TW200928914A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200928914A
TW200928914A TW96151296A TW96151296A TW200928914A TW 200928914 A TW200928914 A TW 200928914A TW 96151296 A TW96151296 A TW 96151296A TW 96151296 A TW96151296 A TW 96151296A TW 200928914 A TW200928914 A TW 200928914A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
conductive layer
touch screen
electrode plate
film
Prior art date
Application number
TW96151296A
Other languages
Chinese (zh)
Other versions
TWI354921B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151296A priority Critical patent/TWI354921B/en
Publication of TW200928914A publication Critical patent/TW200928914A/en
Application granted granted Critical
Publication of TWI354921B publication Critical patent/TWI354921B/en

Links

Abstract

The present invention relates to a touch panel. The touch panel includes a first electrode plate, and a second electrode plate separated from the first electrode plate. The first electrode plate includes a first substrate, a first conductive layer and at least two first electrodes. The second electrode plate includes a second substrate, a second conductive layer and at least two second electrodes. At least one of the first conductive layer and the second conductive layer includes a plurality of carbon nanotube ribbon film structure parallel to each other and spaced therein. Two opposite ends of the electrode plate with a plurality of carbon nanotube ribbon film structure thereon are located a plurality of electrodes. Two ends of carbon nanotube ribbon film structure are connected with two opposite electrodes and each electrode is connected with at least one end of the carbon nanotube ribbon film structure. The present invention also relates to a displaying device using the touch panel.

Description

200928914 .九、發明說明: 【發明所屬之技術領域】 本發明涉及一種觸摸屏及使用該觸摸屏的顯示裝置, 尤其涉及一種基於奈米碳管的觸摸屏及使用該觸摸屏的顯 示裝置。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示元件的前 ❹面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的顯示 元件的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可以操作電子設備的各種 功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸 摸屏通常分爲四種類型,分別爲電阻式、電容感應式、紅 π外線式以及表面聲波式。其中電阻式觸摸屏的應用最爲廣 Ό 泛,請參見文獻 “Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel” Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2,Vol.84, P39-45(2001) ° 先前的電阻式觸摸屏一般包括一上基板,該上基板的 下表面形成有一上透明導電層;一下基板,該下基板的上 表面形成有一下透明導電層;以及多個點狀隔離物(Dot 7 200928914BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch panel and a display device using the same, and more particularly to a carbon nanotube-based touch panel and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel by a finger, a pen, or the like while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely resistive, capacitive sensing, red π outer line and surface acoustic wave. Among them, the application of the resistive touch screen is the most extensive, please refer to the document "Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001) ° The prior resistive touch screen generally includes an upper substrate, the upper surface of which is formed with an upper transparent conductive layer, and the lower substrate has a lower transparent conductive layer formed on the upper surface thereof. ; and a number of point spacers (Dot 7 200928914

