TW200916743A - Spectroscopy device, spectroscopy apparatus and spectroscopy method - Google Patents

Spectroscopy device, spectroscopy apparatus and spectroscopy method Download PDF

Info

Publication number
TW200916743A
TW200916743A TW097129801A TW97129801A TW200916743A TW 200916743 A TW200916743 A TW 200916743A TW 097129801 A TW097129801 A TW 097129801A TW 97129801 A TW97129801 A TW 97129801A TW 200916743 A TW200916743 A TW 200916743A
Authority
TW
Taiwan
Prior art keywords
aperture
spectral
hole
light
spectral element
Prior art date
Application number
TW097129801A
Other languages
Chinese (zh)
Other versions
TWI434029B (en
Inventor
Takeshi Misawa
Shuu Takahashi
Mitsuru Iwata
Kazuya Oda
Motoari Ota
Kazuyoshi Ito
Yasuyuki Ozeki
Yoshitaka Kobayashi
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW200916743A publication Critical patent/TW200916743A/en
Application granted granted Critical
Publication of TWI434029B publication Critical patent/TWI434029B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2846Investigating the spectrum using modulation grid; Grid spectrometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02805Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a two-dimensional array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2859Peak detecting in spectrum

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)

Abstract

A spectroscopy device that separates input light into a plurality of wavelength ranges. A metal body has a hole or aperture which is open on the upper side. The hole or aperture is formed in a polygonal shape having at least a pair of opposite faces not parallel to each other in horizontal cross-section. Inner side faces of the hole or aperture are finished as mirror like reflection surfaces. Polarized input light inputted from the opening to the hole or aperture is reflected by the reflection surfaces and a standing wave is generated inside of the hole or aperture by self interference, whereby the input light is separated into a plurality of wavelength ranges.

