TW200916856A - Radiation-emitting elements for producing linear polarized light - Google Patents

Radiation-emitting elements for producing linear polarized light Download PDF

Info

Publication number
TW200916856A
TW200916856A TW97130474A TW97130474A TW200916856A TW 200916856 A TW200916856 A TW 200916856A TW 97130474 A TW97130474 A TW 97130474A TW 97130474 A TW97130474 A TW 97130474A TW 200916856 A TW200916856 A TW 200916856A
Authority
TW
Taiwan
Prior art keywords
metal
radiation
electromagnetic radiation
radiation component
layer
Prior art date
Application number
TW97130474A
Other languages
Chinese (zh)
Inventor
Karl Engl
Reiner Windisch
Christopher Wiesmann
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200916856A publication Critical patent/TW200916856A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A radiation-emitting component is provided, which has a layer-stack based on a semiconductor material, said layer-stack includes an active layer-sequence (A, C1, C2) for generating electromagnetic radiation, said component is characterized in that several metal-surfaces (M) are applied on a last layer (C2) of the layer-stack in an emitting direction (e), the metal-surfaces (M) have different dimensions (a1, a2) in a first direction (d1) and in a second direction (d2) that is different from the first direction, and the metal-surfaces (M) are periodically arranged in the first direction and in the second direction (d2).

