TW200916409A - A method and an apparatus for purification of phosphoric acid by fractional crystallization - Google Patents

A method and an apparatus for purification of phosphoric acid by fractional crystallization Download PDF

Info

Publication number
TW200916409A
TW200916409A TW097131576A TW97131576A TW200916409A TW 200916409 A TW200916409 A TW 200916409A TW 097131576 A TW097131576 A TW 097131576A TW 97131576 A TW97131576 A TW 97131576A TW 200916409 A TW200916409 A TW 200916409A
Authority
TW
Taiwan
Prior art keywords
phosphoric acid
crystallization
heat exchanger
mixture
impurities
Prior art date
Application number
TW097131576A
Other languages
Chinese (zh)
Other versions
TWI491559B (en
Inventor
Thierry Vassalo
Patrick Gaillard
Manfred Stepanski
Original Assignee
Sulzer Chemtech Ag
Febex Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Chemtech Ag, Febex Sa filed Critical Sulzer Chemtech Ag
Publication of TW200916409A publication Critical patent/TW200916409A/en
Application granted granted Critical
Publication of TWI491559B publication Critical patent/TWI491559B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/234Purification; Stabilisation; Concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/234Purification; Stabilisation; Concentration
    • C01B25/237Selective elimination of impurities
    • C01B25/238Cationic impurities, e.g. arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

In a method for purification contaminated phosphoric acid, a first input mixture with phos-phoric acid as the main component, which predominantly contains impurities of a first group, is mixed with a second input mixture with phosphoric acid as the main component, which predominantly contains impurities of a second group. The impurities with the high-est concentrations in the two input mixtures are each different. The united input mixture is crystallized in a multi-stage crystallization process and the crystal layer obtained is heated and melted into fractions for the extraction of cleaned phosphoric acid. The apparatus for carrying out the method is characterized in that a water supply device is provided, in order to adjust the proportion by weight of the phosphoric acid in the used mixture to a specific value.