Description

200916743 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用以將輸入光分光之光譜元件,光譜 裝置,及其使用方法。 【先前技術】 就光譜元件,光譜裝置,及量測光譜的方法而言,已有 習知的各種結構。但是,一般而言,它們都是使用稜鏡將 輸入光分光,然後在使用影像感測器轉換成電訊號之後記 錄分離的光束。因爲待分離波長的改變響應棱鏡的驅動機 構之機械上的改變,所以如上述方式構成之傳統光譜儀很 難同時檢測複數波長。因此,完成下列發明以解決此一問 題。 曰本未審專利公報第8 ( 1 9 9 6)- 1 9 3 8 8 4號揭露一種光譜裝 置,其具有以下依序串列配置於光學路徑上之構件:第一 成像透鏡、狹縫板、第一準直透鏡、分光裝置、第二準直 透鏡、微稜鏡陣列、第二成像透鏡及二維陣列感測器。具 有藉由分光裝置分離之光譜的預定波長之光束藉由微稜鏡 陣列偏折,然後沿預定方向輸出。此造成光譜影像形成在 二維陣列感測器的預定感測器上,於是可以實現能夠同時 獲得多光譜之光譜裝置。 美國專利第5,729,011號揭露一種光譜裝置,其中除了透 鏡和影像感測器之外,還有形成場遮罩和複數光折射表 面,此等光折射表面在異於光學系統的光軸方向之方向具 200916743 有多數法線,而且稜鏡配置在透鏡的瞳孔表面附近,使得 透鏡的瞳孔表面被每一個折射表面分離。此造成產生在影 像感測器上之複數相同影像形成爲具有彼此不同波長分量 之複數相同的光譜影像,於是同時實現能夠獲得對應於複 數波長之光譜影像的光譜裝置。 這些光譜裝置需要包含用於影像感測器之稜鏡和使光譜 影像成像的光學系統用透鏡,所以就組件配置或光學設計 而言,需要很大空間。因此’這些光譜裝置的尺寸變得非 常大。再者’包含稜鏡、透鏡和影像感測器之組件係在整 個罩框內對準,所以需要花很長的時間調整,而且對準精 確性也受到限制。 因此’本發明之目的在於提供一種新穎光譜元件,其無 習知光譜元件、光譜裝置及光譜方法的那些問題。 【發明內容】 根據本發明之光譜元件係一種包含金屬板之元件,該金 屬板具有形成多邊形之孔洞或孔徑,該多邊形具有至少一 對橫截面彼此不相互平行之相對面,而孔洞或孔徑係在上 側開口,其中: 孔洞或孔徑的內側面係被光製成像鏡子一樣的反射表 面;及 駐波係藉由從開口輸入到孔洞或孔徑之極化輸入光在反 射表面上反射所造成的干涉’產生在孔洞或孔徑內部,於 是輸入光被分離成複數波長範圍。 此處所使用的“孔洞”和”孔徑”一詞意思是分別具有底部 200916743 和貫穿孔徑之孔洞° 孔洞或孔徑具有可以藉由將輸入其中之光反射而在其內 部產生駐波之尺寸,亦即,尺寸明顯不大於光的波長,例 如,波長的若干倍° “金屬板” 一詞一般意思是具有彼此相互平行之上表面 (正面)和底面(背面)之薄金屬’但是此處未必侷限於具有精 確平行的上表面和底面之金屬板。此外’其並不限於與在 水平方向之尺寸相較’厚度較小之金屬板。 此處所使用的“輸入光被分離成複數波長範圍”一詞意思 是具有不同波長範圍之光束被聚焦或導引在孔洞或孔徑內 部的不同位置上,而且若配置具有響應這些位置之光接收 組件的感測器,具有不同波長之光束即可藉個別光接收組 件檢測。例如,具有不同波長範圍之光譜分量可被聚焦在 孔洞或孔徑的底部上之不同水平位置。 孔洞或孔徑在至少具有一對彼此不相互平行之相對面的 橫截面,須具有多邊形’其係一種用以產生上述駐波和將 不同波長範圍聚焦在不同位置之情況。尤其’例如’形狀 可以爲梯形,如等腰梯形。梯形的邊形成一對彼此不相互 平行之相對面,所以自孔洞或孔徑的上側輸入,換言之’ 自上述的開口輸入之極化光’在相對面之間重複反射’於 是不同波長範圍被聚焦在鄰近孔洞或孔徑的底部之不同位 置。 尤其,本發明之光譜元件可以爲一包含金屬板之元件’ 200916743 其中金屬板之厚度均勻,且具有從上表面延伸到底面的孔 徑,其中: 當孔徑的橫截面取平行金屬板的上表面和底面,而且形 成橫截面的其中三個邊係以長度遞減順序選擇時,三個邊 的延伸線形成具有很窄的頂角之等腰三角形; 至少接觸等腰三角形的等腰側邊之孔徑內側面被光製成 像鏡子一樣的反射表面;及 藉由輸入光在孔徑的反射表面上之反射所造成的干涉, 自金屬板的上表面輸入到孔徑之極化輸入光被分離成複數 波長範圍。 再者,本發明之光譜元件還可以包含在其上側之極化組 件,而且極化組件的極化方向被設定在平行或正交等腰三 角形底邊的垂直等分線之方向。 本發明之光譜裝置可以是一種包含任何上述光譜元件之 裝置,而且孔徑垂直延伸到金屬板的上表面和底面。 再者,本發明之光譜裝置還可以是一種裝置,其包含任 何上述光譜元件,及配置在對應輸入光的光譜分佈之局部 化位置之光譜元件底面上的位置之光接收組件,其中光譜 分佈係藉由光接收組件轉換成電訊號。 此外,本發明之光譜裝置可以是一種裝置,其包含配置 在對應光譜分佈之複數局部化位置的位置之複數光接收組 件。 再者’本發明之光譜裝置可以是一種二維光譜裝置,其 200916743 包含二維配置,各自組合光譜元件和一個或多個光接收組 件之複數光譜裝置。 本發明之量測光譜的方法包含下列步驟: 提供一種具有形成多邊形之孔洞或孔徑之金屬板’其中 至少具有一對在橫截面彼此不相互平行之相對面,而孔洞 或孔徑係在上側開口,其中孔洞或孔徑的內側面係被光製 成像鏡子一樣的反射表面;及 將極化輸入光從開口輸入到孔洞或孔徑,然後藉由在反 射表面上之輸入光的反射所造成之千涉,而在孔洞或孔徑 內部產生駐波,於是輸入光被分離成複數波長範圍。本發 明之光譜元件包含一種具有形成多邊形之孔洞或孔徑之金 屬板,其中至少具有一對在橫截面彼此不相互平行之相對 面。孔洞或孔徑係在上側開口,其中孔洞或孔徑的內側面 係被光製成像鏡子一樣的反射表面,以及駐波係藉由從開 口輸入到孔洞或孔徑之極化輸入光在反射表面上反射所造 成的千涉而產生在孔洞或孔徑內部,於是輸入光被分離成 複數波長範圍。因此,本發明之光譜元件具有非常簡單的 結構,但是其可以提供與傳統光譜元件相同之光譜效應。 再者,光譜元件和光接收組件可以藉由半導體製程製 造,所以可以實現小巧的和高精確的光譜裝置。 此外,用以將光譜影像成像之影像感測器,不需要包含 稜鏡和透鏡之光學系統,所以可以減少根據構件配置或光 學設計所需之空間。因此,光譜裝置的尺寸可以變得非常 200916743 小巧。再者’構件包含不使用之稜鏡,透鏡,及影像感測 器,所以其不需要在整個罩框內對準。因此,可以不用考 慮構件調整所需之時間,而且同時也可以改善對準精確性。 【實施方式】 下面,將參考附圖詳細說明本發明之光譜元件,光譜裝 置,及量測光譜的方法。 <第一實施例> 第1A圖’第1B圖’和第1C圖顯示本發明之光譜元件 1 0的結構範例。第1 A圖係光譜元件1 0的俯視圖,其圖示 從光輸入面所觀察到之形狀。光譜元件1 0係由具有均勻厚 度之金屬板所製成之結構,其中具有孔徑2 0,其係從上表 面’即輸入面’垂直延伸到底面,即輸出面。第1A圖說明 猶如某一光譜元件與其他的光譜元件無關,但是從製造和 使用的觀點’其最好具有被其他相鄰的光譜元件分享之金 屬板的結構。因此’第1 A圖所示外形係虛構的形狀。第 1 B圖係沿第1 A圖的線A-A’所取的橫截面圖。形成光譜元 件1 0結構之金屬板將入射光反射在孔徑2 0的內壁上。在 本實施例中’反射表面11,12與輸入面16和輸出面18垂 直相交。第1 C圖係沿第1 a圖的線B - B,所取的橫截面圖。 反射表面13’ 14與輸入面16和輸出面18垂直相交,與第 1 B圖相同。 如第2圖中根據本發明之光譜元件的槪念圖所示,分光 可以藉由從光譜元件1 〇的輸入面1 6輸入光,而且沒有顯 -10- 200916743 示在反射表面上反射之輸入光的反射光到達輸出面,並且 彼此干涉時所產生的駐波達成。在輸出面1 8之駐波對應光 譜強度分佈。 第3 A圖和第3 B圖顯示本發明之光譜元件的孔徑形狀。 第3 A圖所示本發明光譜元件的孔徑2 0之形狀係以下列方 式界定。換言之,藉由那些形成孔徑20之三個邊,邊22, 邊2 6 ’和邊2 8的延伸線所包圍之幾何,即,藉由延伸線 2 3 ’延伸線2 7 ’和延伸線2 9所包圍之幾何形成具有第3 b 圖所示窄頂角Η的等腰三角形30’即,形成三角形。第3A 圖所示孔徑2 0的形狀係梯形,其藉由平形其底邊2 8切割 寺腰二角形3 0的頂點區域所形成。此取決於獲得之光譜結 果的波長範圍。若不需要獲得之光譜結果的短波長範圍, 則等腰三角形的頂點區域可以被省略。相反地,若分光係 要執行短波長範圍’則孔徑就會更像等腰三角形,而且最 後會變成等腰三角形。 I. 在本發明之先譜兀件中’輸入光被內壁之反射表面反 射’然後分光藉由反射光和輸入光所產生的駐波達成。因 此’右輸入光被反射表面反射時光能量損失很大,光譜裝 置之結構內壁反射時的輸入光能量即會損失,而且在輸出 面很難獲得完全的強度分佈。因此,有必要選擇具有低反 射能量損失之材料用於金屬板。例如,銀係習知具有良好 反射率之金屬,而且也已被使用。此外,也可以使用金, 銅’和鏡子材料’如金’銅’銅和錫的合金,銘,及類似 -11 - 200916743 的材料。在這些材料中精確提供孔徑之技術可以包含半導 體製程技術之非等向性蝕刻,使用脈衝雷射,光纖雷射, 或類似方式之超精密機械加工。半導體製程技術的使用允 許穩定製造高精確性之光譜元件。 因爲只有孔徑的內壁才需要反射,所以孔徑及其所包圍 之其他結構可以由矽製之半導體基板形成,其中此材料和 後面要說明的光接收組件或類似的組件相同,而且內壁可 以只使用金’銀,銅,或銅和錫的合金之薄膜或金屬板。 ί ^ 孔徑也可以藉由半導體製程技術提供在半導體基板之中。 當在提供在半導體基板之孔徑的內壁上形成金,銀,銅, 或銅和錫的合金之薄膜時,可以使用濺鍍,氣相沉積,電 鍍’或類似技術。在採用此結構處,可以實行具有由相同 半導體基板製作的光接收組件之整合結構。 第4Α圖到第4F圖顯示使用本發明之光譜元件,Υ方向 極化輸入光的光譜結果。第4Α圖所示左邊座標系統對應第 i ; 1A圖到第ic圖所示光譜元件之座標系統。此爲座標系統 之指示方式,其垂直軸表示從上方觀察之光譜元件的X方 向’水平軸表示從上方觀察之光譜元件的Y方向,其中Y 方向極化之輸入光係從440 nm(第4A圖)到690 nm(第4F 圖)以每六個波長分離光譜。在第4A圖到第4F圖的每一個 圖式中’更白的部分表示波峰,其中具有該波長之光強烈 地表示爲駐波。波峰部分隨波長改變,顯示本實施例的光 譜元件具有光譜元件之功能。 -12- 200916743 第5圖顯示使用第4A圖到第4F圖所示光譜元件的Y方 向極化輸入光之光譜強度。在第5圖所示圖式中,Υ方向 的座標(距離)係畫在Υ軸,而在光譜元件的X方向之中央 軸上,光譜強度係畫在X軸。Υ座標藉由光譜強度的最大 値作歸一化,所以圖式係顯示相對値。圖式清楚顯示關於 每一個波長強烈出現駐波之位置,而其在第4Α圖到第4F 圖中並不清楚。例如,440nm波長在Υ軸靠近250, 2000, 和4200 nm的三個位置有波峰。觀察從2500到45 00 nm之 Y座標,可以知道590 nm波長之波峰出現在2700 nm附近, 而當Y座標的値增加時,出現較短波長之波峰。 注意,640和69 0 nm的兩個波長之清楚波峰在圖式中並 沒有觀察到。從第4A圖到第4F圖就很清楚,此係因爲在 遠離光譜元件的X方向之中央軸的位置,這兩個波長具有 其波峰。 第6圖顯示使用本發明之光譜元件的Y方向極化輸入光 之光譜強度的波長與峰値位置關係。圖式的X軸表示輸入 光的波長,而γ軸則表示光譜強度的峰値位置。光譜強度 的峰値位置〇對應第3 A圖所示光譜元件的底邊2 8。 各波長之光譜強度的峰値主要可以分成兩組。在第一組 中,較接近Y軸方向的〇,在波長範圍從440 nm到540nm 之中,當波長變得更長時,強度的波峰位置幾乎線性移動 更接近〇。相反地’在波長範圍從5 9 0 n m到6 9 0 n m之中, 當波長變得更長時,強度的波峰位置幾乎線性移動遠離0。 200916743 在另一組中,換言之,在第二組中,在波長範圍從440 nm 到640nm之中’當波長變得更長時,強度的波峰位置幾乎 線性移動更接近〇。相反地,在波長範圍從6 4 0 nm到6 9 0 nm 之中’當波長變得更長時,強度的波峰位置幾乎線性移動 遠離〇。 當波長變得更長時,強度的所有波峰位置不會幾乎線性 移動更接近〇之原因在於輸入光在具有細小尺寸之孔徑中 振盪。底邊2 8的反射表面具有振盪的效果。若底邊2 8係 位在無限遠的距離,則當波長變得更長時,強度的波峰位 置幾乎線性移動更接近0。 <第一實施例之第一修正例> 第7A圖到第7F圖顯示使用本發明之光譜元件,X方向 極化輸入光的光譜結果。第7A圖所示左邊之座標系統對應 第1 A圖所示光譜元件之座標系統。第7 A圖到第7 F圖爲 圖示方式,其中輸入光係從440nm(第7A圖)到690nm(第 7F圖)以每六個波長分離光譜。在第7A圖到第7F圖的每 一個圖式中,更白的部分表示波峰,其中具有該波長之光 強烈地表示爲駐波。波峰部分隨波長改變,顯示本實施例 的光譜元件具有光譜元件之功能。不像第4 A圖到第4 F圖 所示Y方向極化光的結果,可以觀察到平行X軸之類線形 波峰。 第8圖顯示使用第4A圖到第4F圖之光譜元件的X方向 極化輸入光之光譜強度。在第8圖所示圖式中,Y方向的 -14- 200916743 座標(距離)係畫在Y軸,而在光譜元件的X方向之中央軸 上,光譜強度係畫在X軸。Υ座標係藉由光譜強度的最大 値作歸一化,所以圖式係顯示相對値。 關於每一個可以個別確認之波長強烈出現駐波之位置’ 係在440 nm波長之Υ座標的2800和3800 nm附近。若考 慮波長範圍,例如’從490到5 90 nm之Y座標,則波峰被 認爲出現在Y座標的3 400 nm附近,所以分光可以藉由使 用這些特性之本光譜元件達成。 <第一實施例之第二修正例> 第9A圖和第9B圖顯示根據本發明之光譜元件的孔徑形 狀修正例。第9A圖和第9B圖基本上是相同的,所以此處 將主要說明第9B圖。本實施例之光譜元件的孔徑92係以 下列方式界定。換言之,藉由那些形成孔徑92之三個邊, 邊22,邊26 ’和邊28的延伸線所包圍之幾何,g卩,藉由 延伸線2 3 ’延伸線2 7,和延伸線2 9所包圍之幾何形成具 有窄頂角Η的等腰三角形30,即,形成三角形。第9B圖 所示孔徑9 2的形狀係梯形,其藉由平形其底邊2 8切割等 腰三角形3 0的頂點區域所形成。孔徑9 2不同於第一實施 例,其具有圓形轉角。 在第9Α圖中,圓形轉角Raso」μιη,而在第9Β圖中, 圓形轉角Rb = 0.5 μιη。第1圖所示孔徑的形狀係理想的形 狀,而且若形狀像此,則可以提供最高的性能。但是,在 考慮到機械加工的精確度之處,具有圓形轉角之形狀可以 -15- 200916743 更廉價地製造。 第10A圖到第10H圖顯示使用根據本實施例之光譜元 件,Y方向極化輸入光的光譜結果。雖然沒有圖示,第10A 圖到第1 0H圖的座標系統和示於第9A圖所示光譜裝置的 座標系統相同。第10A圖到第10H圖係圖示輸入光從380 nm(第10A圖和第10E圖)到680 nm (第10D圖和第10H圖) 間隔100 nm被分光的四個波長之方式。在第10A圖到第 10H圖的每一個圖式中,更白的部分表示波峰,其中具有 該波長之光強烈地表示爲駐波,而且雖然細部是不同的, 但是在其係具有半徑爲0.1 μιη之圓角的孔徑之光譜結果的 第10Α圖到第10D圖,和其係具有半徑爲0.5 μιη之圓角 的孔徑之光譜結果的第1 0Ε圖到第1 0Η圖之間,其分佈大 致上是相同的。此顯示兩者都具有光譜元件之功能。 <第二實施例> 第11Α圖,第11Β圖,和第11C圖顯示根據本發明之光 ;, 譜元件10第二實施例。光譜元件10係由具有均勻厚度之 金屬板所製成之結構,其中具有錐形孔徑2 1,其係從上表 面’即輸入面’延伸到底面,即輸出面。其與根據示於第 1圖之第一實施例的光譜元件1 0不同,其中孔徑2 1具有 一種使得光譜元件1 0之輸入光的輸入面形狀1 1 0 1和輸出 面形狀11 〇 2變成很類似之形狀。因此,連接輸入面形狀 1 1 ο 1和輸出面形狀1 1 0 2之反射表面以直角以外之角度相 交。 -16- 200916743 第11B圖係沿第11A圖的線B-B’所取的橫截面圖。 光譜元件1 0結構之金屬板將入射光反射在孔徑2 1的 上。在本實施例中,反射表面1103與輸入面1104和 面Π 〇 5以直角以外之角度相交。第I 1 C圖係沿第I 1 A 線C-C’所取橫截面圖。反射表面1103與輸入面1104 出面1105以直角以外之角度相交,與第11B圖相同。 第1 2 A圖到第1 2 C圖爲使用本發明之光譜元件1 0 二實施例,Y方向極化輸入光的光譜結果圖。第1 2 A 示左邊之座標系統對應第11A圖到第lie圖所示光譜 之座標系統。但是,注意X軸的正方向係在反方向(此 圖式可倒過來以對準方向)。第1 1 A圖爲440 nm波長 譜結果,第11B圖爲540 nm波長的光譜結果,而第 圖爲64 0 nm波長的光譜結果。在第12A圖可以目視觀 藍光,在第12B圖爲綠藍光,在第12C圖爲紅光。比 1 2 A圖和第1 2 B圖,顯示雖然差距很小,但是波峰位 Y方向從106 nm移到110 nm。再者,比較第12B圖 12C圖,顯示波峰位置更移到112 nm,而且第二和第 峰分別出現在1 4 5 nm和1 7 0 nm附近。結果顯示本實 的光譜元件具有光譜元件之功能。 <第三實施例> 第1 3圖顯示使用本發明之光譜元件1 〇所建構之光 置1300的範例。光譜元件10可以爲上述光譜元件的 者。光譜元件的輸入光(例如,白光)係藉由孔徑20分 形成 內壁 輸出 圖的 和輸 的第 圖所 元件 處, 的光 lie 察到 較第 置在 和第 三波 施例 譜裝 任一 光, -17- 200916743 而光接收組件( 1 3 02到13 12)係位在底面上光譜分佈的局部 位置,於是可以實行能夠將光譜分佈轉換成電訊號之光譜 裝置。 光接收組件( 1 3 02到13 12)形成在半導體(如,矽)基板 (1 3 0 1)上。光接收組件可以使用普通製造方法,形成在一 般的半導體基板上。 因爲藉由各光接收組件所接收的波長都是固定的,所以 若個別的光接收組件(1 3 02到1 3 1 2)能夠根據波長改變接收 靈敏度,則有效率的光譜裝置可以藉由針對個別的接收波 長調整個別的光接收組件之接收靈敏度建構。例如,光接 收組件1 3 02接收藍光波長,如此使用具有靈敏度因藍光波 長而增加的光譜特性之光接收組件,可以允許光譜裝置 1 3 0 0係一種即使當輸入光很弱時,還能夠可靠地獲得光譜 結果之裝置。 在個別的光接收組件(1 3 0 2到1 3 1 2 )建構成具有相同的光 譜特性處,它們可以藉由和傳統影像感測器相同的製程製 造,其可容許量產光接收組件,容許以低成本實行光譜裝 置。 第1 4圖顯示倂入本發明光譜裝置之影像感測器的\構 成。第1 4圖所示影像感測器係一種CMOS影像感測器,但 是也可以使用CMOS影像感測器以外之CCD影像感測器或 其他型式之影像感測器。 每一個光接收組件1 4 1 0都包含:光偵測二極體1 4 0 2, -18- 200916743 用以將光轉換成電荷;重置電晶體1404,用以在開始曝光 之前,根據來自重置線1405之訊號重置儲存在光偵測二極 體1 402中之電荷;放大器1 40 6,用以放大來自光偵測二 極體1402之訊號;及讀取電晶體1408,用以根據來自讀 取選擇訊號線1 4 0 9之訊號將放大的訊號讀取到讀取線 1 42 1。在本實施例中,每一列之讀取選擇訊號線都連接到 垂直的移位暫存器1460,並且允許某一列的訊號在相同的 時間輸出。每一條讀取選擇線都需要藉由垂直的移位暫存 器1 4 6 0選擇。 藉由個別的光接收組件所接收之接收光的訊號係透過讀 取線1 4 2 1到1 4 3 1讀取。水平的選擇電晶體1 4 4 1到1 4 5 1 係被連接到每一條讀取線,然後根據來自水平的移位暫存 器1 470之訊號導通以建立連接,於是訊號被輸出到輸出線 1 4 8 〇,最後從輸出端1 4 8 2輸出。本發明之組態可以察知並 不限於此,而且這些組件的組態可以自由選擇。 第1 3圖所示光接收組件1 3 02到1 3 1 2對應到光接收組件 1 420到1 430或光接收組件1 440到1 4 5 0。光譜裝置可以根 據需要的光譜解析度,藉由配置光接收組件建構。在光接 收組件係以固定間隔配置處,大致相同間距的波長之光譜 結果’從使用本發明之光譜元件的Y方向極化輸入光之光 譜強度就很清楚。這是一項優點,因爲可以使用現有的影 像感測器和各種不同型式的光感測器陣列。 光譜元件和光接收組件係藉由下列步驟彼此相互連接。 -19- 200916743 首先,光接收組件係藉由半導體製程形成在矽基板或類似 基板上’然後若表面不平滑,則堆疊氧化矽玻璃或類似材 料,使表面平滑。之後,藉由電漿CVD或氣相沉積法,將 金屬膜堆疊在光接收組件的平滑表面上,最後藉由蝕刻或 類似製程形成孔徑。或者,再堆疊氧化矽玻璃,然後形成 孔徑’並且藉由氣相沉積法,C V D,或無電沉積法,在孔 徑的反射表面上形成金屬膜。這些步驟可以在半導體製程 中執行,其提供光譜元件可以關於光接收組件精確定位之 有利的效應。 <第四實施例> 第15圖顯示藉由以二維方式配置根據本發明實施之複 數光譜裝置所形成之二維光譜裝置。換言之,光譜元件1510 係在XY方向串接配置,以形成二維光譜裝置1500。這允 許複數光源的分光或要執行之光源光譜分佈的量測。如上 所述,半導體製程的使用允許複數光譜元件以高精確度製 C 作在相同的光譜裝置上,所以可以實行高精確的二維光譜 量測裝置。訊號輸出可以和普通的影像感測器相同的方式 讀取,而且輸出可以整合,或當有需要時可以從各光譜裝 置個別輸出。再者,因爲獲得的光譜結果係二維的,所以 二維光譜裝置可以被使用當作普通的影像感測器。當使用 作爲影像感測器時,因爲分光係藉由駐波達成,而且輸入 光的損失很小,所以可以實行高靈敏度的影像感測器。 <第五實施例> -20- 200916743 第16圖顯示本發明之光譜元件10的另一實施例。第16 圖係其孔徑的俯視圖。換言之,光譜元件1 〇係由具有均勻 厚度之金屬板所製成之結構,其中具有孔徑2 0,其係從上 表面,即輸入面,垂直延伸到底面,即輸出面。孔徑2 0的 形狀在深度方向具有6.27 μιη之厚度(未圖示)。第17A圖 到第1 7Ε圖爲使用本發明之光譜元件,Υ方向極化輸入光 的光譜結果圖。注意,與第1 6圖之座標系統相較,第1 7 A 圖到第1 7E圖之座標系統係有旋轉,用以容易排列第1 7A 圖到第17E圖。第17A圖到第17E圖係圖示390nm(第17A 圖),490 nm(第 17B 圖),590 nm(第 17C 圖),690 nm(第 17D圖),和790 nm(第17E圖)間隔100 nm之五種波長的 每一個之輸入光,在深度方向Z的八個橫截面,從Z = 0到 Ζ = 6.3μηι被分光。第17A圖到第17E圖的每一個圖式中, 更白的部分表示波峰,其中具有該波長之光強烈地表示爲 駐波。 如第1 7Α圖到第1 7Ε圖清楚顯示,當在Ζ方向的深度增 加時’駐波強烈出現之波峰位置及其分佈顯示在靠近中央 之位置。在Ζ = 0 μιη處,顯示平行孔徑20的Υ方向側(梯 形的斜邊)之駐波,但是強烈顯示之位置並沒有出現。比較 第1 7 Α圖到第1 7Ε圖,顯示當波長變長時,駐波的波數(圖 中的條紋)有減少的趨勢。在第1 7 E圖所示7 9 0 n m波長, 強烈的波峰出現在深度大於或等於Z = 2.7 μηι的中央。