Description

200916856 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種產生線性極化光的方法及所屬 組件。 【先前技術】 所有一般的光源(包括發光二極體(LED))都可 極化的光。爲了產生線性極化光,需要一種極化濾 其例如以薄膜來形成。此種極化濾波器只可通過一 極化方向的光且將其它極化方向的光反射或吸收, 的光量因此較少。當光源已產生至少一部份是線性 光時,此種損耗可下降。 【發明內容】 本發明的目的是提供一種輻射組件,其產生至 份是線性極化的光。此外,本發明的目的是提供至 產生線性極化光的方法。 上述目的藉由一種具有以半導體材料爲主之層 輻射組件來達成,該層堆疊具有一活性之層序列以 磁輻射。在該層堆疊之最後一層上在發射方向中施 金屬面。各金屬面在第一方向和與第一方向不同的 向中具有不同的尺寸。各金屬面周期性地配置在第 和第二方向中。 本發明的上述目的另外藉由一種具有以半導體 主之層堆疊之輻射組件來達成,該層堆疊具有一活 序列以產生電磁輻射。在該層堆疊之最後一層上在 的輻射 產生未 波器, 種線性 可使用 的極化 少一部 少一種 堆疊之 產生電 加多個 第二方 一方向 材料爲 性之層 發射方 200916856 向中施加一個金屬面,此金屬面中施加多個孔。各孔在第 一方向和與第一方向不同的第二方向中具有不同的尺寸。 各孔周期性地配置在第一方向和第二方向中。 本發明的上述目的另外藉由一種具有以半導體材料爲 主之層堆疊之輻射組件來達成,該層堆疊具有一活性之層 序列以產生電磁輻射。在該層堆疊之最後一層上在發射方 向中以平面形式施加多個金屬微粒。各金屬微粒在第一方 向和與第一方向不同的第二方向中具有不同的尺寸。 ( 在另一形式中,上述之多個金屬面、多個孔和多個金 屬微粒相對於第一方向或第二方向而言分別具有相同的方 位。 在另一形式中,該多個金屬面和多個孔分別具有相同 的尺寸。 在另一形式中,第一方向的周期或第二方向的周期位 於電磁輻射之波長之數量級中。 在另一形式中,第一方向的周期和第二方向的周期不 ί Κ 同。 在另一形式中,各金屬微粒之間的距離是在電磁輻射 之波長之數量級中。 在另一形式中,各金屬微粒之間的距離是隨機的 (random) 〇 在另一形式中’金屬微粒的尺寸較該電磁輻射之波長 小數個數量級。 在另一形式中,各金屬面和金屬微粒由金、銀或銘所 200916856 構成。 在另一形式中,金屬面的厚度是由5〇至2〇〇nm。 在另一形式中,須選取各孔在金屬面中的周期’使金 屬面相對於電磁輻射具有一種透過率,其大於面積佔用範 圍所估計的透過率。 在另一形式中,產生輻射的半導體元件是一種發光二 極體(LED)° 在另一形式中,至少一金屬面形成該發光二極體操作 時所需的電流傳導面。 在另一形式中,該輻射組件中設有多個元件,虛(false) 極化之電磁輻射之極化藉此多個元件而改變且在發射方向 中重新轉向至最後一層上之金屬面上或金屬微粒上。 本發明的目的另外藉由一種產生線性極化光的方法來 達成,其中電磁輻射在多個平面配置的金屬面中激發表面 電漿子。金屬面在第一方向和不同於第一方向的第二方向 中具有不同的尺寸。各金屬面周期性地配置在第一方向和 第二方向中且對第一方向或第二方向具有相同的方位。 本發明的目的另外藉由一種產生線性極化光的方法來 達成’其中電磁輻射在至少一金屬面中激發各表面電漿 子。此金屬面具有平坦的孔,其例如以一般方式來形成且 在第一方向和不同於第一方向的第二方向中具有不同的尺 寸。各孔周期性地配置在第一方向和第二方向中,且各孔 相對於第一方向或第二方向具有相同的方位。 在上述二種方法中’電磁輻射的極化受到細胞團的影 200916856 響。細胞團是金屬中電荷載體之密度變動。表面電漿子顯 示出振動模式,其局限於表面且可在特定的條件下以光來 激發。各振動模式具有一種K-向量,其不同於自由傳送的 電磁輻射’使K-向量不需其它措施即可耦合至表面電漿子 中或由表面電漿子中耦合而出。藉由各種結構,例如,邊 緣、粗縫性或周期結構,之散射性,則可使κ -向量改變, 將光耦合至表面電漿子中。非對稱結構上之散射性因此與 極化很有關係。平面配置之金屬面之數目或金屬面中各孔 ( 之數目表示金屬邊緣,其中第一方向中和第二方向中不同 的尺寸可使光耦合而出,這與極化有關。因此,電磁輻射 可達成一種較佳的極化方向。 在另一形式中’孔之數目和金屬面之數目分別具有相 同的形式’這樣可使電磁較佳地耦合至表面電漿子上。 在另一形式中,第一方向中的周期或第二方向中的周 期位於電磁輻射之波長的數量級中。金屬面和孔爲了有效 地將電磁輻射耦合至其配置中的表面電漿子中,則須依據 I: 波長來調整各金屬面和各孔。 在另一形式中’第一方向中的周期不同於第二方向中 的周期。藉由周期的不同,則電磁輻射可在一方向中更多 地耦合至表面電漿子中,使該方向中的極化有更大的作 用,這樣可產牛.一種至少一部份已極化的光。 在另一形式中’須選取上述的周期,使電磁輻射以一 種”增強的透過率”而經過金屬面中的孔。此透過率因此較 由於金屬面之面積佔有率而估計者還大,因此使光效益提 200916856 闻。 上述目的亦可藉由一種產生線性極化光的方法來達 成’此時電磁輻射在多個金屬微粒中激發各表面電漿子。 金屬微粒平坦地配置著且在第一方向中的尺寸不同於第二 方向中的尺寸。須配置金屬微粒,使其相對於第一方向或 第二方向具有相同的方位。在一種不同於目前所述的方法 中,金屬微粒不是周期地配置著,然而,每一金屬微粒較 佳是在耦合時顯示相同的極化方向。此種耦合因此是在局 部性的細胞團上進行,細胞團在金屬微粒周圍移動。 在另一形式中,各微粒之間的距離是在電磁輻射之波 長的數量級中。又,須選取微粒的距離,使電磁輻射有效 地耦合至表面電漿子上。各金屬微粒是nm結構,即,其 大小是在1至2 0 0 n m之間。 在另一形式中,各微粒之間的距離是隨機的。 在另一形式中,金屬微粒的尺寸較電磁輻射之波長小 很多。藉由局部性的細胞團,可使上述方法之效率提高, 此時細胞團稱合至全反射之光的消逝場(evanescent field) 且因此使其它內部全反射之光耦合而出。 在另一形式中,以上述方法製成由金、銀或鋁構成的 金屬面和金屬微粒。高反射性的金屬可使細胞團強烈地與 電磁輻射交互作用。然而,原則上亦可使用其它金屬’只 要與環境的交互作用可支撐著細胞團即可。 在另一形式中,金屬面的厚度介於50和200nm之間’ 這種厚度足夠厚’因此在無孔之下即不能透過電磁輻射且 200916856 亦足夠薄’使金屬面可容易地被結構化。 在另一形式中,金屬面和金屬微粒施加在該輻射組件 之發射側上。具有正確極化的光因此能儘可能有效地由該 輻射組件中發出,虛極化的光則被反射回到該輻射組件中。 在另一形式中’電磁輻射藉由一活性層序列而產生於 一輻射組件中。多個輻射組件造型小、對電磁輻射不敏感 且具有高的壽命。 在另一形式中,.該輻射組件是發光二極體(LED)。 在另一形式中,電磁輻射未被線性極化而是藉由散射 或反射而轉向,使電磁輻射重新激發各表面電漿子。藉由 散射或反射’則未發出的電磁輻射之極化可改變,使電磁 輻射在重新入射至金屬面或金屬微粒上時可重新以所期望 的極化方向發出。此種極化再循環的方式發生在產生輻射 匕丰導體組件中且可提1¾光效益。 上述方法和產生輻射的組件可用在液晶顯示器或液晶 投影機之背景照明中,且亦可用在運輸工具之頭燈照明中。 爲了進行上述方法,特別是亦可使用此處所描述的組 件’所有與方法有關的特徵因此亦適用於此處的組件中, 且反之亦然。 本發明以下將依據圖式中的實施例來說明。 【實施方式】 第1圖顯示一輻射組件B之橫切面。在基板s上配置 第一局限層C1。在第一局限層C1上配置一活性層A,其 上配置第二局限層C 2。該活性層A用來產生一種電磁輻射 -10- 200916856 且經由第一接觸面Κ 1和第二接觸面K2而被供應以電流。 電磁輻射在發射方向e中經由該層堆疊之最後一層而離開 該輻射組件 B。該輻射組件例如可以是一發光二極體 (LED)。 第2,3和4圖是施加在該層序列在發射方向e中的最 後一層上的結構之實施例。這些圖因此顯示相反的發射方 向e中該輻射組件B的俯視圖。 第2圖中顯示一種具有金屬面Μ之第一實施例,其具 有縱向中周期配置的孔L。各孔因此不對稱地形成著,即, 各孔在第一方向dl中具有一種尺寸al,其不同於第二方 向d2中的尺寸a2。各孔的形式除了不對稱之外可具有任 意的形式其可爲長方形、柳葉刀形、卵形等等。重要的 是’各孔L不對稱,例如,不是圓形或正方形。此外,須 配置各孔L,使其統·地對準;例如,各孔L在同一方向 中都具有長邊al,此一同一方向例如可以是第一方向dl。 各孔L較佳是具有相同的尺寸和相同的形式。各孔亦可具 有不同的尺寸或形式,只要不對稱性統一地形成即可。尺 寸al和a2介於20至50〇nm之間。此外,各孔L互相周 期性地配置在二種方向中。圖中顯示一種周期性的方位, 其在第一方向dl中具有周期pi且在第二方向d2中具有第 一周期p 2。周期p 1和p 2互相不同。由活件層A所產生的 電磁輕射耦合至金屬面Μ中的表面電漿子,且在該處特別 是親合至各孔L之邊緣,此種耦合是由周期pi和ρ2所決 定。須選取此二個周期之一,以進行有效的輻射,且須選 -11- 200916856 取另一周期,使電磁輻射未被耦合(即,未被反射)。此種 耦合是與極化有關,使該輻射組件B發出至少一部份已極 化的光。將該電磁輻射良好地耦合至表面電漿子所需的周 期大約等於電磁輻射的波長。各孔L的距離因此介於1〇〇 至7OOnm之間。由於發光二極體發出較狹頻帶的光,則在 另一周期時不能達成一種有效的耦合。 在第一實施例中,各孔L及其在配置上的尺寸須可發 生一種”增強的透過率”。所謂”增強的透過率”是指就各孔 的面積而言,較入射至整面上時還多的光子可在發射方向 中e離開該結構。 第3圖中顯示一種在功能上類似於第一實施例的第二 實施例。此處不使用連續的金屬面M(其具有多個孔L),而 是在第3圖中在該層堆疊之最後一層上配置多個金屬面 Μ。以類拟於第2圖的方式,使電磁輻射沿著第一方向d 1 及與第一方向不同的第二方向d2以藉由在表面電漿子上 的不同的耦合而發生極化現象。表面電漿子發生了散射的 各邊緣現在是各別金屬面Μ之邊緣而不是第2圖中各孔L 之邊緣。 金屬面Μ形成長形,即,金屬面在第一方向dl中具 有一種尺寸al,其不同於第二方向d2中的尺寸a2。全部 的金屬面Μ例如都具有相同的尺寸a 1和a2,其可由長方 形、卵形或其它長形的結構來形成。類似於第2圖之孔L, 各金屬面Μ具有相同的方位,使例如長邊顯示在相同方向 中。金屬面Μ同樣在第一方向dl中以周期Ρ1配置者’且 200916856 在第二方向d2中以周期p2配置著 電磁輻射可有效地耦合至表面電漿 期,使電磁輻射不會有效地耦合至 圖中金屬面 Μ之厚度介於 50至 1 0 0 n m 〇 第三實施例顯示在第4圖中且 和第二實施例不同之處在於,一方 相同形式的結構而是施加不規則的 面是各金屬微粒P不是周期性地互 第一和第二實施例一樣,微粒是長 向dl中所具有的尺寸不同於第二2 各金屬微粒P具有相同的方位。電 結構或金屬表面上的邊緣而耦合至 的金屬微粒P所局部化的各細胞團 在於金屬微粒P之周圍。由於相同 則可造成發射性的極化相關性。各ί 其間的距離較電磁輻射的波長小很 第2,3圖的金屬面Μ和第4 屬(例如,銀、金和鋁)所製成,其 高的反射性。 產生線性極化光的方法之效率 發出的光在層序列內部中循環。藉 的輻射的極化又隨機地分佈著,這 在最後一層上的結構時獲得以線性 。須選取這些周期’使 子上,且須選取另一周 表面電槳子上。第2’ 3 2 0 0 n m之間且較佳是 與第2, 3圖所示的第一 面在最後一層上未_施加 金屬微粒P,且另一方 相配置著。然而,就像 形的,S卩,其在第一方 f向d2中的尺寸。此外, 磁輻射不是藉由周期的 細胞團,反之,由各別 互相耦合,各細胞團存 的方位和長形的形式, 屬微粒P是nm結構, 多。 圖的金屬微粒P是由金 在所期望的波長時具有 可提高,其方式是使未 由散射過程,則未發出 樣可使光在入射至配置 極化方向發出的機會。 200916856 發出線性極化光的發光二極體的一種應用例如是液晶 顯示器或投影機之背景照明,其中液晶的定向能可靠地藉 由極化濾波器來達成。在非極化的光源中需要一種極化濾 波器,其只通過一線性的極化方向且在另一極化方向中反 射。被反射的極化方向只有一部份可再循環,此時光的一 部份將消失。當光源產生至少一部份是線性的極化光時, 此種損耗可下降。 上述方法和輻射組件的另一應用是用在運輸工具(例 如,汽車)之頭燈中。若該頭燈具有一種例如垂直的極化 光,則可藉由一種方向垂直於該極化方向的偵測器使反向 而來的機動車之光消失。駕駛者不會被反向而來的汽車之 光所遮蔽。然而,極化光會被環境中的其它物件所散射而 成爲另一種極化光,其可通過偵測器,使該物件被看到。 本專利申請案主張德國專利申請案D E 1 〇 2 0 0 7 0 4 6 5 17.5和DE 1 0 200 7 05 9 62 1.0之優先權,其已揭示的整個 內容在此一倂作爲參考。 本發明當然不限於依據各實施例中所作的描述。反 之,本發明包含每一新的特徵和各特徵的每一種組合,特 別是包含各申請專利範圍-或不同實施例之各別特徵之每 一種組合’當相關的特徵或相關的組合本身未明顯地顯示 在各申請專利範圍中或各實施例中時亦屬本發明。 【圖式簡單說明】 第1圖一輻射組件之實施例的橫切面。 第2圖 金屬面中具有多個孔之第一實施例。 '14- 200916856 第3圖 金屬面中具有多個孔之第二實施例 第4圖 金屬面中具有多個孔之第三實施例 【主要元件符號說明】 B 輻 射 組 件 S 基 板 C 1 局 限 層 C2 局 限 層 A 活 性 層 K 1 接 觸 層 K2 接 觸 層 e 發 射 方 向 Μ 金 屬 面 L 孔 d 1 向 d2 方 向 a 1 尺 寸 a2 尺 寸 pi 周 期 p2 周 期 P 金 屬 微 业丄200916856 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of generating linearly polarized light and an associated component thereof. [Prior Art] All general light sources, including light-emitting diodes (LEDs), are polarized. In order to produce linearly polarized light, a polarization filter is required which is formed, for example, as a thin film. Such a polarization filter can only pass light in one polarization direction and reflect or absorb light in other polarization directions, so that the amount of light is therefore small. This loss can be reduced when the source has produced at least a portion of linear light. SUMMARY OF THE INVENTION It is an object of the present invention to provide a radiation assembly that produces light that is linearly polarized. Furthermore, it is an object of the invention to provide a method of producing linearly polarized light. The above object is achieved by a layered radiation component having a semiconductor material which has an active layer sequence for magnetic radiation. A metal face is applied in the direction of emission on the last layer of the stack of layers. Each of the metal faces has a different size in the first direction and the direction different from the first direction. Each of the metal faces is periodically disposed in the first and second directions. The above objects of the present invention are additionally achieved by a radiation assembly having a stack of semiconductor-primary layers having a sequence of operations to generate electromagnetic radiation. The radiation on the last layer of the stack of the layer produces an unwaver, the linearity can be used less than one polarization, the other one is stacked, the second is generated, and the second layer is directional. The layer is emitted. 200916856 A metal face is applied, and a plurality of holes are applied in the metal face. Each of the holes has a different size in the first direction and the second direction different from the first direction. Each of the holes is periodically disposed in the first direction and the second direction. The above object of the invention is additionally achieved by a radiation assembly having a layer stack of semiconductor materials, the layer stack having an active layer sequence to generate electromagnetic radiation. A plurality of metal particles are applied in a planar form in the emission direction on the last layer of the layer stack. Each of the metal particles has a different size in the first direction and the second direction different from the first direction. (In another form, the plurality of metal faces, the plurality of holes, and the plurality of metal particles have the same orientation with respect to the first direction or the second direction, respectively. In another form, the plurality of metal faces And the plurality of holes respectively have the same size. In another form, the period of the first direction or the period of the second direction is in the order of the wavelength of the electromagnetic radiation. In another form, the period of the first direction and the second The period of the direction is not the same. In another form, the distance between the metal particles is in the order of the wavelength of the electromagnetic radiation. In another form, the distance between the metal particles is random. In another form, the size of the metal particles is several orders of magnitude smaller than the wavelength of the electromagnetic radiation. In another form, each metal face and metal particles are composed of gold, silver or Mingdian 200916856. In another form, the metal The thickness of the face is from 5 〇 to 2 〇〇 nm. In another form, the period of each hole in the metal face must be selected to make the metal face have a transmittance relative to electromagnetic radiation, which is larger than the area occupied. The estimated transmittance is in another form. In another form, the radiation-generating semiconductor component is a light-emitting diode (LED). In another form, at least one metal surface forms a current required for operation of the light-emitting diode. Conductive surface. In another form, the radiating element is provided with a plurality of elements, and the polarization of the pseudo-polarized electromagnetic radiation is changed by the plurality of elements and redirected to the last layer in the emission direction. On the metal surface or on the metal particles. The object of the invention is additionally achieved by a method for producing linearly polarized light, wherein the electromagnetic radiation excites the surface plasmons in a plurality of planarly disposed metal faces. The metal faces are in the first direction And a second dimension different from the first direction having different dimensions. Each metal face is periodically disposed in the first direction and the second direction and has the same orientation to the first direction or the second direction. In addition, a method of generating linearly polarized light is achieved in which electromagnetic radiation excites each surface plasmonic in at least one metal face. This metal face has a flat hole, such as Forming and having a different size in a first direction and a second direction different from the first direction. Each aperture is periodically disposed in the first direction and the second direction, and each aperture is relative to the first direction or The second direction has the same orientation. In the above two methods, 'the polarization of electromagnetic radiation is affected by the shadow of the cell mass 200916856. The cell cluster is the density variation of the charge carrier in the metal. The surface plasmon shows the vibration mode, its Limited to the surface and can be excited by light under certain conditions. Each vibration mode has a K-vector that is different from the freely transmitted electromagnetic radiation' so that the K-vector can be coupled into the surface plasmonics without additional measures or Coupling from surface plasmons. By various structures, such as edge, crevice or periodic structures, the scattering properties allow the κ-vector to change, coupling light into the surface plasmons. The scattering properties on asymmetric structures are therefore strongly related to polarization. The number of metal faces in a planar configuration or the number of holes in the metal face (the number of which represents a metal edge, wherein different sizes in the first direction and in the second direction allow light to be coupled out, which is related to polarization. Therefore, electromagnetic radiation A preferred direction of polarization can be achieved. In another form, the 'number of holes and the number of metal faces have the same form, respectively' such that the electromagnetic is preferably coupled to the surface plasmonic. In another form The period in the first direction or the period in the second direction is in the order of magnitude of the wavelength of the electromagnetic radiation. In order to effectively couple the electromagnetic radiation into the surface plasmonics in its configuration, the metal faces and holes must be based on I: The wavelength adjusts the metal faces and the holes. In another form, the period in the first direction is different from the period in the second direction. By different periods, electromagnetic radiation can be more coupled to one direction in one direction. In the surface plasmonics, the polarization in this direction has a greater effect, so that at least a part of the polarized light can be produced. In another form, the above-mentioned period must be selected to make the electromagnetic radiation Passing through a hole in the metal surface with an "enhanced transmittance". This transmittance is therefore larger than that estimated by the area occupancy of the metal surface, so that the light efficiency is improved by 200916856. The above object can also be produced by one kind. A method of linearly polarizing light to achieve 'at this time electromagnetic radiation excites each surface plasmonic in a plurality of metal particles. The metal particles are disposed flat and have a dimension in the first direction that is different from the dimension in the second direction. The metal particles are arranged to have the same orientation with respect to the first direction or the second direction. In a method different from that currently described, the metal particles are not periodically arranged, however, each metal particle is preferably coupled The same polarization direction is shown. This coupling is therefore carried out on localized cell clusters, the cell clusters moving around the metal particles. In another form, the distance between the particles is on the order of the wavelength of the electromagnetic radiation. In addition, the distance of the particles must be selected so that the electromagnetic radiation is effectively coupled to the surface plasmons. Each metal particle is in the nm structure, ie, its size is Between 1 and 200 nm. In another form, the distance between the particles is random. In another form, the size of the metal particles is much smaller than the wavelength of the electromagnetic radiation. The mass of the above method can be increased, in which case the cell mass is said to be integrated into the evanescent field of the totally reflected light and thus the other internal total reflection light is coupled out. In another form, in the above manner Metallic surfaces and metal particles made of gold, silver or aluminum. Highly reflective metals allow cell clusters to interact strongly with electromagnetic radiation. However, in principle, other metals can be used as long as they interact with the environment. Supporting the cell mass can be. In another form, the thickness of the metal face is between 50 and 200 nm 'this thickness is thick enough' so that it is not transparent to electromagnetic radiation without holes and 200916856 is also thin enough to make the metal The face can be easily structured. In another form, a metal face and metal particles are applied to the emitting side of the radiating element. Light with the correct polarization can therefore be emitted from the radiating element as efficiently as possible, and the illuminally polarized light is reflected back into the radiating element. In another form, electromagnetic radiation is generated in a radiating element by an active layer sequence. Multiple radiating components are small in shape, insensitive to electromagnetic radiation, and have a high lifetime. In another form, the radiation component is a light emitting diode (LED). In another form, the electromagnetic radiation is not linearly polarized but is deflected by scattering or reflection, causing the electromagnetic radiation to re-energize the surface plasmons. By scattering or reflecting, the polarization of the unexposed electromagnetic radiation can be varied so that the electromagnetic radiation can be re-emitted in the desired direction of polarization when re-injected onto the metal or metal particles. This type of polarization recirculation occurs in the generation of a radiation-rich conductor assembly and provides a light gain. The above methods and radiation-generating components can be used in the backlighting of liquid crystal displays or liquid crystal projectors, and can also be used in headlight illumination of transportation vehicles. In order to carry out the above method, in particular, it is also possible to use the components described herein. All of the method-related features are therefore also applicable to the components herein, and vice versa. The invention will now be explained in accordance with an embodiment in the drawings. [Embodiment] Fig. 1 shows a cross section of a radiation unit B. The first confinement layer C1 is disposed on the substrate s. An active layer A is disposed on the first localized layer C1, and a second localized layer C 2 is disposed thereon. The active layer A is used to generate an electromagnetic radiation -10-200916856 and is supplied with current via the first contact surface Κ 1 and the second contact surface K2. The electromagnetic radiation exits the radiating element B in the emission direction e via the last layer of the stack of layers. The radiation component can be, for example, a light emitting diode (LED). Figures 2, 3 and 4 are examples of structures applied to the last layer of the layer sequence in the emission direction e. These figures thus show a top view of the radiating element B in the opposite emission direction e. Fig. 2 shows a first embodiment having a metal facet having a longitudinally periodic configuration of apertures L. The holes are thus formed asymmetrically, i.e., each hole has a dimension a1 in the first direction d1 which is different from the dimension a2 in the second direction d2. The form of each of the holes may have any form other than asymmetry, which may be a rectangle, a lancet shape, an oval shape or the like. It is important that the 'holes' are asymmetrical, for example, not circular or square. Further, each of the holes L is disposed so as to be aligned integrally; for example, each of the holes L has a long side a1 in the same direction, and the same direction may be, for example, the first direction d1. Each of the holes L preferably has the same size and the same form. The holes may also have different sizes or forms as long as the asymmetry is uniformly formed. The dimensions a1 and a2 are between 20 and 50 〇 nm. Further, each of the holes L is periodically arranged in two directions. The figure shows a periodic orientation having a period pi in the first direction dl and a first period p 2 in the second direction d2. The periods p 1 and p 2 are different from each other. The electromagnetic light generated by the active layer A is coupled to the surface plasmons in the metal facet, where it is particularly intimate to the edge of each aperture L, which is determined by the periods pi and ρ2. One of these two periods must be selected for effective radiation, and another period of -11-200916856 must be chosen so that electromagnetic radiation is not coupled (ie, not reflected). This coupling is related to polarization, causing the radiating element B to emit at least a portion of the polarized light. The period required to couple the electromagnetic radiation well to the surface plasmons is approximately equal to the wavelength of the electromagnetic radiation. The distance of each hole L is thus between 1 至 and 7 OO nm. Since the light-emitting diode emits light in a narrower band, an effective coupling cannot be achieved at another cycle. In the first embodiment, each of the holes L and its size in configuration must have an "enhanced transmittance". By "enhanced transmittance" is meant that, in terms of the area of each aperture, more photons than when incident on the entire surface can exit the structure in the emission direction e. A second embodiment functionally similar to the first embodiment is shown in Fig. 3. Instead of using a continuous metal face M (which has a plurality of holes L), a plurality of metal faces are disposed on the last layer of the stack of layers in Fig. 3. In a manner similar to that of Fig. 2, the electromagnetic radiation is caused to be polarized by a different coupling on the surface plasmon along the first direction d 1 and the second direction d2 different from the first direction. The edges of the surface plasmons that are scattered are now the edges of the individual metal faces rather than the edges of the holes L in Figure 2. The metal facet is elongated, i.e., the metal face has a dimension a1 in the first direction dl which is different from the dimension a2 in the second direction d2. All of the metal facets have, for example, the same dimensions a 1 and a2, which may be formed by a rectangular, oval or other elongated structure. Similar to the hole L of Fig. 2, each of the metal faces has the same orientation such that, for example, the long sides are displayed in the same direction. The metal facets are also arranged in the first direction dl with the period 配置1 and the 200916856 is arranged in the second direction d2 with the period p2. The electromagnetic radiation can be effectively coupled to the surface plasma period so that the electromagnetic radiation is not effectively coupled to The thickness of the metal facet in the figure is between 50 and 100 nm. The third embodiment is shown in Fig. 4 and differs from the second embodiment in that one side of the same form of structure is applied with an irregular face. The respective metal fine particles P are not periodically first and the same as in the second embodiment, and the fine particles have the same orientation in the long direction dl as the second metal particles P have the same orientation. Each cell group localized by the metal particles P coupled to the edge of the electrical structure or the metal surface is surrounded by the metal particles P. Because of the same, polarization correlation of emissivity can be caused. The distance between each of them is smaller than the wavelength of electromagnetic radiation. The metal surface of Figures 2 and 3 and the fourth genus (for example, silver, gold, and aluminum) are highly reflective. The efficiency of the method of producing linearly polarized light The emitted light circulates inside the layer sequence. The polarization of the borrowed radiation is randomly distributed, which is linear in the structure on the last layer. These cycles must be selected and placed on the other surface of the electric paddle. The metal particles P are not applied to the second layer between the 2' 3 2 0 n m and preferably the first surface shown in Figs. 2 and 3, and the other phase is disposed. However, like a shape, S卩, its size in the first square f to d2. In addition, the magnetic radiation is not by the cell cluster of the cycle, but by the mutual coupling of each other, the orientation and the elongated form of each cell group, and the particle P is an nm structure. The metal particles P of the figure can be increased by gold at a desired wavelength in such a way that, without the scattering process, no light is emitted to cause light to be emitted in the direction of the arrangement polarization. 200916856 One application of a light-emitting diode that emits linearly polarized light is, for example, backlighting of a liquid crystal display or projector, wherein the orientation of the liquid crystal can be reliably achieved by a polarization filter. A polarizing filter is required in a non-polarized light source that reflects only through a linear polarization direction and in another polarization direction. Only a portion of the direction of polarization that is reflected can be recycled, at which point a portion of the light will disappear. This loss can be reduced when the source produces at least a portion of the linearly polarized light. Another application of the above method and radiation assembly is in the headlights of a vehicle (e.g., a car). If the headlight has, for example, a vertically polarized light, the light of the reverse motor vehicle can be eliminated by a detector whose direction is perpendicular to the polarization direction. The driver is not obscured by the light of the reverse car. However, the polarized light is scattered by other objects in the environment into another polarized light that can be seen by the detector. The present patent application claims the priority of the German patent application, the entire disclosure of which is hereby incorporated by reference. The invention is of course not limited to the description made in accordance with the various embodiments. In contrast, the present invention encompasses each novel feature and every combination of features, and in particular, each of the various combinations of the various features of the invention, or the various features of the different embodiments, when the related features or related combinations are not The invention is also shown in the scope of each patent application or in the various embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of an embodiment of a radiation assembly. Figure 2 shows a first embodiment with a plurality of holes in the metal face. '14- 200916856 Fig. 3 Second embodiment having a plurality of holes in the metal face Fig. 4 Third embodiment having a plurality of holes in the metal face [Description of main components] B Radiation component S Substrate C 1 Localized layer C2 Limit layer A Active layer K 1 Contact layer K2 Contact layer e Emission direction Μ Metal surface L Hole d 1 Direction d2 direction a 1 Size a2 Size pi Period p2 Period P Metal micro industry

Claims (1)

200916856 十、申請專利範圍: 1_ 一種輻射組件,其具有一以半導體材料爲主之層堆疊, 此層堆疊包括一活性之層序列(A,Cl,C2)以產生電磁輻 射,此輻射組件之特徵在於: -在該層堆疊之最後一層(C2)上在發射方向(e)中施加多 個金屬面(M), -各金屬面(M)在第一方向(dl)和與第一方向不同的第二 方向(d2)中具有不同的尺寸(al,a2),以及 -各金屬面(Μ)周期性地配置在第一方向(dl)和第二方向 (d2)中。 2 · —種輻射組件,其具有一以半導體材料爲主之層堆疊, 此層堆疊包括一活性之層序列(A,C 1 , C 2 )以產生電磁輻 射,此輻射組件之特徵在於: -在該層堆疊之最後一層(C2)上在發射方向(e)中施加一 個金屬面(M),此金屬面中設有多個孔(L) -各孔(L)在第一方向(dl)和與第一方向不同的第二方向 (d2)中具有不同的尺寸(al,a2),以及 -各孔(L)周期性地配置在第一方向(dl)和第二方向(d2) 中〇 3.—種輻射組件’其具有一以半導體材料爲主之層堆疊, 此層堆疊包括一活性之層序列(A,C 1,C 2 )以產生電磁輻 射,此輻射組件之特徵在於: -在該層堆疊之最後一層(C2)上在發射方向(e)中平坦地 施加多個金屬微粒(P), -16- 200916856 -各金屬微粒(P)在第一方向(dl)和與第一方向不同的第 二方向(d2)中具有不同的尺寸(a 1,a2)。 4 ·如申請專利範圍第1至3項中任一項之輻射組件,其中 該多個金屬面(M)、多個孔(L)和多個金屬微粒(P)相對於 第一方向或第二方向分別具有相同的方位。 5 .如申請專利範圍第1至4項中任一項之輻射組件,其中 多個金屬面(M)和多個孔(L)分別具有相同的尺寸。 6 ·如申請專利範圍第1至5項中任一項之輻射組件,其中 第一方向(dl)中的周期(pi)或第二方向(d2)中的周期(p2) 位於電磁輻射之波長的數量級中。 7 ·如申請專利範圍第1至6項中任一項之輻射組件,其中 第一方向(dl)中的周期(pi)不同於第二方向(d2)中的周期 (P2)。 8 ·如申請專利範圍第1至7項中任一項之輻射組件,其屮 各金屬微粒(P)之間的距離(d)是在電磁輻射之波長之數 量級中。 9.如申請專利範圍第1至8項中任一項之輻射組件’其中 各金屬微粒(P)之間的距離(d)是隨機性的。 1 〇 ·如申請專利範圍第1至9項中任~項之輻射組件’其中 各金屬微粒(P)之大小較電磁輻射的波長還小數個數量 級。 1 1 ·如申請專利範圍第1至1 0項中任—項之輻射組件’其中 各金屬面(M)和金屬微粒(P)是由金 '銀或鋁所構成。 1 2.如申請專利範圍第1至1 1項中任一項之輻射組件’茸中 200916856 各金屬面(Μ)之厚度是50至2〇Onm。 1 3 .如申請專利範圍第1至1 2項中任一項之輻射組件,其中 須選取各金屬面(M)中的孔(L)之周期(Pl, P2),使金屬面 (M)對電磁輻射具有一透過率,其較金屬面(M)之面積佔· 有率所估計的透過率還大。 1 4如申請專利範圍第1至1 3項中任一項之輻射組件,其中 至少一金屬面(Μ)形成該輻射組件(B )操作時所需的電流 傳導面(k2)。 1 5 ·如申請專利範圍第1至1 4項中任一項之_射組件,其中 該輻射組件(B )中設有多個元件,藉此使非線性極化的電 磁輻射之極化發生變化且在發射方向(d)中重新轉向至各 金屬面(M)或轉向至最後一層上的金屬微粒(p)。 i200916856 X. Patent application scope: 1_ A radiation component having a layer stack mainly composed of a semiconductor material, the layer stack comprising an active layer sequence (A, Cl, C2) for generating electromagnetic radiation, characteristics of the radiation component In the following: - a plurality of metal faces (M) are applied in the emission direction (e) on the last layer (C2) of the stack of layers, - each metal face (M) is different in the first direction (dl) and from the first direction The second direction (d2) has different sizes (al, a2), and - each metal face (Μ) is periodically disposed in the first direction (d1) and the second direction (d2). 2 - a radiation component having a layer stack of semiconductor materials, the layer stack comprising an active layer sequence (A, C 1 , C 2 ) for generating electromagnetic radiation, the radiation component being characterized by: Applying a metal surface (M) in the emission direction (e) on the last layer (C2) of the layer stack, the metal surface is provided with a plurality of holes (L) - each hole (L) is in the first direction (dl) And having a different size (al, a2) in the second direction (d2) different from the first direction, and - each hole (L) is periodically arranged in the first direction (dl) and the second direction (d2) The middle cymbal 3.-radiation component has a stack of semiconductor-based layers, the stack of layers comprising an active layer sequence (A, C 1, C 2 ) to generate electromagnetic radiation, the radiation component being characterized by : - applying a plurality of metal particles (P) flatly in the emission direction (e) on the last layer (C2) of the layer stack, -16- 200916856 - each metal particle (P) is in the first direction (dl) and The second direction (d2) different from the first direction has a different size (a 1, a2). The radiation component of any one of claims 1 to 3, wherein the plurality of metal faces (M), the plurality of holes (L), and the plurality of metal particles (P) are relative to the first direction or The two directions have the same orientation. The radiation assembly of any one of claims 1 to 4, wherein the plurality of metal faces (M) and the plurality of holes (L) have the same size, respectively. The radiation assembly according to any one of claims 1 to 5, wherein the period (pi) in the first direction (dl) or the period (p2) in the second direction (d2) is at the wavelength of electromagnetic radiation In the order of magnitude. The radiation assembly of any one of claims 1 to 6, wherein the period (pi) in the first direction (dl) is different from the period (P2) in the second direction (d2). The radiating element of any one of claims 1 to 7, wherein the distance (d) between the respective metal particles (P) is in the order of the wavelength of the electromagnetic radiation. 9. The radiation component of any one of claims 1 to 8 wherein the distance (d) between the metal particles (P) is random. 1 〇 The radiating element of any of the above claims 1 to 9 wherein the size of each metal particle (P) is several orders of magnitude smaller than the wavelength of electromagnetic radiation. 1 1 · The radiation component of any one of the claims 1 to 10 wherein each of the metal faces (M) and the metal particles (P) is composed of gold 'silver or aluminum. 1 2. The radiation component of any one of claims 1 to 1 of the invention is in the middle of 200916856. The thickness of each metal surface (Μ) is 50 to 2 〇 Onm. The radiation component according to any one of claims 1 to 12, wherein the period (Pl, P2) of the hole (L) in each metal face (M) is selected to make the metal face (M) It has a transmittance for electromagnetic radiation, which is larger than the estimated transmittance of the area of the metal surface (M). The radiation component of any one of claims 1 to 3, wherein at least one metal face (Μ) forms a current conducting face (k2) required for operation of the radiation component (B). The ejector assembly of any one of claims 1 to 4, wherein the radiation component (B) is provided with a plurality of components, thereby causing polarization of nonlinearly polarized electromagnetic radiation to occur. Change and redirect to the metal faces (M) in the direction of emission (d) or to the metal particles (p) on the last layer. i
TW97130474A 2007-09-28 2008-08-11 Radiation-emitting elements for producing linear polarized light TW200916856A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046517 2007-09-28
DE102007059621A DE102007059621A1 (en) 2007-09-28 2007-12-12 Method for producing linearly polarized light and radiation-emitting components

Publications (1)

Publication Number Publication Date
TW200916856A true TW200916856A (en) 2009-04-16

Family

ID=40384479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130474A TW200916856A (en) 2007-09-28 2008-08-11 Radiation-emitting elements for producing linear polarized light

Country Status (3)

Country Link
DE (1) DE102007059621A1 (en)
TW (1) TW200916856A (en)
WO (1) WO2009039804A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155794A (en) * 2014-08-13 2014-11-19 深圳市华星光电技术有限公司 Polarizing sheet and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667815B1 (en) * 2010-02-18 2016-10-19 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2012068486A (en) * 2010-09-24 2012-04-05 Sony Corp Display device, optical member, and method for manufacturing optical member

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59004235D1 (en) * 1990-02-13 1994-02-24 Siemens Ag Radiation generating semiconductor device.
DE59303906D1 (en) * 1992-12-03 1996-10-24 Siemens Ag TUNABLE SURFACE-EMITTING LASER DIODE
US6040936A (en) * 1998-10-08 2000-03-21 Nec Research Institute, Inc. Optical transmission control apparatus utilizing metal films perforated with subwavelength-diameter holes
US6507595B1 (en) * 1999-11-22 2003-01-14 Avalon Photonics Vertical-cavity surface-emitting laser comprised of single laser elements arranged on a common substrate
DE10107472A1 (en) * 2000-05-23 2001-12-06 Osram Opto Semiconductors Gmbh Component for optoelectronics and method for its production
US6836494B1 (en) * 2000-05-31 2004-12-28 Lucent Technologies Inc. Structure and method for processing optical energy
CN1263208C (en) * 2001-03-09 2006-07-05 阿莱特技术公司 Mode control using transversal bandgap strucutre in vertical cavity surface emitting laser (VCSEL)
KR20050067166A (en) * 2002-10-25 2005-06-30 닛토덴코 가부시키가이샤 Polarizer, method for manufacturing the same, optical film and image display
KR20060130543A (en) * 2003-08-06 2006-12-19 유니버시티 오브 피츠버그 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Surface plasmon-enhanced nano-optic devices and methods of making same
US7292614B2 (en) * 2003-09-23 2007-11-06 Eastman Kodak Company Organic laser and liquid crystal display
DE102004005445A1 (en) * 2004-02-04 2005-08-25 Robert Bosch Gmbh Sensor for detecting carbon dioxide comprises source for releasing electromagnetic radiation from plasmon system made from particles arranged on substrate
US7420218B2 (en) * 2004-03-18 2008-09-02 Matsushita Electric Industrial Co., Ltd. Nitride based LED with a p-type injection region
KR100778887B1 (en) * 2006-01-18 2007-11-22 재단법인서울대학교산학협력재단 Shape Resonance Terahertz and Infrared Filters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155794A (en) * 2014-08-13 2014-11-19 深圳市华星光电技术有限公司 Polarizing sheet and display device

Also Published As

Publication number Publication date
WO2009039804A2 (en) 2009-04-02
DE102007059621A1 (en) 2009-04-02
WO2009039804A3 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4806678B2 (en) Organic light emitting diode (OLED) with improved light extraction and corresponding display unit
JP6681713B2 (en) Optical lens, light emitting module and light unit equipped with the same
JP6063394B2 (en) Lighting device
US7800122B2 (en) Light emitting diode device, and manufacture and use thereof
US8004000B2 (en) Polarized light emitting diode and method of forming the same
JP6448188B2 (en) Lamp unit and vehicle lamp device using the same
US9028071B2 (en) Light emitting element, light source device, and projection display device
JP5307307B1 (en) Sheet and light emitting device
TWI261378B (en) Polarized light emitting device
TWI398020B (en) Light emitting device
JP5605427B2 (en) Light emitting device, light source device, and projection display device
US10937925B2 (en) Light emitting diode chip having distributed Bragg reflector
JP2007042320A (en) Planar light source device and color liquid crystal display device assemble body
KR20100111685A (en) Light-emitting device
TW200845431A (en) Arrangement with semiconductor chip and light-guiding layer
US9041043B2 (en) Light emitting device package
US20110204401A1 (en) Light emitting device, light emitting device package, and lighting system
KR20120106648A (en) Light-emitting device, light-emitting device module, and vehicle lighting unit
JP2019176106A (en) Light-emitting device
CN105917477A (en) Light-emitting element and light-emitting device
TWI414083B (en) Optical platform to enable efficient led emission
TW200916856A (en) Radiation-emitting elements for producing linear polarized light
JP2009540617A (en) LED device having re-emitting semiconductor structure and reflector
KR101848861B1 (en) Backlight appartus
WO2016208644A1 (en) Optical device, light source device and projection device