Description

200916409 九、發明說明 【發明所屬之技術領域】 本發明係關於一種藉由依申請專利範圍第1、 2 2項前言之分步結晶來純化磷酸元素之方法及裝 中磷酸元素係被陽離子、陰離子、酸類及/或有機 污染。 【先前技術】 在例如用於電子工業的蝕刻方法中,常使用酸 如磷酸、硝酸及乙酸。上述酸類之組合物被使用, 以溶解在玻璃上所沉積之鋁鉬合金。此種鋁鉬合金 地使用在TFT(薄膜晶體管)顯示器之製造中。 原則上,在蝕刻方法之後所留下之酸廢料依照 件含有6 0至9 5重量%磷酸、1至1 0重量%硝酸、 重量%乙酸及水(其餘者)。酸廢料另外含有100三 PPm之鋁金屬離子及鉬金屬離子。此酸廢料迄今被 轉化成肥料。 在過去已建議不同方法,例如薄膜分離、離子 法或液體萃取,以純化被金屬離子污染之磷酸。 在回收磷酸之產率及彼之純度方面,薄膜分離 的。然而,薄膜分離設備的成本是極高的,且其操 複雜的。再者,會因硝酸對所用薄膜之腐蝕性而 題。 離子交換方法使用離子交換樹脂或鈣沸石,以 19及 置,其 元素所 類,例 例如, 被廣泛 反應條 2至30 ΐ 2000 稀釋及 交換方 是有利 作是極 引起問 除去酸 -5- 200916409 類。然而。這些離子交換器缺點是:僅可處理低濃度之酸 類,因爲整體交換容量通常是低的。 液體萃取優點是:可以連續操作且裝置不昂貴。然而 缺點是:若使用此方法,不能獲得滿足電子工業要求之高 品質的磷酸。 從JP-A-2006-069845揭示一種從經金屬離子及另外 之酸類所污染的酸水溶液中回收磷酸的方法及裝置。在所 述方法中,其他酸類及水先被蒸餾出。隨後,磷酸從含水 磷酸殘餘物中結晶出且隨後藉蒸餾而分餾。富含金屬離子 之來自結晶作用的母液以廢棄產物形式被棄置。在此之 後’硝酸、氫氯酸或乙酸再次被添加至藉由蒸餾所純化之 磷酸。此酸混合物而後可作爲在新方法中所用之產物。 所述之純化方法是極複雜的,因爲磷酸廢料藉由蒸餾 純化二次且藉由結晶純化一次。 KR-A-2005 0 1 03 5 70揭示一種藉由層結晶及真空蒸 餾,以從經污染之蝕刻溶液中分離且獲得超純磷酸、硝酸 及乙酸的方法。在第一步驟中,硝酸及乙酸係藉由真空蒸 餾被分離。蒸餾殘餘物被送入層結晶器,該層結晶器保持 在-20 °C至3 (TC之起初溫度間。而後於溶液中植入用晶 種’且冷卻至60°C至20°C之溫度間。因結晶物與母液間 的密度差異,所形成之結晶被分離。所得之結晶物而後被 加熱至〇°C至40°C ’且部分熔化之結晶層被過濾,以獲得 經純化之磷酸。所述方法係在無須添加添加劑或溶劑的情 況下進行。 -6 - 200916409 【發明內容】 [發明目的] 因這理由’本發明之目的是要獲得一種明顯可降低酸 廢料的方法及裝置。特別地’目的是要建議一種需要極少 能量且可商業規模操作之方法。另一目的是要利用儘可能 極少之不同方法步驟。 [發明描述] 依本發明’此目的可根據申請專利範圍第1項所描述 的方法而滿足,該方法中 -具有磷酸作爲主成分且主要含有第一群雜質之第一 輸入混合物,與 -具有磷酸作爲主成分且主要含有第二群雜質之第二 輸入混合物,相混合, -其中在該二操作混合物中最高濃度之雜質是彼此不 同的,且 -其中結合的輸入混合物在多階段結晶方法中被結 晶’且所得之結晶層被加熱和分餾以供萃取經純化之磷 酸。 已顯示:當在不同工業方法中所用的磷酸原料或源自 不同製造方法的磷酸原料被摻合,而後僅藉由結晶來純化 日寺’ 11 s,結晶以純化磷酸可以明顯更經濟地被完成。藉由 糸吉晶而純化的優點是:不同雜質的耗盡可以大抵彼此無關 % #生°本發明人已發現:磷酸(例如用於大規模酸浸 200916409 者,所謂之”酸浸用酸”)具有在LC D製造中所用之磷酸以 外的其他雜質,且因這理由,關於在LCD製造中所污染 之磷酸,彼可以特別有利地被純化。 第一群及第二群之雜質較佳各自含有實質上不同之酸 類、陰離子、陽離子或其他化合物。在這些情況下,經由 稀釋效應已導致結合之混合物中雜質之某些耗盡。此意義 爲:利用由不同之用過的混合物(亦即不同的主要雜質)所 形成的有利組成物,稀釋效應使得節省一或二結晶步驟 (所謂之結晶階段)變成可行。依特佳之變異方法,在半導 體處理之鈾刻方法中所用之磷酸(特別是在LCD製造中所 用者)與用於酸浸之磷酸混合。以此方式,可以達成大幅 的節省,因爲欲被棄置或欲被製成肥料之磷酸的量明顯較 少。也可構想:使在所謂之’'濕方法’'中所得之粗製的酸 (其不具有製造LCD中所用之適合純度)與其他上述的酸類 相混合。 第一群有利地含有鉬離子及/或鋁離子,且第二群含 有鐵離子及/或鈉離子及/或含磷之酸以作爲主要雜質。 這些雜質大抵可以藉由結晶來除去。依本發明之方法不受 限於二種不同輸入混合物之純化,但可構想純化多於二種 之分別具有不同主要雜質之輸入混合物。 本發明之標的也是一種根據申請專利範圍第7項所描 述的方法,其特徵在於: -在多個結晶階段中進行結晶, -視需要,在用過之混合物中碟酸之重量含量藉添加 200916409 水調節成小於9 1 · 5重量%之含量,且 -用過之混合物而後被冷卻且磷酸半水 面上m殺成結晶層,而後該結晶層被加熱及 純化的磷酸。此方法優點是:磷酸可以不含 子、酸類及/或有機化合物,以使磷酸之 能。添加水的優點是:重金屬離子更快地被 水’此方法以獲得磷酸半水合物的方式被控 酸含量介於約6 3重量%至9 2重量%的情況 範圍內之工作的優點是:相較於結晶用之起 有較高純度的情況(例如因前蒸餾所得者), 低之磷酸含量。有利地,在每一情況中添加 之水量’是要使磷酸含量在80重量%至91 舉之優點是:一方面’爲要獲得所要之產率 溫之熱載劑;且另一方面,在殘餘物中發生 積’此對非所欲之離子的分離是較佳的。另 需要較不強烈之熱絕緣。有利地,在每一情 量僅是使磷酸的含量介於89重量%至90.5 此範圍內’此操作是特別聚能量效率的。在 酸半水合物之結晶而非磷酸本身之結晶係不 爲純化之磷酸在任何情況中係用水來稀釋 用。 依此方法之另一版本,具體表現包含第 面’其安排在與熱交換器表面稍有距離之處 表面直接接觸’且永久維持在低溫下。此第 合物於結晶表 分餾以獲得經 陽離子、陰離 写使用成爲可 洗出。藉添加 制。這是在磷 中發生。在此 初混合物已具 可獲得顯著較 至起初混合物 重量%間。此 ,不需要極低 水之明顯的累 外,結晶設備 況中添加之水 重量%間。在 上述條件下磷 具有缺點,因 3供進一步使 二熱交換器表 或與熱交換器 二熱交換器表 -9 - 200916409 面用來保持磷酸結晶可永久在結晶器中獲得,此在結晶之 起初階段於第一熱交換器表面上提供用於均勻且快速成核 的晶種。安排在第一熱交換器表面間之一較佳的旋管 (convoluted pipe)可以例如作爲第二熱交換器表面。 結晶有利地在多個結晶階段中進行,其中從低結晶階 段至較高結晶階段,輸入混合物純度增加。結晶較佳在至 少3個結晶階段中進行,較佳在至少4個階段中進行。雖 然基本上,經污染之磷酸首先可被蒸餾,但該經污染之磷 酸較佳直接被送至結晶方法。若利用時,前蒸餾將酸轉變 成大於92重量%至93重量%之含量。此意義爲:蒸餾產 物有利地用水稀釋,以在隨後之結晶期間獲得H3p〇4 · 1 /2 H20。未稀釋的蒸餾殘餘物的直接結晶,會使殘餘物 中磷酸含量,依照磷酸/水系統相圖,僅降至約93重量 %。 特定階段之結晶物有利地被用來作爲在其後較高階段 (或向上之其後階段)中之輸入餾份。結果,使用所述之結 晶方法,實際上可以達成任何純度。特定階段之殘餘餾份 有利地被收集且作爲輸入餾份送入其後較低階段中。這使 得磷酸可能有最大之回收率。特定階段之凝結餾份可以被 收集且添加至相同階段之輸入餾份。 本發明之標的也是一種依照申請專利範圍第1 9項所 描述之用於純化磷酸的裝置,其特徵在於提供水供應裝 置,以將輸入混合物中磷酸重量比例調節成特定値。此種 裝置之優點已在以上對應方法之描述中另外被討論。就此 -10- 200916409 而論,較佳提供一裝置,以測量磷酸含量及水添 類裝置對於平均精於此技藝之人士而言是充分已 一有利的具體表現,在結晶器中,在與第一熱交200916409 IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention relates to a method for purifying phosphoric acid elements by stepwise crystallization according to the preface of the first and second paragraphs of the patent application, and the phosphoric acid element is cation, anion, Acid and / or organic pollution. [Prior Art] In an etching method such as that used in the electronics industry, acids such as phosphoric acid, nitric acid, and acetic acid are often used. The above acid composition is used to dissolve the aluminum molybdenum alloy deposited on the glass. Such an aluminum molybdenum alloy is used in the manufacture of a TFT (Thin Film Transistor) display. In principle, the acid waste left after the etching process contains 60 to 9.5 wt% phosphoric acid, 1 to 10 wt% nitric acid, wt% acetic acid and water (the rest). The acid waste additionally contains 100 cubic meters of aluminum metal ions and molybdenum metal ions. This acid waste has so far been converted into fertilizer. Different methods have been suggested in the past, such as membrane separation, ionization or liquid extraction to purify phosphoric acid contaminated with metal ions. The membrane is separated in terms of the yield of recovered phosphoric acid and its purity. However, the cost of the membrane separation apparatus is extremely high and it is complicated. Furthermore, it is due to the corrosive nature of nitric acid on the film used. The ion exchange method uses an ion exchange resin or a calcium zeolite, and is composed of 19 elements, for example, a broad reaction strip 2 to 30 ΐ 2000 is diluted and exchanged. It is advantageous to cause the acid to be removed-5- 200916409 class. however. A disadvantage of these ion exchangers is that only low concentrations of acid can be handled because the overall exchange capacity is typically low. The advantage of liquid extraction is that it can be operated continuously and the device is inexpensive. However, the disadvantage is that if this method is used, high quality phosphoric acid that meets the requirements of the electronics industry cannot be obtained. A method and apparatus for recovering phosphoric acid from an aqueous acid solution contaminated with metal ions and another acid are disclosed in JP-A-2006-069845. In the process, other acids and water are first distilled off. Subsequently, phosphoric acid crystallizes from the aqueous phosphoric acid residue and is subsequently fractionated by distillation. The mother liquor from the crystallization which is rich in metal ions is disposed of as a waste product. After that, nitric acid, hydrochloric acid or acetic acid was again added to the phosphoric acid purified by distillation. This acid mixture can then be used as a product in the new process. The purification method described is extremely complicated because the phosphoric acid waste is purified twice by distillation and once by crystallization. KR-A-2005 0 1 03 5 70 discloses a method for separating ultra-pure phosphoric acid, nitric acid and acetic acid from a contaminated etching solution by layer crystallization and vacuum distillation. In the first step, nitric acid and acetic acid are separated by vacuum distillation. The distillation residue is sent to a layer crystallizer which is maintained at -20 ° C to 3 (between the initial temperatures of TC and then implanted with seed crystals in solution) and cooled to 60 ° C to 20 ° C. Between temperatures, the crystal formed is separated due to the difference in density between the crystal and the mother liquor. The resulting crystal is then heated to 〇 ° C to 40 ° C ' and the partially melted crystal layer is filtered to obtain purified Phosphoric acid. The method is carried out without adding an additive or a solvent. -6 - 200916409 [Summary of the Invention] [Object of the Invention] For the reason, the object of the present invention is to obtain a method and apparatus for significantly reducing acid waste In particular, the purpose is to suggest a method that requires very little energy and can be operated on a commercial scale. Another purpose is to utilize as few different method steps as possible. [Invention Description] According to the present invention, this object can be based on the scope of the patent application. Satisfied by the method described in the method, wherein the first input mixture having phosphoric acid as a main component and mainly containing the first group of impurities, and - having phosphoric acid as a main component and mainly containing a second input mixture of two groups of impurities, mixed, wherein - the highest concentration of impurities in the two operating mixtures are different from each other, and - wherein the combined input mixture is crystallized in a multi-stage crystallization process' and the resulting crystalline layer It is heated and fractionated for extraction of purified phosphoric acid. It has been shown that when phosphoric acid starting materials used in different industrial processes or phosphoric acid starting materials derived from different manufacturing methods are blended, then only the crystallization is used to purify the day temple ' 11 s The crystallization to purify the phosphoric acid can be carried out significantly more economically. The advantage of purification by ruthenium crystal is that the depletion of different impurities can be largely independent of each other. The inventors have discovered that phosphoric acid (for example for large scale Acid soaking 200916409, the so-called "acid pickling acid") has other impurities than phosphoric acid used in the manufacture of LC D, and for this reason, it can be particularly advantageously purified with respect to phosphoric acid contaminated in the manufacture of LCD. Preferably, the impurities of the first group and the second group each contain substantially different acids, anions, cations or other compounds. In these cases, Some dilution of the impurities in the combined mixture has been caused by the dilution effect. This means that with the advantageous composition formed by the different used mixtures (ie different main impurities), the dilution effect saves one or two The crystallization step (the so-called crystallization stage) becomes feasible. The phosphating method used in the uranium engraving method for semiconductor processing (especially those used in LCD manufacturing) is mixed with phosphoric acid for acid leaching in this way. Significant savings can be achieved because the amount of phosphoric acid to be disposed of or to be made into fertilizer is significantly less. It is also conceivable to make the crude acid obtained in the so-called 'wet method' (which does not have manufacturing) The suitable purity used in the LCD is mixed with other acids mentioned above. The first group advantageously contains molybdenum ions and/or aluminum ions, and the second group contains iron ions and/or sodium ions and/or phosphorus-containing acids as Main impurities. These impurities are largely removed by crystallization. The process according to the invention is not limited to the purification of two different input mixtures, but it is conceivable to purify more than two input mixtures each having a different main impurity. The subject matter of the invention is also a method according to item 7 of the scope of the patent application, characterized in that: - crystallization is carried out in a plurality of crystallization stages, - if necessary, the weight content of the acid in the used mixture is added to 200916409 The water is adjusted to a content of less than 9.1 % by weight, and the used mixture is then cooled and the phosphoric acid layer is killed to form a crystalline layer, and then the crystal layer is heated and purified phosphoric acid. The advantage of this method is that the phosphoric acid can be free of acids, acids and/or organic compounds to enable the phosphoric acid. The advantage of adding water is that the advantage of working with heavy metal ions more quickly by water in this way to obtain the phosphoric acid hemihydrate is controlled by the acid content ranging from about 63% to 92% by weight: A lower phosphoric acid content than in the case of crystallization which has a higher purity (for example, due to pre-distillation). Advantageously, the amount of water added in each case is such that the phosphoric acid content is from 80% by weight to 91. The advantage is that on the one hand the hot carrier is to obtain the desired yield; and on the other hand, The separation of the undesired ions in the residue is preferred. A less intense thermal insulation is required. Advantageously, the amount of phosphoric acid is only in the range of from 89% by weight to 90.5 in each case. This operation is particularly energy efficient. The crystals which are not crystallized in the crystal of the acid hemihydrate rather than the phosphoric acid itself are diluted in any case with water. According to another version of this method, the specific expression comprises a first surface 'which is placed in direct contact with the surface at a slight distance from the surface of the heat exchanger' and is permanently maintained at a low temperature. This compound is fractionated in the crystallisation table to obtain a washable out of the cation and anion. Borrow the system. This happens in phosphorus. At this point the initial mixture has been obtained significantly compared to the initial mixture weight %. Therefore, there is no need for the significant excess of extremely low water, and the weight of water added in the crystallization equipment is between %. Phosphorus has the disadvantages under the above conditions, because 3 is used to further make the second heat exchanger table or the heat exchanger two heat exchangers table - 9 - 200916409 surface to maintain the phosphoric acid crystals can be permanently obtained in the crystallizer, which is in the crystallization The initial stage provides seed for uniform and rapid nucleation on the surface of the first heat exchanger. A preferred convoluted pipe arranged between the surfaces of the first heat exchanger may for example be the second heat exchanger surface. Crystallization is advantageously carried out in a plurality of crystallization stages, wherein the purity of the input mixture increases from a low crystallization stage to a higher crystallization stage. The crystallization is preferably carried out in at least 3 crystallization stages, preferably in at least 4 stages. Although substantially, the contaminated phosphoric acid can be first distilled, the contaminated phosphoric acid is preferably sent directly to the crystallization process. When utilized, the pre-distillation converts the acid to a level greater than 92% to 93% by weight. This means that the distillate product is advantageously diluted with water to obtain H3p〇4 · 1 /2 H20 during subsequent crystallization. Direct crystallization of the undiluted distillation residue resulted in a reduction in the phosphoric acid content of the residue, which was reduced to about 93% by weight, according to the phosphoric acid/water system phase diagram. The crystals of a particular stage are advantageously used as input fractions in the later higher stages (or up and down stages). As a result, virtually any purity can be achieved using the crystallization method described. The residual fraction of a particular stage is advantageously collected and sent as an input fraction to a subsequent lower stage. This allows the highest recovery of phosphoric acid. Condensate fractions of a particular stage can be collected and added to the input fraction of the same stage. The subject matter of the present invention is also an apparatus for purifying phosphoric acid as described in claim 19 of the patent application, characterized in that a water supply means is provided to adjust the weight ratio of phosphoric acid in the input mixture to a specific enthalpy. The advantages of such a device have been additionally discussed in the description of the corresponding method above. In view of this - -10-200916409, it is preferred to provide a device for measuring the phosphoric acid content and the water-adding device which is sufficiently advantageous for the average person skilled in the art, in the crystallizer, in the Hot deal

熱交換器表面,而第二熱載劑在操作時流經該第 器表面。已證實:對於那些成核作用受阻於低溫 的化合物,提供第二熱交換器表面是特別有價値 本發明之標的也是一種依申請專利範圍第2 述的純化設備,其中在與第一熱交換器表面稍有 或與第一熱交換器表面直接接觸之處,提供第二 表面,而第二熱載劑在操作時流經該第二熱交換 此意義爲:提供二加熱/冷卻迴路,以使不同溫 劑能流經第一及第二熱交換器表面。此純化設備 於與磷酸類似之易於低溫冷卻的產物,若無此種 換器表面,該低溫冷卻會抑制且延緩成核,轉而 時引起不受控制之結晶。依本發明之此種設備之 的具體表現已在上文中討論。 本發明將參考圖式舉例討論。在此,將使用 編號以供個別具體表現中之相同部分。 圖1顯示具有一個靜態結晶器1 1,及四個 不同磷酸餾份之槽1 3、1 5、1 7、1 9之結晶設備 份經由管線2 1運送入槽1 3,該管線可藉由閥 閉。輸入餾份而後可以經由第一供應管線2 5及男 入結晶器1 1。出口 2 9位於結晶器之底部2 7 ’ 加量。此 知的。依 換器表面 提供第二 二熱交換 冷卻傾向 的。 1項所描 距離之處 熱交換器 器表面。 度之熱載 通常可用 第二熱交 會在開始 其他有利 相同參考 用於儲存 。輸入餾 23來關 I 33運送 而此底部 -11 - 200916409 2 7連接至一具有關閉閥3 2之管線3 1。管線3 1連接至一 集管41,此集管經由管線43、45、47及49聯通槽13、 15、17及19。管線43、45、47及49配備有閥44、46、 48及50,這些閥可以關閉個別的管線。用過之材料可以 藉由泵33、35、37及39在管線25、52、53及51中運 送。 依照輸入混合物之組成’純化設備可以具有較多或較 少數目之槽以供儲存磷酸中間餾份。在所示之具體表現 中,槽15用來收集及儲存比槽13中所儲存者更純的磷酸 餾份;此容器經由連接管線52連接至結晶器1 1,以使混合 物能送至結晶器的另外純化階段。 來自純化階段之殘餘物經由管線5 1被廢棄。經純化 之磷酸經由管線5 3來供應以供再使用。 圖1之純化設備的特殊特徵是:水可以經由管線54 被添加至槽1 5,以將磷酸含量調節成特定値,此値較佳 在約90重量%範圍內。管線54可以藉閥56來關閉。 第一熱交換器表面用參考編號55來特徵化,其經由 管線57、59連接至第一熱生成器/冷卻生成器。結晶器 之特定特徵是:提供第二熱交換器表面 60,經由管線 64、66,第二熱載劑在操作時流經該第二熱交換器表面 60。就面積而論,第二熱交換器表面61明顯小於第一熱 交換器表面,且其唯一目的是製造磷酸結晶以永久可作爲 結晶器中晶種。因這理由’第二熱交換器表面60安排在 與第一熱交換器表面55稍有距離之處,或甚至可以在合 -12- 200916409 適位置上接觸這些表面。冷卻用介質在結晶器操作期間流 經第二熱交換器表面’且彼較佳永久保持在低溫。藉此, 達到一種狀況,其中在塡充結晶器時,結晶之成長在第二 熱交換器表面6 0上立即開始’該表面6 0在短時間後跳躍 至第一熱交換器表面5 5 ’且使經控制之結晶均句成長在 該處成爲可能。 圖2及3顯示二種不同之用於添加水至用過之混合物 的解決方式。依圖2,使用具有調節閥63之密閉迴路 6 1,以使水能以經控制之方式添加至混合物。在管線5 2 及槽1 5間之連接管線65使輸入混合物之循環成爲可能。 在該循環期間,水可以同時被混入。依照閥67、69之位 置,輸入混合物可以被循環或泵入結晶器。 依圖3之具體表現與圖2者不同之處在於:輸入混合 物之稀釋直接在進入結晶器之途中發生。因這目的,提供 (靜態)混合器71,其具有多個擋板73。擋板73提供擾 流,且因此使輸入混合物與所添加之水充分混合。 參考磷酸之相圖(參見圖4 ),依照本發明在獲得磷酸 半水合物(H3P〇4 _ 1/2H20)之區進行操作。較佳地,在 Η3Ρ04以63至91 .5重量%,較佳80至91重量%之比例存 在於輸入混合物的相圖區中,進行結晶。此舉之優點是: 磷酸半水合物(H3P〇4 · l/2H2〇)之結晶已可在約24°C進 行。 【實施方式】 -13- 200916409 實例1 第一次結晶(第一階段) 從製造TFT顯示器之產製廠取得酸原料,其具有以 下參數: 鉬離子(PPm) 1,359 鋁離子(PPm) 1,361 密度(d2〇4) 1.7 5 5 4 H3P〇4含量(重量%) 約93.2 使用靜態結晶器以作爲純化裝置。彼在一容器中具有 多個較佳垂直安排之熱交換器表面,而熱載劑在操作時流 經此等表面。 很多純水被摻混至酸原料(廢酸),以致H3P〇4含量降 至約90重量%。以此方式產製之輸入混合物被裝塡在前 置結晶器中且被結晶。在結晶器中熱載劑之溫度起初調節 至25 °C。在用欲被結晶之混合物塡充結晶器之後,熱載 劑溫度在6小時內降至1 5 °C。 在輸入混合物冷卻至1 5 °c之期間,純的 H3P〇4 · 1/2H20的結晶層形成在熱交換器表面上。在已藉此方式 進行結晶後’未結晶的殘餘物被排出。隨後’熱載劑溫度 在7小時內增至3 5 °C 。在此期間,結晶層開始凝結 (sweat)。在此加溫期間’凝結餾份被收集。 在凝結後,熱載劑溫度增至5 0 °C,以熔化其餘之結 晶物。測量數據摘述於下表。 -14- 200916409 表1 :第一次結晶之數據摘述_ 餾份 MASS Mo A1 D2〇4 H3PO4 _[克]_[ppm]_[ppm]_[重量 %] 輸入餾份 48,390 1,359 1,361 1.7454 89.9 殘餘物 11,880 3,098 2,649 1.7094 86.8 凝結餾份 12,200 1,578 1,504 1.7434 89.7 結晶物 24,3 00 3 95_65 5 1.763 5 91.5 第二次結晶(第二階段) 在第一結晶階段中所產製之結晶餾份是(中間)餾份, 其進一步被純化,及作爲用於第二結晶階段之輸入餾份。 添加水至在此所用之輸入餾份,其量使磷酸含量約9 0重 量%。在與第一結晶階段中類似之溫度/時間方式,進行 第-結晶階段。第二次結晶之結果摘述於以卜表2中。 表2 :第二次結晶之數據摘述_ 餾份 MASS Mo A1 D2〇4 Η3Ρ04 _[克]_[ppm]_[ppm]_[重量 〇/〇] 輸入餾份 10,760 395 647 1.7478 90.1 殘餘物 1,560 1,07 8 1,5 07 1 .7024 86.2 凝結餾份 3,552 1,078 1,507 1.7024 89.5 結晶物_5,64 8_U8_3 8 7 1.763 0 9 1.5 第三次結晶(第三階段) 在第三結晶階段中,第二次結晶之多個結晶物餾份的 -15- 200916409 混合物另外被純化。再次添加足量水,以使磷酸之起初含 量約90重量%。使用類似之溫度-時間變化圖形。結果 列於表3中。 表3 : 第三次結晶之數據摘述 餾份 MASS [克] Μ 〇 「ppml A1 『ppml D 2 0 4 h3po4 [重量%] 輸入餾份 10,745 1 72 3 70 1.7478 90.1 殘餘物 1,231 509 1,098 1.7004 86.0 凝結餾份 3,970 190 408 1.7420 89.6 結晶物 5,544 84 182 1.7625 9 1.4 第四次結晶(第四階段) 在第四結晶階段中,第三 結晶階段之多個結晶物餾份 的混合物另外被純化 。此另外之程序與第三結晶階段中者 類似。第四結晶階段之結果得見於表4 中。 表4 ·· 第四次結晶之數據摘述 餾份 MASS [克] Μ 〇 fppml A1 fppml D 2 0 4 H3P〇4 [重量°/。] 用過之材料 9,68 1 85 1 84 1.7466 90.0 殘餘物 1,644 274 6 19 1 .695 6 85.6 凝結餾份 3,337 75 16 1 1.7478 90.1 結晶物 4,700 25 47 1.7636 9 1.5 -16- 200916409 如表4中可見的,在四個連續之結晶階段中金屬離 子的耗盡達到2 5至5 0倍(在此舉例是組離子及鋁離子)° 基本上可構想導入另外之結晶階段,彼可導致金屬含量進 一步的耗盡。就此而論, -個別階段之結晶物餾份可以導入其後較高階段中’ 以作爲輸入餾份, -個別階段之殘餘餾份可以被收集,且摻混至其後較 低階段的輸入餾份’ -個別階段之凝結餾份可以被收集’且在隨後階段順 序中(所謂之循環),摻混至相同階段的輸入餾份, -每一情況中,添加水至輸入餾份中,其量是使磷酸 含量爲85重量%至91重量%,較佳爲89重量。/。至9〇_3重 量% 0 表5 :第五次結晶之數據摘述 餾份 MASS [克] Μ 〇 [ppml A1 ippml D2〇4 h3p〇4 輸入餾份 4,7 19 25 47 "---- 17465 ____— 90.0 殘餘物 68 8 96 190 1-6954 85.6 凝結餾份 1,734 2 1 39 1.7477 90 1 結晶物 2,297 7 10 — 9_Ll_ -17- 200916409 表6 :第六次結晶之數據摘流 餾份 MASS [克] Mo [ppml A1 『PPml 〇204 H3PO4 [重量% 1 輸入餾份 2,155 6 10 1.7465 90.0 殘餘物 320 33 59.5 1.6954 85.6 凝結飽份 667 2 3 1.7477 90.1 結晶物 1,168 0.8 1.0 1.7609 9 1.1 實例 2 不同來源之二種酸的混合 原初使用之L C D 酸與外來的酸以 7 : 3之比例混合。 在下表中 ’雜質的所有數據的單位是 ppm ’除非另外指 明。 表7 -二混合酸二 L數據摘述 ACID Mo A1 Fe Na Si S04 H^PO, 用過材料 1,359 1,361 - - - - 外來之酸 - - 316 263 33 198 412 混合酸 941 953 96 80 10 60 125 用混合酸之操作 在使用以此方式混合之酸的結晶實驗中,將調查個別 離子可達成之分離。實驗含有二個純化階段以及一個回收 階段(汽提階段)。 -18- 200916409 階段1 開始之混合物(或起初混合物)在二個所謂之階段1中 被結晶,其中足量材料被產製以用於隨後之階段2。數據 摘述於以下表8及9中。 表 8-第一 階段 1之數據摘述 餾份 質量 Mo A1 Fe Na Si S04 h3p〇3 H3PO4 [克] [雷量%] 所用之量 10,800 941 953 96 80 10 60 125 90.0 殘餘物 1,507 2,498 2,412 194 236 24 190 339 86.0 凝結餾份 3,535 1,242 1,161 99 113 14 80 156 89.3 結晶物 5,758 349 443 69 19 4 34 50 91.5 表 9 ―第二 -階段 2之嬰 S[據ί闻 述 餾份 質量 Mo A1 Fe Na Si S04 H3PO3 H3PO4 [克] 围量°/〇] 量 10,840 1,039 1,021 96 91 11 66 135 89.9 殘餘物 1,636 2,795 2,573 195 255 25 214 361 85.9 凝結餾份 3Λ63 1,381 1,240 99 138 17 87 171 89.1 結晶物 6,041 385 486 69 22 4 16 55 91.4 第二階段1之輸入餾份含有來自第一階段1之凝結餾 份。 階段2 -19- 200916409 來自二個階段1之熔化的結晶餾份被混在一起,且所 餾份 質量 [克] Mo A1 Fe Na Si S〇4 h3p〇3 H3PO4 通量%1 量 10,975 367 465 69 20 4 15 53 89.5 殘餘物 3,045 795 936 117 50 9 36 108 86.4 凝結餾份 3,107 336 408 60 18 4 14 49 89.6 結晶物 4,823 117 205 44 2.8 1.5 2.0 20 91.4 回收階段 二 個階段 1之殘餘餾份被混在一 起, 且一 部份之組成 物在回收階段中進行 結晶 〇 表 1 1 —回收階段之數據摘述 餾份 質量 Mo A1 Fe Na Si S〇4 h3p〇3 H3P〇4 [克] mm%] 量 2,392 2,653 2,496 195 246 25 202 350 2,392 殘餘物 355 6,125 5,298 412 733 61 601 925 335 凝結餾份 690 4,201 3,832 217 365 35 305 488 690 結晶物 1,367 1,020 1,134 30 66 10 53 140 1,367 得之餾份被用作爲階段2所用之材料。 --表10 -階段數據摘述 在此測試中,僅使用一個回收階段,然而,可構想收 集回收階段之殘餘物,且在一或多個另外之回收階段中將 -20- 200916409 彼再處理。 在混合酸實驗中達成與在上述之僅使用LCD酸的實 驗之對應階段中類似有效的鉬離子及鋁離子的分離。 圖5顯示:關於所用之LCD酸及其他酸(例如酸浸用 酸)可能的組合混合物的實例,廢磷酸之比例如何可使用 依本發明之方法來降低至最小程度。在混合之輸入混合物 中個別形式之離子的含量藉上述稀釋效應來降低。相較於 二種酸被分離地且未混合地純化的情況’以此方式’可能 藉混合而得到較高產率的純酸,且得到相同純度的純酸及 殘餘物中有相同的離子含量。在此所示之實例中,1噸純 酸及400公斤殘餘物回收自1噸LCD酸及400克之得自 酸浸方法的酸(換言之1 .4噸之混合酸)。若是個別純化, 則已預期共約840公斤純酸及5 60公斤殘餘物。 藉使用"酸浸用酸"(其量係磷酸所得的分量),1〇〇%磷 酸可以被再次回收至LCD製造方法中。 在用於純化經污染的磷酸的方法中,具有磷酸作爲主 成分且者要含有第一群雜質之第一輸入混合物與具有磷酸 作爲主成分且主要含有第二群雜質之第二輸入混合物混 合。在每一情況中,在二輸入混合物中最高濃度之雜質是 不同的。結合之輸入混合物在多階段結晶方法中被結晶且 所得之結晶層被加熱以萃取經純化之磷酸且被熔化成餾 份。用於進行本方法之設備特徵在於:提供水供應裝置, 以將輸入混合物中磷酸之重量比例調節成特定値。 -21 - 200916409 【圖式簡單說明】 圖1 :依本發明之具有一個靜態結晶器及四個用於接 收不同磷酸餾份之槽的結晶設備的圖式; 圖2 :依圖1之結晶設備的部分剖面圖,其顯示水供 應裝置之第一具體表現; 圖3:水供應裝置之第二具體表現; 圖4:磷酸之相圖;及 圖5 :依本發明之純化方法的質量平衡實例。 【主要元件符號說明】 U :靜態結晶器 1 3、1 5、1 7、1 9 :用於磷酸餾份之槽 2 1 :用於磷酸原料之供應管線 2 3 :供應管線之關閉閥 2 5 :第一傳送管線 27 :結晶器之底部 29 :出口 3 1 :管線 32 :關閉閥 3 3、3 5、3 7、3 9 :傳送泵 41 :集管 43、45、47、49 :在集管及槽之間的連接管線 44 、 46 、 48 、 50 :關閉閥 5 1 :用於引流殘餘物之管線 -22- 200916409 5 3 :用於經純化之磷酸的管線 5 4 :用於供應水之管線 55:第一熱交換器表面 56 :管線54之關閉閥 5 7、5 9 :用於熱載劑之管線 60:第二熱交換器表面 6 1 :控制迴路 6 3 :控制閥 6 5 :在管線5 2及槽1 5之間的連接管線 67 、 89 :閥 71 :混合器 73 :擋板 -23-The surface of the heat exchanger, while the second hot carrier flows through the surface of the first stage during operation. It has been shown that for those compounds whose nucleation is hindered by low temperatures, it is particularly valuable to provide a second heat exchanger surface. The subject matter of the present invention is also a purification apparatus according to the scope of the patent application, wherein the first heat exchanger is Where the surface is slightly or in direct contact with the surface of the first heat exchanger, a second surface is provided, and the second hot carrier flows through the second heat exchange during operation in the sense that two heating/cooling circuits are provided to make different The warming agent can flow through the surfaces of the first and second heat exchangers. This purification equipment is a product that is similar to phosphoric acid and is susceptible to cryogenic cooling. Without such a converter surface, this cryogenic cooling inhibits and retards nucleation, which in turn causes uncontrolled crystallization. The specific performance of such a device in accordance with the present invention has been discussed above. The invention will be discussed by way of example with reference to the drawings. Here, the number will be used for the same part of the individual performance. Figure 1 shows a crystallization unit having a static crystallizer 1 1 and four different phosphoric acid fractions 1 3, 15 5, 17 and 19 transported via tank 2 1 into tank 13 by means of a line The valve is closed. The input fraction can then be passed through a first supply line 25 and a male crystallizer 1 1 . The outlet 2 9 is located at the bottom of the crystallizer 2 7 '. This knows. The converter surface provides a second heat exchange cooling tendency. The distance between the ones described in the heat exchanger surface. The hot load of the degree is usually available at the beginning of the second heat transfer. Other benefits The same reference is used for storage. The input distillate 23 is used to shut down the I 33 and the bottom -11 - 200916409 2 7 is connected to a line 3 1 having a shut-off valve 32. Line 31 is connected to a header 41 which communicates vias 13, 15, 17, and 19 via lines 43, 45, 47 and 49. Lines 43, 45, 47 and 49 are equipped with valves 44, 46, 48 and 50 which close individual lines. Used materials can be transported in lines 25, 52, 53 and 51 by pumps 33, 35, 37 and 39. The purification apparatus may have a greater or lesser number of tanks for storing the phosphoric acid middle distillate depending on the composition of the input mixture. In the particular performance shown, the tank 15 is used to collect and store a purer phosphate fraction than that stored in the tank 13; this vessel is connected to the crystallizer 1 via a connecting line 52 to allow the mixture to be sent to the crystallizer. Additional purification stage. The residue from the purification stage is discarded via line 51. The purified phosphoric acid is supplied via line 53 for reuse. A particular feature of the purification apparatus of Figure 1 is that water can be added to tank 15 via line 54 to adjust the phosphoric acid content to a particular enthalpy, which is preferably in the range of about 90% by weight. Line 54 can be closed by valve 56. The first heat exchanger surface is characterized by reference numeral 55, which is connected to the first heat generator/cooling generator via lines 57,59. A particular feature of the crystallizer is that a second heat exchanger surface 60 is provided via lines 64, 66 through which the second hot carrier flows during operation. In terms of area, the second heat exchanger surface 61 is significantly smaller than the first heat exchanger surface, and its sole purpose is to produce phosphoric acid crystals that are permanently available as seed crystals in the crystallizer. For this reason, the second heat exchanger surface 60 is arranged at a slight distance from the first heat exchanger surface 55, or even in contact with these surfaces at a suitable position -12-200916409. The cooling medium flows through the second heat exchanger surface ' during the operation of the crystallizer and is preferably kept permanently at a low temperature. Thereby, a condition is reached in which, when the mold is filled, the growth of the crystal starts immediately on the second heat exchanger surface 60. The surface 60 jumps to the first heat exchanger surface 5 5 after a short time. It is possible to grow controlled crystals everywhere. Figures 2 and 3 show two different solutions for adding water to the used mixture. According to Figure 2, a closed circuit 161 with a regulating valve 63 is used to allow water to be added to the mixture in a controlled manner. A connecting line 65 between line 5 2 and tank 15 makes it possible to circulate the input mixture. During this cycle, water can be mixed in at the same time. Depending on the position of valves 67, 69, the input mixture can be circulated or pumped into the crystallizer. The specific performance according to Figure 3 differs from that of Figure 2 in that the dilution of the input mixture occurs directly on the way to the crystallizer. For this purpose, a (static) mixer 71 is provided which has a plurality of baffles 73. The baffle 73 provides a turbulence and thus the input mixture is thoroughly mixed with the added water. Referring to the phase diagram of phosphoric acid (see Figure 4), the operation was carried out in accordance with the present invention in the region where the phosphoric acid hemihydrate (H3P〇4 _ 1/2H20) was obtained. Preferably, crystallization is carried out at a ratio of 63 to 91.5 wt%, preferably 80 to 91 wt%, in the phase diagram of the input mixture at Η3Ρ04. The advantage of this is that the crystallization of the phosphoric acid hemihydrate (H3P〇4 · l/2H2〇) can be carried out at about 24 °C. [Embodiment] -13- 200916409 Example 1 First crystallization (first stage) An acid raw material was obtained from a manufacturing plant for manufacturing a TFT display, which had the following parameters: molybdenum ion (PPm) 1,359 aluminum ion (PPm) 1,361 density ( D2〇4) 1.7 5 5 4 H3P〇4 content (% by weight) About 93.2 A static crystallizer was used as a purification device. The heat carrier has a plurality of preferably vertically arranged heat exchanger surfaces in a container, and the hot carrier flows through the surfaces during operation. A lot of pure water is blended into the acid feedstock (waste acid) so that the H3P〇4 content is reduced to about 90% by weight. The input mixture produced in this manner is mounted in a pre-crystallizer and crystallized. The temperature of the hot carrier in the crystallizer was initially adjusted to 25 °C. After charging the crystallizer with the mixture to be crystallized, the temperature of the hot carrier was lowered to 15 °C within 6 hours. A pure H3P〇4·1/2H20 crystalline layer was formed on the surface of the heat exchanger during the cooling of the input mixture to 15 °C. After the crystallization has been carried out in this manner, the uncrystallized residue is discharged. Subsequently, the hot carrier temperature increased to 35 °C in 7 hours. During this time, the crystalline layer begins to swell. During this heating period, the condensed fraction was collected. After the condensation, the temperature of the hot carrier was increased to 50 ° C to melt the remaining crystals. The measurement data is summarized in the table below. -14- 200916409 Table 1: Data summary of the first crystallization _ Fraction MASS Mo A1 D2〇4 H3PO4 _[gram]_[ppm]_[ppm]_[wt%] Input fraction 48,390 1,359 1,361 1.7454 89.9 Residue 11,880 3,098 2,649 1.7094 86.8 Condensed fraction 12,200 1,578 1,504 1.7434 89.7 Crystalline 24,3 00 3 95_65 5 1.763 5 91.5 Second crystallization (second stage) The crystallized fraction produced in the first crystallization stage is The (intermediate) fraction, which is further purified, and serves as an input fraction for the second crystallization stage. Water is added to the input fraction used herein in an amount such that the phosphoric acid content is about 90% by weight. The first crystallization stage is carried out in a temperature/time manner similar to that in the first crystallization stage. The results of the second crystallization are summarized in Table 2. Table 2: Data summary of the second crystallization _ Fraction MASS Mo A1 D2〇4 Η3Ρ04 _[g]_[ppm]_[ppm]_[Weight 〇/〇] Input fraction 10,760 395 647 1.7478 90.1 Residue 1,560 1,07 8 1,5 07 1 .7024 86.2 Condensed fraction 3,552 1,078 1,507 1.7024 89.5 Crystalline_5,64 8_U8_3 8 7 1.763 0 9 1.5 Third crystallization (third stage) In the third crystallization stage, The -15-200916409 mixture of the plurality of crystal fractions of the second crystallization was additionally purified. Sufficient water was added again to give an initial content of phosphoric acid of about 90% by weight. Use a similar temperature-time variation graph. The results are shown in Table 3. Table 3: Data for the third crystallization. Fractions MASS [g] Μ 〇 "ppml A1 "ppml D 2 0 4 h3po4 [% by weight] Input fraction 10,745 1 72 3 70 1.7478 90.1 Residue 1,231 509 1,098 1.7004 86.0 Condensed fraction 3,970 190 408 1.7420 89.6 Crystalline 5,544 84 182 1.7625 9 1.4 Fourth crystallization (fourth stage) In the fourth crystallization stage, a mixture of a plurality of crystal fractions of the third crystallization stage is additionally purified. The other procedure is similar to that in the third crystallization stage. The results of the fourth crystallization stage are shown in Table 4. Table 4 ·· Fourth crystallization data summary Fraction MASS [g] Μ 〇fppml A1 fppml D 2 0 4 H3P〇4 [Weight ° /.] Used material 9,68 1 85 1 84 1.7466 90.0 Residue 1,644 274 6 19 1 .695 6 85.6 Condensed fraction 3,337 75 16 1 1.7478 90.1 Crystallized 4,700 25 47 1.7636 9 1.5 -16- 200916409 As can be seen in Table 4, the depletion of metal ions in the four successive crystallization stages reaches 25 to 50 times (in this case, group ions and aluminum ions). Crystallization stage This leads to a further depletion of the metal content. In this connection, the individual fractions of the crystalline fraction can be introduced into the subsequent higher stages 'as input fractions, - the individual fractions of the individual fractions can be collected and blended to The lower stage of the input fraction '-the individual stage of the coagulated fraction can then be collected' and in the subsequent stage sequence (so-called cycle), blended into the same stage of the input fraction, - in each case, added Water is added to the input fraction in an amount such that the phosphoric acid content is from 85% by weight to 91% by weight, preferably from 89% by weight to 9% by weight to 3% by weight. Table 5: Data of the fifth crystallization is distilled MASS [g] Μ 〇 [ppml A1 ippml D2〇4 h3p〇4 Input fraction 4,7 19 25 47 "---- 17465 ____— 90.0 Residue 68 8 96 190 1-6954 85.6 Condensate fraction 1,734 2 1 39 1.7477 90 1 Crystalline 2,297 7 10 — 9_Ll_ -17- 200916409 Table 6: Data for the sixth crystallization. Skimming fraction MASS [g] Mo [ppml A1 "PPml 〇204 H3PO4 [% by weight 1 input fraction 2,155 6 10 1.7465 90.0 Residue 320 33 59.5 1.6954 85.6 Condensed full 667 2 3 1.7477 90.1 Crystalline 1,168 0.8 1.0 1.7609 9 1.1 Example 2 Mixing of two acids from different sources The L C D acid originally used is mixed with a foreign acid in a ratio of 7:3. In the table below, the unit of all data for 'impurities' is ppm' unless otherwise indicated. Table 7 - Two mixed acid two L data summary ACID Mo A1 Fe Na Si S04 H^PO, used material 1,359 1,361 - - - - Foreign acid - - 316 263 33 198 412 Mixed acid 941 953 96 80 10 60 125 Operation with mixed acid In the crystallization experiment using the acid mixed in this manner, the separation achievable by individual ions will be investigated. The experiment contains two purification stages and one recovery stage (stripping stage). -18- 200916409 The mixture starting at stage 1 (or the initial mixture) is crystallized in two so-called stage 1, in which a sufficient amount of material is produced for subsequent stage 2. The data is summarized in Tables 8 and 9 below. Table 8 - Data from the first stage 1 Summary Fraction mass Mo A1 Fe Na Si S04 h3p〇3 H3PO4 [g] [Ray %] Amount used 10,800 941 953 96 80 10 60 125 90.0 Residue 1,507 2,498 2,412 194 236 24 190 339 86.0 Condensed fraction 3,535 1,242 1,161 99 113 14 80 156 89.3 Crystalline 5,758 349 443 69 19 4 34 50 91.5 Table 9 - Second-stage 2 infant S [according to ί smell fraction Mo A1 Fe Na Si S04 H3PO3 H3PO4 [g] Concentration °/〇] Quantity 10,840 1,039 1,021 96 91 11 66 135 89.9 Residue 1,636 2,795 2,573 195 255 25 214 361 85.9 Condensed fraction 3Λ63 1,381 1,240 99 138 17 87 171 89.1 Crystalline 6,041 385 486 69 22 4 16 55 91.4 The input fraction of the second stage 1 contains the coagulated fraction from the first stage 1. Stage 2 -19- 200916409 The crystallized fractions from the melting of the two stages 1 are mixed together and the mass of the fraction [g] Mo A1 Fe Na Si S〇4 h3p〇3 H3PO4 flux %1 quantity 10,975 367 465 69 20 4 15 53 89.5 Residue 3,045 795 936 117 50 9 36 108 86.4 Condensed fraction 3,107 336 408 60 18 4 14 49 89.6 Crystallized 4,823 117 205 44 2.8 1.5 2.0 20 91.4 Residual stage The residual fraction of the two stages 1 is Mixed together, and a part of the composition is crystallized in the recovery stage. Table 1 1 - Data of the recovery stage Abstract Distillation mass Mo A1 Fe Na Si S〇4 h3p〇3 H3P〇4 [g] mm%] Amount 2,392 2,653 2,496 195 246 25 202 350 2,392 Residue 355 6,125 5,298 412 733 61 601 925 335 Condensed fraction 690 4,201 3,832 217 365 35 305 488 690 Crystallized 1,367 1,020 1,134 30 66 10 53 140 1,367 Used as the material used in Stage 2. -- Table 10 - Phase data summary In this test, only one recovery phase is used, however, it is conceivable to collect the residue from the recovery phase and treat the -20-200916409 in one or more additional recovery stages. . Separation of similarly effective molybdenum ions and aluminum ions in the corresponding stages of the above-described experiments using only the LCD acid was achieved in the mixed acid experiment. Figure 5 shows an example of the possible combination of LCD acid and other acids (e.g., acid leaching acid) used, and how the proportion of spent phosphoric acid can be reduced to a minimum using the method of the present invention. The amount of individual forms of ions in the mixed input mixture is reduced by the above dilution effect. In the case where the two acids are separated and unmixed, it is possible to obtain a higher yield of pure acid by mixing, and to obtain the same ion content in the pure acid of the same purity and in the residue. In the example shown here, 1 ton of pure acid and 400 kg of residue were recovered from 1 ton of LCD acid and 400 grams of acid from the acid leaching process (in other words, 1.4 ton of mixed acid). For individual purification, a total of about 840 kg of pure acid and 5 60 kg of residue have been expected. By using "acid leaching acid" (the amount obtained by the amount of phosphoric acid), 1% phosphoric acid can be recycled to the LCD manufacturing method. In the method for purifying contaminated phosphoric acid, a first input mixture having phosphoric acid as a main component and containing a first group of impurities is mixed with a second input mixture having phosphoric acid as a main component and mainly containing a second group of impurities. In each case, the highest concentration of impurities in the two input mixture is different. The combined input mixture is crystallized in a multi-stage crystallization process and the resulting crystalline layer is heated to extract purified phosphoric acid and melted into a fraction. The apparatus for carrying out the method is characterized in that a water supply means is provided to adjust the weight ratio of phosphoric acid in the input mixture to a specific enthalpy. -21 - 200916409 [Simplified Schematic] Figure 1: Schematic diagram of a crystallization apparatus having a static crystallizer and four tanks for receiving different phosphoric acid fractions according to the present invention; Figure 2: Crystallizing apparatus according to Figure 1. Partial cross-sectional view showing the first specific performance of the water supply device; Figure 3: second specific performance of the water supply device; Figure 4: phase diagram of phosphoric acid; and Figure 5: mass balance example of the purification method according to the present invention . [Description of main component symbols] U: Static crystallizer 1 3, 1 5, 1 7, 1 9 : Tank for phosphoric acid fraction 2 1 : Supply line for phosphoric acid raw material 2 3 : Shut-off valve for supply line 2 5 : First transfer line 27: bottom of crystallizer 29: outlet 3 1 : line 32: shut-off valve 3 3, 3 5, 3 7 , 3 9 : transfer pump 41: headers 43, 45, 47, 49: in set Connecting line between pipe and tank 44, 46, 48, 50: closing valve 5 1 : line for draining residues-22- 200916409 5 3 : line for purified phosphoric acid 5 4 : for supplying water Line 55: first heat exchanger surface 56: shut-off valve 5 of line 54 7 , 5 9 : line 60 for hot carrier: second heat exchanger surface 6 1 : control circuit 6 3 : control valve 6 5 : connecting line 67 between line 5 2 and tank 15 , 89 : valve 71 : mixer 73 : baffle -23-

Claims (1)

200916409 十、申請專利範圍 1. 一種藉由結晶來純化經污染之含水磷酸(在以下稱 爲輸入混合物)的方法,其中該混合物可以含有不同之雜 質,例如陽離子、陰離子、酸類、有機元素及類似者,在 該方法中’具有經污染之磷酸的輸入混合物被結晶且部分 地被熔化,以分離出經純化之磷酸,該方法的特徵在於 -具有磷酸作爲主成分且主要含有第一群雜質之第一 輸入混合物,與 -具有磷酸作爲主成分且主要含有第二群雜質之第二 輸入混合物,相混合, -其中在該二輸入混合物中具有最高濃度之雜質是彼 此不同的,且 -結合的輸入混合物在多階段結晶方法中被結晶,且 所得之結晶層被加熱和熔化成用於萃取經純化之磷酸的餾 分。 2. 如申請專利範圍第1項之方法,其中第一群雜質 及第二群雜質各自具有實質上不同之酸類、陰離子、陽離 子或其他化學化合物。 3 ·如申請專利範圍第1或2項之方法,其中第一群 雜質含有鉬離子及/或鋁離子以作爲主要雜質。 4-如申請專利範圍第1或2項之方法,其中第二群 雜質含有鐵離子及/或鈉離子及/或含磷之酸以作爲主要 雜質。 5 ·如申請專利範圍第1或2項之方法,其中第一輸 -24- 200916409 入混合物及第二輸入混合物分別是在蝕刻方法中所用之磷 酸、在酸浸中所用之磷酸、或粗製之磷酸。 6.如申請專利範圍第1或2項之方法,其中使用多 於二種輸入混合物,其各自具有不同之主要雜質。 7- —種藉由結晶來純化經污染之磷酸(以下稱爲輸入 混合物)的方法,其中該酸可含有雜質,例如陽離子、陰 離子、酸類、有機元素或化合物,其中具有經污染之磷酸 的輸入混合物在該方法中被結晶和部分地熔化,以分離出 經純化之磷酸,該方法的特徵在於 -在多個結晶階段中進行結晶, -在輸入混合物中磷酸之含量視需要藉添加水以調節 成小於9 1重量%之含量,及 —輸入混合物而後被冷卻且磷酸於結晶表面上沉源成 結晶層,而後使該結晶層凝結(sweat)且分餾,以獲得經純 化之磷酸。 8 ,如申請專利範圍第7項之方法,其中該方法藉添 加水以獲得磷酸半水合物之方式來控制。 9. 如申請專利範圍第7或8項之方法’其中在每一 情況中,在輸入混合物中添加如此多的水’以使磷酸之重 量含量是在6 3重量%至9 1重量%之間。 10. 如申請專利範圍第7或8項之方法,其中在每一 情況中,在輸入混合物中添加如此多的水’以使磷酸之重 量含量是在大約80重量%至91重量%之間。 11. 如申請專利範圍第7或8項之方法’其中在每一 -25- 200916409 情況中在輸入混合物中添加如此多的水’以使磷酸之重量 含量是在89重量%至90.5重量%之間。 12.如申請專利範圍第7或8項之方法,其中第二熱 交換器表面被安排在與熱交換器表面稍有距離之處或與熱 交換器表面直接接觸,且永久維持在低溫下。 1 3 .如申請專利範圍第7或8項之方法,其中在多個 結晶階段中進行結晶,其中從低結晶1¾段至較尚結晶階 段,輸入混合物純度增加。 1 4 .如申請專利範圍第1 3項之方法’其中在至少三 個結晶階段中進行結晶,較佳在至少四個結晶階段中進行 結晶。 15. 如申請專利範圍第7或8項之方法’其中來自工 業製造方法之經污染的磷酸直接添加至分步層結晶方法中 而不必進行前蒸餾。 16. 如申請專利範圍第7或8項之方法’其中使用特 定結晶階段之結晶物以作爲其後較高階段中的輸入混合 物。 17. 如申請專利範圍第7或8項之方法’其中某一結 晶階段之殘留餾分被收集且摻混至其後較低結晶階段。 18. 如申請專利範圍第7或8項之方法’其中某一結 晶階段之凝結餾分被分別地收集旦添加至相同結晶階段之 輸入混合物。 1 9_ 一種特別用於純化經污染之磷酸的裝置’其中該 磷酸係經陽離子、陰離子、酸類及/或有機化合物所污 -26- 200916409 染’且該裝置具有靜態結晶器(11),而具有第一熱交換器 表面,第一熱載劑流動經該第一熱交換器表面且經由管線 (31、41、43、45、49)連接至槽(13、15、17、19)以供用 過之混合物的(中間)儲存, 其特徵在於 提供水供應設備(54、56),以將輸入混合物中磷酸之 重量比例調節至某一値。 20.如申請專利範圍第1 9項之裝置,其中提供一種 測量磷酸含量及所添加之水含量的設備。 21·如申請專利範圍第19或20項之裝置,其中在該 結晶器(1 1)中,在與第一熱交換器表面(5 5)稍有距離之處 或與第一熱交換器表面(55)直接接觸之處,提供第二熱交 換器表面(60),第二熱載劑在操作時流經該第二熱交換器 表面(6 0 )。 22. —種具有靜態結晶器(1 1)之裝置,其具有第一熱 交換器表面(55) ’以使第一熱載劑流經該第一熱交換器表 面(55)’且經由管線(31、41、43、45、49)連接至槽(13、 1 5、1 7、1 9 ),以供用過之混合物的(中間)儲存,其特徵 在於 在該結晶器(U)中,在與第一熱交換器表面(5 5)稍有 距離之處或與第一熱交換器表面(55)直接接觸之處,提供 第二熱交換器表面(6 0),第二熱載劑在操作時流經該第二 熱交換器表面(60)。 2 3.如申請專利範圍第22項之裝置,其中提供與該第 -27- 200916409 一及第二熱生成 一及第二熱交換器表面(55、60)聯通之第 器/冷卻生成器。 -28-200916409 X. Patent Application 1. A method for purifying contaminated aqueous phosphoric acid (hereinafter referred to as an input mixture) by crystallization, wherein the mixture may contain different impurities such as cations, anions, acids, organic elements and the like. In this method, 'the input mixture with contaminated phosphoric acid is crystallized and partially melted to separate the purified phosphoric acid, the method is characterized by - having phosphoric acid as a main component and mainly containing the first group of impurities a first input mixture mixed with a second input mixture having phosphoric acid as a main component and mainly comprising a second group of impurities, wherein the impurities having the highest concentration in the two input mixture are different from each other, and - combined The input mixture is crystallized in a multi-stage crystallization process, and the resulting crystalline layer is heated and melted into a fraction for extracting purified phosphoric acid. 2. The method of claim 1, wherein the first group of impurities and the second group of impurities each have substantially different acids, anions, cations or other chemical compounds. 3. The method of claim 1 or 2, wherein the first group of impurities contains molybdenum ions and/or aluminum ions as main impurities. 4- A method according to claim 1 or 2, wherein the second group of impurities contains iron ions and/or sodium ions and/or phosphorus-containing acids as main impurities. 5. The method of claim 1 or 2, wherein the first feed-24-200916409 into the mixture and the second input mixture are respectively phosphoric acid used in the etching method, phosphoric acid used in acid leaching, or crude Phosphoric acid. 6. The method of claim 1 or 2 wherein more than two input mixtures are used, each having a different major impurity. 7- A method for purifying contaminated phosphoric acid (hereinafter referred to as an input mixture) by crystallization, wherein the acid may contain impurities such as cations, anions, acids, organic elements or compounds having an input of contaminated phosphoric acid The mixture is crystallized and partially melted in the process to separate the purified phosphoric acid, the process being characterized by - crystallization in a plurality of crystallization stages, - the amount of phosphoric acid in the input mixture is adjusted by adding water as needed The content is less than 91% by weight, and the mixture is cooled and the phosphoric acid is precipitated on the crystal surface to form a crystalline layer, and then the crystal layer is swept and fractionated to obtain purified phosphoric acid. 8. The method of claim 7, wherein the method is controlled by adding water to obtain a phosphoric acid hemihydrate. 9. The method of claim 7 or 8 wherein in each case, adding so much water to the input mixture is such that the weight content of phosphoric acid is between 63% and 91% by weight. . 10. The method of claim 7 or 8, wherein in each case, so much water is added to the input mixture such that the weight content of phosphoric acid is between about 80% and 91% by weight. 11. The method of claim 7 or 8 wherein in the case of each of -25-200916409, adding so much water to the input mixture is such that the weight content of phosphoric acid is between 89% and 90.5% by weight. between. 12. The method of claim 7 or 8, wherein the second heat exchanger surface is arranged at a slight distance from the surface of the heat exchanger or in direct contact with the surface of the heat exchanger and is permanently maintained at a low temperature. The method of claim 7 or 8, wherein the crystallization is carried out in a plurality of crystallization stages, wherein the purity of the input mixture is increased from the low crystallization stage to the more crystallization stage. The method of claim 13 wherein the crystallization is carried out in at least three crystallization stages, preferably in at least four crystallization stages. 15. The method of claim 7 or 8 wherein the contaminated phosphoric acid from the industrial manufacturing process is directly added to the stepwise crystallization process without prior distillation. 16. The method of claim 7 or 8 wherein a crystal of a particular crystallization stage is used as the input mixture in the subsequent higher stage. 17. The method of claim 7 or 8 wherein the residual fraction of one of the crystallization stages is collected and blended into a lower crystallization stage thereafter. 18. The method of claim 7 or 8 wherein the condensed fraction of one of the crystallization stages is separately collected into the input mixture of the same crystallization stage. 1 9_ A device specifically for purifying contaminated phosphoric acid 'where the phosphoric acid is stained with a cation, an anion, an acid and/or an organic compound -26- 200916409' and the device has a static crystallizer (11) a first heat exchanger surface through which the first hot carrier flows and is connected to the tank (13, 15, 17, 19) via a line (31, 41, 43, 45, 49) for use (Intermediate) storage of the mixture, characterized in that a water supply device (54, 56) is provided to adjust the weight ratio of phosphoric acid in the input mixture to a certain enthalpy. 20. Apparatus according to claim 19, wherein an apparatus for measuring the phosphoric acid content and the added water content is provided. 21. The apparatus of claim 19 or 20, wherein in the crystallizer (11), at a slight distance from the first heat exchanger surface (5 5) or with the first heat exchanger surface (55) Where in direct contact, a second heat exchanger surface (60) is provided, the second hot carrier flowing through the second heat exchanger surface (60) during operation. 22. A device having a static crystallizer (11) having a first heat exchanger surface (55)' to pass a first hot carrier through the first heat exchanger surface (55)' and via a pipeline (31, 41, 43, 45, 49) connected to the tank (13, 15 5, 17 7 , 1 9 ) for (intermediate) storage of the used mixture, characterized in that in the crystallizer (U), Providing a second heat exchanger surface (60), a second hot carrier, at a slight distance from the first heat exchanger surface (5 5) or in direct contact with the first heat exchanger surface (55) It flows through the second heat exchanger surface (60) during operation. 2. The apparatus of claim 22, wherein the first/cooling generator in communication with the first and second heat generating first and second heat exchanger surfaces (55, 60) is provided. -28-
TW097131576A 2007-09-06 2008-08-19 A method and an apparatus for purification of phosphoric acid by fractional crystallization TWI491559B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01401/07A CH701939B1 (en) 2007-09-06 2007-09-06 Method and apparatus for the purification of aqueous phosphoric acid.

Publications (2)

Publication Number Publication Date
TW200916409A true TW200916409A (en) 2009-04-16
TWI491559B TWI491559B (en) 2015-07-11

Family

ID=39293217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097131576A TWI491559B (en) 2007-09-06 2008-08-19 A method and an apparatus for purification of phosphoric acid by fractional crystallization

Country Status (5)

Country Link
JP (1) JP5566585B2 (en)
KR (1) KR101524742B1 (en)
CN (1) CN101423204B (en)
CH (1) CH701939B1 (en)
TW (1) TWI491559B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471739A1 (en) * 2011-01-04 2012-07-04 Solvay Sa Process for the purification of phosphoric acid
ES2895952T3 (en) * 2013-01-14 2022-02-23 Sulzer Management Ag Multi-stage crystallization process and apparatus for purifying a compound
CN105668535B (en) * 2015-12-31 2017-10-20 贵州开磷集团股份有限公司 A kind of wet-process phosphoric acid concentration method and device
CN112661722B (en) * 2021-01-30 2024-04-02 蔚林新材料科技股份有限公司 Novel green cleaning process for refining 2-mercaptobenzothiazole

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890097A (en) * 1974-05-06 1975-06-17 Agrico Chem Co Method of purifying wet process phosphoric acid
US4487750A (en) * 1983-08-01 1984-12-11 Freeport Minerals Company Stabilization of wet process phosphoric acid
US4655789A (en) * 1985-05-08 1987-04-07 Freeport Research And Engineering Company Phosphoric acid crystallization process
US4655790A (en) * 1985-05-08 1987-04-07 Freeport Research And Development Company Phosphoric acid crystallization process
JP3131433B2 (en) * 1989-12-21 2001-01-31 日本化学工業株式会社 Method for producing high-purity phosphoric acid
JPH0716563A (en) * 1993-06-30 1995-01-20 Tosoh Corp Separation of phosphate ion from phosphate ion-containing aqueous solution
JP3382561B2 (en) * 1999-06-28 2003-03-04 日本化学工業株式会社 High purity phosphoric acid
CN1151059C (en) * 2002-09-28 2004-05-26 云南三环化工有限公司 Purifying process of phosphoric acid produced via wet process
KR20040095151A (en) * 2003-05-06 2004-11-12 류광현 A method of refining phosphoric acid
KR100582524B1 (en) * 2004-06-25 2006-05-23 주식회사 에이제이테크 A method of recycling used etchant containing phosphoric acid
JP4766858B2 (en) * 2004-09-02 2011-09-07 日本リファイン株式会社 Method and apparatus for recovering phosphoric acid from metal-containing mixed acid aqueous solution containing phosphoric acid and at least one acid other than phosphoric acid
CN1843900A (en) * 2006-05-08 2006-10-11 朱健 Method for preparing electronic grade phosphoric acid by fusion crystallization method
JP2008247733A (en) * 2007-03-14 2008-10-16 Niro Process Technology Bv Purification of phosphoric acid rich stream

Also Published As

Publication number Publication date
CN101423204A (en) 2009-05-06
TWI491559B (en) 2015-07-11
CN101423204B (en) 2012-11-14
JP2009096709A (en) 2009-05-07
CH701939B1 (en) 2011-04-15
KR20090026087A (en) 2009-03-11
JP5566585B2 (en) 2014-08-06
KR101524742B1 (en) 2015-05-29

Similar Documents

Publication Publication Date Title
JP4646251B2 (en) Method for acid recovery from aqueous etching mixture
TWI452010B (en) Method and apparatus for preparing purified phosphoric acid from phosphoric acid aqueous solution containing plural metal ions
CN1312030C (en) Method for purifying wet-process phosphoric acid by crystallization
TWI481550B (en) Method for manufacturing high purity sulfuric acid
CN102198937B (en) Static multistage melting crystallization method for preparing electronic grade phosphoric acid
CN104968636B (en) For preparing the device of alkanol
TW200916409A (en) A method and an apparatus for purification of phosphoric acid by fractional crystallization
KR20190055095A (en) Process for treating an aqueous composition comprising lithium sulfate and sulfuric acid
JPH08176045A (en) Method of refining bisphenol a
CN106115740B (en) A kind of salt extraction process and salt making system
CN106082275B (en) A kind of salt extraction process and salt making system
CN101298322B (en) Purification of phosphoric acid rich streams
CN101028918B (en) Recovery of hydrofluoric acid
CA2368699C (en) Process for production of phosphoric acid by crystallisation of phosphoric acid hemihydrate
CN217367229U (en) Device of layer type integral crystallization purification silver nitrate
JP4188085B2 (en) Continuous process for producing highly concentrated hydrogen peroxide, highly concentrated hydrogen peroxide and uses thereof
JP2001261312A (en) Aqueous solution of hydroxylamine and method of producing the same
JP3382561B2 (en) High purity phosphoric acid
KR100454101B1 (en) Purification method and equipment for phosphoric acid
CN106947873A (en) A kind of method for removing impurity lead in thick bismuth alloy
KR100684983B1 (en) Purification method of phosphoric acid through layer crystallization including washing operation
RU2583574C1 (en) Method of producing high-purity gallium
FI58766C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN RENAD KALSIUMFOSFATHALTIG FOSFORSYRA UR RAOSYRA FRAON ODDA-PROCESSEN
JP2013001632A (en) Method for purifying chlorosilanes
WO2020196246A1 (en) Method for producing tungsten hexafluoride, method for purifying same, and tungsten hexafluoride