對於 在第1 7D圖所示690 nm波長,強烈的波峰出現在深度大於 -21 - 200916743 或等於Ζ = 3·6 μπι的中央,對於在第17C圖和第i7B圖所 示590 nm和490 nm波長,出現在深度大於或等於ζ = 4.5 μπι,而對於第17Α圖所示390 nm波長,出現在深度大於 或等於Ζ = 5.4μηι。此顯示當期望對於第17A圖到第17E圖 所示所有波長在中央獲得分光時,深度要大於或等於Ζ = 5.4 μπι才足夠。 <第六實施例> 第1 8圖顯示表列本發明光譜元件之各種不同的孔徑形 狀。在第18圖中,孔徑形狀主要分成分別具有12.8 μχη和 6.4 μιη的Υ方向長度之左側組和右側組。各組還又分成分 別具有6.4,4.8 ’和3.2 μπι的X方向長度之三組。關於六 種不同的形狀的每一種,右邊對左邊的比率係從0%(即, 等腰三角形)改變到7 5 %,每次增加2 5 %,以製造孔徑樣品。 這些孔徑形狀與光譜元件之關係已經說明。 【圖式簡單說明】 第1Α圖,第1Β圖,和第1C圖顯示本發明之光譜元件 的結構範例; 第2圖爲本發明之光譜元件的槪念圖; 第3 Α圖和第3 Β圖界定本發明之光譜元件的孔徑形狀; 第4 A圖到第4 F圖顯示使用本發明之光譜元件,關於每 一個波長之Y方向極化輸入光的光譜結果; 第5圖顯示使用本發明之光譜元件的γ方向極化輸入光 之光譜強度: -22- 200916743 第6圖顯示使用本發明之光譜元件的γ方向極化輸入光 之光譜強度的波長與峰値位置關係; 胃7Α圖到第7F圖顯示使用本發明之光譜元件,關於每 一個波長之X方向極化輸入光的光譜結果; 第8圖顯示使用本發明之光譜元件的X方向極化輸入光 之光譜強度\(原始資料); 第9Α圖和第9Β圖顯示本發明之光譜元件的孔徑形狀修 正例; 第1 0Α圖到第1 0Η圖顯示使用具有修正形狀孔徑之光譜 元件’ Y方向極化輸入光的光譜結果; 第11A圖,第UB圖,和第11C圖顯示本發明之光譜元 件的第二實施例圖; 第12A圖’第12B圖,和第12C圖顯示使用本發明之光 譜兀件的第二實施例,γ方向極化輸入光的光譜結果; 第13圖顯示使用本發明之光譜元件所建構之光譜裝置 (_ 的範例; 第1 4圖顯示倂入光譜裝置之影像感測器的構成; 第15圖顯示藉由以二維方式配置本發明之複數光譜裝 置所形成之二維光譜裝置; 第1 6圖顯示本發明之光譜元件的第五實施例; 第1 7 A圖到第1 7 E圖顯示使用本發明之光譜元件,關於 Z方向之Y方向極化輸入光的光譜強度;及 第1 8圖顯示本發明之光譜元件的第六實施例圖。 -23- 200916743 【主要元件符號說明】 10,1510 光譜元件 11,12,13,14,1103 反射表面 16,1104 輸入面 18,1105 輸出面 20,2 1,92 孔徑 22,26,2 8 邊 23,27,29 延伸線 3 0 等腰三角形 110 1 輸入面形狀 1102 輸出面形狀 1300,1500 光譜裝置 13 0 1 基板 1302,1304,1306,1308, 1310,1312,1410,1 42 0, 1 1422,1424,1426,1428, 1 43 0,1 440,1 442,1 444, 1446,1448,1450 光接收組件 1402 光偵測二極體 1404 重置電晶體 140 5 重置線 1406 放大器 1408 讀取電晶體 -24- 200916743 1409 讀取選擇訊號線 1 42 1 ,1 42 3,1 42 5,1 42 7, 1429,1431 讀取線 1441,1443,1445,1447, 1449,1451 水平的選擇電晶體 1460 垂直的移位暫存器 1470 水平的移位暫存器 1480 輸出線 1482 輸出端 -25-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectral element, a spectroscopic device, and a method of using the same for separating input light. [Prior Art] Various structures have been known in terms of spectral elements, spectroscopic devices, and methods of measuring spectra. However, in general, they use 稜鏡 to split the input light and then record the separated beam after converting it to an electrical signal using an image sensor. Since the change in the wavelength to be separated is in response to the mechanical change of the driving mechanism of the prism, it is difficult to detect the complex wavelength at the same time by the conventional spectrometer constructed as described above. Therefore, the following invention was completed to solve this problem. A spectroscopy apparatus having the following components arranged in series on an optical path: a first imaging lens, a slit plate, is disclosed in pp. 8 (19) a first collimating lens, a beam splitting device, a second collimating lens, a micro-array array, a second imaging lens, and a two-dimensional array sensor. The light beam having a predetermined wavelength of the spectrum separated by the spectroscopic device is deflected by the micro-array array and then output in a predetermined direction. This causes the spectral image to be formed on a predetermined sensor of the two-dimensional array sensor, thus enabling a spectroscopic device capable of simultaneously obtaining multiple spectra. U.S. Patent No. 5,729,011 discloses a spectroscopy apparatus in which, in addition to a lens and an image sensor, a field mask and a plurality of light-refractive surfaces are formed which are oriented in directions different from the optical axis of the optical system. 200916743 has a majority of normals, and the crucible is disposed near the pupil surface of the lens such that the pupil surface of the lens is separated by each refractive surface. This causes the same plurality of images produced on the image sensor to be formed into a plurality of identical spectral images having different wavelength components from each other, thereby simultaneously realizing a spectral device capable of obtaining a spectral image corresponding to the complex wavelength. These spectroscopic devices need to include lenses for the image sensor and optical systems for imaging the spectral images, so that a large space is required in terms of component configuration or optical design. Therefore, the size of these spectral devices becomes very large. Furthermore, the components including the cymbal, lens and image sensor are aligned within the entire frame, so it takes a long time to adjust and the alignment accuracy is limited. Accordingly, it is an object of the present invention to provide a novel spectral element that is free of the problems of conventional spectral elements, spectroscopic devices, and spectroscopic methods. SUMMARY OF THE INVENTION A spectral element according to the present invention is an element comprising a metal plate having a polygonal shaped aperture or aperture having at least one pair of opposing faces that are not parallel to each other in cross section, and the aperture or aperture system Opening in the upper side, wherein: the inner side of the hole or the aperture is a reflective surface that is mirrored by the optical imaging mirror; and the standing wave is caused by the reflection of the polarized input light input from the opening into the hole or the aperture on the reflective surface The interference 'generates inside the hole or aperture, so the input light is split into multiple wavelength ranges. As used herein, the terms "hole" and "aperture" mean a hole having a bottom portion 200916743 and a hole through the aperture, respectively. The hole or aperture has a size that allows a standing wave to be generated therein by reflecting light input thereto, that is, The size is significantly no greater than the wavelength of light, for example, several times the wavelength. The term "metal plate" generally means a thin metal having surfaces (front) and bottom (back) parallel to each other' but not necessarily limited here. A metal plate having precisely parallel upper and lower surfaces. Further, it is not limited to a metal plate having a smaller thickness than the size in the horizontal direction. As used herein, the term "input light is separated into a plurality of wavelength ranges" means that beams having different wavelength ranges are focused or directed at different locations within the aperture or aperture, and if configured with light receiving components responsive to these locations The sensors with different wavelengths can be detected by individual light receiving components. For example, spectral components having different wavelength ranges can be focused at different horizontal locations on the bottom of the hole or aperture. The hole or aperture having a cross section having at least a pair of opposing faces that are not parallel to each other must have a polygonal shape which is used to generate the standing wave and to focus different wavelength ranges at different positions. In particular, the shape may be trapezoidal, such as an isosceles trapezoid. The sides of the trapezoid form a pair of opposite faces that are not parallel to each other, so they are input from the upper side of the hole or the aperture, in other words, the 'polarized light input from the above-mentioned opening' is repeatedly reflected between the opposite faces', so that different wavelength ranges are focused on Different locations near the bottom of the hole or aperture. In particular, the spectral element of the present invention may be an element comprising a metal plate '200916743 wherein the thickness of the metal plate is uniform and has an aperture extending from the upper surface to the bottom surface, wherein: when the cross section of the aperture is taken as the upper surface of the parallel metal plate and The bottom surface, and wherein the three sides forming the cross section are selected in descending order of length, the extension lines of the three sides form an isosceles triangle having a narrow apex angle; at least within the aperture of the isosceles side of the isosceles triangle The side is illuminated by the mirror-like reflective surface; and the interference caused by the reflection of the input light on the reflective surface of the aperture, the polarized input light input from the upper surface of the metal plate to the aperture is separated into a complex wavelength range . Furthermore, the spectral element of the present invention may further comprise a polarizing component on its upper side, and the polarization direction of the polarizing component is set in the direction of the vertical bisector of the parallel or orthogonal isosceles triangle bottom edge. The spectroscopic device of the present invention may be a device comprising any of the above spectral elements, and the aperture extends vertically to the upper and bottom surfaces of the metal sheet. Furthermore, the spectroscopic device of the present invention may also be a device comprising any of the above spectral elements, and a light receiving component disposed at a position on a bottom surface of the spectral element corresponding to a localized position of the spectral distribution of the input light, wherein the spectral distribution is Converted into an electrical signal by the light receiving component. Furthermore, the spectroscopy apparatus of the present invention may be a device comprising a plurality of light receiving components disposed at positions corresponding to a plurality of localized positions of the spectral distribution. Further, the spectroscopic device of the present invention may be a two-dimensional spectroscopic device, the 200916743 comprising a two-dimensional configuration, each combining a spectral element and a complex spectral device of one or more light receiving components. The method for measuring a spectrum of the present invention comprises the steps of: providing a metal plate having a polygonal hole or aperture having at least one pair of opposite faces that are not parallel to each other in cross section, and the hole or aperture is open at the upper side, Wherein the inner side of the hole or aperture is the same reflective surface as the optical imaging mirror; and the input of polarized input light from the opening to the aperture or aperture, and then by the reflection of the input light on the