Spacer)设置在上透明導電層與下透明導電層之間。其中, 該上透明導電層與該下透明導電層通常採用具有導電特 .性的銦錫氧化物(lndium Tin 〇xide,IT〇)層(下稱IT〇層)。 •當使用手指或筆按壓上基板時,上基板發生扭曲,使得按 壓處的上透明導電層與下透明導電層彼此接觸。通過外接 的電子電路分別向上透料電層與下透明導電層依次施 加電壓,觸摸屏控制器通過分別測量第一導電層上的電壓 變化與第二導電層上的電壓變化,並進行精確計算,將它 轉換成觸點坐標。觸摸屏控制器將數字化的觸點坐標傳遞 給甲央處理器。中央處理器根據觸點坐標發出相應指令, 啓動電子設備的各種功能切換,並通過顯示器控制器控制 顯示元件顯示。 +然而,/Τ〇層作爲透明導電層通常採用離子束藏射或 蒸鍍等工藝製備,在製備的過程,需要較高的真空環境及 需要加熱到2〇0〜3m:,因此,使得加層的製備成本較 ❹南。此外,ΓΓΟ層作爲透明導電層具有機械性能不够好、 難以f曲及阻值分佈不均勻等缺點。另外,IT0在潮满的 空氣中透明度會逐漸下降。從而導致先前的電阻式觸摸屏 及顯示裝置存在耐用性不够好,愈 較差等缺點。 4度低、線性及準確性 有馨·於此’確有必要提供一藉+ 攸货植耐用性好,且 線性及準確性强的觸摸屏及顯示裝置。 又同 【發明内容】 一種觸摸屏,包括 第-電極板,該第一電極板包 200928914 括-第-基體、一第一導電層及至少兩個第 一導電層設置在該第一芙體的·和 該第 珩 體的下表面,該至少個第一雷炼 .分別間隔設置在該第—電極板 第電極 與第-導電層電連接·以及第一方向的兩端且 與第-電極板間隔設置,該第二電極板包括一第::二板 弟一電極,該第二導電層設詈名 5/第一基體的上表面, 〇 在該第二電極板的上表面;;兩=電極分別間隔設置 層電連接;i中,所方向的兩端且與第二導電 ,、T所述第一導電層和第二導雷® Ε , 一個導電層包括平行且間隔讲罢 曰的至 Μ > m ^ ^ , D又的夕個奈米碳管帶狀膜結 別對二置又==奈米碳管帶狀膜結構的電極板兩端分 兩端述每個奈米碳管帶狀膜結構的 鳊刀別與兩個相對的電極電連接,且彳 少一個奈米碳管帶狀膜結構的—端電連接二 極與至 ❹該觸摸屏包括 板包括一第一 該第一導電層 一電極分別間 的兩端且與第 板間隔設置, 層及至少兩個 的上表面,該 極板的上表面 第-電極板及—第二電極板’該第一電極 f體、一第-導電層及至少兩個第-電極, 设置在該第一基體的下表面,該至少兩個 隔設置在該第-電極板的下表面沿第一方向 -導電層電連接;該第二電極板與第一電極 該第二電極板包括—第二基體、—第二導 第二電極’該第二導電層設置在該第二基體 :乂兩個第二電極分別間隔設置在該第二電 沿第二方向的兩端且與第二導電層電連接; —rm的顯示f置,包括·-觸摸屏, 9 200928914 及一顯示設備,該顯示設備正對且靠近上述觸摸屏的第二 電極板設置;其中,所述第一導電層和第二導電層中的至 ^個導電層包括平行且間隔設置的多個奈米碳管帶狀膜 $構’所述設置有多個奈米碳管帶狀膜結構的電極板兩端 刀別對應3又置有多個電極,所述每個奈米碳管帶狀膜結構 的兩端分別與兩個相對的電極電連#,且所述每個電極與 至少一個奈米碳管帶狀膜結構的一端電連接。 ❹ ❹ 與先前技術相比較,本技術方案提供的觸摸屏及顯示 具有以下優點:其―’由於透明導電層中的多個奈米 石反官帶狀膜結構平行且間隔設置,因此,所述透明導電層 -有較好的力學性能’從而使得上述的透明導電層具有較 :機械强度和靭性’ &,採用上述的奈米碳管帶狀膜結 f作透明導電層’可以相朗提高職料耐用性,進而 ^:使用該觸摸屏的顯示裝置的耐用性;其二,上述透 層中的多個奈米碳管帶狀膜結構平行且間隔設置, — s八有句勻的阻值分佈和透光性,且所 ^母;電極與至少—個奈米碳管帶狀膜結構的-端電連 確地確定觸摸點的位詈^極之間的電壓變化來更精 觸摸屏的有利於提高觸摸屏及使用該 犋屏的顯不裝置的分辨率和精確度。 【實施方式】 顯示裝置將…口附圖评細說明本技術方案提供的觸摸屏及 %參_ 1及圖2 ’本技術方案實施例提供-種觸摸 200928914 .屏Η),該觸摸屏10包括一第— Μ以及設置在第_電極板12與第一::,-第二電極板 •透明點狀隔離物16。 第-電極板14之間的多個 •該第一電極板12包括-第-基體120, 一第__ 至1兩個第一電極124。該第-基體120爲平面二 :第-導電層122與至少兩個第—電: 第一基體120的下表面。呼$ 、工y J。又置在 ……: 兩個第-電極124分別設 ❹ 122下表面沿第-方向的兩端並盥第一導 電層122電連接。該第-帝炻妃^ & ”弟導 …… 包括一第二基體14〇, -第一v電層142以及至少兩個第二電極144 體⑽爲平面結構’該第二導電層142與至少 = 『44均設置在第二基體14〇的上表面。 ;電 電極144分別設詈名笸_道币a^ — 刀〜置在第一導電層142上表面沿第二方向的 二=與:二導電層142電連接。該第-方向垂直於該第 ❹ 一方向中’該第-基體12〇爲透明的且具有一定柔軟 度的薄膜或薄板,該第二基體14〇爲透明基板 :、 體⑽的材料可選擇爲玻璃、石英、金剛石及塑料等= m:生材料。所述第二基體140主要起支撑的作用。 管薄膜或其他導電材材料爲金屬、奈米碳 导1:材科本實鈀例中,該第一基體120爲 聚醋膜,該第二基體140爲玻璃基板,該至少兩個第一電 極似與至少兩個第二電極144爲導電㈣Μ。 n轉,所述電極亦可設置於所料電層與所述基 -之"、置在所述基體之上,且與所述導電層電連接, 11 200928914 並不限於上述的設置方式。σ 乃式八要月匕使上述的電極與導電層 之間形成電連接的方式都應在本發明的保護範圍内。 . 進纟地,該第二電極才反14上表面外圍設置有—絕 • =18。上述的第一電極板12設置在該絕緣層18上,且該 第-電極板12的第-導電層122正對第二電極板14的°第 二導電層142設置。上述多個透明點狀隔離物^設置在所 述第-導電層122和第二導電層142之間,且該多個透明 點狀隔離物16彼此間隔設置。第一電極板12與第二電極 ❹板14之間的距離爲2〜1〇微米。該絕緣層18與透明點狀 隔離物16均可採用絕緣透明樹脂或其他絕緣透明材料製 成。設置絕緣層18與透明點狀隔離物16可使得所述第一 電極板14與第―電極板12電絕緣。可以理解,當觸摸屏 ίο尺寸較小時,透明點狀隔離物16爲可選擇的結構,只 需確保所述第一電極板14與第二電極板12電絕緣即可。、 所述第一導電層122與第二導電層142中的至少—個 ❾導電層包括平行且間隔設置的多個奈米碳管帶狀膜結構, 所述設置有多個奈米碳管帶狀膜結構的電極板兩端分別對 應設置有多個電極,所述每個奈米碳管帶狀膜結構的兩端 分別與兩個相對的電極電連接,且所述每個電極與至少— 個奈米碳管帶狀膜結構的一端電連接。所述奈米碳管帶狀 膜結構爲一層奈米碳管薄膜,該奈米碳管薄膜包括多個定 向排列的奈米碳管。另外,所述奈米碳管帶狀膜結構也可 爲重叠設置的多層奈米碳管薄膜,每一層奈米碳管薄臈包 括多個定向排列的奈米碳管’且相鄰的兩層奈米碳管層薄 12 200928914 .膜中的奈米碳管沿同一方向排列或沿不同方向排列。所述 奈米碳管薄膜進一步包括多個首尾相連的奈米碳管束片 .段,每個奈米奴官束片段具有相等的長度且每個奈米碳管 .束片段由多個相互平行的奈米碳管束構成,所述多個奈米 碳管束片段兩端通過凡德瓦爾力相互連接。該相鄰的奈米 碳管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括 夕個長度相4且平行排列的奈米碳管。所述奈米破管可以 爲單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種 ❹或多種。所述奈米碳管帶狀膜結構的寬度爲丄毫米〜1()厘 米。所述奈米碳管帶狀膜結構的厚度爲〇.5奈米〜1〇〇微 米。所述奈米碳管帶狀膜結構之間的間距爲5奈米〜i毫米。 本技術方案實施例中,所述第一導電層122與第二導 電層142均包括多個平行且間隔設置的奈米碳管帶狀膜結 構,且所述第一導電層中奈米碳管帶狀膜結構與所述第二 導電層中的奈米碳管帶狀膜結構交叉設置。由於所述第一 ❹導電層122與第二導電層142中的奈米碳管帶狀膜結構平 行且間隔設置,優選地,所述第一導電層122與第二導電 層142中的奈米碳管帶狀膜結構平行且等間距設置,從而 使得所述第一導電層122與第二導電層142具有均勻的阻 值分佈和透光特性,且所述每個電極與所述導電層中的至 〉、一個奈米叙官帶狀膜結構的一端電連接,故可以通過探 測觸摸點處第一電極142之間及第二電極144之間的電壓 變化來更精確地確定觸摸點的位置,從而有利於提高觸摸 屏10的分辨率和準確率。 13 200928914 本實施例中,該奈米碳管帶狀膜結構的尺寸可根據實 際需求制得。本實施例中採用4英寸的基底生長超順排奈 米碳管陣列’所述奈米碳管帶狀膜結構的寬度爲1毫米〜1〇 •厘米。所述奈米碳管帶狀膜結構的厚度爲0.5奈米〜1〇〇微 米。其中,奈米碳管帶狀膜結構中的奈米碳管可為單壁奈 米碳管、雙壁奈米碳管和多壁奈米碳管中的一種或多種。 該單壁奈米碳管的直徑爲0.5奈米〜5〇奈米;該雙壁奈米 碳官的直徑爲1.0奈米〜50奈米;該多壁奈米碳管的直徑 ❹爲1.5奈米〜50奈米。 工 本實施例第一導電層122和/或第二導電層142中的製 備方法主要包括以下步驟: 步驟一:提供一奈米碳管陣列,優選地,該陣列爲超 順排奈米碳管陣列。 …本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 官陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種 〇或多種。本實施例中,該超順排奈米碳管陣列的製備方法 採用化學氣相沈積法’其具體步驟包括:“)提供一平整 基底4基底可選用基底,或選用形成有氧 化層的矽基底,本實施例優選爲採用4英寸的矽基底;(b ) 在土 &表面句勻形成一催化劑層,該催化劑層材料可選用 鐵(㈤、钻(C。)、鎳㈤或其任意組合的合金之一; U)將上述形成有催化劑層的基底在 700〜900°C的空氣中 退火約30分鐘〜9〇分赫μ# 丄 ^ 刀知,(d)將處理過的基底置於反應爐 中’在保護氣體環墳 兄下加熱到500〜74CTC,然後通入碳源 200928914 .氣體反應約5〜30分鐘,生長得到超順排奈米碳管陣列, 其向度爲200〜400微米。該超順排奈米碳管陣列爲多個彼 •此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣 .列。通過上述控制生長條件,該超順排奈米碳管陣列中基 本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 該奈米奴官陣列中的奈米碳管彼此通過凡德瓦爾力緊密接 觸形成陣列。該奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 ❺質較活潑的碳氫化合物’本實施例優選的碳源氣爲乙炔; 保遵氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 步驟二:採用一拉伸工具從奈米碳管陣列中拉取獲得 ❹—奈米碳官薄膜。其具體包括以下步驟y a )從上述奈米 碳管陣列中選定一定寬度的多個奈米碳管片斷,本實施例 優選爲採用具有一定寬度的膠帶接觸奈米後管陣列以選定 一定寬度的多個奈米碳管片冑;(b) U 一定速度沿基本垂 直於奈米碳管陣列生長方向拉伸該多個奈米碳管片斷,以 形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管片斷分別與其它奈米碳管片斷 15 200928914 .首尾相連地連續地被拉出 奈米破管薄膜包括多個首尾相連^定了^管薄膜。該 走。命太半π总# 遇且疋向排列的奈米碳管 .束2奈未奴官薄膜中奈米碳反吕 ,米碳管薄膜的拉伸方向。 ㈣方向基本平行於奈 乎石^奈米碳”職擇絲向㈣的多個夺 未反s束τ尾相連形成的具有一定寬度的夺、 !奈米碳管薄膜中奈米碳管的排列方向基本平行二米二 2膜的拉伸方向。該直接拉伸獲得的擇優取向的:米: 無序奈米碳管薄膜具有更好的均勻性,即具;更 #得:二二具有更均勻的導電性能。同時該直接拉伸 獲传奈奢卡奴管薄膜的方法簡單快速,適宜進行工業化應用。 所生/的^’該奈米碳管薄膜的寬度與奈米碳管陣列 所生長的基底的尺寸有關,該奈米碳管薄膜的長度不限, 可根據實際需求製得。該奈米碳管薄膜的厚度爲05太半 ,〇微米。該奈米碳管薄膜中的奈米碳管可爲單壁奈;;碳 ❹官、雙壁奈米碳管及多壁奈米碳管中的一種或多種。該單 壁奈米碳管的直徑爲〇.5奈米〜50奈米,該雙壁奈米碳管 的直徑爲I.0奈米〜5〇奈米,該多壁奈米碳管的直徑爲15 奈米〜50奈米。 … 步驟三:製備多個上述奈米碳管薄膜,形成一奈米碳 管帶狀膜結構,將該奈米碳管帶狀膜結構平行且間隔鋪設 在所述第一基體120或第二基體140表面,形成所述第一 導電層122及第二導電層142。 所述奈米碳管帶狀膜結構爲一奈米碳管薄膜或重叠設 16 200928914 .置的多個奈来碳管薄膜。杯、+,壬Λ 、所述重叠設置的多個夸平f1 膜中相鄰兩層奈米碳管:‘薄 ,限,可沿同一方向排列,也可沿不丁同十=官的排列方式不 碳管帶狀膜結構之間的間距爲 :排列。所述奈米 .觸摸屏丄㈣透光性進行選擇^七米’具體可根據 :=奈米碳管帶狀膜結構的兩端分別與兩個相對 的電極電連接’且料每個電極與所料電 ❹ 個奈米碳管帶狀膜結構的一端電/ 中,所述每個第一電極124*所:方案實施例 t丄 ”尸汁迷第一導電層122中的一 個奈求碳管帶狀臈結構的一端電連接,所述每個第二電極 二4與所述第一導電層142中的一個奈米碳管帶狀膜結構 的一端電連接。所述第―莫雷Μ 弟V電層122中的奈米碳管帶狀膜 L構的排列方向可偏離所述第—方向。優選的,所述第一 導電層122中的奈米碳管帶狀膜結構沿所述第一方向平行 且間隔5又置。所述第二導電層142中的奈米碳管帶狀膜結 〇構的排列方向可偏離所述第二方向。優料,所述第二導 電層142中的奈米碳管帶狀膜結構沿所述第二方向平行且 間隔設置。所述第一方向垂直於所述第二方向。所述多個 第一電極124和所述多個第二電極144爲塊狀電極。所述 多個第一電極124和所述多個第二電極144通過電極引線 (圖未示)與外接電路相連接。 另外’所述多個奈米碳管薄膜也可通過以下步驟製 備·採用一拉伸工具從奈米碳管陣列中拉取奈米碳管獲得 一較大尺寸的奈米碳管薄膜;將該奈米碳管薄膜切割成大 17 200928914 小尺寸相等的多個奈米碳管薄膜。 膜的技術方案實施例提供的所述奈米碳管薄 ^ 述製備方法,也可通過碾壓法製備一太 米碳管薄膜,該太半山其鴒 不 、 不未奴S溥膜中的多個奈米碳管沿同一 向排歹J 不同方向排列或各相同性排列。此外,還可 用絮化法製備_太半山其1 木 有不未石反g薄膜,該奈米碳管薄臈包括多個 相互纏繞的奈米碳管。 ❺ 、☆由於本實施例超順排奈米碳管陣列中的奈米碳管 純由於奈米碳管本身的比表面積非常大,所以該太 米碳管薄膜本身具有較强的黏性H由該奈米碳管二 膜組成的奈米碳管帶狀膜結構作爲第-導電層122與第: 導電層142時可直接黏附在所述第—基體12()或第 140 上。 m 々另外,可使用有機溶劑處理上述黏附在第一基體i2〇 或第=基體140上的奈米碳管帶狀膜結構。具體地,可通 〇過試管將有機溶劑滴落在奈米碳管帶狀膜結構表面浸潤整 個奈米碳管帶狀膜結構。該有機溶劑爲揮發性有機溶劑: 如乙醇曱醇、丙酮、二氣乙烧或氣仿,本實施例中採用 乙醇。該奈米碳管帶狀膜結構經有機溶劑浸潤處理後,在 揮發性有機溶劑的表面張力的作用下,該奈米碳管帶狀膜 結構可牢固地貼附在基體表面,且表面體積比减小,黏性 降低,具有良好的機械强度及韌性。 進一步地,由於設置有奈米碳管帶狀膜結構的區域與 未設置奈米碳管帶狀膜結構的區域具有不同的光折射率與 18 200928914 透射率,爲使觸摸屏整體透光性的視覺差異最小,可以在 奈米碳管帶狀膜結構之間的間隙中形成—填充層(圖未 .不),該填充層的材料具有與奈米碳管帶狀膜結構相同 近的折射率和透射率。 ❹ 另外,該第一電極板12上表面可進一步設置_透明保 j膜126’該透明保護膜126可由氮化♦、氧化石夕、苯丙 ,丁烯(BCB)、聚酯以及丙烯酸樹脂等材料形成。該 2護膜m也可採用-層表面硬化處理、光滑防 二’如聚對苯二曱酸乙二醇·(ΡΕΤ)膜,用於保護第一斗 極板12,提兩耐用性。該透明保護膜126還可 —些其它的附加功能,如可以减少㈣或降低反射 此外’可選擇地,爲了减小由顯示設備產生的電磁干 ’避免從觸摸屏10發出的信號産生錯誤 ❹ =⑽的下表面上設置一屏蔽層(圖未示)。夂: =锡氧化物(ΙΤ0)薄膜、録錫氧化物( ,、銀薄膜膜或奈米碳管薄膜等導電材料形成實= 令,所述的屏蔽層包含—奈米碳管薄膜,該奈/切管薄^ 中的奈米碳管的排列方式不限, ,.、 的排列方式。太眚士 了爲疋向排列也可爲其它 列。二=:該屏蔽層中的奈米碳管定向排 广未石…專膜作爲電接地點,起到 而使得觸摸屏10能在無干擾的環境中工作。乍用攸 請參閱圖4,本技術方案實 屏Π)的顯示裝置100,且包括上使用上述觸摸 供w 匕祜上述觸稹屏10及一題千执 。該顯示設備20正對且靠近上述觸摸屏1〇的第二 19 200928914 極板14設置。該觸摸屏ι〇可以與該顯示設備2〇間隔一預 疋距離设置’也可集成在該顯示設備2〇上。當該觸摸屏 1 〇與忒顯示設備20集成設置時,可通過黏結劑將該觸摸 屏10附著到該顯示設備20上。 本技術方案顯示設備20可以爲液晶顯示器、場發射顯 不器、電漿顯示器、電致發光顯示器、真空螢光顯示器及 陰極射線管等顯示設備。Spacer) is disposed between the upper transparent conductive layer and the lower transparent conductive layer. Wherein, the upper transparent conductive layer and the lower transparent conductive layer are generally made of an indium tin oxide (IT) layer (hereinafter referred to as an IT layer) having conductive properties. • When the upper substrate is pressed with a finger or a pen, the upper substrate is twisted so that the upper transparent conductive layer and the lower transparent conductive layer at the pressing contact each other. The voltage is sequentially applied to the upper transparent layer and the lower transparent layer through the external electronic circuit, and the touch screen controller measures the voltage change on the first conductive layer and the voltage change on the second conductive layer, respectively, and performs accurate calculation. It is converted to contact coordinates. The touch screen controller passes the digitized contact coordinates to the central processing unit. The central processor issues a corresponding command according to the contact coordinates, activates various function switching of the electronic device, and controls the display of the display component through the display controller. + However, the / Τ〇 layer as a transparent conductive layer is usually prepared by ion beam deposition or evaporation, in the process of preparation, requires a higher vacuum environment and needs to be heated to 2 〇 0~3m: The preparation cost of the layer is relatively low. In addition, the ruthenium layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in f-bending, and uneven distribution of resistance values. In addition, IT0 will gradually decrease in transparency in the filled air. As a result, the prior resistive touch screens and display devices have disadvantages such as insufficient durability and poorer performance. 4 degrees low, linear and accurate. There is a need to provide a touch screen and display device with good durability and linearity and accuracy. Further, a touch screen includes a first electrode plate, and the first electrode plate package 200928914 includes a first substrate, a first conductive layer, and at least two first conductive layers disposed on the first body. And the lower surface of the second body, the at least one first refining is respectively disposed at an interval between the first electrode of the first electrode plate and the first conductive layer and the first direction and spaced apart from the first electrode plate The second electrode plate comprises: a second electrode: an electrode, the second conductive layer is provided on the upper surface of the first 5/first substrate, and is disposed on the upper surface of the second electrode plate; The layers are respectively electrically connected; in i, the two ends of the direction and the second conductive, T the first conductive layer and the second lightning guide®, a conductive layer includes parallel and spaced apart > m ^ ^ , D and then the carbon nanotubes of the ribbon film are opposite to the two sets of == nanocarbon tube strip-shaped membrane structure of the two ends of the electrode plate The file structure of the file is electrically connected to two opposite electrodes and reduces the structure of a carbon nanotube film structure. - the terminal is electrically connected to the second pole and to the top of the touch panel, the board includes a first end of the first conductive layer and an electrode, and is spaced apart from the first board, and the upper surface of the layer and the at least two upper surfaces of the board The first electrode body and the second electrode plate, the first electrode body, the first conductive layer and the at least two first electrodes are disposed on a lower surface of the first substrate, and the at least two spacers are disposed on the surface The lower surface of the first electrode plate is electrically connected along the first direction - the conductive layer; the second electrode plate and the first electrode, the second electrode plate includes a second substrate, a second conductive second electrode, the second conductive layer The second substrate is disposed at two ends of the second electrode in the second direction and electrically connected to the second conductive layer; the display of the -rm is set to include a touch screen, 9 200928914 and a display device, the display device is disposed opposite to the second electrode plate of the touch screen; wherein the conductive layers of the first conductive layer and the second conductive layer comprise a plurality of parallel and spaced Nano carbon tube ribbon film The electrode plates of the plurality of carbon nanotube strip-shaped membrane structures are disposed at opposite ends of the electrode plate 3 and are provided with a plurality of electrodes, and the two ends of each of the carbon nanotube strip-shaped membrane structures are electrically connected to the two opposite electrodes respectively. #, and each of the electrodes is electrically connected to one end of at least one of the carbon nanotube film structures. ❹ ❹ Compared with the prior art, the touch screen and the display provided by the technical solution have the following advantages: “Because the plurality of nano-striped strip-shaped film structures in the transparent conductive layer are arranged in parallel and at intervals, the transparent Conductive layer - has better mechanical properties' so that the above transparent conductive layer has: mechanical strength and toughness '&, using the above-mentioned carbon nanotube strip film junction f as a transparent conductive layer' can be improved Durability, and further: the durability of the display device using the touch screen; secondly, the plurality of carbon nanotube film structures in the transmissive layer are arranged in parallel and spaced apart, and the distribution of resistance values is uniform And light transmissive, and the mother; the electrode and the at least one carbon nanotube strip-like membrane structure - the electrical connection to determine the voltage change between the position of the touch point to more precise touch screen Improve the resolution and accuracy of the touch screen and the display device using the screen. [Description] The display device will be described in detail with reference to the touch screen provided by the present technical solution and the % reference _ 1 and FIG. 2 'the present technical solution embodiment provides a touch type 200928914. Screen 10), the touch screen 10 includes a first — Μ and disposed on the _electrode plate 12 and the first::, - second electrode plate • transparent dot spacers 16. A plurality of the first electrode plates 14 include a first substrate 120, a first substrate 124, and a first electrode 124. The first substrate 120 is a planar surface 2: a first conductive layer 122 and at least two first electrodes: a lower surface of the first substrate 120. Call $, work y J. Further, the two first electrodes 124 are respectively disposed at both ends of the lower surface of the ❹ 122 in the first direction and are electrically connected to the first conductive layer 122. The first conductive layer 142 includes a second substrate 14 〇, the first v electrical layer 142 and the at least two second electrode 144 bodies (10) are planar structures 'the second conductive layer 142 and At least = "44 are all disposed on the upper surface of the second substrate 14". The electric electrodes 144 are respectively set to 詈 _ _ _ _ _ _ _ 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀The second conductive layer 142 is electrically connected. The first direction is perpendicular to the first direction of the first substrate 12 〇 is transparent and has a certain degree of softness of the film or sheet, and the second substrate 14 is a transparent substrate: The material of the body (10) may be selected from glass, quartz, diamond, plastic, etc. = m: raw material. The second substrate 140 mainly serves as a support. The tube film or other conductive material is metal, nano carbon guide 1: In the case of the material palladium, the first substrate 120 is a polyester film, the second substrate 140 is a glass substrate, and the at least two first electrodes are similar to the at least two second electrodes 144 being electrically conductive (four) Μ. The electrode may also be disposed on the electrical layer and the substrate, and disposed on the substrate. And electrically connected to the conductive layer, 11 200928914 is not limited to the above-described arrangement. The manner in which the above-mentioned electrode and the conductive layer are electrically connected is within the protection scope of the present invention. The second electrode is disposed on the periphery of the upper surface of the reverse electrode 14 with a maximum of = 18. The first electrode plate 12 is disposed on the insulating layer 18, and the first conductive layer of the first electrode plate 12 122 is disposed opposite to the second conductive layer 142 of the second electrode plate 14. The plurality of transparent dot spacers are disposed between the first conductive layer 122 and the second conductive layer 142, and the plurality of transparent dots The spacers 16 are spaced apart from each other. The distance between the first electrode plate 12 and the second electrode plate 14 is 2 to 1 μm. Both the insulating layer 18 and the transparent dot spacer 16 may be made of insulating transparent resin or the like. The insulating layer 18 and the transparent dot spacer 16 can electrically insulate the first electrode plate 14 from the first electrode plate 12. It can be understood that when the size of the touch screen ί is small, the transparent dot isolation Object 16 is an optional structure, just need to ensure that the first The electrode plate 14 is electrically insulated from the second electrode plate 12. The at least one of the first conductive layer 122 and the second conductive layer 142 includes a plurality of carbon nanotube strips arranged in parallel and spaced apart. a membrane structure, the electrode plates provided with a plurality of carbon nanotube strip-shaped membrane structures are respectively provided with a plurality of electrodes at opposite ends thereof, and the two ends of each of the carbon nanotube strip-shaped membrane structures are respectively opposite to the two The electrodes are electrically connected, and each of the electrodes is electrically connected to one end of at least one of the carbon nanotube strip film structures. The carbon nanotube strip film structure is a layer of carbon nanotube film, the nano carbon The tube film comprises a plurality of aligned carbon nanotubes. In addition, the carbon nanotube film structure may also be an overlapping multi-layered carbon nanotube film, each layer of carbon nanotubes comprising a plurality of aligned carbon nanotubes and adjacent two layers Nano carbon tube layer thin 12 200928914. The carbon nanotubes in the film are arranged in the same direction or in different directions. The carbon nanotube film further comprises a plurality of end-to-end carbon nanotube bundle segments, each of the nano-burst segments having equal lengths and each of the carbon nanotubes. The bundle segments are parallel to each other. The carbon nanotube bundle is composed of two ends of the plurality of carbon nanotube bundle segments connected to each other by a van der Waals force. The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a carbon nanotube having a length of phase 4 and arranged in parallel. The nanotube may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube ribbon film structure has a width of 丄 mm 〜1 () cm. The carbon nanotube film structure has a thickness of 〇.5 nm to 1 〇〇 micrometer. The spacing between the carbon nanotube film structures is 5 nm to 1 mm. In the embodiment of the technical solution, the first conductive layer 122 and the second conductive layer 142 each include a plurality of parallel and spaced carbon nanotube film structures, and the carbon nanotubes in the first conductive layer The strip film structure is disposed to intersect with the carbon nanotube film structure in the second conductive layer. Since the first tantalum conductive layer 122 and the carbon nanotube strip film structure in the second conductive layer 142 are parallel and spaced apart, preferably, the first conductive layer 122 and the second conductive layer 142 are in a nanometer. The carbon tube strip film structures are arranged in parallel and at equal intervals such that the first conductive layer 122 and the second conductive layer 142 have a uniform resistance distribution and light transmission characteristics, and each of the electrodes and the conductive layer To one end, one end of the nanoscopic strip film structure is electrically connected, so that the position of the touch point can be more accurately determined by detecting the voltage change between the first electrode 142 and the second electrode 144 at the touch point. Thereby, it is advantageous to improve the resolution and accuracy of the touch screen 10. 13 200928914 In this embodiment, the size of the carbon nanotube film structure can be obtained according to actual needs. In this embodiment, a 4-inch substrate-grown super-sequential carbon nanotube array is used. The carbon nanotube ribbon-like membrane structure has a width of 1 mm to 1 〇 cm. The carbon nanotube ribbon film structure has a thickness of 0.5 nm to 1 μm. The carbon nanotubes in the carbon nanotube ribbon membrane structure may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 5 Å nanometer; the diameter of the double-walled nano carbon official is 1.0 nm to 50 nm; the diameter of the multi-walled carbon nanotube is 1.5 奈Meters ~ 50 nm. The preparation method in the first conductive layer 122 and/or the second conductive layer 142 mainly comprises the following steps: Step 1: providing a carbon nanotube array, preferably, the array is a super-sequential carbon nanotube array . The carbon nanotube array provided by the embodiment of the present technical solution is one or more of a single-walled nanocarbon array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: "providing a substrate for selecting a substrate of a flat substrate 4, or selecting a germanium substrate formed with an oxide layer. Preferably, the present embodiment uses a 4-inch germanium substrate; (b) a catalyst layer is formed on the surface of the soil & the catalyst layer material may be iron ((5), drill (C.), nickel (5) or any combination thereof). One of the alloys; U) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 9 〇 〇 μ ( ( ( ( ( ( ( ( ( ( ( In the reaction furnace, it is heated to 500~74CTC under the protective gas ring, and then passed into the carbon source 200928914. The gas reacts for about 5~30 minutes, and the super-sequential carbon nanotube array is grown to have a orientation of 200~400. The super-sequential carbon nanotube array is a series of pure carbon nanotubes formed by a plurality of carbon nanotubes which are parallel and perpendicular to the growth of the substrate. The super-shun nai is controlled by the above-mentioned controlled growth conditions. The carbon nanotube array contains almost no impurities, such as amorphous Or residual catalyst metal particles, etc. The carbon nanotubes in the array of nanopores form an array in close contact with each other by van der Waals force. The array of carbon nanotubes is substantially the same as the area of the substrate described above. Carbon source in this embodiment The gas may be selected from acetylene, ethylene, decane and the like. The chemical carbonaceous gas is more active. The preferred carbon source gas in this embodiment is acetylene; the gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, etc. Step 2: using a stretching tool from Nana The carbon nanotube array is drawn to obtain a ruthenium-nano carbon official film, which specifically includes the following steps ya: selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array, and the embodiment preferably adopts A tape of a certain width contacts the array of nanotubes to select a plurality of carbon nanotubes of a certain width; (b) U has a certain velocity along a growth direction substantially perpendicular to the array of carbon nanotubes Stretching the plurality of carbon nanotube segments to form a continuous carbon nanotube film. During the stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under tensile force Due to the effect of van der Waals force, the selected plurality of carbon nanotube segments are successively pulled out of the nano tube-breaking film, including the end-to-end connection of the other carbon nanotube segments 15 200928914, respectively. ^ Tube film. The walk. Life is too half π total # encountered and aligned carbon nanotubes. Bunch 2 Naiwu slave film in the nano carbon anti-Lu, the stretching direction of the carbon nanotube film. (four) the direction is basically parallel The arrangement direction of the carbon nanotubes in the carbon nanotube film with a certain width is formed by the combination of the N. The stretching direction of the film 2-2. The direct orientation obtained by the direct stretching: m: the disordered carbon nanotube film has better uniformity, that is, has more; more: two: two more uniform electrical conductivity. At the same time, the method of directly stretching the film of the Naikou Kano tube is simple and rapid, and is suitable for industrial application. The width of the carbon nanotube film produced is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. The carbon nanotube film has a thickness of about 50 and a half micron. The carbon nanotubes in the carbon nanotube film may be single-walled naphthalene; one or more of carbonaceous, double-walled carbon nanotubes and multi-walled carbon nanotubes. The diameter of the single-walled carbon nanotube is 〇.5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is 1.00 nm to 5 Å. The diameter of the multi-walled carbon nanotube For 15 nm ~ 50 nm. Step 3: preparing a plurality of the above-mentioned carbon nanotube film to form a carbon nanotube film structure, and laying the carbon nanotube film structure in parallel and at intervals on the first substrate 120 or the second substrate The 140 surface forms the first conductive layer 122 and the second conductive layer 142. The carbon nanotube film structure is a carbon nanotube film or a plurality of carbon nanotube films stacked in a layer of 2009200914. Cup, +, 壬Λ, the adjacent two layers of carbon nanotubes in the overlapped fi1 film: 'thin, limited, can be arranged in the same direction, or can be arranged along the same ten = official The spacing between the carbon nanotube strip film structures is: alignment. The nanometer touch screen 丄 (4) light transmission is selected ^ 7 meters 'specifically according to: = nano carbon tube strip film structure two ends are electrically connected with two opposite electrodes respectively - and each electrode and One end of the carbon nanotube strip-shaped membrane structure is electrically/medium, and each of the first electrodes 124* is: one embodiment of the first conductive layer 122 of the corpse juice One end of the strip-shaped crucible structure is electrically connected, and each of the second electrodes 2 is electrically connected to one end of one of the first carbon nanotube strip-shaped film structures of the first conductive layer 142. The first Moore brother The alignment direction of the carbon nanotube film L structure in the V electrical layer 122 may be offset from the first direction. Preferably, the carbon nanotube film structure in the first conductive layer 122 is along the first One direction is parallel and the interval 5 is further disposed. The arrangement direction of the carbon nanotube ribbon film structure in the second conductive layer 142 may be offset from the second direction. Advantageously, the second conductive layer 142 is The carbon nanotube film structures are parallel and spaced apart along the second direction. The first direction is perpendicular to the second direction. The plurality of first electrodes 124 and the plurality of second electrodes 144 are block electrodes. The plurality of first electrodes 124 and the plurality of second electrodes 144 pass through electrode leads (not shown) and an external circuit In addition, the plurality of carbon nanotube films can also be prepared by the following steps: using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a larger size carbon nanotube film. The carbon nanotube film is cut into a plurality of small carbon nanotube films of the same size as the large 17 200928914. The carbon nanotube thin film preparation method provided by the technical embodiment of the film can also be laminated The method comprises the steps of: preparing a carbon nanotube film, wherein the plurality of carbon nanotubes in the sputum membrane are arranged in different directions or in the same direction in the same direction. Preparation by chemical method _ Tai Ban Shan 1 wood has a non-stone anti-g film, the carbon nanotube thin 臈 includes a plurality of intertwined carbon nanotubes. ❺ ☆, ☆ due to the super-sequential carbon nanotube array of the present embodiment The carbon nanotubes in the pure phase are very large due to the specific surface area of the carbon nanotubes themselves. Therefore, the carbon nanotube film itself has a strong viscosity. The carbon nanotube film structure composed of the carbon nanotube film can be directly adhered to the first conductive layer 122 and the first conductive layer 142. The first substrate 12 () or the 140th. m 々 In addition, the carbon nanotube film structure adhered to the first substrate i2 or the substrate 140 may be treated with an organic solvent. Specifically, The organic solvent is dripped on the surface of the carbon nanotube film structure through the test tube to infiltrate the entire carbon nanotube film structure. The organic solvent is a volatile organic solvent: such as ethanol sterol, acetone, diethylene bromide Or in the embodiment, ethanol is used in the embodiment. The carbon nanotube film structure is immersed in an organic solvent, and the carbon nanotube film structure is firm under the surface tension of the volatile organic solvent. The ground is attached to the surface of the substrate, and the surface volume ratio is reduced, the viscosity is lowered, and the mechanical strength and toughness are good. Further, since the region in which the carbon nanotube film-like film structure is provided and the region in which the carbon nanotube film film structure is not provided have different light refractive indices and transmittances of 18 200928914, in order to make the touch screen overall light transmissive The difference is minimal, and a filling layer (not shown) can be formed in the gap between the carbon nanotube film structures, and the material of the filling layer has the same refractive index and structure as the carbon nanotube film structure. Transmittance. Further, the upper surface of the first electrode plate 12 may be further provided with a transparent protective film 126'. The transparent protective film 126 may be nitrided, oxidized, styrene, butyl, butylene (BCB), polyester, acrylic, etc. Material formation. The 2 film m can also be treated with a -layer surface hardening treatment, a smooth anti-two such as polyethylene terephthalate (ΡΕΤ) film, for protecting the first plate 12, and providing two durability. The transparent protective film 126 may also have other additional functions, such as reducing (four) or reducing reflections. Further, 'optionally, in order to reduce the electromagnetic dryness generated by the display device', the signal emitted from the touch screen 10 is prevented from generating an error ( = (10) A shielding layer (not shown) is disposed on the lower surface.夂: = tin oxide (ΙΤ0) film, tin oxide (, silver film or carbon nanotube film and other conductive materials form a real thing, the shielding layer contains - carbon nanotube film, the nai / The arrangement of the carbon nanotubes in the thin tube is not limited, the arrangement of ., and the arrangement of the squares for the 眚 了 也 也 也 。 。 = = = = = = = = = = = = = = = = 奈 = 奈 奈 奈 奈The directional platoon is not used as an electrical grounding point, so that the touch screen 10 can work in a non-interfering environment. Referring to FIG. 4, the display device 100 of the present technical solution ,) includes Use the above touch for w 匕祜 above touch screen 10 and one question thousand hold. The display device 20 is disposed adjacent to and adjacent to the second 19 200928914 plate 14 of the touch screen 1〇. The touch screen ι can be spaced apart from the display device 2 by a pre-set distance ‘ or integrated on the display device 2 。. When the touch screen 1 集成 is integrated with the 忒 display device 20, the touch screen 10 can be attached to the display device 20 by a bonding agent. The display device 20 of the present invention may be a display device such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube.

進一步地,當在該觸摸屏10第二基體14〇的下表面上 設置一屏蔽層22時,可在該屏蔽層22遠離第二基體14〇 的表面上設置一鈍化層24,該鈍化層24可由氮化矽、氧 ^矽等材料形成。該鈍化層24與顯示設備2〇的正面間隔 一間隙26設置。該鈍化層24作爲介電層使用,且保護= 顯不設備20不致於由於外力過大而損壞。 另外,该顯示裝置100進一步包括一觸摸屏控制器、 一中央處理器40及-顯示設備控制器5〇。其中,該觸摸 屏控制器30、該中央處理器4〇及該顯示設備控制器%三 =通過電路相互連接,該觸摸屏控制器3Q與該觸摸屏扣 電連接’該顯示設備控制器5G與該顯示設備Μ電連接。 _摸屏控制器30通過手指等觸摸物⑼觸摸的圖標或菜 ::置=位選擇信息輸入’並將該信息傳遞給中央處理 理器4〇通過該顯示器控制器5〇控制該顯 第 使用時,在第一電極板12中 一 .^ ^ 弟電極124之間及在 -電極板14中的第二電極144之間分時施加5v電壓。 20 200928914 .使用者―邊視覺確認麵料1G下 的顯示,一邊诵枬鎚炉& 罝耵顯不兀件20 -電極板U進 =物第⑼:手指或 生彎曲,使得按·7/ —電極板12中第一基體120發 f孜·/整處70的第一違_带恩ifct>Wr 14的筮-道帝η 电曰122與第二電極板 ^ 嚐122弟一方向上的電壓變化盥第二 它轉第^的電㈣化’並進行精確計算,將 :遞給中麥:坐?。觸摸屏控制器3〇將數字化的觸點坐標 痛口 、处理盗4〇。中央處理器4〇根據觸點坐標發出 應指令’啓動電子設備的各種功能切換,並通過顯示器 控制器50控制顯示元件2〇顯示。 與先前技術相比較’本肋方案提供的觸鄕及顯示 具有以下優點:其一,由於透明導電層中的多個奈米 石反官帶狀膜結構平行且間隔設置,因此,所述透明導電層 -、有心好的力學性能,從而使得上述的透明導電層具有較 ❹好的機械强度和勃性,故,可以相應的提高觸摸屏的耐用 性’進而提高使用該觸摸屏的顯示裝置的耐用性。其二, it透明導電層中的多個奈米碳管帶狀膜結構平行且間隔 設置’從而使得透明導電層具有均勻的阻值分佈和透光 性’且所述每個電極與其所在透明導電層中的至少一個奈 米石反管▼狀膜結構的一端電連接,故可以通過探測觸摸點 處電極之間的電壓變化來更精確地確定觸摸點的位置,從 而有利於提高觸摸屏及使用該觸摸屏的顯示裝置的分辨率 和精確度。 21 200928914 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, •自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例觸摸屏的立體結構示音圖。 Ο 圖2係本技術方案實施例觸摸屏的側視結構示意圖。 ^ 3係本技術方案實施__中奈米碳管 拾電鏡照片。 J坪Further, when a shielding layer 22 is disposed on the lower surface of the second substrate 14A of the touch screen 10, a passivation layer 24 may be disposed on the surface of the shielding layer 22 away from the second substrate 14A. The passivation layer 24 may be A material such as tantalum nitride or oxygen is formed. The passivation layer 24 is spaced apart from the front side of the display device 2 by a gap 26. The passivation layer 24 is used as a dielectric layer, and the protection = display device 20 is not damaged by excessive external force. In addition, the display device 100 further includes a touch screen controller, a central processing unit 40, and a display device controller 5A. The touch screen controller 30, the central processing unit 4, and the display device controller are three connected to each other through a circuit, and the touch screen controller 3Q is electrically connected to the touch screen. The display device controller 5G and the display device ΜElectric connection. The touch screen controller 30 inputs an icon or a dish touched by a touch object (9) such as a finger: a set=bit selection information and transmits the information to the central processing unit 4, and controls the display using the display controller 5 At the time, a voltage of 5 volts is applied between the first electrode plates 12 and the second electrodes 144 in the -electrode plates 14 in a time-sharing manner. 20 200928914 . The user-side visual confirmation of the display under the fabric 1G, while the hammer furnace & 罝耵 兀 20 20 20 - electrode plate U into = object (9): finger or raw bending, so that press · 7 / In the electrode plate 12, the first substrate 120 of the first substrate 120 is f孜·/the whole of the first 70 违 恩 if ift> Wr 14 筮-道帝 η 曰 122 and the second electrode plate 尝 122 122盥Second, it turns to the electric (four) of the ^ and carries out an accurate calculation, will: hand to Zhongmai: sit? . The touch screen controller 3〇 digitizes the contact coordinates of the mouth and handles theft. The central processing unit 4 发出 initiates various function switching of the electronic device according to the contact coordinates, and controls the display element 2 〇 display by the display controller 50. Compared with the prior art, the touch panel and the display provided by the present rib scheme have the following advantages: First, since the plurality of nanostone sinusoidal film structures in the transparent conductive layer are arranged in parallel and at intervals, the transparent conductive The layer--good mechanical properties, so that the above transparent conductive layer has better mechanical strength and sturdiness, so that the durability of the touch screen can be correspondingly improved, thereby improving the durability of the display device using the touch screen. Second, the plurality of carbon nanotube film-like films in the transparent conductive layer are arranged in parallel and spaced apart such that the transparent conductive layer has a uniform resistance distribution and light transmission and the each electrode is transparently conductive thereto At least one end of at least one of the nano-small-tube-like membrane structures is electrically connected, so that the position of the touched point can be more accurately determined by detecting a voltage change between the electrodes at the touched point, thereby facilitating the improvement of the touch screen and the use of the The resolution and accuracy of the display device of the touch screen. 21 200928914 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a three-dimensional structure of a touch screen according to an embodiment of the present technical solution. FIG. 2 is a schematic side view showing the structure of a touch screen according to an embodiment of the present technical solution. ^ 3 is the implementation of this technical solution __Nano carbon tube pickup photo. J Ping

4係本技術方案實施例顯 示裝置的侧視結構示 意 10 12 14 16 18 120 122 124 140 142 【主要元件符號說明】 觸摸屏 第一電極板 ❹第二電極板 •點狀隔離物 絕緣層 第一基體 第一導電層 第一電極 第二基體 第二導電層 第二電極 22 144 200928914 透明保護膜 126 顯示裝置 100 .顯示設備 20 ^觸摸屏控制器 30 中央處理器 40 顯示設備控制器 50 觸摸物 60 按壓處 70 ®屏蔽層 22 鈍化層 24 間隙 26 ❹ 234 is a schematic view of a side view of the display device of the embodiment of the present invention. 10 12 14 16 18 120 122 124 140 142 [Description of main component symbols] Touch screen first electrode plate ❹ second electrode plate • dot spacer insulating layer first substrate First conductive layer first electrode second substrate second conductive layer second electrode 22 144 200928914 transparent protective film 126 display device 100. display device 20 ^ touch screen controller 30 central processing unit 40 display device controller 50 touch object 60 press 70 ® Shield 22 Passivation Layer 24 Clearance 26 ❹ 23

Claims (1)

200928914 十、申請專利範圍 1. 一種觸摸屏,包括: 電極板,該第—曾 及至少一電—極板包括一第-基體、 導電層及至少兩個笫^ 一弟—基體、一第— 一基體的下表面,該至少$彻& 導電層政置在該第 -電極板的下表 刀另“又置在該第 電連接丨以及 方向的兩端且與第一導電層 ❹ Ο 一第二電極板,該第二電極 該第二電極板包括 :/、第-電極板間隔設置, 個第二電極,哕第—第一ν^層及至少兩 电々3第一導電層設置在 面’該至少兩個第二電極 』的上表 # ^ ^ _ 电性刀別1 2 3又置在該第二電極板的上 盆’口第一方向的兩端且與第二導電層電連接; 1良在於:所述第—導電層和第:導電層中的至少一 電層包括平行且間隔設置的多個奈米碳管帶狀膜 1構,所述設置有多個奈米碳管帶狀膜結構的電極板兩 端刀別對應设置有多個電極,所述每個奈米碳管帶狀膜 結構的兩端分別與兩個相對的電極電連接,且所述每個 電極與至少一個奈米碳管帶狀膜結構的一端電連接。 奈米碳管帶狀膜結構 2.如申請專利範圍第i項所述的觸摸屏,其中,所述每兩 個對應設置於所述電極板兩端的電極之間設置有多個 24 1 .如申請專利範圍第i項所述的觸摸屏,其中,所述奈米 2 後官帶狀膜結構爲至少一層奈米碳管薄膜,該奈米碳管 3 薄膜包括多個定向排列的奈米碳管。 200928914 4.如申請專利範圍第3項所述的觸摸屏,其中,所述奈米 碳管帶狀膜結構爲重叠設置的多層奈米破管薄膜,每一 ,奈米碳管薄膜包括多個定向排列的奈米碳管,且相鄰的 •兩層奈米碳管薄膜中的奈米碳管沿同一方向排列或沿 不同方向排列。 5. =申請專利範圍第4項所述的觸摸屏穴Γ 不小 〇 碳管薄膜進-步包括多個首尾相連的奈米碳管束片 ,’每個奈米碳管束片段具有相等的長度且每個奈米碳 官束片段由多個相互平行的奈米碳管束構成,所述多個 奈米碳管束片段兩端通過凡德瓦爾力相互連接。 6. 如申請補範㈣5項所述_摸屏,其巾,所述相鄰 的奈米碳管束之間通過凡德瓦爾力緊密結合,每〆奈米 碳管束包括多個長度相#且平行排列的奈米碳管。 7·如申請專利範圍第6項所述的觸摸屏,並中,所述奈 米碳官爲單壁奈米碳管、雙壁奈米碳管及多壁奈米碳 管中的一種或多種。 8. 如申。月專利犯圍第7項所述的觸摸屏,其特徵在於, 所述單壁Ϊ米碳管的直徑爲〇.5奈米,i米,所述雙 壁奈米碳管的直徑爲in太丨, ' ^ 仫爲i·0奈米〜5Θ奈米,所述多璧奈米 碳官的直徑爲1.5奈米〜5〇奈米。 9. 如申明專利H圍第i項所述的觸摸屏,1中,所述奈 米石f管帶狀膜結構的寬度爲1毫米〜H)厘米。 1〇.如申請專利範圍第1項所述的觸摸屏,其中,所述奈 米碳官帶狀膜結構的厚度爲G.5奈米〜_微米。 25 200928914 11.如申請專利範圍第!項所述的觸 、 米碳管帶狀膜結構之間、〃,所述奈 .12.如中請專利範圍第=距為5奈米〜1毫米。 f W乾圍第1項所述的觸摸屏,1 •兩個第一電極分別設置在所述第 ^ y ί4= 第一導電層電連接,所述至少兩個 =置在所述第二導電層的上表面沿第二 方向的兩知且與第二導電層電連接。 — 13. 如申請專利範圍第1項 ❹導電層和第二導電M j 其中,所述第一 ^ ^ ^ ^ 曰句l括平行且間隔設置的多個奈 膜社槿盘带、" 第—導電層中奈米碳管帶狀 與所Μ二導電層中的奈米碳管帶狀膜結構交 14. 如申請專利範圍第Μ項所 一 員所述的觸摸屏,其中,所述第 門[θ U碳管帶狀膜結構沿第-方向平行且 間隔設置,所述第-導雷 货一七二 弟一V電層中的奈米碳管帶狀膜結構沿 Q 弟一方向平行且間隔設置。 15. 如申請專利範圍第14項所述的觸摸屏,其中,所述第 一方向垂直於所述第二方向。 161、申請專利範圍第1項所述的觸摸屏,其中,所述觸摸 $ 括-絕緣層設置在該第二電極板上表面外 圍’該第-電極板設置在該絕緣層上。 如申π專利fe圍第16項所述的觸摸屏,其中,所述觸 :、屏進纟包括多個透明點狀隔離物設置在該第一電 極板與該第二電極板之間。 26 200928914 i8.mf圍第17項所述的觸摸屏,其,,所述多 =點狀㈣物設置在上述第-導電層和第:導電層I .19.如申請專利範圍第 摸屏進一步包括-屏蔽;^的觸摸屏,其中,所述觸 第二基體的下表面,屏蔽層設置在該觸摸屏 錫氧化物薄膜、錄金薄膜敗層局姻錫氧化物薄膜、録 20·如申請專利範圍第所膜或奈米碳管薄膜。 〇 -基體材料爲聚醋,戶==觸摸屏,其中’所述第 英、金剛石或塑料。μ第一基體材料爲玻璃、石 1項所述的觸摸屏,其中,該觸摸 述第-電極板上表面:透明保護膜設置在所 矽、氧化矽、苯丙卩以透明保護膜的材料爲氮化 苯二甲酸乙二醇醋Γ丁稀、聚醋、丙稀酸樹脂或聚對 ❹22.—種顯示裝置,包括: 一觸摸屏,該觸摸屏包括一 板,該第-電極板包括—第1及:::電極 少兩個第-電極,該第丄ί體一第-導電層及至 表面,該至少兩㈣ 層設置在該第一基體的下 下表面沿第^^1極分別設置在該第—電極板的 二電極板d兩端且與第一導電層電連接,·該第 第二基體、一第ιϋ設置’該第二電極板包括一 導電層設置在至:、兩個第二電極,該第二 一基體的上表面,該至少兩個第二電 27 200928914 極分別設置在該第二電極板的上表面沿第二方向的兩 端且與第二導電層電連接;及 ,一顯示設備,該顯示設備正對且靠近上述觸摸屏的第二 電極板設置; 其改良在於:所述第—導電層和第;導電層中的至少一 個導電層包括平行且間隔設置的多個奈米碳管帶狀膜 結構,所述設置有多個奈㈣管帶狀膜結構的電極板兩 ❹ 端分別對應設置有多個電極,所述每個奈米碳管帶狀膜 結構的兩端分別與兩個相對的電極電連接,且所述每個 電極與至少-個奈米碳管帶狀膜結構的一端電連接。 23.如申請專利範圍第22項所述的顯示裝置,其中,所述 顯不裝置進一步包括一觸摸屏控制器、一中理 =顯示設備控制器’其中,該觸摸屏控制器、該; 、地理益及该顯示設備控制器三者通過電路 接?觸摸屏控制器與該觸摸屏電連接,該顯示設= 控制盗與該顯示設備電連接。 认如申請專利範圍第22項所述的顯示裝置,其中 顯不設備爲液晶顯示器、, 電致發光顯示器、真空勞光::1…電漿顯示器、 器中的—種。m顯不器及陰極射線管顯示 25=::利範圍第22項所述的顯示裝置,其中,所述 所述顯示設備上。 -又置或所述觸摸屏集成在 26.凊專利範圍第22項所述的顯示裝置,其中,所述顯示 28 200928914 裝置進一步包括一鈍化層,該鈍化層設置在該觸摸屏 遠離第二基底的表面上,該鈍化層的材料爲氮化矽或 . 氧化石夕。 〇 ❹ 29200928914 X. Patent application scope 1. A touch screen comprising: an electrode plate, the first and the at least one electro-polar plate comprises a first base, a conductive layer and at least two 一^ a brother-base, a first one a lower surface of the substrate, the at least $cor & conductive layer is disposed on the lower surface of the first electrode plate and is further disposed at both ends of the first electrical connection and the direction and the first conductive layer a second electrode plate, the second electrode plate comprises: /, the first electrode plate is spaced apart, the second electrode, the first first ν layer and the at least two electric 々 3 first conductive layer are disposed on the surface The upper surface of the 'at least two second electrodes 』 is electrically placed on both ends of the upper basin of the second electrode plate and electrically connected to the second conductive layer. 1 is that at least one of the first conductive layer and the first conductive layer comprises a plurality of carbon nanotube strip films 1 arranged in parallel and spaced apart, wherein the plurality of carbon nanotubes are disposed The electrode plate of the strip-shaped membrane structure is provided with a plurality of electrodes corresponding to the two ends of the electrode plate, and each of the nanocarbons Two ends of the strip film structure are electrically connected to two opposite electrodes, respectively, and each of the electrodes is electrically connected to one end of at least one carbon nanotube strip film structure. The touch screen of claim i, wherein each of the two corresponding electrodes disposed at opposite ends of the electrode plate is provided with a plurality of 24 1 . The touch screen of claim i, wherein The nano 2 strip structure is at least one layer of carbon nanotube film, and the carbon nanotube 3 film comprises a plurality of aligned carbon nanotubes. 200928914 4. As claimed in item 3 The touch screen, wherein the carbon nanotube film structure is a stacked multi-layered nano tube film, each of which comprises a plurality of aligned carbon nanotubes, and adjacent • The carbon nanotubes in the two-layered carbon nanotube film are arranged in the same direction or in different directions. 5. = The touch screen hole described in item 4 of the patent application is not small. The carbon tube film is further included. End-to-end carbon nanotube bundles , 'each nano carbon tube bundle segment has equal length and each nano carbon official beam segment is composed of a plurality of mutually parallel carbon nanotube bundles, both ends of which pass Van der Waals force Connected to each other. 6. If the application of the supplementary (4) 5 item _ touch screen, the towel, the adjacent carbon nanotube bundles are closely combined by van der Waals force, each bundle of carbon nanotubes includes a plurality of length phases #且且相相的碳碳管。 7. The touch screen of claim 6, wherein the nano carbon official is a single-walled carbon nanotube, a double-walled carbon nanotube and a multi-wall The touch screen of the seventh aspect of the invention, wherein the single-walled carbon nanotube has a diameter of 〇.5 nm, i meters. The diameter of the double-walled carbon nanotube is in Taihao, '^ 仫 is i·0 nm~5ΘN, and the diameter of the multi-nano carbon is 1.5 nm~5〇N. 9. The touch screen of claim i, wherein the nanowire f-tube film structure has a width of 1 mm to H) cm. The touch panel of claim 1, wherein the nano carbon ribbon film structure has a thickness of G. 5 nm to _micrometer. 25 200928914 11. If you apply for a patent scope! The contact between the touch and the carbon nanotube film structure, 〃, the naphth. 12, as claimed in the patent range = 5 nm ~ 1 mm. The touch screen of the first aspect, wherein the two first electrodes are respectively electrically connected to the first conductive layer, and the at least two are placed on the second conductive layer. The upper surface is both known in the second direction and is electrically connected to the second conductive layer. — 13. As claimed in the first paragraph of the patent application, the conductive layer and the second conductive material M j , wherein the first ^ ^ ^ ^ l sentence includes a plurality of nanofilm cooperative tapes arranged in parallel and at intervals, " The touch panel of the carbon nanotube strip in the conductive layer and the carbon nanotube strip film structure in the second conductive layer. The touch screen according to the invention of claim 2, wherein the first gate [ The θ U carbon tube strip-like membrane structures are arranged in parallel and spaced along the first direction, and the carbon nanotube strip-like membrane structures in the first-lead-lead 172-di-V-layer are parallel and spaced along the direction of the Q-dipole Settings. 15. The touch screen of claim 14, wherein the first direction is perpendicular to the second direction. The touch panel of claim 1, wherein the touch-insulating layer is disposed on a surface of the second electrode plate, and the first electrode plate is disposed on the insulating layer. The touch screen of claim 16, wherein the touch panel comprises a plurality of transparent dot spacers disposed between the first electrode plate and the second electrode plate. The invention relates to the touch screen according to Item 17, wherein the multi-point (four) material is disposed on the first conductive layer and the first conductive layer I.19. The touch screen further includes a shielding screen of the second surface of the second substrate, wherein the shielding layer is disposed on the touch screen tin oxide film, and the gold film is ruined, and the tin oxide film is recorded. Film or carbon nanotube film. 〇 - The base material is poly vinegar, household == touch screen, where 'the ying, diamond or plastic. The first base material is a touch screen according to the item of the glass or the stone, wherein the surface of the first electrode surface of the touch: the transparent protective film is disposed on the surface of the ruthenium, ruthenium oxide, and phenyl fluorene as a transparent protective film. a display device comprising: a touch screen, the touch screen comprising a plate, the first electrode plate comprising - the first and the oxidized phthalic acid phthalate ::: the electrode has two second electrodes, the first conductive layer and the surface, and the at least two (four) layers are disposed on the lower surface of the first substrate along the first electrode - two ends of the two electrode plates d of the electrode plate and electrically connected to the first conductive layer, the second substrate, a first electrode plate, the second electrode plate comprises a conductive layer disposed at: two second electrodes The upper surface of the second substrate, the at least two second electrodes 27 200928914 are respectively disposed at two ends of the second electrode plate in the second direction and electrically connected to the second conductive layer; and Display device that is facing and close to the touch screen The second electrode plate is disposed; the improvement is that at least one of the first conductive layer and the first conductive layer comprises a plurality of carbon nanotube film structures arranged in parallel and spaced apart, and the arrangement is The two ends of the electrode plates of the nematic (four) tube strip-shaped membrane structure are respectively provided with a plurality of electrodes, and two ends of each of the carbon nanotube strip-shaped membrane structures are electrically connected to two opposite electrodes, respectively, and Each electrode is electrically connected to one end of at least one of the carbon nanotube strip film structures. The display device of claim 22, wherein the display device further comprises a touch screen controller, a middle control device, a display device controller, wherein the touch screen controller, the geographic benefit And the display device controller is connected through the circuit? The touch screen controller is electrically connected to the touch screen, and the display device = control thief is electrically connected to the display device. The display device according to claim 22, wherein the display device is a liquid crystal display, an electroluminescent display, a vacuum light:: a plasma display, or a device. The display device according to the item 22, wherein the display device is on the display device. The display device of claim 22, wherein the display 28 200928914 device further comprises a passivation layer disposed on a surface of the touch screen away from the second substrate The material of the passivation layer is tantalum nitride or oxidized stone. 〇 ❹ 29
TW96151296A 2007-12-31 2007-12-31 Touch panel and displaying device using the same TWI354921B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151296A TWI354921B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151296A TWI354921B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200928914A true TW200928914A (en) 2009-07-01
TWI354921B TWI354921B (en) 2011-12-21

Family

ID=44864294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151296A TWI354921B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI354921B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8866978B2 (en) 2009-11-02 2014-10-21 Beijing Funate Innovation Technology Co., Ltd. Display device and touch panel thereof
US8899851B2 (en) 2011-01-28 2014-12-02 Tsinghua University Carbon nanotube based keyboard
US8905659B2 (en) 2011-01-28 2014-12-09 Tsinghua University Carbon nanotube based keyboard
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
TWI505309B (en) * 2011-01-28 2015-10-21 Hon Hai Prec Ind Co Ltd Flexible keyboard

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US8866978B2 (en) 2009-11-02 2014-10-21 Beijing Funate Innovation Technology Co., Ltd. Display device and touch panel thereof
US8899851B2 (en) 2011-01-28 2014-12-02 Tsinghua University Carbon nanotube based keyboard
US8905659B2 (en) 2011-01-28 2014-12-09 Tsinghua University Carbon nanotube based keyboard
TWI505309B (en) * 2011-01-28 2015-10-21 Hon Hai Prec Ind Co Ltd Flexible keyboard
TWI505308B (en) * 2011-01-28 2015-10-21 Hon Hai Prec Ind Co Ltd Flexible keyboard

Also Published As

Publication number Publication date
TWI354921B (en) 2011-12-21

Similar Documents

Publication Publication Date Title
TW200928914A (en) Touch panel and displaying device using the same
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458603B (en) Touch screen and display device
CN101470565A (en) Touch screen and display equipment
CN101464764B (en) Touch screen and display equipment
CN101458602B (en) Touch screen and display device
TW200926471A (en) Touch panel and displaying device using the same
CN101458604B (en) Touch screen and display device
CN101464766B (en) Touch screen and display equipment
TWI386831B (en) Touch panel and displaying device using the same
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI412962B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TWI356517B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same
TW200921188A (en) Touch panel
TW200929636A (en) Touch panel and displaying device using the same
CN101458605A (en) Touch screen and display device
TW201305659A (en) Touch panel and display device
TW201108051A (en) Touch panel and display device using the same
TWI355765B (en) Touch panel and displaying device using the same