TW200925113A - Alumina powder, process for producing the same, and composition containing the same - Google Patents

Alumina powder, process for producing the same, and composition containing the same Download PDF

Info

Publication number
TW200925113A
TW200925113A TW097129053A TW97129053A TW200925113A TW 200925113 A TW200925113 A TW 200925113A TW 097129053 A TW097129053 A TW 097129053A TW 97129053 A TW97129053 A TW 97129053A TW 200925113 A TW200925113 A TW 200925113A
Authority
TW
Taiwan
Prior art keywords
aluminum oxide
powder
amount
mass
aluminum
Prior art date
Application number
TW097129053A
Other languages
Chinese (zh)
Inventor
Takaaki Tanaka
Osamu Kunitomo
Takahisa Mizumoto
Hisashi Esaki
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200925113A publication Critical patent/TW200925113A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/90Other morphology not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

An alumina powder having further improved reliability concerning moisture resistance; a process for producing the powder; and a composition containing the powder, especially an encapsulating material for semiconductors. The alumina powder in a 100-hour ultrapure-water extraction test at 150 DEG C has an Na+ amount of 20 ppm or smaller. Alternatively, the alumina powder is one which in a 100-hour ultrapure-water extraction test at 150 DEG C has a total amount of Li+, Na+, and K+ of 20 ppm or smaller, and which includes particles having an average particle diameter smaller than 45 [mu]m, these particles having an average roundness of 0.95 or higher, and has an average particle diameter of 100 μm or smaller. The process for alumina powder production is characterized by heat-treating pulverized fused alumina in a flame. The composition comprises a resin or rubber which contains either of these alumina powders.

Description

200925113 九、發明說明 【發明所屬之技術領域】 本發明係有關耐濕信賴性高之鋁氧粉末,其製 及使用該鋁氧粉末之組成物之用途。 【先前技術】 近年來,伴隨1C等之發熱性電子零件之高機 ® 高速化之進展’其所搭載之電子機器發熱量大增, 導體密封材料亦被期待高度散熱特性。爲提高半導 材料之散熱特性,只要於橡膠或樹脂中含有導熱性 氧粉末即可,而一般於拜耳法鋁氧粉末中存在多量 ’因此,明顯損及半導體密封材料的耐濕信賴性。 爲解決此,被揭示將鋁氧粉末於離子交換樹脂 下’進行水洗,去除離子性雜質(專利文獻1 )。 例中,被記載有藉由95 °C下100小時之超純水萃取 Na +之量爲2PPm。惟,車輛等之半導體密封材料中 步要求更高的信賴性,150 °C下100小時之更嚴格 水萃取試驗中,被期待Na+之溶解析出少之鋁氧粉 利文獻1所記載之例中,如此嚴格之萃取試驗條 ^a+的溶解析出量爲30ppm。 專利文獻1 :特開2005-28 1 063號公報 【發明內容】 本發明之目的係提供一種進一步改善耐濕信賴 造方法 能化與 對於半 體密封 高之鋁 之 Na + 之存在 該實施 試驗之 被進一 之超純 末。專 件中之 性之鋁 -5- 200925113 氧粉末與其製造方法及使用其之組成物,特別是半導體密 封材料。 本發明者爲解決該課題,進行精密硏討後,發現使電 熔鋁氧粉碎物進行火焰處理,較佳者,使火焰處理經由水 洗後,可達成提供進一步改善耐濕信賴性之鋁氧粉末。 亦即,本發明係具有如下之重點。 本發明係用下方法所測定之Na+量爲20ppm以下之鋁 φ 氧粉末。 [Na+量之測定方法] 使鋁氧粉末與超純水以質量比1 : 2之比例下封入不 鏽鋼製之耐壓密閉容器中,於溫度150°C之環境下,靜置 100小時後,於2(TC下放涼30分鐘,利用纖維素濾器進 行過濾,以原子吸光分光光度計測定其濾液中之Li+、Na + 、K+之量時之Na+之量(Na+之溶解析出量)。另外,純 Q 水中使用ADV ANTEC公司製之商品名「RFD 250NB」, 原子吸光光度計中使用島津製作所公司製之商品名「AA- 6 8 0 0 j 。 又,本發明係以上述方法所測定之Li+、Na+、Κ +之總 量爲20ppm以下,平均粒徑未達45μιη之粒子之平均圓形 度0.95以上,特別是0.97以上,平均粒徑1 ΟΟμιη以下, 特別是10〜95 μιη之鋁氧粉末。 又,本發明之鋁氧粉末中,其經由化學分析之鹼金屬 含量,以R2〇 ( R代表Li、Na、Κ )換算下爲1質量% ( 200925113 含0質量% )以下者宜。又,平均粒徑45〜200μηι之粒子 的平均圓形度爲0.95以上者宜。 又,本發明係將電熔鋁氧粉碎物於火焰中進行熱處理 者爲其特徵之鋁氧粉末之製造方法。本發明中,將火焰處 理物進行水洗者宜。 又,將經由化學分析之鹼金屬含量以R2〇 ( R代表Li 、Na、K )換算下爲3質量%以下(含0質量% )之電熔鋁 〇 氧粉碎物進行火焰處理者宜。 又,本發明係由橡膠或樹脂中含有本發明鋁氧粉末所 成之組成物,特別是由環氧樹脂中含有本發明鋁氧粉末所 成之半導體密封材料。 本發明鋁氧粉末之製造方法可取得耐濕信賴性高之鋁 氧粉末,如:可使具有鋁配線之半導體元件即使曝露於 140 °c、3氣壓之水蒸氣環境下,350小時以上仍不斷線之 組成物,特別是可製造半導體密封材料。 〇 【實施方式】 [發明實施之最佳形態] 鋁氧粉末之Na +量(溶解析出量)若超過20ppm則明 顯降低耐濕信賴性。N a +量愈少者宜,特別是1 〇 p p m以下 者最佳。該鋁氧粉末可使電熔鋁氧粉碎物經由火焰處理製 造之。爲實現更高度耐濕信賴性,其Li+、Na+、K+之總量 爲20ppm以下者宜。 鋁氧粉末中之Li+、Na+、K +含量(溶解析出量)可依 200925113 電熔鋁氧粉碎物中之其含有率進行增減。電熔鋁氧粉碎物 中之Na +含量可使如:原料之拜耳法鋁氧粉末藉由浸漬( 如:24小時)於硫酸水溶液(如濃度15質量% )而降低 。又,使拜耳法鋁氧粉末於電弧爐進行熔融時,藉由添加 Li20、Na20、K20 後,可增加 Li+、Na+、K +之含量。 鋁氧粉末之平均粒徑係依其用途進行各種選擇。藉由 後記之本發明製造方法可輕易製造平均粒徑ΙΟΟμιη以下’ Q 特別是10〜95 μιη之鋁氧粉末。平均粒徑可依電熔鋁氧粉 碎物之平均粒徑進行增減。當平均粒徑爲100 μιη以下時, 則有易於作成球狀化之理想點。若平均粒徑爲1 〇μιη以下 則火焰投入時,將不易使粒子均勻分散,粒子不易高度球 狀化。爲使粒子爲高度球狀化,其平均粒徑爲1 〇 μηι以上 者宜。 平均粒徑係利用雷射反射式粒度分佈測定機Cilas顆 粒測定計(CILAS公司製、「模型920」)進行測定。針 ❹ 對平均粒徑25〜45 μηι之粒子秤取樣品2g,針對45〜 120μιη之粒子秤取樣品4g後,直接投入Cilas顆粒測定計 之樣品導入部。Cilas顆粒測定計粒度分佈測定之設定係 於折射率使用水( 1.330)與鋁氧粉( 1.768),泵旋轉數 爲60rpm下進行之。 鋁氧粉末中經由化學分析增加鹼金屬含量後,可降低 鋁氧粉之熔點。鹼金屬含量以R2〇 ( R代表Li、Na、K) 換算下若超出1質量%則促使相互粒子之吸附而降低圓形 度。爲達成更高度之圓形度,以R20換算下爲0.8〜1質 200925113 量%者宜。 樹脂或橡膠中進行鋁氧粉末之高塡充時,其平均粒徑 未達45μιη之鋁氧粉末的平均圓形度爲0.95以上者宜,特 別爲0.97以上最佳。其中又以平均粒徑45〜200 μιη之鋁 氧粉末的平均圓形度爲0.95以上’可更提昇組成物之流 動性。 鋁氧粉末之平均圓形度可依其用於火焰形成之燃料氣 0 體(如:LPG)量,電熔鋁氧粉碎物中之Li+、Na+、Κ +之 含有率進行增減。提高平均粒徑45〜200 μιη之粒子的平均 圓形度時,若調整電熔鋁氧粉碎物經化學分析之鹼金屬含 量以R2〇換算下爲3質量%以下(含0質量% )則變得容 易。電熔鋁氧粉碎物經由化學分析之鹼金屬含量以R2〇換 算下爲3質量%以下者宜。 經由化學分析之鹼金屬的R2〇(R代表Li、Na、K) 換算量係針對試料加入4.5莫耳/1之硫酸15ml,封入內壁 © 爲四氟化乙烯所塗佈之不鏽鋼製耐壓密閉容器中’於保持 溫度230°C之電氣乾燥機(如:YAMATO科學公司製、商 品名「DS-44」)內維持17小時後,以水定容爲l〇〇m卜 調製樣品後,以原子吸光分光光度計(如:島津製作所公 司製、商品名「AA-6 800」)進行分析該濾液後進行測定 之。該化學分析法亦適用於相當於電熔鋁氧粉碎物中所含 之鹼金屬含量之R2〇 ( R代表Li、Na、K )換算量之測定 〇 平均圓形度係利用Sysmex公司製之流動式粒子像解 -9 - 200925113 析裝置「FPLA-3000」進行測定。亦即,於200ml燒杯秤 取40g鋁氧粉末,置入100ml之離子交換水進行攪拌後, 以超音波洗淨器(如:AZWAN公司製、商品名「超音波 洗淨器強力型VS-150」)進行分散3分鐘,作成漿料。 接著,於裝置接受皿之JIS 45 μηι篩中置入該燒杯內之漿 料後,由篩上加入300ml之離子交換水,之後,因應粒徑 進行如下之測定。另外,平均圓形度其流動式粒子像解析 Q 裝置「FPLA-3000」係進行解析1個粒子投影像的周長與 相當於粒子投影像面積之圓的周長,依下式求出圓形度, 自動算出每36000個之平均値。 圓形度=(粒子投影像之周長)/(相當於粒子投影像 面積之圓的周長) 以下,代表各平均粒徑中平均圓形度之測定方法。 [平均粒徑爲45〜200μιη粒子之平均圓形度] 〇 於5ml容器中秤取0.15〜0.20g篩上之粒子,加入 5ml之丙二醇25質量%水溶液後,以超音波洗淨器進行分 散10秒鐘。將此全量置入流動式粒子像解析裝置「FpLA-3 000」中,以(總計數3 6000個,重覆測定次數1次)方 式進行測定,使粒子爲45〜200μπι之範圍(圓相當直徑/ 個數基準)進行解析。 [平均粒徑未達45μπι之粒子的平均圓形度] 使該接受皿中之沈降漿料以攪拌棒進行攪拌後’採取 -10- 200925113 其0.5ml於5ml容器中’加入5ml之丙二醇25質量%水溶 液後,以超音波洗淨器進行分散10秒。將此全量置入流 動式粒子像解析裝置「FPLA-3000」,以HPF模型/定量計 數(總計數36000個、重覆測定次數丨次)方式進行測定 ’使粒子爲1·5〜45μιη範圍(圓相當直徑/個數基準)進 行解析。 本發明鋁氧粉末之製造方法除使用電熔鋁氧粉碎物取 〇 代拜耳法鋁氧粉末爲原料粉末之外,與常法(如特開平 11-57451號公報)之火焰處理法相同。 簡單的說,將電熔鋁氧粉碎物噴射於火焰,使取得球 狀化物進行排氣,同時藉由吹氣機運送至旋風器、袋濾器 等收集裝置,進行分級、收集。將旋風器品與袋濾器品等 進行適當混合後,作成所期待粒度之鋁氧粉末。火焰之形 成係將氫、天然氣、乙炔氣體、丙烷氣體、丁烷等燃料氣 體與空氣、氧氣等助燃氣體由設定於爐體上之燃燒噴燈進 〇 行噴射後進行之。 電熔鋁氧粉碎物係指拜耳法煅燒鋁氧粉之熔融固化物 之粉碎物。該平均粒徑係因應所期待之鋁氧粉末之平均粒 徑,於如:平均粒徑200 μιη以下之範圍內進行適當選擇。 鋁氧粉末之平均粒徑45〜200 μιη粒子之平均圓形度爲 0.95以上時,電熔鋁氧粉碎物中經由化學分析之鹼金屬含 量以R2〇換算(R代表Li、Na、K)下調整爲3質量%以 下(含〇質量%)者宜。當R20換算之含量超出3質量% 時,則鋁氧粉之熔點將下降’故平均粒徑45 以上之粒 -11 - 200925113 子產生吸附,不易實現平均圓形度0.95以上,且如上述 嚴格條件(150°C下100小時之超純水萃取試驗)之Li+、 Na+、K+之總量超出20ppm。鹼金屬之電熔鋁氧粉碎物中 之含量下限以R2〇換算下爲500ppm者宜。 本發明製造方法中,電熔鋁氧粉碎物可藉由r2〇量進 行增減鋁氧粉末中此等之量。 本發明中,將電熔鋁氧粉碎物之火焰處理物進行水洗 〇 後’只要去除Li+、Na+、K+,特別是Na+的去除(含降低 ,以下相同),將使本發明鋁氧粉末之製造更爲容易。水 洗時,於原子吸光分光光度計中,使用未檢出Li +成份, Na +成份、及K +成份之PH3〜7之超純水者宜。該超純水 可於以純水製造裝置(如:AD VAN TEC公司製 '商品名「 RFD 2 5 0NB」)所製造之離子交換水中,添加如··鹽酸、 乙酸、硫酸等之酸,調整pH後製造之。當pH超出7時 ’則由鋁氧粉末去除Li+、Na+、K+之效率將降低。PH若 〇 未達3則去除效率亦無明顯變化,而恐殘留用於調整pH 之酸成份。用於水洗之超純水其理想之pH範圍爲3〜6。 水洗方式係調製電熔鋁氧粉碎物之火焰處理物的水漿 料’攪拌後進行之。作爲攪拌裝置者,如:具有如:旋轉 定子系統(槽中心設置固定棒,使其外圍旋轉其攪拌用旋 轉器之裝置的攪拌裝置)之高度剪切能力者宜。其一示例 如:Acizawa · faintec 公司製之商品名「statisparsa RS VI 75」。攪拌中賦予超音波更爲理想。 發料之鋁氧粉末濃度由其攪拌裝置之磨損與生產性面 -12- 200925113 觀之,爲45〜60質量%者宜,更佳者爲45〜50質量%。 又由水洗水中萃取,去除更多的鹼金屬離子之面觀之,漿 料溫度爲80〜95 °C者宜,攪拌時間爲1〜3小時。之後, 漿料以濾器加壓進行脫水處理,乾燥後作成鋁氧粉末。乾 燥時間於溫度120〜180°C下爲12〜60小時。乾燥器以一 般之塔板乾燥器即可。 本發明組成物係於橡膠或樹脂中含有本發明之鋁氧粉 〇 末者。本發明組成物係使各材料之特定量藉由摻混器、高 速攪拌式混合器等進行混合後,經由加熱滾輥'捏合器、 單軸或雙軸擠壓器等進行混煉·冷卻後,經由粉碎後製胃 之。鋁氧粉末之含有率依其用途而異,其一例如:40 ~9() 體積%。 環氧樹脂中含有本發明鋁氧粉末作爲半導體密封狗·_ 者宜。半導體密封材料之本發明鋁氧粉末含有率爲70〜9() 體積%者宜,更佳者爲75〜85體積%。作爲半導體之密封 Q 方法者,可採用如:移轉塑模、短路器等。 用於本發明組成物之橡膠例者如:聚矽氧橡膠、@ _ 甲酸乙酯橡膠、丙烯酸橡膠、乙烯丙烯橡膠、乙烯乙酸2 烯酯共聚物等。其中又以聚矽氧橡膠、胺基甲酸乙酯橡@ 、丙烯酸橡膠爲較佳使用者。 又,用於本發明組成物之樹脂例者如:環氧樹脂、$ 酚樹脂、蜜胺樹脂、脲樹脂、不飽和聚酯、氟樹脂、聚_ 亞胺、聚醯胺醯亞胺、聚醚醯亞胺等之聚醯胺、聚對苯= 甲酸丁二醇酯、聚對苯二甲酸乙二醇酯等之聚酯、聚苯^ -13- 200925113 醚、全芳香族聚酯、聚碾、液晶聚合物、聚醚颯、聚碳酸 酯、馬來酸酐縮亞胺改性樹脂、ABS樹脂、AAS (丙烯 腈一丙烯酸橡膠•苯乙烯)樹脂、AES (丙烯腈•乙烯. 丙烯•二烯橡膠一苯乙烯)樹脂等。其中又以環氧樹脂、 氟樹脂、聚苯硫醚爲較理想使用者。 [實施例] 以下’藉由實施例及比較例進行本發明更具體的說明 Q ,惟本發明並未受限於以下實施例。 (實施例1〜26、比較例1〜3 ) [電熔鋁氧粉碎物之製造] 將拜耳法煅燒鋁氧粉末「S」(Na +以Na20換算下含 〇·5質量%)於電弧爐進行熔融•冷卻•粉碎,製造出電 熔鋁氧粉碎物「C」、及「D」。電熔鋁氧粉碎物「C」及 「D」之製造區別係調整粉碎時間後進行之。 φ 將拜耳法熘燒鋁氧粉末「S」之500kg浸漬於硫酸水 溶液(濃度15質量%)、0.25m3中24小時後’水洗•乾 燥之後,於電弧爐上進行熔融•冷卻•粉碎’製造出電熔 鋁氧粉碎物「A」、「B」及「Q」’電熔鋁氧粉碎物「A 」、「B」及「Q」之製造區別係調整粉碎時間後進行之。 又,除添加Na20、K2〇或Li20於拜耳法煅燒銘氧粉 末中,之外,與電熔鋁氧粉碎物「A」之製造相同製造電 熔鋁氧粉碎物。電熔鋁氧粉碎物「E」、「F」、「K」、 、「Η 「L」及「R」係添加Na20,電熔銘氧粉碎物「G」 200925113 J 、「0」及「p」係添加Κ20,另外’電熔鋁氧粉碎物「 I」、「J」、「Μ」及「Ν」係添加Li20後進行製造之。 此等製造區別係調整粉碎時間後進行之。 電熔鋁氧粉碎物之平均粒徑及經由化學分析之鹼金屬 含量之R2〇 ( R代表Li、Na、K)換算量係依上述測定之 。其結果示於表1。 φ [電熔鋁氧粉碎物之火焰處理(鋁氧粉末之製造)] 電熔鋁氧粉碎物(比較例1係使用拜耳法煅燒鋁氧粉 末)之火焰處理係利用特開2001 -1 997 1 9號公報之圖1所 示之製造裝置進行之。將燃料氣體(LPG)與助燃氣體( 〇2氣體)之噴射量如表2形成火焰。電熔鋁氧粉碎物或 拜耳法煅燒鋁氧粉末係使其30kg/Hr伴隨氧氣體20Nm3/Hr ,由噴嘴噴射於火焰中,由袋濾器回收取得之鋁氧粉末。 〇 [鋁氧粉末之水洗處理] 除實施例23及24,於實施例1〜22、25、26及比較 例1〜3中使鋁氧粉末進行如下之水洗處理。亦即,於鋁 氧粉末與原子吸光分光光度計測定中與未檢出Li +成份、 Na+成份、及K2成份之pH 7之離子交換水進行混合,調製 鋁氧粉末濃度爲40質量%之水漿料,利用攪拌混合裝置( Asizawa· faintec 公司製•商品名「Stadisparsa RSV175」BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-oxygen powder having high moisture-resistance reliability, and a use of the composition of the aluminum-oxygen powder. [Prior Art] In recent years, with the advancement of high-speed machines for heat-generating electronic components such as 1C, the amount of heat generated by electronic devices has increased, and conductor sealing materials have been expected to have high heat dissipation characteristics. In order to improve the heat dissipation characteristics of the semiconductive material, it is only necessary to contain a thermally conductive oxygen powder in the rubber or the resin, and generally there is a large amount in the Bayer process aluminum oxide powder. Therefore, the moisture resistance of the semiconductor sealing material is significantly impaired. In order to solve this problem, it has been revealed that the aluminum oxide powder is subjected to water washing under the ion exchange resin to remove ionic impurities (Patent Document 1). In the example, it is described that the amount of Na + extracted by ultrapure water at 100 ° C for 100 hours is 2 ppm. However, in semiconductor sealing materials such as vehicles, higher reliability is required, and in the more stringent water extraction test at 100 °C for 100 hours, the aluminum oxide powder which is expected to have less dissolution and precipitation of Na+ is in the example described in Document 1. The dissolution amount of such a strict extraction test strip ^a+ was 30 ppm. [Patent Document 1] JP-A-2005-28 1 063 SUMMARY OF THE INVENTION The object of the present invention is to provide a method for further improving the moisture resistance-relieving method and the presence of Na + in aluminum which is high in sealing for a half body. Was into a super pure. Aluminium in the special parts -5- 200925113 Oxygen powder and its manufacturing method and its constituents, especially semiconductor sealing materials. In order to solve this problem, the inventors of the present invention have found that the fused aluminum-oxygen pulverized material is subjected to flame treatment. Preferably, after the flame treatment is washed with water, the aluminum-oxygen powder which further improves the moisture-resistant reliability can be obtained. . That is, the present invention has the following points. The present invention is an aluminum φ oxygen powder having a Na+ amount of 20 ppm or less as measured by the following method. [Method for measuring the amount of Na+] The aluminum oxide powder and the ultrapure water were sealed in a pressure-resistant closed container made of stainless steel at a mass ratio of 1:2, and allowed to stand at a temperature of 150 ° C for 100 hours. 2 (cooling for 30 minutes under TC, filtering with a cellulose filter, and measuring the amount of Na+ (the amount of dissolved and precipitated Na+) of the amount of Li+, Na+, and K+ in the filtrate by an atomic absorption spectrophotometer. In the water, the product name "RFD 250NB" manufactured by ADV ANTEC Co., Ltd. is used, and the atomic absorption photometer is manufactured under the trade name "AA-6800" manufactured by Shimadzu Corporation. In addition, the present invention is Li+ measured by the above method. The total amount of Na+ and Κ+ is 20 ppm or less, and the average circularity of particles having an average particle diameter of less than 45 μm is 0.95 or more, particularly 0.97 or more, and the average particle diameter is 1 ΟΟμηη or less, particularly 10 to 95 μm. Further, in the aluminum oxide powder of the present invention, the alkali metal content by chemical analysis is preferably 1% by mass or less (200925113% by mass or less) in terms of R2〇 (R represents Li, Na, Κ). Flat of particles with an average particle size of 45~200μηι Further, the present invention is a method for producing an aluminum-oxygen powder characterized by heat-treating an fused aluminum-oxygen pulverized material in a flame. In the present invention, the flame-treated material is washed with water. In addition, it is preferable to carry out flame treatment by oxidizing aluminum bismuth oxy-pulverized material having a content of alkali metal of chemical analysis of R3 〇 (R represents Li, Na, K) in an amount of 3% by mass or less (including 0% by mass). Further, the present invention is a composition comprising a rubber or a resin comprising the aluminum oxide powder of the present invention, in particular, a semiconductor sealing material comprising the aluminum oxide powder of the present invention in an epoxy resin. The method can obtain an aluminum-oxygen powder having high moisture-resistance reliability, for example, a semiconductor component having an aluminum wiring can be continuously formed in a water vapor atmosphere of 140 ° C or 3 atmospheres, and the composition of the wire is continuously continuous for 350 hours or more. A semiconductor sealing material can be produced. [Embodiment] [Best Mode for Carrying Out the Invention] When the amount of Na + (dissolved and precipitated) of the aluminum-oxygen powder exceeds 20 ppm, the moisture-resistant reliability is remarkably lowered. In particular, it is preferably 1 〇 ppm or less. The aluminum oxy powder can be produced by flame treatment of fused aluminum oxide pulverized material. To achieve higher moisture resistance, the total amount of Li+, Na+, and K+ is 20 ppm or less. The content of Li+, Na+, K+ in the aluminum oxide powder (dissolved and precipitated amount) may be increased or decreased according to the content of the 200925113 fused aluminum oxide pulverized material. The Na+ content in the fused aluminum oxide pulverized material may be The Bayer process aluminum oxide powder such as the raw material is lowered by dipping (for example, 24 hours) in an aqueous sulfuric acid solution (e.g., concentration: 15% by mass). Further, when the Bayer process aluminum oxide powder is melted in an electric arc furnace, the contents of Li+, Na+, and K+ can be increased by adding Li20, Na20, and K20. The average particle size of the aluminum oxide powder is variously selected depending on its use. The aluminum oxide powder having an average particle diameter of Qμηη or less, particularly 10 to 95 μm, can be easily produced by the production method of the present invention described later. The average particle size can be increased or decreased depending on the average particle size of the fused aluminum oxide powder. When the average particle diameter is 100 μm or less, there is an ideal point for easy spheroidization. When the average particle diameter is 1 〇μιη or less, when the flame is applied, it is difficult to uniformly disperse the particles, and the particles are less likely to be highly spheroidized. In order to make the particles highly spheroidized, the average particle size is preferably 1 〇 μηι or more. The average particle diameter was measured by a laser reflection type particle size distribution measuring machine Cilas particle meter (manufactured by CILAS, "Model 920"). Needle 2 A sample of 2 g of a particle having an average particle diameter of 25 to 45 μm was weighed, and 4 g of a sample was weighed for a particle of 45 to 120 μm, and then directly introduced into a sample introduction portion of a Cilas particle meter. The Cilas granulometer particle size distribution measurement was carried out using a refractive index of water (1.330) and aluminum oxide powder (1,768) at a pump rotation number of 60 rpm. After the alkali metal content is increased by chemical analysis in the aluminum oxide powder, the melting point of the aluminum oxide powder can be lowered. When the content of the alkali metal exceeds 1% by mass in terms of R2〇 (R represents Li, Na, K), the adsorption of the mutual particles is promoted to lower the circularity. In order to achieve a higher degree of circularity, it is 0.8 to 1 in terms of R20. 200925113% is suitable. When the aluminum oxide powder is highly charged in the resin or rubber, the average circularity of the aluminum oxide powder having an average particle diameter of less than 45 μm is preferably 0.95 or more, and particularly preferably 0.97 or more. Further, the average circularity of the aluminum-oxygen powder having an average particle diameter of 45 to 200 μm is 0.95 or more, which further enhances the fluidity of the composition. The average circularity of the aluminum-oxygen powder can be increased or decreased depending on the amount of fuel gas (e.g., LPG) used for flame formation and the content of Li+, Na+, and yttrium in the fused aluminum oxide pulverized material. When the average circularity of the particles having an average particle diameter of 45 to 200 μm is increased, the alkali metal content of the chemically analyzed fused aluminum oxide pulverized material is adjusted to be 3% by mass or less (including 0% by mass) in terms of R2 则. It's easy. The content of the alkali metal of the fused aluminum oxide pulverized material by chemical analysis is preferably 3% by mass or less based on R2?. The amount of R2〇 (R represents Li, Na, K) of the alkali metal by chemical analysis is 15 ml of 4.5 mol/1 sulfuric acid added to the sample, and sealed into the inner wall © stainless steel pressure-resistant coated with tetrafluoroethylene In a sealed container, after maintaining for 17 hours in an electric dryer (for example, YAMATO Scientific Co., Ltd., trade name "DS-44") maintained at a temperature of 230 ° C, the sample was prepared by diluting the volume with water to a volume of 1 μm. The filtrate was analyzed by an atomic absorption spectrophotometer (for example, manufactured by Shimadzu Corporation, trade name "AA-6 800"), and then measured. This chemical analysis method is also applicable to the measurement of the amount of R2 〇 (R represents Li, Na, K) equivalent to the alkali metal content contained in the fused aluminum oxide pulverized material. The average circularity is the flow made by Sysmex Corporation. The particle size solution -9 - 200925113 The device "FPLA-3000" was measured. That is, 40 g of aluminum-oxygen powder is weighed in a 200 ml beaker, and 100 ml of ion-exchanged water is placed and stirred, and then an ultrasonic cleaner (for example, AZWAN company, trade name "Ultra-sonic cleaner" VS-150 ") Disperse for 3 minutes to prepare a slurry. Next, the slurry in the beaker was placed in a JIS 45 μm sieve of the apparatus receiving tray, and then 300 ml of ion-exchanged water was placed on the sieve, and then the following measurement was carried out in accordance with the particle diameter. In addition, the average circularity of the flow type particle image analysis Q device "FPLA-3000" analyzes the circumference of one particle projection image and the circumference of a circle corresponding to the area of the particle projection image, and obtains a circular shape according to the following equation. Degree, automatically calculate the average 每 per 36,000. The circularity = (the circumference of the particle projection image) / (the circumference corresponding to the circle of the particle projection image area) Hereinafter, the measurement method of the average circularity in each average particle diameter is shown. [Average circularity of particles having an average particle diameter of 45 to 200 μm] The particles on a sieve of 0.15 to 0.20 g were weighed in a 5 ml container, and a 25 mass% aqueous solution of propylene glycol was added thereto, followed by dispersion by an ultrasonic cleaner. Seconds. This amount was placed in a flow type particle image analyzer "FpLA-3 000", and the measurement was carried out so that the total count was 3 6000 and the number of times of measurement was repeated once, and the particles were in the range of 45 to 200 μm (circle equivalent diameter). / number basis) for analysis. [Average circularity of particles having an average particle diameter of less than 45 μm] After the sedimentation slurry in the receiving dish was stirred with a stirring bar, 'take -10-200925113, 0.5 ml thereof in a 5 ml container, '5 ml of propylene glycol 25 mass After the % aqueous solution, it was dispersed by an ultrasonic cleaner for 10 seconds. This amount is placed in the flow type particle image analyzer "FPLA-3000", and the HPF model/quantitative count (the total count is 36,000, and the number of times of measurement is repeated) is measured to make the particles range from 1 to 5 to 45 μm. The circle is equivalent in diameter/number basis) for analysis. The method for producing an aluminum-oxygen powder of the present invention is the same as the flame treatment method of the conventional method (e.g., Japanese Laid-Open Patent Publication No. Hei 11-57451), except that the oxidized aluminum-oxygen pulverized material is used as the raw material powder. Briefly, the fused aluminum oxide pulverized material is sprayed into a flame to obtain a spheroidal material for venting, and is transported to a cyclone, a bag filter or the like by a blower to perform classification and collection. After the cyclone product and the bag filter are appropriately mixed, an aluminum oxide powder having a desired particle size is prepared. The shape of the flame is carried out by injecting a fuel gas such as hydrogen, natural gas, acetylene gas, propane gas or butane with a combustion gas such as air or oxygen from a combustion burner set on the furnace body. The fused aluminum oxide pulverized material is a pulverized product of a molten solidified product of a Bayer calcined aluminoxy powder. The average particle diameter is appropriately selected in the range of, for example, an average particle diameter of 200 μm or less in accordance with the average particle diameter of the desired aluminum oxide powder. When the average circularity of the aluminum oxide powder is 45 to 200 μm, the average circularity of the particles is 0.95 or more, and the alkali metal content of the fused aluminum oxide pulverized material is converted by R 2 ( (R represents Li, Na, K). It is suitable to adjust to 3% by mass or less (including yttrium by mass). When the content of R20 is more than 3% by mass, the melting point of the aluminum oxide powder will decrease. Therefore, the particles having an average particle diameter of 45 or more are adsorbed, and it is difficult to achieve an average circularity of 0.95 or more, and the above strict conditions are as follows. The total amount of Li+, Na+, K+ (over 100 hours of ultrapure water extraction test at 150 ° C) exceeded 20 ppm. The lower limit of the content of the alkali metal fused aluminum oxide pulverized product is preferably 500 ppm in terms of R2 。. In the production method of the present invention, the fused aluminum-oxygen pulverized material can be increased or decreased by the amount of r2 by the amount of the aluminum-oxygen powder. In the present invention, after the flame-treated material of the fused aluminum-oxygen pulverized material is washed with water, 'the removal of Li+, Na+, K+, especially the removal of Na+ (including reduction, the same applies hereinafter), the production of the aluminum-oxygen powder of the present invention. It's easier. In the case of water washing, in the atomic absorption spectrophotometer, it is preferable to use an ultrapure water in which the Li + component, the Na + component, and the K + component of PH 3 to 7 are not detected. The ultrapure water can be adjusted by adding an acid such as hydrochloric acid, acetic acid or sulfuric acid to ion-exchanged water produced by a pure water production device (for example, "trade name "RFD 2 5 0NB" manufactured by AD VAN TEC). Made after pH. When the pH exceeds 7 o, the efficiency of removing Li+, Na+, K+ from the aluminum oxide powder will decrease. If the pH is less than 3, the removal efficiency does not change significantly, and the residual acid is used to adjust the acidity of the pH. The ultrapure water used for washing has a desirable pH range of 3 to 6. The water washing method is carried out by mixing the water slurry of the flame treated material of the fused aluminum oxide pulverized material. As the stirring device, for example, it is preferable to have a high shearing ability such as a rotating stator system (a stirring device in which a fixing rod is provided at the center of the groove and a device for rotating the stirring rotary device is rotated around the periphery). An example of this is the product name "statisparsa RS VI 75" manufactured by Acizawa faintec. It is more desirable to impart ultrasonic waves during agitation. The concentration of the aluminum-oxygen powder of the material is determined by the wear and productivity of the stirring device -12-200925113, preferably 45 to 60% by mass, more preferably 45 to 50% by mass. It is extracted by washing water to remove more alkali metal ions. The temperature of the slurry is 80~95 °C, and the stirring time is 1~3 hours. Thereafter, the slurry was subjected to dehydration treatment under pressure of a filter, and dried to prepare an aluminum oxide powder. The drying time is 12 to 60 hours at a temperature of 120 to 180 °C. The dryer can be used in a typical tray dryer. The composition of the present invention contains the aluminoxy powder of the present invention in rubber or resin. In the composition of the present invention, a specific amount of each material is mixed by a blender, a high-speed agitating mixer, or the like, and then kneaded and cooled by a heating roll 'kneader, a single-shaft or a biaxial extruder, or the like. After smashing, the stomach is made. The content of the aluminum-oxygen powder varies depending on the use thereof, and for example, 40 to 9% by volume. The epoxy resin of the present invention contains the aluminum oxide powder of the present invention as a semiconductor sealing dog. The content of the aluminum oxide powder of the present invention of the semiconductor sealing material is preferably from 70 to 9% by volume, more preferably from 75 to 85% by volume. As a semiconductor sealing method, a mold such as a transfer mold or a short circuit can be used. Examples of the rubber used in the composition of the present invention are: polyoxyethylene rubber, @_ethyl formate rubber, acrylic rubber, ethylene propylene rubber, ethylene vinyl acetate copolymer, and the like. Among them, polyoxynized rubber, urethane rubber, and acrylic rubber are preferred users. Further, examples of the resin used in the composition of the present invention are: epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, poly-imine, polyamidimide, poly Polyamides such as ether sulfoximine, polyparaphenylene = butylene glycol methacrylate, polyester such as polyethylene terephthalate, polyphenylene ^ -13- 200925113 ether, wholly aromatic polyester, poly Milling, liquid crystal polymer, polyether oxime, polycarbonate, maleic anhydride imide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber styrene) resin, AES (acrylonitrile, ethylene, propylene, propylene) Ethylene rubber-styrene) resin and the like. Among them, epoxy resin, fluororesin and polyphenylene sulfide are preferred users. [Examples] Hereinafter, the present invention will be more specifically described by way of Examples and Comparative Examples, but the present invention is not limited to the following examples. (Examples 1 to 26, Comparative Examples 1 to 3) [Production of fused aluminum oxide pulverized material] Baer method calcined aluminum oxide powder "S" (Na + 〇·5 mass% in terms of Na20) in an electric arc furnace Melt, cool, and pulverize to produce fused aluminum oxide pulverized materials "C" and "D". The manufacturing difference between the fused aluminum oxide pulverized materials "C" and "D" was carried out after adjusting the pulverization time. φ 500 kg of the Bayer process simmered aluminum-oxygen powder "S" was immersed in a sulfuric acid aqueous solution (concentration: 15% by mass), 0.25 m3 for 24 hours, and then 'washed, dried, and then melted, cooled, and pulverized on an electric arc furnace. The manufacturing differences between the "A", "B" and "Q"' fused aluminum oxide pulverized materials "A", "B" and "Q" of the fused aluminum oxide pulverized material were adjusted after the pulverization time was adjusted. Further, an fused aluminum oxide pulverized material was produced in the same manner as in the production of the fused aluminum oxide pulverized material "A" except that Na20, K2?, or Li20 was added in the Bayer process. The fused aluminum-oxygen pulverized materials "E", "F", "K", "", "L" and "R" are added with Na20, fused to oxygenated smash "G" 200925113 J, "0" and "p" Κ20 is added, and the 'electrolyzed aluminum-oxygen pulverized materials "I", "J", "Μ" and "Ν" are manufactured by adding Li20. These manufacturing differences are made after adjusting the pulverization time. The average particle diameter of the fused aluminum oxide pulverized material and the amount of R2 〇 (R represents Li, Na, K) of the alkali metal content by chemical analysis were measured as described above. The results are shown in Table 1. φ [Flame treatment of fused aluminum-oxygen pulverized material (manufactured by aluminum-oxygen powder)] Flame-treated system of fused aluminum-oxygen pulverized material (Comparative Example 1 using Bayer process for calcination of aluminum-oxygen powder) utilizes the special opening 2001-1 997 1 The manufacturing apparatus shown in Fig. 1 of the No. 9 publication is carried out. The injection amount of the fuel gas (LPG) and the combustion-supporting gas (〇2 gas) was flamed as shown in Table 2. The fused aluminum oxide pulverized material or the Bayer process calcined aluminum oxy powder was used to make 30 kg/Hr of oxygen gas 20 Nm3/Hr, which was sprayed into a flame by a nozzle, and the obtained aluminum oxide powder was recovered by a bag filter. 〇 [Water-washing treatment of aluminum oxide powder] In addition to Examples 23 and 24, in Examples 1 to 22, 25, and 26 and Comparative Examples 1 to 3, the aluminum oxide powder was subjected to the following water washing treatment. That is, in the measurement of the aluminum oxide powder and the atomic absorption spectrophotometer, the ion exchange water having a pH of 7 of not detected Li + component, Na + component, and K 2 component is mixed to prepare water having an aluminum oxide powder concentration of 40% by mass. The slurry is a stirring and mixing device (manufactured by Asizawa faintec, trade name "Stadisparsa RSV175"

)進行攪拌1小時後,以濾器加壓進行脫水處理。濾餅之 含水率全部爲20質量%以下。該濾餅以塔板乾燥機1 50°C -15- 200925113 下乾燥48小時後製造出鋁氧粉末。另外’水洗處理’實 施例1 9〜2 2及比較例2、3中,使水黎料之溫度爲5 C下 進行,除此以外,於8 51:下進行。 鋁氧粉末之平均圓形度,150 °C、1〇〇小時之超純水萃 取試驗中Li+、Na+、K +之量及經由化學分析之鹼金屬含量 之R20 ( R代表Li、Na、K)換算量係依上述方法所測定 。其結果示於表2及表3。 〇 接著,混合表4所示配合物30體積份與鋁氧粉末70 體積份,調製環氧樹脂組成物,依以下評定其耐濕信賴性 與流動性。其結果示於表2及表3。 [耐濕信賴性] 使具有鋁配線之1 6針監控1C進行轉移成形,硬化後 於2 6 0 °C之焊浴中浸漬1 〇秒後,於1 40。(:,3氣壓水蒸氣 環境中施加30V,以超音波探測影像裝置進行監控鋁配線 © 之開啓不良(斷線)、或成形物,測定成形物出現裂化之 個數合計爲試料個數(20個)之50% (10個)爲止之時 間’不於表2及表3。時間愈長,代表耐濕信賴性愈高。 [流動性] 使用螺旋流動塑模,使用裝置依EMMI-66 ( Epoxy Molding Material Institute; Society of Plastic Industry) 爲基準之螺旋流動測定用塑模之轉移成形機,於雙軸濟壓 混煉機進行加熱混煉,測定調製之半導體密封材料之螺旋 -16- 200925113 流動値。轉移成形條件爲塑模溫度 175 °C、成形壓力 7.4MPa、保壓時間90秒。 螺旋流動値愈長代表愈具高度流動性。 [表1] 記號 原料之種類 平均粒徑 r2〇換算量(質量%) (μιη) Li20 Na20 K20 合計 A 電熔鋁氧粉碎物 35.2 0.000 0.020 0.001 0.021 B 電熔鋁氧粉碎物 98.3 0.000 0.023 0.001 0.024 C 電熔鋁氧粉碎物 34.6 0.000 0.585 0.001 0.586 D 電熔鋁氧粉碎物 96.5 0.000 0.529 0.001 0.530 E 電熔鋁氧粉碎物 42.1 0.000 2.960 0.002 2.962 F 電熔鋁氧粉碎物 95.7 0.000 2.830 0.001 2.831 G 電熔鋁氧粉碎物 29.6 0.000 0.550 2.380 2.930 Η 電熔鋁氧粉碎物 93.1 0.000 0.539 2.170 2.709 I 電熔銘氧粉碎物 30.1 2.290 0.575 0.001 2.866 J 電熔鋁氧粉碎物 96.3 2.360 0.533 0.002 2.895 K 電熔鋁氧粉碎物 26.4 0.000 3.620 0.001 3.621 L 電溶鋁氧粉碎物 99.6 0.000 3.540 0.001 3.541 Μ 電熔鋁氧粉碎物 37.5 3.750 0.526 0.002 4.278 N 電熔鋁氧粉碎物 95.8 3.680 0.537 0.001 4.218 0 電熔鋁氧粉碎物 32.3 0.000 0.542 5.060 5.602 P 電熔鋁氧粉碎物 97.9 0.000 0.539 5.090 5.629 Q 電熔鋁氧粉碎物 131 0.000 0.020 0.001 0.021 R 電溶銘氧粉碎物 118 0.000 2.850 0.002 2.852 S 煅燒鋁氧粉末 41.9 0.000 0.551 0.001 0.552 -17- 200925113 [表2]After stirring for 1 hour, the dehydration treatment was carried out by pressurization with a filter. The water content of the filter cake was all 20% by mass or less. The filter cake was dried under a tray dryer at 50 ° C -15 - 200925113 for 48 hours to produce an aluminum oxide powder. Further, in the "washing treatment", the examples 19 to 2 2 and the comparative examples 2 and 3 were carried out at a temperature of 5 C in the water-based material, and were carried out at 8 51:. The average circularity of the aluminum-oxygen powder, the amount of Li+, Na+, K+ in the ultrapure water extraction test at 150 °C for 1 hour and the R20 of the alkali metal content by chemical analysis (R stands for Li, Na, K The amount of conversion is determined by the above method. The results are shown in Table 2 and Table 3. Next, 30 parts by volume of the complex shown in Table 4 and 70 parts by volume of the aluminum oxide powder were mixed to prepare an epoxy resin composition, and the moisture resistance and fluidity were evaluated as follows. The results are shown in Table 2 and Table 3. [Humidity resistance] The 16-pin monitor 1C having aluminum wiring was subjected to transfer molding, and after hardening, it was immersed in a solder bath at 260 ° C for 1 〇 second, and then at 1400. (:, 30V is applied in a three-pressure water vapor environment, and the ultrasonic detection device is used to monitor the opening of the aluminum wiring © (broken wire) or molded product, and the total number of cracks in the molded product is measured as the number of samples (20 The time until 50% (10) is not in Table 2 and Table 3. The longer the time, the higher the resistance to moisture resistance. [Liquidity] Using spiral flow molding, using the device according to EMMI-66 ( Epoxy Molding Material Institute; Society of Plastic Industry) The transfer molding machine for the spiral flow measurement of the standard is heated and kneaded in a biaxial pressure press mixer to measure the spiral of the prepared semiconductor sealing material - 16-200925113转移 The transfer molding conditions are a mold temperature of 175 ° C, a forming pressure of 7.4 MPa, and a dwell time of 90 seconds. The longer the spiral flow, the higher the fluidity. [Table 1] The average particle size of the material of the mark is converted into r2〇 Amount (% by mass) (μιη) Li20 Na20 K20 Total A fused aluminum oxide pulverized material 35.2 0.000 0.020 0.001 0.021 B fused aluminum oxide pulverized material 98.3 0.000 0.023 0.001 0.024 C fused aluminum oxide pulverized material 34.6 0. 000 0.585 0.001 0.586 D fused aluminum oxide pulverized material 96.5 0.000 0.529 0.001 0.530 E fused aluminum oxide pulverized material 42.1 0.000 2.960 0.002 2.962 F fused aluminum oxide pulverized material 95.7 0.000 2.830 0.001 2.831 G fused aluminum oxide pulverized material 29.6 0.000 0.550 2.380 2.930 Η fused aluminum oxide pulverized material 93.1 0.000 0.539 2.170 2.709 I fused molten oxygen oxidized material 30.1 2.290 0.575 0.001 2.866 J fused aluminum oxide pulverized material 96.3 2.360 0.533 0.002 2.895 K fused aluminum oxide pulverized material 26.4 0.000 3.620 0.001 3.621 L Electrolytic aluminum oxide pulverized material 99.6 0.000 3.540 0.001 3.541 Μ fused aluminum oxide pulverized material 37.5 3.750 0.526 0.002 4.278 N fused aluminum oxide pulverized material 95.8 3.680 0.537 0.001 4.218 0 fused aluminum oxide pulverized material 32.3 0.000 0.542 5.060 5.602 P electricity Melted aluminum oxide pulverized material 97.9 0.000 0.539 5.090 5.629 Q fused aluminum oxide pulverized material 131 0.000 0.020 0.001 0.021 R Electrolytic dissolved oxygen pulverized material 118 0.000 2.850 0.002 2.852 S Calcined aluminum oxide powder 41.9 0.000 0.551 0.001 0.552 -17- 200925113 [Table 2]

原料 mm 之記 號 氣體噴射量 (Nm3/Hr) 所製造之鋁氧粉末 LPG 〇2 平均粒 徑(μπ〇 平均圓 臟 經由化學分析以R2〇換算量(質量%) 45〜200μ m 之粒子 未達5μιη 之粒子 Li20 Na20 κ2ο 合計 實施例1 A 20 100 33.8 0.95 0.97 0.000 0.009 0.000 0.009 實施例2 B 35 175 90.4 0.96 0.98 0.000 0.006 0.000 0.006 實施例3 C 20 100 33.0 0.97 0.98 0.000 0.173 0.000 0.173 實施例4 D 35 175 87.3 0.97 0.98 0.000 0.149 0.000 0.149 實施例5 E 20 100 39.6 0.98 1.00 0.000 0.823 0.001 0.824 實施例6 F 35 175 86.1 0.98 0.99 0.000 0.770 0.000 0.770 實施例7 G 20 100 28.1 0.98 0.99 0.000 0.156 0.803 0.959 實施例8 Η 35 175 82.9 0.98 0.99 0.000 0.149 0.785 0.934 實施例9 I 20 100 28.3 0.98 0.99 0.616 0.201 0.001 0.818 實施例10 J 35 175 86.7 0.98 1.00 0.460 0.183 0.000 0.643 實施例11 K 20 100 24.8 0.86 0.93 0.000 1.276 0.000 1.28 實施例12 L 35 175 94.9 0.81 0.89 0.000 1.319 0.000 1.32 實施例13 Μ 20 100 35.1 0.84 0.91 0.998 0.188 0.001 1.187 實施例14 N 35 175 83.9 0.80 0.92 0.875 0.166 0.000 1.041 實施例15 Ο 20 100 30.5 0.85 0.92 0.000 0.200 1.985 2.185 實施例16 P 35 175 86.2 0.82 0.91 0.000 0.170 1.619 1.789 實施例17 9 35 175 108.3 0.89 0.95 0.000 0.199 0.000 0.199 實施例18 R 35 175 112.7 0.85 0.90 0.000 1.496 0.002 1.498 實施例19 G 20 100 28.1 0.98 0.99 0.000 0.157 0.805 0.962 實施例20 H 35 175 82.9 0.98 0.99 0.000 0.151 0.787 0.938 實施例21 I 20 100 28.3 0.98 0.98 0.617 0.203 0.001 0.821 實施例22 J 35 175 86.7 0.98 1.00 0.463 0.184 0.000 0.647 實施例23 A 20 100 36.2 0.96 0.98 0.000 0.011 0.000 0.011 實施例24 B 35 175 95.3 0.96 0.97 0.000 0.007 0.000 0.007 實施例25 C 20 100 33.6 0.84 0.91 0.000 0.189 0.000 0.189 實施例26 D 35 175 86.8 0.86 0.87 0.000 0.163 0.000 0.163 比較例1 S 20 100 39.4 0.95 0.97 0.000 0.143 0.000 0.143 比較例2 E 20 100 39.6 0.98 1.00 0.000 0.823 0.001 0.824 比較例3 F 35 175 86.1 0.98 0.99 0.000 0.773 0.000 0.773 -18- 200925113 [表3]Raw material mm mark gas injection amount (Nm3/Hr) Aluminum oxide powder LPG 〇2 Average particle size (μπ〇 average round dirt by chemical analysis in terms of R2〇 (mass%) 45~200μ m particles not reached 5 μιη particles Li20 Na20 κ2 Total Example 1 A 20 100 33.8 0.95 0.97 0.000 0.009 0.000 0.009 Example 2 B 35 175 90.4 0.96 0.98 0.000 0.006 0.000 0.006 Example 3 C 20 100 33.0 0.97 0.98 0.000 0.173 0.000 0.173 Example 4 D 35 175 87.3 0.97 0.98 0.000 0.149 0.000 0.149 Example 5 E 20 100 39.6 0.98 1.00 0.000 0.823 0.001 0.824 Example 6 F 35 175 86.1 0.98 0.99 0.000 0.770 0.000 0.770 Example 7 G 20 100 28.1 0.98 0.99 0.000 0.156 0.803 0.959 Example 8 Η 35 175 82.9 0.98 0.99 0.000 0.149 0.785 0.934 Example 9 I 20 100 28.3 0.98 0.99 0.616 0.201 0.001 0.818 Example 10 J 35 175 86.7 0.98 1.00 0.460 0.183 0.000 0.643 Example 11 K 20 100 24.8 0.86 0.93 0.000 1.276 0.000 1.28 Example 12 L 35 175 94.9 0.81 0.89 0.000 1.319 0.000 1.32 Example 13 Μ 20 100 35.1 0.84 0.91 0.998 0.188 0.001 1.187 Example 14 N 35 175 83.9 0.80 0.92 0.875 0.166 0.000 1.041 Example 15 Ο 20 100 30.5 0.85 0.92 0.000 0.200 1.985 2.185 Example 16 P 35 175 86.2 0.82 0.91 0.000 0.170 1.619 1.789 Example 17 9 35 175 108.3 0.89 0.95 0.000 0.199 0.000 0.199 Example 18 R 35 175 112.7 0.85 0.90 0.000 1.496 0.002 1.498 Example 19 G 20 100 28.1 0.98 0.99 0.000 0.157 0.805 0.962 Example 20 H 35 175 82.9 0.98 0.99 0.000 0.151 0.787 0.938 Example 21 I 20 100 28.3 0.98 0.98 0.617 0.203 0.001 0.821 Example 22 J 35 175 86.7 0.98 1.00 0.463 0.184 0.000 0.647 Example 23 A 20 100 36.2 0.96 0.98 0.000 0.011 0.000 0.011 Example 24 B 35 175 95.3 0.96 0.97 0.000 0.007 0.000 0.007 Example 25 C 20 100 33.6 0.84 0.91 0.000 0.189 0.000 0.189 Example 26 D 35 175 86.8 0.86 0.87 0.000 0.163 0.000 0.163 Comparative Example 1 S 20 100 39.4 0.95 0.97 0.000 0.143 0.000 0.143 Comparative Example 2 E 20 100 39.6 0.98 1.00 0.000 0.823 0.001 0.824 Comparative Example 3 F 35 175 86.1 0.98 0.99 0.000 0.773 0.000 0.773 -18- 200925113 [Table 3]

原料種類 之記號 所製造之鋁氧粉末 耐濕 信賴性 (時間) 螺旋 流動 (cm) 水洗溫度 CC) 於15(TC下經由100小時之超純水萃取試驗 之鹼金屬量(ppm) Li. Na+ κ+ 合計 實施例1 A 85 0.0 1.3 0.0 1.3 1036 71.6 實施例2 B 85 0.0 1.0 0.0 1.0 1109 80.3 實施例3 C 85 0.0 3.6 0.0 3.6 803 72.3 實施例4 D 85 0.0 3.0 0.0 3.0 824 81.3 實施例5 E 85 0.0 18.2 0.0 18.2 539 74.8 實施例ό F 85 0.0 16.3 0.0 16.3 582 83.0 實施例7 G 85 0.0 3.9 15.3 19.2 645 74.3 實施例8 Η 85 0.0 3.4 14.3 17.7 663 83.3 實施例9 I 85 12.7 4,3 0.0 17.0 519 74.5 實施例10 J 85 9.3 3.8 0.0 13.1 543 84.1 實施例Π K 85 0.0 19.3 0.0 19.3 476 59.7 實施例12 L 85 0.0 17.9 0.0 17.9 502 58.5 實施例13 Μ 85 21.3 4.2 0.0 25.5 376 56.9 實施例14 N 85 17.9 3.8 0.0 21.7 387 59.6 實施例15 0 85 0.0 4.6 26.5 31.1 479 58.2 實施例16 P 85 0.0 3.7 22.6 26.3 496 62.3 實施例17 Q 85 0.0 4.2 0.0 4.2 793 62.1 實施例18 R 85 0.0 19.7 0.0 19.7 354 62.3 實施例19 G 5 0.0 3.9 18.3 22.2 602 74.5 實施例20 H 5 0.0 4.7 16.4 21.1 586 83.1 實施例21 I 5 19.7 6.5 0.0 26.2 323 74.4 實施例22 J 5 16.3 5.9 0.0 22.2 369 83.5 實施例23 A 無水洗 0.0 16.3 0.0 16.3 513 70.6 實施例24 B 無水洗 0.0 13.7 0.0 13.7 532 79.8 實施例25 C 85 0.0 4.8 0.0 4.8 769 54.3 實施例26 D 85 0.0 3.7 0.0 3.7 804 65.3 比較例1 S 85 0.0 35.4 0.0 35.4 142 69.6 比較例2 E 5 0.0 24.2 0.0 24.2 193 74.9 比較例3 F 5 0.0 22.3 0.0 22.3 187 83.0 -19- 200925113 [表4] 材料· 品種 配合比例(質量%) 環氧樹脂 〇-甲酚漆用酚醛型 (日本化藥公司製「EOCN-1 0 20」) 63.8 硬化劑 苯酚漆用酚醒樹脂 (群榮化學公司製「P M S - 4 2 6 1」) 32.1 硬化促進劑 三苯鱗(北興化學公司製) 0.6 脫模劑 褐媒酯 (Claliand Japan公司製「WaxEflakes」) 3.5 矽烷偶合劑 有機矽 (信越化學工業公司製「Κ Β Μ - 4 0 3」) 對於鋁氧粉末100質 量份爲0.5質量份 由表1〜表3證明,相較於比較例,本發明之鋁氧粉 末於150°C 1〇〇小時之更嚴荷的超純水萃取試驗中,Na + 之量較少,使用其所製造之組成物(半導體密封材料)之 耐濕信賴性明顯上昇。 Ο [產業上可利用性] 本發明鋁氧粉末係作爲橡膠或樹脂組成物塡充材料之 使用’含有該鋁氧粉末之組成物係用於汽車、手提電子機 器、產業用機器、家庭用電化製品等製模混合體、散熱片 等。本發明半導體密封材料特別被用於模擬晶片等散熱特 性之重要用途等,產業適用者。 另外,其中引用2007年7月31日所申請之日本專利 申請2007- 1 99405號之說明書、申請專利之範圍、及摘要 之總內容,作成本發明說明書之揭示摘入。 -20-Aluminium oxide powder moisture resistance (time) manufactured by the mark of raw material type Spiral flow (cm) Washing temperature CC) Amount of alkali metal (ppm) at 15 (over 100 hours) in ultrapure water extraction test Li. Na+ κ+ Total Example 1 A 85 0.0 1.3 0.0 1.3 1036 71.6 Example 2 B 85 0.0 1.0 0.0 1.0 1109 80.3 Example 3 C 85 0.0 3.6 0.0 3.6 803 72.3 Example 4 D 85 0.0 3.0 0.0 3.0 824 81.3 Example 5 E 85 0.0 18.2 0.0 18.2 539 74.8 Example ό F 85 0.0 16.3 0.0 16.3 582 83.0 Example 7 G 85 0.0 3.9 15.3 19.2 645 74.3 Example 8 Η 85 0.0 3.4 14.3 17.7 663 83.3 Example 9 I 85 12.7 4,3 0.0 17.0 519 74.5 Example 10 J 85 9.3 3.8 0.0 13.1 543 84.1 Example Π K 85 0.0 19.3 0.0 19.3 476 59.7 Example 12 L 85 0.0 17.9 0.0 17.9 502 58.5 Example 13 Μ 85 21.3 4.2 0.0 25.5 376 56.9 Example 14 N 85 17.9 3.8 0.0 21.7 387 59.6 Example 15 0 85 0.0 4.6 26.5 31.1 479 58.2 Example 16 P 85 0.0 3.7 22.6 26.3 496 62.3 Example 17 Q 85 0.0 4.2 0.0 4.2 793 62.1 Example 18 R 85 0.0 19.7 0.0 19.7 354 62.3 Example 19 G 5 0.0 3.9 18.3 22.2 602 74.5 Example 20 H 5 0.0 4.7 16.4 21.1 586 83.1 Example 21 I 5 19.7 6.5 0.0 26.2 323 74.4 Example 22 J 5 16.3 5.9 0.0 22.2 369 83.5 Example 23 A Waterless wash 0.0 16.3 0.0 16.3 513 70.6 Example 24 B No water wash 0.0 13.7 0.0 13.7 532 79.8 Example 25 C 85 0.0 4.8 0.0 4.8 769 54.3 Example 26 D 85 0.0 3.7 0.0 3.7 804 65.3 Comparative Example 1 S 85 0.0 35.4 0.0 35.4 142 69.6 Comparative Example 2 E 5 0.0 24.2 0.0 24.2 193 74.9 Comparative Example 3 F 5 0.0 22.3 0.0 22.3 187 83.0 -19- 200925113 [Table 4] Materials·Species mix ratio (% by mass) Epoxy resin 〇-cresol paint phenolic Type ("CNCN-1 0 20" manufactured by Nippon Kayaku Co., Ltd.) 63.8 Resin phenol varnish for phenol paint ("MSMS Chemical Co., Ltd." "PMS - 4 2 6 1") 32.1 Hardening accelerator triphenyl scale (Beixing Chemical Co., Ltd.) 0.6) release agent brown ester (WaxEflakes, manufactured by Claliand Japan Co., Ltd.) 3.5 矽 偶 coupling agent organic 矽 ("Shin-Etsu Chemical Co., Ltd." "Κ Β Μ - 4 0 3") For aluminum oxide powder 100 parts by mass is 0.5 mass Parts from Table 1 to Table 3 proves that, compared with the comparative example, the aluminum-oxygen powder of the present invention has a lesser amount of Na + in a more severe ultra-pure water extraction test at 150 ° C for 1 hour, and the composition thereof is used ( The moisture resistance of semiconductor sealing materials has increased significantly. Ο [Industrial Applicability] The aluminum-oxygen powder of the present invention is used as a rubber or resin composition-filling material. The composition containing the aluminum-oxygen powder is used in automobiles, portable electronic equipment, industrial equipment, and household electricity. Molding mixes such as products, heat sinks, etc. The semiconductor sealing material of the present invention is particularly useful for simulating an important use of heat dissipation characteristics such as wafers, and is suitable for use in the industry. In addition, the disclosure of the specification, the scope of the patent application, and the summary of the Japanese Patent Application No. 2007-9999, filed on Jul. 31, 2007, is incorporated herein by reference. -20-

Claims (1)

200925113 十、申請專利範圍 1. 一種鋁氧粉末,其特徵係用以下之方法所測定之 Na+量爲20ppm以下, [Na+之量的測定方法] 將鋁氧粉末與超純水以質量比1 : 2之比例下,封入 不鏽鋼製之耐壓密閉容器,於溫度150 °C之環境下,靜置 100小時後’於20°C下放涼30分鐘,利用纖維素濾器進 0 行過濾’以原子吸光分光光度計測定其濾液中之Li+、Na + 、K +之量時之Na +之量。 2. —種鋁氧粉末,其特徵係以申請專利範圍第丨項 之方法所測定之Li+、Na+、K +之總量爲20ppm以下,平 均粒徑未達45μιη之粒子的平均圓形度爲0.95以上,平均 粒徑爲ΙΟΟμπι以下。 3_如申g靑專利fe圍第1項或第2項之鋁氧粉末,其 中經由化學分析之鹼金屬含量,以r2〇 ( R代表Li、Na、 0 K )換算下爲1質量% (含〇質量% )以下。 4. 如申請專利範圍第1項至第3項中任一項之鋁氧 粉末’其中平均粒徑45〜20 Ομπι粒子之平均圓形度爲 0.95以上。 5. —種鋁氧粉末之製造方法,其特徵係將電熔鋁氧 粉碎物於火焰中進行熱處理。 6. 如申請專利範圍第5項之製造方法,其係將電熔 銘氧粉碎物於火焰中進行熱處理後,進行水洗。 7. 如申請專利範圍第5項或第6項之製造方法,其 -21 - 200925113 係使用經由化學分析之鹼金屬含量以R2〇 ( R代表Li、Na 、K)換算下爲3質量%以下(含0質量%)之電熔鋁氧粉 碎物。 8. —種組成物,其特徵係由於橡膠或樹脂中含有申 請專利範圍第1項至第4項中任一項之鋁氧粉末所成。 9. 如申請專利範圍第8項之組成物’其中,該樹脂 爲環氧樹脂。 Ο ίο.—種半導體密封材料,其特徵係使用申請專利範 圍第9項之組成物所成。 〇 -22- 200925113 七、指定代表圖: (一) 、本案指定代表圖為:無 (二) 、本代表圖之元件代表符號簡單說明:無200925113 X. Patent application scope 1. An aluminum-oxygen powder characterized in that the amount of Na+ measured by the following method is 20 ppm or less, [Method for measuring the amount of Na+] The mass ratio of aluminum oxide powder to ultrapure water is 1: At a ratio of 2, sealed in a pressure-tight container made of stainless steel, allowed to stand for 100 hours at a temperature of 150 ° C, then let cool at 20 ° C for 30 minutes, and filter by a cellulose filter. The amount of Na + in the amount of Li+, Na + , and K + in the filtrate was measured by a spectrophotometer. 2. An aluminum-oxygen powder characterized in that the total amount of Li+, Na+, K+ determined by the method of the third aspect of the patent application is 20 ppm or less, and the average circularity of particles having an average particle diameter of less than 45 μm is 0.95 or more, the average particle diameter is ΙΟΟμπι or less. 3_, for example, the aluminum-oxygen powder of the first or second item of the patent, wherein the alkali metal content by chemical analysis is 1% by mass in terms of r2〇 (R represents Li, Na, 0 K ) ( Containing 〇 mass%) below. 4. The aluminum oxide powder of any one of claims 1 to 3 wherein the average circularity of the particles having an average particle diameter of 45 to 20 Ομπι is 0.95 or more. A method for producing an aluminum oxide powder, characterized in that the fused aluminum oxide pulverized material is subjected to heat treatment in a flame. 6. The manufacturing method according to claim 5, wherein the fused molten oxygen is heat-treated in a flame and then washed with water. 7. In the manufacturing method of claim 5 or 6, the use of the alkali metal content by chemical analysis is 3% by mass or less in terms of R2〇 (R represents Li, Na, K). (containing 0% by mass) of fused aluminum oxide pulverized material. 8. A composition comprising a rubber or a resin comprising the aluminum oxide powder of any one of claims 1 to 4. 9. The composition of claim 8 wherein the resin is an epoxy resin. Ο ίο. — A semiconductor sealing material characterized by the composition of claim 9 of the patent application. 〇 -22- 200925113 VII. Designated representative map: (1) The representative representative of the case is: None (2), the representative symbol of the representative figure is simple: No 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none -4--4-
TW097129053A 2007-07-31 2008-07-31 Alumina powder, process for producing the same, and composition containing the same TW200925113A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199405 2007-07-31

Publications (1)

Publication Number Publication Date
TW200925113A true TW200925113A (en) 2009-06-16

Family

ID=40304400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129053A TW200925113A (en) 2007-07-31 2008-07-31 Alumina powder, process for producing the same, and composition containing the same

Country Status (3)

Country Link
JP (1) JP5336374B2 (en)
TW (1) TW200925113A (en)
WO (1) WO2009017170A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133904A1 (en) * 2008-04-30 2009-11-05 電気化学工業株式会社 Alumina powder, process for production of the same, and resin compositions containing the same
JP2010126385A (en) * 2008-11-26 2010-06-10 Denki Kagaku Kogyo Kk Spherical alumina powder and method for producing the same
WO2015056523A1 (en) * 2013-10-17 2015-04-23 住友ベークライト株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device
JP6561220B1 (en) * 2019-02-18 2019-08-14 株式会社アドマテックス Particulate material and heat conductive material
JP2022186630A (en) * 2021-06-04 2022-12-15 住友化学株式会社 Alumina particle and resin composition using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920141B2 (en) * 2001-05-30 2012-04-18 昭和電工株式会社 Alumina particles and method for producing the same
JP2002348115A (en) * 2001-05-30 2002-12-04 Showa Denko Kk Alumina particle and method for producing the same
JP4214074B2 (en) * 2004-03-30 2009-01-28 電気化学工業株式会社 Method for producing high purity spherical alumina powder

Also Published As

Publication number Publication date
JPWO2009017170A1 (en) 2010-10-21
JP5336374B2 (en) 2013-11-06
WO2009017170A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5775692B2 (en) Method for producing alumina powder
CN101472840B (en) Ceramic powder and method of using the same
TW200925113A (en) Alumina powder, process for producing the same, and composition containing the same
TW200831412A (en) Liquid suspension and powder of cerium oxide particles, processes for the preparation thereof and use in polishing
TW201910264A (en) Granulated silica and method for manufacturing the same
CN106164183B (en) Alumina composition and the method for preparing it
US11472716B2 (en) High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
WO2014192402A1 (en) Hydrophobic inorganic particles, resin composition for heat dissipation member, and electronic component device
CN102325724B (en) Powder, method for producing same, and resin composition containing same
CN107043093A (en) A kind of method that black phosphorus nano grain surface wraps up mesoporous silicon oxide
JP5862467B2 (en) Method for producing silica composite particles
TW201000401A (en) Amorphous silica powder, producing method and usage thereof
Jayakrishnan et al. Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites
Singh et al. Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system
JP4516779B2 (en) Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition
JP6179015B2 (en) Granules, method for producing the same, and property modifying material
JP6564551B1 (en) Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
Li et al. A novel nanocomposite of NH2‐MIL‐125 modified bismaleimide‐triazine resin with excellent dielectric properties
JP5961421B2 (en) Thermoplastic resin composition and method for producing the same
JP5949695B2 (en) Polyimide powder composition having excellent fluidity and molded body thereof
TWI457281B (en) Silica powder, process for its production and its use
Akhter et al. Preparation and characterization of novel polyimide‐silica hybrids
JP2016172689A (en) Silica particles and thermoplastic resin composition
Adachi et al. Novel synthesis of submicrometer silica spheres in non-alcoholic solvent by microwave-assisted sol–gel method
WO2022071225A1 (en) Boron nitride powder and method for producing boron nitride powder