reflective surface A standing wave is generated inside the hole or the aperture, and the input light is separated into a complex wavelength range. The spectral element of the present invention comprises a metal plate having a polygonal shaped aperture or aperture having at least one pair of opposing faces that are not parallel to each other in cross section. The hole or aperture is open at the upper side, wherein the inner side of the hole or aperture is a reflective surface that is imaged by the optical imaging mirror, and the standing wave is reflected on the reflective surface by polarized input light input from the opening to the aperture or aperture The resulting interference is generated inside the hole or aperture, and the input light is separated into a complex wavelength range. Thus, the spectral elements of the present invention have a very simple structure, but they can provide the same spectral effects as conventional spectral elements. Furthermore, the spectral elements and the light-receiving components can be fabricated by a semiconductor process, so that a compact and highly accurate spectral device can be realized. In addition, the image sensor used to image the spectral image does not require an optical system including a cymbal and a lens, so the space required for component configuration or optical design can be reduced. Therefore, the size of the spectroscopy device can become very small in 200916743. Furthermore, the 'members contain 不, lenses, and image sensors that are not used, so they do not need to be aligned throughout the hood. Therefore, it is possible to eliminate the time required for the component adjustment, and at the same time, the alignment accuracy can be improved. [Embodiment] Hereinafter, a spectral element, a spectroscopic device, and a method of measuring a spectrum of the present invention will be described in detail with reference to the accompanying drawings. <First Embodiment> FIG. 1A FIG. 1B and FIG. 1C show an example of the structure of the spectral element 10 of the present invention. Fig. 1A is a plan view of the spectral element 10, which shows the shape observed from the light input surface. The spectral element 10 is a structure made of a metal plate having a uniform thickness, and has a hole diameter 20 which extends vertically from the upper surface 'i', i.e., the input surface', to the bottom surface, i.e., the output surface. Figure 1A illustrates that a spectral element is independent of other spectral elements, but from the point of view of manufacture and use, it preferably has the structure of a metal plate shared by other adjacent spectral elements. Therefore, the shape shown in Fig. 1A is a fictional shape. Fig. 1B is a cross-sectional view taken along line A-A' of Fig. 1A. The metal plate forming the spectral element 10 structure reflects the incident light on the inner wall of the aperture 20. In the present embodiment, the reflective surfaces 11, 12 intersect perpendicularly to the input face 16 and the output face 18. Figure 1 C is a cross-sectional view taken along line B - B of Figure 1a. The reflective surface 13' 14 intersects the input face 16 and the output face 18 perpendicularly, as in Figure 1B. As shown in the diagram of the spectral element according to the present invention in Fig. 2, the splitting can be performed by inputting light from the input face 16 of the spectral element 1 ,, and there is no display of the reflection on the reflective surface -10-200916743 The reflected light of the light reaches the output surface and reaches a standing wave generated when they interfere with each other. The standing wave at the output face 18 corresponds to the spectral intensity distribution. Figures 3A and 3B show the aperture shape of the spectral elements of the present invention. The shape of the aperture 20 of the spectral element of the present invention shown in Fig. 3A is defined in the following manner. In other words, the geometry surrounded by the extension lines forming the three sides of the aperture 20, the edge 22, the edge 2 6 ' and the edge 28, ie, by the extension line 2 3 'extension line 2 7 ' and the extension line 2 The geometry surrounded by 9 forms an isosceles triangle 30' having a narrow apex angle 第 shown in Fig. 3b, i.e., forms a triangle. The shape of the aperture 20 shown in Fig. 3A is trapezoidal, which is formed by cutting the apex region of the temple waist triangle 30 by the bottom edge of the flat shape. This depends on the wavelength range of the spectral results obtained. If a short wavelength range of the spectral results is not required, the apex region of the isosceles triangle may be omitted. Conversely, if the splitting system is to perform a short wavelength range, the aperture will be more like an isosceles triangle and will eventually become an isosceles triangle. I. In the preamplifier of the present invention, 'the input light is reflected by the reflective surface of the inner wall' and then the splitting is achieved by the standing wave generated by the reflected light and the input light. Therefore, when the right input light is reflected by the reflective surface, the light energy loss is large, and the input light energy when the inner wall of the structure of the spectrum device is reflected is lost, and it is difficult to obtain a complete intensity distribution on the output surface. Therefore, it is necessary to select a material having a low reflection energy loss for a metal plate. For example, silver is a well-known metal with good reflectivity and has also been used. In addition, gold, copper & mirror materials such as gold 'copper' copper and tin alloys, Ming, and materials similar to -11 - 200916743 can also be used. Techniques for accurately providing apertures in these materials may include anisotropic etching of semiconducting process technology, using pulsed lasers, fiber lasers, or the like for ultra-precision machining. The use of semiconductor process technology allows for the stable manufacture of highly accurate spectral components. Since only the inner wall of the aperture needs reflection, the aperture and other structures enclosed by it can be formed by a tantalum semiconductor substrate, wherein the material is the same as the light-receiving component or the like described later, and the inner wall can only Use a film of gold 'silver, copper, or an alloy of copper and tin or a metal plate. The ί ^ aperture can also be provided in a semiconductor substrate by semiconductor processing techniques. When a film of gold, silver, copper, or an alloy of copper and tin is formed on the inner wall of the aperture of the semiconductor substrate, sputtering, vapor deposition, electroplating or the like can be used. With this structure, an integrated structure having light-receiving components fabricated from the same semiconductor substrate can be implemented. Figures 4 through 4F show the spectral results of the 输入-direction polarized input light using the spectral elements of the present invention. The left coordinate system shown in Figure 4 corresponds to the coordinate system of the spectral elements shown in the i; 1A to ic diagrams. This is the indication of the coordinate system, the vertical axis of which represents the X direction of the spectral element viewed from above. The horizontal axis represents the Y direction of the spectral element viewed from above, and the input light system of the Y direction polarization is from 440 nm (4A) Figure) The spectra were separated every six wavelengths by 690 nm (Fig. 4F). In each of Figs. 4A to 4F, the whiter portion represents a peak in which light having the wavelength is strongly expressed as a standing wave. The peak portion changes with wavelength, indicating that the spectral element of the present embodiment has the function of a spectral element. -12- 200916743 Figure 5 shows the spectral intensity of the Y-direction polarized input light using the spectral elements shown in Figures 4A through 4F. In the pattern shown in Fig. 5, the coordinates (distance) in the Υ direction are plotted on the Υ axis, and on the central axis in the X direction of the spectral element, the spectral intensity is plotted on the X axis. The Υ coordinate is normalized by the maximum spectral intensity, so the pattern shows relative 値. The figure clearly shows the position of the standing wave that strongly appears for each wavelength, which is not clear from the 4th to 4th. For example, the 440 nm wavelength has peaks at three locations near the 250, 2000, and 4200 nm axes. Observing the Y coordinate from 2500 to 45 00 nm, it can be seen that the peak at 590 nm appears near 2700 nm, and when the 値 of the Y coordinate increases, a shorter wavelength peak appears. Note that the clear peaks of the two wavelengths of 640 and 69 nm are not observed in the figure. It is clear from Fig. 4A to Fig. 4F that these two wavelengths have their peaks because of the position away from the central axis of the X-direction of the spectral element. Figure 6 is a graph showing the relationship between the wavelength of the spectral intensity of the Y-direction polarized input light and the peak-to-peak position using the spectral element of the present invention. The X-axis of the graph represents the wavelength of the input light, while the γ-axis represents the peak position of the spectral intensity. The peak position of the spectral intensity 〇 corresponds to the bottom edge of the spectral element shown in Figure 3A. The peaks of the spectral intensities of the respective wavelengths can be mainly divided into two groups. In the first group, 〇 closer to the Y-axis direction, in the wavelength range from 440 nm to 540 nm, when the wavelength becomes longer, the peak position of the intensity moves almost linearly closer to 〇. Conversely, in the wavelength range from 590 nm to 690 nm, as the wavelength becomes longer, the peak position of the intensity moves almost linearly away from zero. 200916743 In another group, in other words, in the second group, in the wavelength range from 440 nm to 640 nm, when the wavelength becomes longer, the peak position of the intensity moves almost linearly closer to 〇. Conversely, in the wavelength range from 640 nm to 690 nm, when the wavelength becomes longer, the peak position of the intensity moves almost linearly away from 〇. When the wavelength becomes longer, all the peak positions of the intensity do not move almost linearly closer to the 〇 because the input light oscillates in the aperture having a small size. The reflective surface of the bottom edge 28 has an oscillating effect. If the bottom edge is at an infinite distance, the peak position of the intensity moves almost linearly closer to zero as the wavelength becomes longer. <First Modified Example of First Embodiment> FIGS. 7A to 7F show spectral results of X-direction polarized input light using the spectral element of the present invention. The coordinate system on the left shown in Fig. 7A corresponds to the coordinate system of the spectral element shown in Fig. 1A. Figures 7A through 7F are diagrammatic representations in which the input light system separates the spectra every six wavelengths from 440 nm (Fig. 7A) to 690 nm (Fig. 7F). In each of Figs. 7A to 7F, the whiter portion represents a peak in which light having the wavelength is strongly expressed as a standing wave. The peak portion changes with wavelength, indicating that the spectral element of the present embodiment has the function of a spectral element. Unlike the results of the polarized light in the Y direction shown in Figs. 4A to 4F, linear peaks such as parallel X-axis can be observed. Figure 8 shows the spectral intensity of the X-direction polarized input light using the spectral elements of Figures 4A through 4F. In the diagram shown in Fig. 8, the -14-200916743 coordinate (distance) in the Y direction is plotted on the Y-axis, and on the central axis of the X-direction of the spectral element, the spectral intensity is plotted on the X-axis. The Υ coordinate system is normalized by the maximum spectral intensity, so the pattern shows relative enthalpy. The position where the standing wave is strongly present for each wavelength that can be individually confirmed is near the 2800 and 3800 nm of the 440 coordinates at the wavelength of 440 nm. Considering the wavelength range, e.g., the Y coordinate from 490 to 5 90 nm, the peak is considered to occur near the 3 400 nm of the Y coordinate, so spectroscopic can be achieved by using the spectral elements of these characteristics. <Second Modified Example of First Embodiment> Figs. 9A and 9B show an example of correction of the aperture shape of the spectral element according to the present invention. Fig. 9A and Fig. 9B are basically the same, so Fig. 9B will be mainly explained here. The aperture 92 of the spectral element of this embodiment is defined in the following manner. In other words, by the geometry of the three sides forming the aperture 92, the edge 22, the edge 26' and the extension of the edge 28, g卩, by extending the line 2 3 'extension line 2 7, and extending the line 2 9 The enclosed geometry forms an isosceles triangle 30 having a narrow apex angle, i.e., forming a triangle. The shape of the aperture 9 2 shown in Fig. 9B is trapezoidal, which is formed by cutting the apex region of the isosceles triangle 30 by the bottom edge 28 of the flat shape. The aperture 9 2 is different from the first embodiment in that it has a rounded corner. In the 9th panel, the circular corner Raso "μιη", and in the 9th panel, the circular corner Rb = 0.5 μιη. The shape of the aperture shown in Figure 1 is the ideal shape and, if shaped like this, provides the highest performance. However, in view of the precision of machining, the shape with a rounded corner can be manufactured cheaper from -15 to 200916743. Figures 10A through 10H show the spectral results of polarized input light in the Y direction using the spectral elements according to the present embodiment. Although not shown, the coordinate system of Figs. 10A to 10H is the same as the coordinate system of the spectroscopy shown in Fig. 9A. Figures 10A through 10H illustrate the manner in which the input light is split from 380 nm (Figs. 10A and 10E) to 680 nm (Fig. 10D and Fig. 10H) by four wavelengths separated by 100 nm. In each of Figs. 10A to 10H, the whiter portion represents a peak in which light having the wavelength is strongly expressed as a standing wave, and although the detail is different, the radius is 0.1 in the system. The 10th to 10th images of the spectral results of the apertures of the rounded corners of μιη, and the distribution of the spectral results of the apertures with a radius of 0.5 μηη, from the 10th to the 10th, respectively. The above is the same. This display both has the function of a spectral element. <Second Embodiment> Fig. 11, Fig. 11 and Fig. 11C show a light according to the present invention; a second embodiment of the spectral element 10. The spectral element 10 is a structure made of a metal plate having a uniform thickness, and has a tapered aperture 2 1 extending from the upper surface 'i', i.e., the input surface', to the bottom surface, i.e., the output surface. It is different from the spectral element 10 according to the first embodiment shown in Fig. 1, wherein the aperture 21 has an input surface shape 1 1 0 1 and an output surface shape 11 〇 2 of the input light of the spectral element 10 Very similar shape. Therefore, the reflective surfaces connecting the input surface shape 1 1 ο 1 and the output surface shape 1 1 0 2 intersect at an angle other than a right angle. -16- 200916743 Figure 11B is a cross-sectional view taken along line B-B' of Figure 11A. The metal plate of the spectral element 10 structure reflects the incident light on the aperture 2 1 . In the present embodiment, the reflective surface 1103 intersects the input face 1104 and the face 〇 5 at an angle other than a right angle. The I 1 C map is a cross-sectional view taken along line I 1 A of line C-C'. The reflecting surface 1103 intersects the input surface 1104 with the surface 1105 at an angle other than a right angle, which is the same as in FIG. 11B. Figures 1 2 A through 1 2 C are graphs of the spectral results of polarized input light in the Y direction using the spectral element 10 of the present invention. The 1 2 A shows the coordinate system of the spectrum shown in the 11A to lie diagrams on the left coordinate system. However, note that the positive direction of the X-axis is in the opposite direction (this pattern can be reversed to align the direction). Figure 1 1 A shows the 440 nm wavelength spectrum, Figure 11B shows the 540 nm wavelength, and the figure shows the 64 0 nm wavelength. In Fig. 12A, blue light can be visually observed, green light blue in Fig. 12B, and red light in Fig. 12C. Compared with the 1 2 A map and the 1 2 B graph, the peak position Y is shifted from 106 nm to 110 nm, although the difference is small. Furthermore, comparing Fig. 12B to Fig. 12C, the peak position is shifted to 112 nm, and the second and fourth peaks appear near 1 45 nm and 170 nm, respectively. The results show that the actual spectral elements have the function of spectral elements. <Third Embodiment> Fig. 3 shows an example of a light 1300 constructed using the spectral element 1 of the present invention. Spectral element 10 can be the one of the above spectral elements. The input light of the spectral element (for example, white light) is formed by the aperture 20 to form the inner wall output map and the element of the input image, and the light lie is compared with the first and third wave embodiments. -17- 200916743 The light-receiving component (1 3 02 to 13 12) is located at a local position of the spectral distribution on the bottom surface, so that a spectral device capable of converting the spectral distribution into an electrical signal can be implemented. The light receiving components (1302 to 1312) are formed on a semiconductor (e.g., germanium) substrate (1310). The light receiving component can be formed on a general semiconductor substrate using a common manufacturing method. Since the wavelengths received by the respective light receiving components are fixed, if the individual light receiving components (1 3 02 to 1 3 1 2) can change the receiving sensitivity according to the wavelength, the efficient spectral device can be targeted by The individual receiving wavelengths are adjusted to the receiving sensitivity of the individual light receiving components. For example, the light receiving component 1300 receives the blue light wavelength, and thus the light receiving component having the spectral characteristic increased in sensitivity due to the blue light wavelength, can allow the spectral device 1300 to be reliable even when the input light is weak. A device for obtaining spectral results. In the case where the individual light-receiving components (1 3 0 2 to 1 3 1 2 ) are constructed to have the same spectral characteristics, they can be manufactured by the same process as the conventional image sensor, which can allow the light-receiving component to be mass-produced. The spectroscopic device is allowed to be implemented at low cost. Figure 14 shows the construction of an image sensor incorporated into the spectroscopic device of the present invention. The image sensor shown in Figure 14 is a CMOS image sensor, but a CCD image sensor other than a CMOS image sensor or other types of image sensors can also be used. Each of the light receiving components 1 4 1 0 includes: a light detecting diode 1 4 0 2, -18- 200916743 for converting light into a charge; and resetting the transistor 1404 for The signal of the reset line 1405 resets the charge stored in the photodetecting diode 1 402; the amplifier 186 is used to amplify the signal from the photodetecting diode 1402; and the read transistor 1408 is used to read The amplified signal is read to the read line 1 42 1 according to the signal from the read selection signal line 1 4 0 9 . In this embodiment, each column of read select signal lines is coupled to a vertical shift register 1460 and allows a column of signals to be output at the same time. Each read select line needs to be selected by the vertical shift register 1 4 6 0. The signals of the received light received by the individual light receiving components are read through the read lines 1 4 2 1 to 1 4 3 1 . The horizontal selection transistor 1 4 4 1 to 1 4 5 1 is connected to each of the read lines, and then the signal is turned on according to the signal from the horizontal shift register 1 470 to establish a connection, so that the signal is output to the output line. 1 4 8 〇, finally output from the output 1 4 8 2 . The configuration of the present invention is known and not limited thereto, and the configuration of these components can be freely selected. The light receiving components 1 3 02 to 1 3 1 2 shown in Fig. 1 3 correspond to the light receiving components 1 420 to 1 430 or the light receiving components 1 440 to 1 4 50. The spectroscopy device can be constructed by configuring the light receiving components according to the required spectral resolution. At the position where the light-receiving elements are arranged at regular intervals, the spectral results of wavelengths of substantially the same pitch are clearly seen from the intensity of the polarization of the input light in the Y direction using the spectral elements of the present invention. This is an advantage because existing image sensors and a variety of different types of light sensor arrays can be used. The spectral element and the light receiving component are connected to each other by the following steps. -19- 200916743 First, the light-receiving element is formed on a ruthenium substrate or the like by a semiconductor process'. Then, if the surface is not smooth, iridium oxide glass or the like is stacked to smooth the surface. Thereafter, the metal film is stacked on the smooth surface of the light-receiving unit by plasma CVD or vapor deposition, and finally the aperture is formed by etching or the like. Alternatively, the yttria glass is further stacked, and then the pore diameter ' is formed and a metal film is formed on the reflective surface of the pore diameter by vapor deposition, C V D, or electroless deposition. These steps can be performed in a semiconductor process that provides an advantageous effect that the spectral elements can be accurately positioned with respect to the light receiving components. <Fourth Embodiment> Fig. 15 shows a two-dimensional spectroscopy apparatus formed by arranging a complex spectroscopy apparatus according to the present invention in a two-dimensional manner. In other words, the spectral elements 1510 are arranged in series in the XY direction to form a two-dimensional spectroscopy device 1500. This allows for the splitting of the complex source or the measurement of the spectral distribution of the source to be performed. As described above, the use of a semiconductor process allows complex spectral elements to be fabricated on the same spectral device with high precision, so that a highly accurate two-dimensional spectral measuring device can be implemented. The signal output can be read in the same way as a normal image sensor, and the outputs can be integrated or individually output from each spectral device when needed. Furthermore, since the spectral results obtained are two-dimensional, the two-dimensional spectroscopy device can be used as a general image sensor. When used as an image sensor, since the beam splitting system is achieved by standing waves and the loss of input light is small, a highly sensitive image sensor can be implemented. <Fifth Embodiment> -20- 200916743 Fig. 16 shows another embodiment of the spectral element 10 of the present invention. Figure 16 is a top view of the aperture. In other words, the spectral element 1 is a structure made of a metal plate having a uniform thickness, and has an aperture 20 from the upper surface, i.e., the input surface, extending vertically to the bottom surface, i.e., the output surface. The shape of the aperture 20 has a thickness of 6.27 μm in the depth direction (not shown). Fig. 17A to Fig. 7 are diagrams showing the spectral results of the polarization input light in the Υ direction using the spectral element of the present invention. Note that the coordinate system of the 1 7 Ath to the 1st 7E has a rotation for easily arranging the 1 7A to 17E drawings as compared with the coordinate system of Fig. 16. Figures 17A through 17E are diagrams showing 390 nm (Fig. 17A), 490 nm (Fig. 17B), 590 nm (Fig. 17C), 690 nm (Fig. 17D), and 790 nm (Fig. 17E). The input light of each of the five wavelengths of 100 nm is split in three cross-sections in the depth direction Z from Z = 0 to Ζ = 6.3 μηι. In each of Figs. 17A to 17E, the whiter portion represents a peak in which light having the wavelength is strongly expressed as a standing wave. As shown in the 1st to 7th figures, the position of the peak where the standing wave strongly appears and its distribution are displayed near the center when the depth in the Ζ direction increases. At Ζ = 0 μιη, the standing wave of the side of the parallel aperture 20 (the oblique side of the trapezoid) is displayed, but the position of the strong display does not appear. Comparing the 1st to the 7th to the 7th, it shows that the wave number of the standing wave (the fringe in the figure) tends to decrease as the wavelength becomes longer. At the 7 9 0 nm wavelength shown in Figure 1 7 E, strong peaks appear at a depth greater than or equal to Z = 2.7 μηι. For the 690 nm wavelength shown in Figure 1 7D, strong peaks appear at depths greater than -21 - 200916743 or equal to Ζ = 3·6 μπι, for 590 nm and 490 nm shown in Figure 17C and Figure i7B The wavelength appears at a depth greater than or equal to ζ = 4.5 μπι, and for the 390 nm wavelength shown in Figure 17, appears at a depth greater than or equal to Ζ = 5.4μηι. This shows that when it is desired to obtain the splitting at the center for all the wavelengths shown in Figs. 17A to 17E, it is sufficient that the depth is greater than or equal to Ζ = 5.4 μπι. <Sixth Embodiment> Fig. 18 shows various kinds of aperture shapes of the spectral elements of the present invention. In Fig. 18, the aperture shape is mainly divided into a left side group and a right side group having a length of the Υ direction of 12.8 μχη and 6.4 μηη, respectively. Each group is further divided into three groups of 6.4, 4.8 ′ and 3.2 μπι X-direction lengths. For each of the six different shapes, the ratio of the right to the left is changed from 0% (i.e., isosceles triangle) to 75 %, each time increasing by 25% to make a sample of the aperture. The relationship between these aperture shapes and spectral elements has been described. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A, FIG. 1 and FIG. 1C show an example of the structure of a spectral element of the present invention; FIG. 2 is a view of a spectrum element of the present invention; FIG. 3 and FIG. The figure defines the aperture shape of the spectral element of the present invention; Figures 4A through 4F show the spectral results of the polarization input light in the Y direction for each wavelength using the spectral elements of the present invention; Figure 5 shows the use of the present invention. Spectral intensity of gamma-polarized input light of the spectral element: -22- 200916743 Figure 6 shows the relationship between the wavelength of the spectral intensity of the gamma-directional polarized input light and the position of the peak 使用 using the spectral element of the present invention; Figure 7F shows the spectral results of polarized input light in the X direction for each wavelength using the spectral elements of the present invention; Figure 8 shows the spectral intensity of the X-direction polarized input light using the spectral elements of the present invention\ (original data) Fig. 9 and Fig. 9 are diagrams showing an example of correction of the aperture shape of the spectral element of the present invention; Fig. 10 to Fig. 10 shows light using the spectral element 'Y direction polarized input light having a corrected shape aperture> Spectral Results; Figure 11A, Figure UB, and Figure 11C show a second embodiment of the spectral element of the present invention; Figure 12A, Figure 12B, and Figure 12C show the use of the spectral element of the present invention Two embodiments, spectral results of gamma-polarized input light; Figure 13 shows a spectral device constructed using the spectral elements of the present invention (example of _; Figure 14 shows the composition of an image sensor of the immersive spectroscopy device) Figure 15 shows a two-dimensional spectroscopy apparatus formed by arranging the complex spectroscopy apparatus of the present invention in a two-dimensional manner; Figure 16 shows a fifth embodiment of the spectral element of the present invention; Figure 17A to Figure 1 7E shows the spectral intensity of the polarization input light in the Y direction with respect to the Z direction using the spectral element of the present invention; and Fig. 18 shows a sixth embodiment of the spectral element of the present invention. -23- 200916743 [Main components DESCRIPTION OF SYMBOLS 10,1510 Spectral elements 11,12,13,14,1103 Reflecting surface 16,1104 Input surface 18,1105 Output surface 20,2 1,92 Aperture 22,26,2 8 Side 23,27,29 Extension line 3 0 Isosceles triangle 110 1 Input face shape 1102 Output face shape 1300, 1500 Spectroscopic device 13 0 1 Substrate 1302, 1304, 1306, 1308, 1310, 1312, 1410, 1 42 0, 1 1422, 1424, 1426, 1428, 1 43 0, 1 440, 1 442, 1 444, 1446 , 1448, 1450 light receiving component 1402 light detecting diode 1404 reset transistor 140 5 reset line 1406 amplifier 1408 read transistor-24- 200916743 1409 read select signal line 1 42 1 , 1 42 3,1 42 5,1 42 7, 1429,1431 Read Lines 1441,1443,1445,1447, 1449,1451 Horizontal Selective Transistor 1460 Vertical Shift Register 1470 Horizontal Shift Register 1480 Output Line 1482 Output End-25-

Claims (1)

200916743 十、申請專利範圍: 1. 一種光譜元件,包含具有形成多邊形之孔洞或孔徑之金 屬板’其中至少具有一對在橫截面彼此不相互平行之相 對面’而孔洞或孔徑係在上側開口,其中: ?L洞或?L徑的內側面被光製成像鏡子一樣的反射表 面;及 ®波係藉由從開口輸入到孔洞或孔徑之極化輸入光在 反射表面上反射所造成的干涉而產生在孔洞或孔徑內 I ' 部,於是輸入光被分離成複數波長範圍。 2 _如申請專利範圍第1項之光譜元件,其中具有不同波長 範圍之光譜分量被聚焦在孔洞或孔徑底部上之不同的水 平位置。 3 ·如申請專利範圍第丨項之光譜元件,其中孔洞或孔徑之 橫截面的形狀係等腰三角形。 4 .如申請專利範圍第2項之光譜元件,其中孔洞或孔徑之 ( 橫截面的形狀係等腰三角形。 5 .如申請專利範圍第1項之光譜元件,其中孔洞或孔徑之 橫截面的形狀係等腰梯形。 6 _如申請專利範圍第2項之光譜元件,其中孔洞或孔徑之 橫截面的形狀係等腰梯形。 7 . —種光譜兀件,包含厚度均勻,且具有從上表面延伸到 底面的孔徑之金屬板,其中: 當孔徑的橫截面取平行金屬板的上表面和底面,而且 -26- 200916743 形成橫截面的其中三個邊係以長度遞減順序選擇時,三 個邊的延伸線形成具有很窄的頂角之等腰三角形; 至少接觸等腰三角形的等腰側邊之孔徑內側面被光製 成像鏡子一樣的反射表面;及 藉由輸入光在孔徑的反射表面上之反射所造成的干 涉,自金屬板的上表面輸入到孔徑之極化輸入光被分離 成複數波長範圍。 8 .如申請專利範圍第7項之光譜元件,其中光譜元件還包 含在其上側之極化組件,而且該極化組件的極化方向係 被設定在平行等腰三角形底邊的垂直等分線之方向。 9 .如申請專利範圍第7項之光譜元件,其中該光譜元件還 包含在其上側之該極化組件,而且該極化組件的極化方 向被設定在正交等腰三角形底邊的垂直等分線之方向。 1 0 .如申請專利範圍第7項之光譜元件,其中孔徑垂直延伸 到金屬板的上表面和底面。 1 1 · 一種光譜裝置,包含: 申請專利範圍第7項之光譜元件;及 配置在對應輸入光的光譜分佈之局部化位置之該光 譜元件底面上的位置之光接收組件, 其中光譜分佈係藉由該光接收組件轉換成電訊號。 1 2 ·如申請專利範圍第i i項之光譜裝置,其中複數光接收 組件係配置在對應光譜分佈之複數局部化位置的位置。 1 3 · —種二維光譜裝置,包含以二維配置的根據申請專利範 -27- 200916743 圍第11項之複數光譜裝置。 14_ 一種二維光譜裝置’包含以二維配置的根據申請專利範 圍第12項之複數光譜裝置。 1 5 · —種量測光譜的方法,包含下列步驟: 提供一種具有形成多邊形之孔洞或孔徑之金屬板,其 中至少具有一對在橫截面彼此不相互平行之相對面,而 孔洞或孔徑係在上側開口,其中孔洞或孔徑的內側面係 被光製成像鏡子一樣的反射表面;及 將極化輸入光從開口輸入到孔洞或孔徑,然後藉由在 反射表面上之輸入光的反射所造成之干涉,而在孔洞或 孔徑內部產生駐波,於是輸入光被分離成複數波長範圍 -28-200916743 X. Patent application scope: 1. A spectral element comprising a metal plate having a polygonal hole or an aperture, wherein at least one pair of opposite faces are not parallel to each other in cross section, and the hole or aperture is open at the upper side, Where: ?L hole or? The inner side of the L-path is photo-image-reflecting surface; and the wave system is generated in the hole or aperture by interference caused by reflection of the polarized input light input from the opening into the hole or aperture on the reflective surface. I', the input light is separated into a complex wavelength range. 2 _ A spectral element as claimed in claim 1 wherein spectral components having different wavelength ranges are focused at different horizontal positions on the hole or bottom of the aperture. 3. A spectral element according to the scope of the patent application, wherein the shape of the cross section of the hole or aperture is an isosceles triangle. 4. The spectral element of claim 2, wherein the hole or the aperture (the shape of the cross section is an isosceles triangle. 5. The spectral element of claim 1 wherein the shape of the cross section of the hole or aperture Is an isosceles trapezoid. 6 _ _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ a metal plate to the bottom surface of the aperture, wherein: when the cross section of the aperture is taken from the upper surface and the bottom surface of the parallel metal plate, and -26-200916743 forms a cross section of which three of the edges are selected in descending order of length, three sides The extension line forms an isosceles triangle having a narrow apex angle; at least the inner side surface of the isosceles side contacting the isosceles triangle is illuminated by the mirror-like reflection surface; and the input light is on the reflection surface of the aperture The interference caused by the reflection, the polarization input light input from the upper surface of the metal plate to the aperture is separated into a complex wavelength range. 8. As claimed in the seventh item a spectral element, wherein the spectral element further comprises a polarization component on an upper side thereof, and the polarization direction of the polarization component is set in a direction perpendicular to a vertical bisector of a bottom side of the parallel isosceles triangle. The spectral element of item 7 wherein the spectral element further comprises the polarization component on the upper side thereof, and the polarization direction of the polarization component is set in the direction of the vertical bisector of the base of the orthogonal isosceles triangle. The spectral element of claim 7, wherein the aperture extends vertically to the upper surface and the bottom surface of the metal plate. 1 1 · A spectroscopy device comprising: the spectral element of claim 7; and the corresponding input light a light receiving component at a position on the bottom surface of the spectral element at a localized position of the spectral distribution, wherein the spectral distribution is converted into an electrical signal by the light receiving component. 1 2 · A spectral device as claimed in claim ii, wherein The complex light receiving component is disposed at a position corresponding to a complex localized position of the spectral distribution. 1 3 · A two-dimensional spectral device, including a two-dimensional configuration A complex spectroscopy apparatus according to claim 11 of the patent application No. -27-200916743. 14_ A two-dimensional spectroscopy apparatus 'comprises a complex spectroscopy apparatus according to claim 12 in a two-dimensional configuration. 1 5 · - Measurement spectroscopy The method comprises the steps of: providing a metal plate having a polygonal hole or aperture, wherein at least one pair of opposite faces are not parallel to each other in cross section, and the hole or aperture is open on the upper side, wherein the hole or the aperture The inner side is a reflective surface that is imaged by a light imaging mirror; and the polarized input light is input from the opening to the hole or aperture, and then interfered by the reflection of the input light on the reflective surface, in the hole or aperture The standing wave is generated internally, so the input light is separated into a complex wavelength range -28-
TW097129801A 2007-08-07 2008-08-06 Spectroscopy device, spectroscopy apparatus and spectroscopy method TWI434029B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007205075 2007-08-07
JP2008200084A JP5184251B2 (en) 2007-08-07 2008-08-01 Spectroscopic element, spectroscopic device, and spectroscopic method

Publications (2)

Publication Number Publication Date
TW200916743A true TW200916743A (en) 2009-04-16
TWI434029B TWI434029B (en) 2014-04-11

Family

ID=40390244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129801A TWI434029B (en) 2007-08-07 2008-08-06 Spectroscopy device, spectroscopy apparatus and spectroscopy method

Country Status (5)

Country Link
JP (1) JP5184251B2 (en)
KR (1) KR101401491B1 (en)
CN (1) CN101363753B (en)
HK (1) HK1125449A1 (en)
TW (1) TWI434029B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514297B2 (en) 2015-12-09 2019-12-24 Oto Photonics Inc. Electronic circuitry for controlling in order to perform exposure measurements continuously, spectrometer using the same and measurement method of the spectrometer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094476B2 (en) * 2008-03-04 2012-12-12 富士フイルム株式会社 Spectroscopic element, solid-state imaging device, imaging apparatus, and spectral method
US8803960B2 (en) * 2009-09-16 2014-08-12 Medigus Ltd. Small diameter video camera heads and visualization probes and medical devices containing them
CN102353325B (en) * 2011-07-22 2013-08-14 中国科学院上海光学精密机械研究所 Four-axial four-subdivision interferometer
WO2014008275A1 (en) * 2012-07-05 2014-01-09 American Science And Engineering, Inc. Variable angle collimator
TWI612281B (en) * 2016-09-26 2018-01-21 財團法人工業技術研究院 Interference splitter package device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357134A (en) * 1986-08-28 1988-03-11 Okuma Mach Works Ltd Tool storing device
JPS6457134A (en) * 1987-08-27 1989-03-03 Minolta Camera Kk Spectrum measuring sensor
US5144498A (en) * 1990-02-14 1992-09-01 Hewlett-Packard Company Variable wavelength light filter and sensor system
DE4431412C1 (en) * 1994-08-24 1996-03-14 William Newton Device for performing spectroscopic measurements
JPH09210781A (en) * 1996-01-31 1997-08-15 Ando Electric Co Ltd Spectroscope
US6151114A (en) * 1998-03-31 2000-11-21 The Boeing Company Coherent laser warning system
US7310153B2 (en) * 2004-08-23 2007-12-18 Palo Alto Research Center, Incorporated Using position-sensitive detectors for wavelength determination
WO2006048660A1 (en) * 2004-11-04 2006-05-11 Mesophotonics Limited Metal nano-void photonic crystal for enhanced raman spectroscopy
US7420677B2 (en) * 2005-12-22 2008-09-02 Palo Alto Research Center Incorporated Sensing photon energies of optical signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514297B2 (en) 2015-12-09 2019-12-24 Oto Photonics Inc. Electronic circuitry for controlling in order to perform exposure measurements continuously, spectrometer using the same and measurement method of the spectrometer
TWI703313B (en) * 2015-12-09 2020-09-01 台灣超微光學股份有限公司 Measuring method of spectrometer, spectrometer and electronic circuitry thereof

Also Published As

Publication number Publication date
KR20090015005A (en) 2009-02-11
JP2009058948A (en) 2009-03-19
TWI434029B (en) 2014-04-11
CN101363753A (en) 2009-02-11
CN101363753B (en) 2012-02-29
HK1125449A1 (en) 2009-08-07
KR101401491B1 (en) 2014-06-03
JP5184251B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
US8427644B2 (en) Optical displacement meter
US7738113B1 (en) Wafer measurement system and apparatus
US7605917B2 (en) Spectrometer
CN100535767C (en) Focusing leveling measuring method and device
TWI434029B (en) Spectroscopy device, spectroscopy apparatus and spectroscopy method
JP2008083059A (en) Measuring system and measuring device for wafer
JP5599790B2 (en) Method and apparatus for reducing optical interference and crosstalk of double optical tweezers using one laser light source
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
US20140368825A1 (en) Mirror for a fabry-perot interferometer, and a method for producing the same
US8519315B2 (en) Mirror structure having a fourier lens disposed between a reflective surface and an integrated optical sensor
CN102812340B (en) Micro spectrometer capable of receiving zero order and first order spectral components
US20230314218A1 (en) Metasurface-based spectrometer and electronic device
US7916300B2 (en) Spectroscopy device, spectroscopy apparatus and spectroscopy method
CN109945800A (en) A kind of linear Spectral Confocal system for tri-dimensional facial type measurement
JPWO2009028398A1 (en) Color distribution measuring optical system, color distribution measuring apparatus, and color distribution measuring method
US10725286B2 (en) Micro-electro-mechanical device having tiltable structure, with detection of the position of the tiltable structure
Saito et al. A single lens micro-angle sensor
KR102609557B1 (en) OES(Optical Emission Spectroscopy) apparatus and plasma inspection apparatus comprising the same
Pügner et al. Design of a hybrid-integrated MEMS scanning grating spectrometer
US20120091550A1 (en) Spectroscopy and spectral imaging methods and apparatus
EP2189769A1 (en) Mirror structure
JP2012093098A (en) Film thickness measuring device
WO2009064081A1 (en) Linear-focused beam ellipsometer
TWI301540B (en)
JP4455847B2 (en) Position measurement method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees