collecting film surface. 13. A display device as claimed in claim 1, wherein the light turning features comprise a plurality of diffractive features. 14. A display device as claimed in claim 1, wherein the light turning features comprise a plurality of holographic features. 1 5. The display device of claim i, wherein the pixels of the active display pixel array use a reflective display technique. 16. The display device of claim 15, wherein the pixels of the active display pixel array are provided with a microelectromechanical system (MEMS) device. 136170.doc 200929117 17. The display device variant (IMOD) of claim 16. Wherein the MEMS devices are interferometric. 18. 19. The device of claim 15, wherein the pixels of the active display pixel array have liquid crystal display (LCD) devices. For example, the display device of the present invention is disposed on the front display surface of the active display pixel array. 20. ❹ In the display of claim 15, the device </ RTI> wherein the collection film is disposed on the rear display surface of the active display pixel array. 21. The display device of claim 2, wherein the second collection film is disposed on the front display surface of the active display pixel array. 22. The display device of claim (4), wherein the ambient light is permeable to at least one inactive area between the active pixel regions of the array. 23. The display device of claim 22, wherein the pixels of the active display pixel array are transflective, wherein a portion of ambient light passes through the active pixel region to reach the collection film. 24. The display device of claim 22, wherein the inactive area comprises a plurality of regions between a plurality of pixels. 25. If § strives for the display of the item 22, Gans, the heart is not installed, and a percentage of about 5% to about 5% of the visible light is allowed to pass through the active display pixel array. 26. The display device of the requester&apos; wherein the pixels of the active display pixel array use an emissive display technique. 27. The display device of claim 26, wherein the pixels of the active display pixel array use a display technology selected from the group consisting of LEDs, 〇LEDs, and just-backlight reflection techniques. 28. The display device of claim 27, wherein the pixels of the active display pixel array are provided with an organic light emitting diode (〇LED) device. The display device of claim 26, wherein the pixels of the active display pixel array are provided with a liquid crystal display (LCD) device. The display device of claim 26, wherein the collection film is disposed on the front display surface of the active display pixel array. '3 L is as shown in claim 26, wherein the collection film is disposed on the rear display surface of the active display pixel array. 32. The display device of claim 31, wherein a second collection film is disposed on the front display surface of the active display pixel array. 33. A display device comprising: a display pixel array; at least one collection film disposed adjacent to the display pixel array, the collection film having a plurality of light turning features, wherein the light turning features are configured = Redirecting light between a front collection membrane surface or a post collection membrane surface and a right dry edge of the collection membrane crucible; to a photovoltaic device, disposed at a first edge of the collection membrane" The photovoltaic device is oriented to receive light transmitted laterally through the collection film from the light turning features; and &gt; a light source disposed at a second edge, wherein the light source emits light transversely through the collection film To be turned by the light turning features toward the display pixel array. 34. A display device comprising: a member for displaying and changing an image; 136170.doc 200929117 one for converting light energy into one A member that replaces the energy of the freight form. A means for diverting light from a direction incident on a member of 兮, μ for displaying an image to a form of energy along a display surface. Component of the lateral direction. Substitute 35. The display device of claim 34, the component. The advancement includes a device for emitting light. 36. The display device of claim 34, wherein the component for displaying an image is 3 An active display pixel array having a front display surface, a front surface, and at least one edge. 3. 7. The display device of claim 34, wherein the light energy is converted into an alternative form of energy. The member includes a photovoltaic device. The display device of claim 34, wherein the member for diverting light comprises a collecting film having a front collecting surface, a rear collecting film surface, and a plurality of light turning features, Wherein the stolon gamma inverse isopy steering feature is configured to redirect light between the surface of the pre-collecting membrane surface or the surface of the rear collection membrane and one of the collection membranes. 39. The method of collecting light and displaying images comprises: actively displaying an image in an image area; collecting light from the image area; and diverting the light from the image area At least one edge to the image area; and a method of converting the light into a current length 39, further comprising emitting light from an edge of the image area and diverting the light to the image area. 136170.doc The method of claim 39, wherein the active display comprises a mobile-microelectromechanical system (MEMS) mirror. The method of claim 39, wherein the image region comprises an operatively coupled to at least one collection film Display pixel array 43. A method of fabricating a display device, comprising: operatively coupling a collection film to a front display surface or a rear display surface of an active display pixel array, (4) collecting a front-collection membrane 表面、—後收集膜表面、至少一邊緣,及複數個光轉向 特徵;及 使—光伏打裝置與該收集膜之該邊緣對準,以使得該 =光轉向特徵將環境光自該前收集膜表面重定向至該收 =㈣邊緣“該光伏打裝置以轉換成電能。 44·如請求項43之方法,其 .^ 步包含在該收集膜之一邊緣 上女置一光源以發射光。a surface, a rear collecting film surface, at least one edge, and a plurality of light turning features; and aligning the photovoltaic device with the edge of the collecting film such that the light turning feature collects ambient light from the front collecting film The surface is redirected to the edge of the (four) edge "the photovoltaic device is converted to electrical energy. 44. The method of claim 43, wherein the step comprises placing a light source on one of the edges of the collection film to emit light. 136170.doc136170.doc
TW97144259A 2007-11-16 2008-11-14 Simultaneous light collection and illumination on an active display TWI467523B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/941,851 US20090126792A1 (en) 2007-11-16 2007-11-16 Thin film solar concentrator/collector
US9368608P 2008-09-02 2008-09-02

Publications (2)

Publication Number Publication Date
TW200929117A true TW200929117A (en) 2009-07-01
TWI467523B TWI467523B (en) 2015-01-01

Family

ID=40429878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97144259A TWI467523B (en) 2007-11-16 2008-11-14 Simultaneous light collection and illumination on an active display

Country Status (6)

Country Link
EP (1) EP2210282A1 (en)
JP (1) JP5314039B2 (en)
KR (1) KR20100094511A (en)
CN (1) CN101861658B (en)
TW (1) TWI467523B (en)
WO (1) WO2009065069A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
CN101600901A (en) 2006-10-06 2009-12-09 高通Mems科技公司 Be integrated in the optical loss structure in the lighting apparatus of display
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
JP5561582B2 (en) * 2009-11-17 2014-07-30 大日本印刷株式会社 Organic EL display device
KR101101417B1 (en) * 2010-02-11 2012-01-02 경북대학교 산학협력단 Planar solar collection apparatus and photoelectric conversion apparatus
EP2545544A1 (en) 2010-03-11 2013-01-16 Pixtronix, Inc. Reflective and transflective operation modes for a display device
US8735791B2 (en) 2010-07-13 2014-05-27 Svv Technology Innovations, Inc. Light harvesting system employing microstructures for efficient light trapping
CN102346329A (en) * 2010-08-04 2012-02-08 鸿富锦精密工业(深圳)有限公司 Electronic device with charging function and electronic book device
US20120069232A1 (en) * 2010-09-16 2012-03-22 Qualcomm Mems Technologies, Inc. Curvilinear camera lens as monitor cover plate
US20120081406A1 (en) * 2010-09-30 2012-04-05 Qualcomm Mems Technologies, Inc. Integrated backlit frontlight for reflective display elements
US20120120081A1 (en) * 2010-11-16 2012-05-17 Qualcomm Mems Technologies, Inc. Illumination device with passivation layer
JP6195794B2 (en) 2011-01-31 2017-09-13 サンパートナー テクノロジーズSunpartner Technologies Display device with integrated photovoltaic cell with improved brightness
US8970767B2 (en) 2011-06-21 2015-03-03 Qualcomm Mems Technologies, Inc. Imaging method and system with angle-discrimination layer
US9097826B2 (en) 2011-10-08 2015-08-04 Svv Technology Innovations, Inc. Collimating illumination systems employing a waveguide
FR3010831B1 (en) * 2013-07-29 2019-06-28 Sunpartner Technologies RETROTECTIVE DISPLAY DEVICE WITH INTEGRATED PHOTOVOLTAIC CELLS
FR3020473B1 (en) 2014-04-25 2018-01-12 Sunpartner Technologies INTEGRATED PHOTOVOLTAIC CELL DISPLAY DEVICE WITH IMPROVED BRIGHTNESS AND REFLECTIVITY
WO2016057561A1 (en) * 2014-10-06 2016-04-14 Nitto Denko Corporation Electronic device comprising a holographic solar concentrator integrated in its display
US20180138346A1 (en) * 2015-05-12 2018-05-17 Nitto Denko Corporation Solar Energy Collection Systems Utilizing Holographic Optical Elements Useful for Building Integrated Photovoltaics

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761733B2 (en) * 1988-08-18 1998-06-04 旭光学工業株式会社 LCD lighting device for camera
JPH0647928U (en) * 1992-11-30 1994-06-28 株式会社コパル Surface emitting device
US5877874A (en) * 1995-08-24 1999-03-02 Terrasun L.L.C. Device for concentrating optical radiation
US6123431A (en) * 1997-03-19 2000-09-26 Sanyo Electric Co., Ltd Backlight apparatus and light guide plate
US7369735B2 (en) * 2002-02-15 2008-05-06 Biosynergetics, Inc. Apparatus for the collection and transmission of electromagnetic radiation
JP2004103411A (en) * 2002-09-10 2004-04-02 Alps Electric Co Ltd Surface light emitting device and liquid crystal display
US7417782B2 (en) * 2005-02-23 2008-08-26 Pixtronix, Incorporated Methods and apparatus for spatial light modulation
JP4442151B2 (en) * 2003-07-25 2010-03-31 セイコーエプソン株式会社 LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP2005292546A (en) * 2004-04-01 2005-10-20 Mitsubishi Electric Corp Liquid crystal display device of low power consumption
JP4806677B2 (en) * 2004-05-17 2011-11-02 トムソン ライセンシング Color display device with organic light emitting diode and method for implementing the same
US7136213B2 (en) * 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US20060066586A1 (en) * 2004-09-27 2006-03-30 Gally Brian J Touchscreens for displays
US7750886B2 (en) * 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
US7911428B2 (en) * 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7446926B2 (en) * 2004-09-27 2008-11-04 Idc, Llc System and method of providing a regenerating protective coating in a MEMS device
EP1859311B1 (en) * 2005-02-23 2008-11-19 Pixtronix Inc. Light modulator and method for manufature thereof
JP2006309408A (en) * 2005-04-27 2006-11-09 Honda Motor Co Ltd Abnormality monitoring system, abnormality monitoring server, abnormality monitoring method, and abnormality monitoring program
JP4743846B2 (en) * 2005-05-10 2011-08-10 シチズン電子株式会社 Optical communication apparatus and information equipment using the same
JP2006065360A (en) * 2005-11-16 2006-03-09 Omron Corp Light guide and display apparatus
US7603001B2 (en) * 2006-02-17 2009-10-13 Qualcomm Mems Technologies, Inc. Method and apparatus for providing back-lighting in an interferometric modulator display device

Also Published As

Publication number Publication date
CN101861658A (en) 2010-10-13
EP2210282A1 (en) 2010-07-28
WO2009065069A1 (en) 2009-05-22
JP5314039B2 (en) 2013-10-16
WO2009065069A8 (en) 2009-07-09
KR20100094511A (en) 2010-08-26
CN101861658B (en) 2014-06-04
TWI467523B (en) 2015-01-01
JP2011505587A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
TW200929117A (en) Simultaneous light collection and illumination on an active display
US8941631B2 (en) Simultaneous light collection and illumination on an active display
JP5259728B2 (en) Light illumination of display unit having front light guide and coupling element
TWI595293B (en) Dual film light guide for illuminating displays
JP5209734B2 (en) Display device and manufacturing method thereof
US8040589B2 (en) Devices and methods for enhancing brightness of displays using angle conversion layers
US8300304B2 (en) Integrated front light diffuser for reflective displays
KR101187215B1 (en) System and method of reducing color shift in a display
CN101019071B (en) Touch screen for display
US20090323144A1 (en) Illumination device with holographic light guide
US20090168459A1 (en) Light guide including conjugate film
US20110032214A1 (en) Front light based optical touch screen
TW201133081A (en) Methods and devices for lighting displays
TW200834484A (en) Internal optical isolation structure for integrated front or back lighting
KR20100116568A (en) System and method of illuminating interferometric modulators using backlighting
JP2010503017A (en) Angular sweep holographic illuminator
TW200827898A (en) Optical loss structure integrated in an illumination apparatus
JP2012501556A (en) Light collection device having prismatic light turning features

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees