TW200915163A - Mutual capacitance touch panel and combinational mutual capacitance touch panel - Google Patents

Mutual capacitance touch panel and combinational mutual capacitance touch panel Download PDF

Info

Publication number
TW200915163A
TW200915163A TW97143195A TW97143195A TW200915163A TW 200915163 A TW200915163 A TW 200915163A TW 97143195 A TW97143195 A TW 97143195A TW 97143195 A TW97143195 A TW 97143195A TW 200915163 A TW200915163 A TW 200915163A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
sensing
driving
touch panel
Prior art date
Application number
TW97143195A
Other languages
Chinese (zh)
Other versions
TWI436256B (en
Inventor
Michael Mo
jing-kai Zhang
Original Assignee
Focaltech Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focaltech Systems Ltd filed Critical Focaltech Systems Ltd
Priority to TW97143195A priority Critical patent/TWI436256B/en
Publication of TW200915163A publication Critical patent/TW200915163A/en
Application granted granted Critical
Publication of TWI436256B publication Critical patent/TWI436256B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

A mutual capacitance touch panel and combinational mutual capacitance touch panel are disclosed. The mutual capacitance touch panel comprises a driver layer (200) and a sensor layer (300). More particularly, the driver layer (200) comprises driving electrodes (210) distributed at intervals in same one plane, and the sensor layer (300) comprises sensing electrodes (310) distributed at intervals in same one plane. Each sensing electrode (310) is arranged in an area of the sensor layer (300) which directly faces a mutually void area with no drive electrode (210) arranged in the driver layer (200), such that the driving electrodes (210) and the sensing electrodes (310) can fill a touch area (110) of the touch panel. The driving electrode and the sensing electrode are not arranged directly opposite to each other. Therefore, the present invention can increase the proportion of the capacitance CT generated between top of the drive electrodes and the sensor electrodes in the mutual capacitance C in increased, so as to efficiently increase effective permittivity of the mutual capacitance touch panel.

Description

200915163 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種觸摸感應之輸入裝置,特別是關於 用互電容作爲感應器件之觸摸輸入裝置。 【先前技術】 觸控板是現在被廣泛應用的一種觸摸傳感輸入裝置。 按照觸摸感應原理,現有技術觸控板包括電阻式觸控板、 電容式觸控板、表面紅外觸控板等等。其中,電阻式觸控 板因爲其低成本、易實現、控制簡單等優點流行多年。近 來,電容式觸控板以其透光率高、耐磨損、耐環境溫度變 化、耐環境濕度變化、壽命長、可實現如多點觸摸的高級 複雜功能而受到大眾的歡迎。 利用電容變化作爲傳感原理由來已久,爲使觸控板有 效工作,需要一個透明的電容傳感陣列。當人體或者如手 寫筆的專用觸摸裝置接近電容的感應電極時,會改變傳感 控制電路檢測到電容值的大小,根據觸摸區域内電容值變 化的分布,就可以判斷出人體或者專用觸摸裝置在觸摸區 域内的觸摸情况。按照電容形成的方式,現有技術觸控板 包括自電容式觸控板和互電容式觸控板。自電容式觸控板 是利用傳感電極與交流或直流電憑電極形成的電容值變化 作爲觸摸傳感的信號;互電容式觸控板是利用兩個電極間 形成的電容值變化作爲觸摸傳感的信號,有時也把互電容 稱爲投射電容。 5 200915163 如第11圖所示,現有技術互電容式觸控板包括觸摸平 面100’,不在同一平面的驅動線210,和傳感線310,,以及 夾在該驅動線210’和傳感線310,之間的介質平面910,。如 第11 — 1圖和第11 —2圖所示,各該驅動線210,互相平行, 各該傳感線31(V互相平行’並且該驅動線21〇,與傳感線31〇, 在空間垂直交叉。該驅動線210,電連接激勵信號,該傳感 線310’電連接傳感控制電路,從而在驅動線21〇,與傳感線 31〇f間形成互電容。在該驅動線21〇,與傳感線31〇,交叉之 處形成的互電容C是傳感控制電路檢測的主要電容數據信 號。如第11 一3圖所示,該互電容c包括驅動線21〇,與傳 感線310’底部之間的電容CB和驅動線21〇,與傳感線31〇, 頂部之間的電容心,即c=Cb + Ct。如第u —4圖所示’ 當手指150’接觸觸摸平面1〇〇,並在觸摸區域内時,該手指 150'相當於在傳感線31〇,之上的一個電極,改變了驅動線 2HV與傳感線310’頂部之間電場,這種改變可以看作手指 150'將驅動線210,到傳感線31〇,頂部的電場線吸走,從= 使CT發生變化’導致該互電容〇發生變化。該傳感控制電 路檢測觸摸平面1〇〇'整個觸摸區域内的互電容c變化情 况,以確定觸摸區域内被觸摸點的位置和强度。透過合= 設計傳感控制電路,該傳感控制電路能够同時檢 面着上發㈣多關狀分树况,實現傳❹點觸摸 功能。所述cT值的變化範圍在未發生觸摸時的互電容c中 所占比例被稱爲有效電容率。 如第11圖所示,當現有技術觸控板被觸摸時,該驅動 200915163 線2HV與傳感線310'底部之間的電容CB不受觸摸影響, 由於該傳感線310’底部與驅動線21〇,正對,使該電容匸 在互電容C中所占_較大’從而令該麵電容率較低〇B 現有技術互感式觸控板的有效電容率一般只能達到左 右,造成關控板料比低,需要設計複雜的傳感控^電 路以精確判斷人體或者專賴摸裝置以針對該觸控板的觸 摸情况,增加了該觸控板的設計和製造成本。 【發明内容】 本發明要解决的技術問題在於避免現有技術的不足之 處而提出能大幅提高有效電容率的互電容式觸控板及組合 式互電容觸控板。 本發明解决所述技術問題可以透過採用以下技術方案 來實現: 攻計、製造一種互電容式觸控板,包括用透明絕緣介 質製成的觸摸平面’被該觸摸平面覆蓋的驅動層和傳感 層’以及夾在所述驅動層和傳感層之間用透明絕緣介質製 成的電谷·介質平面,尤其疋,該驅動層包括在同一平面内 間隔分布的用透明導電材料製成的平板驅動電極;該傳感 層包括在同一平面内間隔分布的用透明導電材料製成的平 板傳感電極,各該傳感電極分布在傳感層中與驅動層中所 地各驅動電極相互間空隙區域正對著的區域内,令該驅動 電极和傳感電極一起填充該觸摸平面的觸摸區域;該驅動 電極與觸控板外設的激勵信號模塊電連接,該傳感電極與 200915163 觸控板外設的傳感控制模塊電連接。 爲進一步提高有效電容率,該觸控板還包括屏蔽層; 該屏蔽層設置於驅動層和傳感層中位於下方的一層的上 方、下方或者㈣在該層β ;該屏蔽層包括用透明導電材 料製成的平板屏蔽電極,以及屏蔽電極引出導線;各該屏 蔽電極正對著該驅動層和傳感層中位於上方的一層中各電 極所占區域;該屏蔽電極電懸空;或者,借助該屏蔽電極 · 引出導線,所有屏蔽電極接地或者與觸控板外設的直流源 . 電連接。 爲更進一步提高有效電容率,該觸控板還包括次電極 層;該次電極層設置於驅動層和傳感層中位於上方的一層 的上方、下方或者嵌套在該層内;該次電極層包括用透明 導電材料製成的平板次電極’各該次電極正對著該驅動層 和傳感層中位於下方的一層中各電極所占區域。 5亥互電容式觸控板還包括用透明導電材料製成的驅動 電極連接線和傳感電極連接線,以及驅動電極引出導線和 傳感電極引出導線。該驅動電極借助驅動電極連接線分組 串聯在一起,各該驅動電極連接線在驅動層内的相互之間 的位置關係包括共線和平行;該傳感電極借助傳感電極連 接線分組串聯在一起,各該傳感電極連接線在傳感層内相 互之間的位置關係包括共線和平行;該驅動電極連接線與 傳感電極連接線互相垂直。各驅動電極組借助驅動電極引 出線與觸控板外設的激勵信號模塊電連接;各傳感電極組 借助傳感電極引出線與觸控板外設的傳感控制模塊電連 8 200915163 接。 該驅動電極和傳感電極的形狀可以採用如下具體方 案:各該驅動電極是大小相同的矩形電極;該傳感電極是 大小相同的矩形電極;或者,各該驅動電極是大小相同的 菱形電極;該傳感電極是大小相同的菱形電極;又或者, 各該驅動電極是大小相同的六邊形電極;該傳感電極是大 小相同的菱形電極。 •本發明在所述互電容式觸控板的基礎上還提出一種組 f 合式互電容觸控板,可以透過採用以下技術方案來實現: 設計、製造一種組合式互電容觸控板,包括用透明絕 緣介質製成的觸摸面板,尤其是,還包括被該觸摸面板覆 蓋的緊密排布的至少兩個互電容觸摸單元,該互電容觸摸 單元一起填充觸摸面板的觸摸區域。該互電容觸摸單元包 括驅動層和傳感層,以及夾在所述驅動層和傳感層之間的 用透明絕緣介質製成的電容介質平面。該驅動層包括同一 平面内間隔分布的用透明導電材料製成的平板驅動電極; 該傳感層包括在同一平面内用透明導電材料製成的平板傳 感電極,各該傳感電極分布在傳感層中與驅動層中各該驅 動電極相互間空隙區域正對著的區域内,令該驅動電極和 傳感電極一起填充它們所在互電容觸摸單元的觸摸區域。 該驅動電極與組合式互電容觸控板外設的對應於該驅動電 極所在互電容觸摸單元的激勵信號模塊電連接,該傳感電 極與組合式互電容觸控板外設的對應於該傳感電極所在的 互電容觸摸單元的傳感控制模塊電連接。 9 200915163 的屏互:容觸控板還包括用透明導電材料製成 元還包括m ^及屏蔽層引出導線。該互電容觸摸單 下方的-層二上方該屏蔽層設f於驅動層和傳感層中位於 、下方或者絲在該層H屏蔽層& =透明導電材料製成的平板屏蔽電極,以及屏』 方的線^該屏蔽電極正對著該驅動層和傳感層中位於上 方的一層中各電極所占區域。該屏蔽電極電懸空.或老 :::屏:層連接線將該互電容觸摸單元各自的屏蔽層電 =在一起,並透過屏蔽層引出導線接地或者與組合式互 電谷觸控板外設的直流源電連接;又或者,借助屏蔽電極 引出導線,該互電容觸摸單元各自的屏蔽電極接地或者與 組合式互電容觸控板外設的直流源電連接。 所述互電容觸摸單元還包括次電極層;該次電極層設 置於驅動層和傳感層中位於上方的一層的上方、下方或者 嵌套在該層内;該次電極層包括用透明導電材料製成的平 板次電極’各该次電極正對著該驅動層和傳感層中位於下 方的一層中各電極所占區域。 同現有技術相比較’本發明“互電容式觸控板及組合式 互電容觸控板”的技術效果在於: 該驅動電極與傳感電極空間位置不是正對關係,該驅 動電極與傳感電極底部之間形成的電容cB大幅降低,提高 了該驅動電極與傳感電極頂部之間形成的電容cT在互電 容C中所占比例,從而提咼了由觸摸傳感引起該CT的變化 在未觸摸時互電容c中的比例,有效增加了該互電容式觸 200915163 控板的有效電容率; a屏蔽電極和次電極可以改善驅動電 間的電場,使互電容Γ ,丹1寻级電極之 c中的電谷cB更小,電容c 更進-步提高該互電容式觸控板的有效電 極還可以使該互電容式觸控板的透光率趨於一致 互電容觸控板的性能; 双杈同該 另外,《•亥組合式互電容觸控板提出 板的結構,避免因過夕““ 裡大面積觸控 電極的電阻過大而造 一傳感 \成的互電谷通路的帶寬降低問題。 【實施方式】 所示各實施例作進-步詳述。 或者圖像顯示妒、種互電容式觸控板,用於罩蓋在圖形 對圖形或去固置的顯示屏幕表面,透過外設的控制裝置 、节®I像顯一 至第7圖斛- V敦置顯示的内容進行控制。如第1圖 吓不,該石孤 成的觸撰平面 '^電容式觸控板包括用透明絕緣介質製 和傳感層3〇〇 被该觸摸平面100覆蓋的驅動層200 間的用透明絕^及爽在所述驅動層200和傳感層300之 可以設置用質製成的電容介質平面910。另外,還 200、傳感層 絶緣材料製成的保護平面Π〇 ’該驅動層 100釦仅w 3Q()和電容介質平面910被設置在觸摸平面 榇批-t 印120之間’該保護平面120與圖形或者圖 像顯不裂置的顯示屏接觸。 本發明該驅動層 200包括在同一平面内間隔分布的用 200915163 透明導電材料製成的平板驅動電極210;該傳感層3〇〇包 括在同一平面内間隔分布的用透明導電材料製成的平板傳 感電極310,該各傳感電極31〇分布在傳感層3〇〇中與驅 動層200中該各驅動電極21〇相互間空隙區域正對著的區 域内,令該驅動電極210和傳感電極310 一起填充該觸摸 平面100的觸摸區域110。該驅動電極21〇與觸控板外設 的激勵信號模塊600電連接,該傳感電極310與觸控板外 設的傳感控制模塊700電連接。 本發明互電容式觸控板的驅動電極21〇與傳感電極 310不會出現正對的情况,因此本發明在該驅動電極 與傳感電極310底部之間形成的電容Cb比現有技術該驅動 線21〇,與傳感線31〇,底部之間形成的電容Cb小,從而本發 明中該電容CB在互電容C中所占比例小,提高了本發明互 電容C的有效電容率。 本發明該互電容式觸控板的驅動電極210和傳感電極 31〇的形狀和它們在各自相應的驅動層2〇〇和傳感層3⑻ 内的連接分布情况可以多種多樣,本發明透過第施例 至第七實施例提出了幾種適於應用和實踐的形狀和連 布情况。 本發明各實施例的互電容式觸控板都採用以下的技術 方案·該互電容式觸控板還包括用透明導電材料製成的驅 動電極連接線220和傳感電極連接線320,以及驅動電極 弓^出導線230和傳感電極引出導線33Q;該驅動電極21〇 借助驅動電極連接線22G綠㈣在—起,錢驅動電極 12 200915163 連接線220在驅動層200内的相互之間的位置關係包括共 線和平行;該傳感電極310借助傳感電極連接線32〇分組 串聯在一起’各該傳感電極連接線320在傳感層3〇〇二相 互之間的位置關係包括共線和平行;該驅動電極連接線22〇 與傳感電極連接線320互相垂直;各驅動電極組24〇借助 驅動電極引出線230與觸控板外設的激勵信號模塊6〇〇電 連接,各傳感電極組340借助傳感電極引出線與觸控 板外設的傳感控制模塊700電連接。如第i圖至第7圖所 示,本發明各實施例驅動電極連接線22〇和傳感電極連接 線320各自的位置關係既有共線也有平行,即該驅動電極 組240中的各驅動電極21〇的幾何中心與各驅動電極連接 線220在同一直線上,該驅動電極組24〇各自的驅動電極 連接線220所在的直線互相平行;該傳感電極組34〇中的 各傳感電極310的幾何中心和各傳感電極連接線32〇在同 一直線上,該傳感電極組34〇各自的傳感電極連接線32〇 所在的直線互相平行;也就是,對於驅動層2〇〇内的驅動 電極連接線220和在傳感層3〇〇内的傳感電極連接線32〇, 在電極組内的電極連接線的位置關係是共線,電極組之間 的電極連接線的位置關係是平行的。 本發明第一實施例,如第i圖所示,各該驅動電極21〇 是矩形驅動電極211 ’在本實施例中有25個矩形驅動電極 2Π,各該傳感電極31〇是矩形傳感電極311,在本實施例 中有36個矩形傳感電極3丨i。 如第1一 1圖所示,該矩形傳感電極311透過傳感電極 13 200915163 連接線320被分組串聯成6組傳感電極組340,每組傳感 電極組340中的各矩形傳感電極311的幾何中心和各矩形 傳感電極310連接線320在同一直線上,而且各傳感電極 組340内的傳感電極連接線320所在的直線互相平行。各 傳感電極組340借助傳感電極引出線330與觸控板外設的 傳感控制模塊700電連接。 如第1 — 2圖所示,該矩形驅動電極211透過驅動電極 連接線220被分組串聯成5組驅動電極組240,每組驅動 電極組240中的各矩形驅動電極211的幾何中心和各驅動 電極連接線220在同一直線上,而且各驅動電極組240内 的驅動電極連接線220所在的直線互相平行。各驅動電極 組240借助驅動電極引出線23〇與觸控板外設的激勵信號 模塊600電連接。 如第1 — 3圖所示’各該矩形傳感電極3u分布在傳感 層j00中與驅動層200中各該矩形驅動電極211相互間空 隙區域正對著的區域内,令該矩形驅動電極211和傳感電 極311 一起填充該觸控板的觸摸區域110。該驅動電極連接 線220與傳感電極連接線32〇互相垂直。 ▲如第1-3圖和第丨_4圖所示,在整個觸摸區域11〇 ^ °亥矩形傳感電極311所占區域與矩形驅動電極211所占 區域互補,使矩形傳感電極311與矩形驅動電極Μ〗不會 出現正對的位置關係。 上對於第1 — 4圖所示的〇1點,當沒有對〇1點觸摸時, 〇1點的電場分布情况如第1 — 5圖所示;當手指150對 200915163 (^點觸摸時,該〇1點的電場分布情况如第1 — 6圖所示。 由於矩形傳感電極311底部沒有正對矩形驅動電極211,所 以矩形傳感電極311底部與矩形驅動電極211之間形成的 電容CB的電容值相對現有技術有大幅减小,即該矩形傳感 電極311底部與矩形驅動電極211之間形成的電容cB在 〇ι點的互電容C中所占比例大幅减小,從而有效提高了互 電容式觸控板的互電容C的有效電容率。 本發明第二實施例,如第2圖所示,該驅動層200和 傳感層300與第一實施例完全相同,只是加入了屏蔽層 4〇〇。該屏蔽層400設置於驅動層200和傳感層300中位於 下方的—層的上方、下方或者嵌套在該層内;該屏蔽層400 包括用透明導電材料製成的平板屏蔽電極410,各該屏蔽 電極410正對著該驅動層2〇〇和傳感層3〇〇中位於上方的 一層中各電極所占區域。 在本實施例中,該傳感層3〇〇位於驅動層2〇〇的上方, 因此如第2—1圖所示,各該屏蔽電極41〇分布在屏蔽層 400中正對著該傳感層3GG中各傳感電極310所占的區域, 並且被連接成6個屏蔽電極410,換㈣度說,該屏蔽電 極410分布在屏蔽層4〇〇中與驅動層2〇〇的各驅動電極 相互之間的空隙區域正對著的區域。 如第2-2圖所示,該屏蔽電極41〇所占區域與矩形驅 動電極211互補,本實施例中,將屏蔽層4〇〇與驅動層2⑻ 嵌套在-起,如第2 —3圖所示,即屏蔽層與驅 200在同一層中。 15 200915163 對於第2—3圖所示的〇2點,當沒有對〇2點觸摸時, 該〇2點的電場分布情况如第2_4圖所示;當手指15〇對 〇2點觸摸時,該〇2點的電場分布情况如第2—5圖所示。 由第2 —4圖和第2-5圖可見,該屏蔽電極410的作用在 於改變矩形傳感電極311底部的電場,使矩形傳感電極311 底部與矩形驅動電極211之間形成的電容cB進一步减小, 這可以理解爲’屏蔽電極410將矩形驅動電極211與矩形 傳感電極311底部電場中的部分電場線吸走。 該屏蔽電極410可以是電懸空的,即不與互電容式觸 控板外設的任何激勵信號、交流地和直流源電連接,也可 以採用如下的方案:如第3圖所示,該屏蔽層400還包括 屏蔽電極引出導線430,借助該屏蔽電極引出導線43〇,所 有屏蔽電極410接地’或者與觸控板外設的直流源8〇〇電 連接。另外,爲减少該屏蔽電極引出導線430的數量,一 般用一條或者兩條屏蔽電極引出導線43G把所有的屏蔽電 電連接至錢源_,或者直賴交流地;同時儘 Ϊ避免屏蔽電極引出導線與驅動電極引出導線⑽和 傳感電極引出導線33()交叉。對於本發明第二實施例,第 3圖顯不出了四種情况以體現四種屏蔽電極引出線物的 引出隋况’其中,第圖和第3 —2圖示出用兩條屏蔽 電=引出導線將所有屏蔽電極41G電連接交流地或者 、 圖和第3 —4圖顯示出用一條屏蔽電 極引出導線43G將所有屏蔽電極41()電連接交流地。對於 本發明其它具有屏蔽層_的實施例 ,該屏蔽電極410接 16 200915163 地或者與觸控板外設的直流源800電連接方式可以採用第 4圖所示的任何一種’也可以採用其它一切使該屏蔽電極 引出線430與驅動電極引出線230在空間互不相交的其它 方式。 本發明第三實施例,如第4圖所示,該驅動層2〇〇和 傳感層300與第一實施例完全相同’只是加入了次電極層 500。該次電極層500設置於驅動層200和傳感層3〇〇中位 於上方的一層的上方、下方或者嵌套在該層内;該次電極 〔層500包括用透明導電材料製成的平板次電極510,各該 次電極510正對著該驅動層200和傳感層300中位於下方 的一層中各電極所占區域。 本實施例該驅動層200位於傳感層300的下方,因此, 如第4 — 1圖所示’各該次電極510正對著該驅動層200中 各電極所占區域’換個角度說,該次電極510分布在次電 極層500中與該驅動層200各驅動電極21〇所占區域正對 著的區域内。在次電極層500中正對著驅動層200的某個 驅動電極210的區域内,可以分布多個填滿該區域次電極 510 ’也可以僅用一個次電極510 ;本實施例中,在次電極 層500中每個與驅動電極210正對著的區域内就緊密排布 了 16個面積較小的次電極510,這種結構可以使電場分布 更加均勻,有利於觸摸傳感。各該次電極510互不連接, 而且不像普通的電極與任何信號激勵源、直流源或者地線 電連接,處於電懸空狀態,因此被稱爲次電極或者虛擬電 池(Dummy Cell) 0 17 200915163 如第4一 2圖所示,該次電極410所占區域與矩形傳感 電極311互補,本實施例中,將次電極層500與傳感層300 嵌套在一起,如圖4—3所示,即次電極層500與傳感層 300在同一層中。 對於第4—3圖所示的03點,當沒有對03點觸摸時, 該03點的電場分布情况如第4 —4圖所示;當手指150對 〇3點觸摸時,該〇3點的電場分布情况如第5 —5圖所示。 由第4 —4圖和第4—5圖可見,該次電極510的作用在於 改變矩形傳感電極311頂部的電場,使矩形傳感電極311 頂部與矩形驅動電極211之間形成的電容CT進一步增大, 以增加CT的變化範圍。這可以理解爲,該次電極510增 加矩形驅動電極211與矩形傳感電極311頂部電場中的電 場線;另外,該次電極510的作用還在於使觸控板的透光 率趨於一致。 本發明第四實施例,如第5圖所示,該驅動層200和 傳感層300與第一實施例完全相同,只是加入了與第二實 施例相同的屏蔽層400和與第三實施例相同的次電極層 500。 如第5— 1圖所示,該屏蔽層400與驅動層200嵌套在 一起,該次電極層500與傳感層300嵌套在一起。 對於第5 - 1圖所示的04點,當沒有對04點觸摸時, 該04點的電場分布情况如第5 —2圖所示;當手指150對 〇4點觸摸時,該〇4點的電場分布情况如第5-3圖所示。 由第6 —2圖和第5 —3圖可見,在該屏蔽電極410和次電 18 200915163 極510的共同作用下’使矩形傳感電極311底部與矩形驅 動電極211之間形成的電容cB進一步减小,使矩形傳感電 極311頂部與矩形驅動電極211之間形成的電容&進一步 增大,從而進一步提高互電容C的有效電容率。 本發明第五實施例’如第6圖所示,該互電容式觸控 板包括驅動層200、傳感層300、屏蔽層400和次電極層 500。 如第6-1圖所示’該驅動層200包括驅動電極210, 而且各驅動電極210是菱形驅動電極212,本實施例設置 了 25個菱形驅動電極212。該菱形驅動電極212透過驅動 電極連接線220被分組串聯成5組驅動電極組240,每組 驅動電極組240中的各菱形驅動電極212的幾何中心和各 驅動電極連接線220在同一直線上,而且各驅動電極組240 内的驅動電極連接線220所在的直線互相平行。各驅動電 極組240與觸控板外設的激勵信號模塊6〇〇電連接的情况 如同第一實施例。 如第6—2圖所示,該驅動層3〇〇包括傳感電極310 ’ 而且各傳感電極310是菱形傳感電極312,本實施例設置 了 36個菱形傳感電極312。該菱形傳感電極312透過傳感 電極連接線320被分組串聯成6組傳感電極組 340,每組 傳感電極組340中的各菱形傳感電極312的幾何中心和各 菱形傳感電極連接線320在同一直線上,而且各傳感電極 、、且340内的傳感電極連接線320所在的直線互相平行。各 傳感電極組340與觸控板外設的傳感控制模塊7〇〇電連接 200915163 情况如同第一實施例。 各該菱形傳感電極312分布在傳感層300中與驅動層 200中各該菱形驅動電極212之間形成的間隙區域正對的 區域内,令該菱形驅動電極212和菱形傳感電極312 —起 填充該觸控板的觸摸區域110。該驅動電極連接線220與 傳感電極連接線320互相垂直。 所述第五實施例中,該驅動層200位於傳感層300的 上方,如第6 —3圖所示,該屏蔽層400包括用透明導電材 料製成的平板屏蔽電極410,該各屏蔽電極410正對著該 驅動層200中各菱形驅動電極212所占區域,即該屏蔽電 極410分布在屏蔽層400中與該傳感層300中各傳感電極 310相互之間的空隙區域正對著的區域内。本實施例該屏 蔽層400的作用與第二實施例和第四實施例基本相同。 所述第五實施例中,該驅動層200位於傳感層300的 上方,如第6 —4圖所示,該次電極層500包括間隔分布的 用透明導電材料製成的平板次電極510,本實施例該次電 極510呈菱形,各該次電極510正對著傳感層300中各菱 形傳感電極312所占區域,即各該次電極510分布在次電 極層500中與該驅動層200各驅動電極210相互之間的空 隙區域正對著的區域内。在次電極層500中正對著傳感層 300的某個傳感電極310的區域内,僅用一個次電極510。 本實施例所述次電極層500的作用與第三實施例和第四實 施例基本相同。 如第6—5圖所示,該次電極層500位於驅動層200之 20 200915163 上’該屏蔽層400位於傳感層300之下。本實施例互電容 C的形成和電場分布情况與第四實施例基本相同,因此, 本實施例可以有效提高互電容C的有效電容率。 本發明第六實施例,如第7圖所示,該互電容式觸控 板包括驅動層200、傳感層300、屏蔽層4〇〇和次電極層 500。 如第7 — 1圖所示,該驅動層200包括驅動電極210, 而且各驅動電極210是六邊形驅動電極213,本實施例設 置了 16個六邊形驅動電極213。該六邊形驅動電極213透 過驅動電極連接線220被分組串聯成4組驅動電極組240, 母組驅動電極組240中的各六邊形驅動電極213的幾何中 心和各驅動電極連接線22〇在同一直線上,而且各驅動電 極組240内的驅動電極連接線22〇所在的直線互相平行。 各驅動電極組240與觸控板外設的激勵信號模塊600電連 接的情况如同第一實施例。 如第7—2圖所示,該傳感層300包括傳感電極310, 而且各傳感電極31 〇是菱形傳感電極313,本實施例設置 了 25個菱形傳感電極313。該菱形傳感電極313透過傳感 電極連接線320被分組串聯成5組傳感電極組340,每組 ,感電極組340中的各菱形傳感電極313的幾何中心和各 菱形傳感電極連接線32〇在同一直線上,而且各傳感電極 組340内的傳感電極連接線320所在的直線互相平行。各 傳感電極組340與觸控板外設的傳感控制模塊7〇〇電連接 情况如同第一實施例。 21 200915163 該各菱形傳感電極313分布在傳感層300中與驅動層 2〇〇中所述各六邊形驅動電極213之間形成的間隙區域正 對的區域内’令該六邊形驅動電極213和菱形傳感電極313 一起填充該觸控板的觸摸區域110。該驅動電極連接線220 與傳感電極連接線320互相垂直。 所述第六實施例中,驅動層200位於傳感層3〇〇的下 方如第7 3圖所示,該屏蔽層4〇〇包括用透明導電材料 製成的平板屏蔽電極410,該各屏蔽電極410正對著傳感 ^ 3〇〇中各傳感電極训所占區域,即各該屏蔽電極· 分布在屏蔽層_中與所述驅動層200中各驅動電極21〇 相互間空隙區域正對著的區域内。本實施例該屏蔽層400 的作用,二實施例和第四實施例基本相同。 所述第六實施例中,驅動層200位於傳感層300的下 ::第7—4圖所示,該次電極層5〇〇包括間隔分布的用 被月電材料製成的平板次電極510。各該次電極510正 各驅動電極210所占區域,即各該次電極 相万刀Μ極層500中與該傳感層綱各傳感電極310 芝:二j ^域正對著的區域内。本實施例該次電極510 ,’ 人電極層500中與該驅動層200中一個六邊 形驅動電極213所上Γ3· # 雷+ η &域正對的區域内,需要設置ό個次 小,使電場分布種設計使得次電極510的面積减 述次電極層500的作第有^於觸摸傳感。本實施例所 同。 、第一實^例和第四實施例基本相 22 200915163 如第7—5圖所示,該次電極層500位於傳感層300之 下,該屏蔽層400位於驅動層200之上。本實施例互電容 C的形成和電場分布情况與第四實施例基本相同,因此, 本實施例可以有效提高互電容C的有效電容率。 本發明還關於一種組合式互電容觸控板,適用於面積 較大的觸控板。當上述互電容式觸控板的面積較大時,需 要增加驅動電極和傳感電極的數量,過長的電極組使得電 阻過大,導致互電容通路的帶寬降低,給電路驅動和傳感 帶來不便。爲了避免出現上述情况,本發明提出一種由互 電容式觸控板組合而成的組合式互電容觸控板。 如第8圖至第10圖所示,該組合式互電容觸控板包括 用透明絕緣介質製成的觸摸面板1100,尤其是,還包括被 該觸摸面板1100覆蓋的緊密排布的至少兩個互電容觸摸 單元1000,該互電容觸摸單元1000 —起充滿觸摸面板1100 的觸摸區域。該互電容觸摸單元1000的結構與本發明互電 容式觸控板類似,包括驅動層200和傳感層300,以及夾 在該驅動層200和傳感層300之間的用透明絕緣介質製成 的電容介質平面910。該驅動層200包括在同一平面内間 隔分布的用透明導電材料製成的平板驅動電極210 ;該傳 感層300包括在同一平面内間隔分布的用透明導電材料製 成的平板傳感電極310,各該傳感電極310分布在傳感層 300中與驅動層200中各該驅動電極210相互間空隙區域 正對著的區域内,令該驅動電極210和傳感電極310 —起 填充它們所在互電容觸摸單元1000的觸摸區域110 ;該驅 23 200915163 動電極210與組合式互電容觸控板外設的對應於該驅動電 極210所在互電容觸摸單元1000的激勵信號模塊600電連 接,該傳感電極31〇與組合式互電容觸控板外設的對應於 该傳感電極310所在的互電容觸摸單元1〇〇〇的傳感控制模 塊700電連接。 本發明第七實施例,如第8圖所示,該組合式互電容 觸控板包括4個互電容觸單元麵,該互電容觸摸單元 1000的驅動層200和傳感層3〇〇的結構可以使用第一實施 例至第八實施例中的任何一個。該組合式互電容觸控板可 以透過在外设的控制電路,分別採集各互電容觸摸單元 1000的電谷分布數據,然後經過數據匯總和分析,準確地 判斷整個觸摸面板1100上被觸#的情况。 本發明第八實施例,如第9圖所示,在第七實施例基 礎上在每個互電容觸摸單元誦中加入了屏蔽層_,該 屏蔽層400設置於驅動層鳩和傳感層300中位於下方的 層的上方、下方或者嵌套在該層内該屏蔽層400包括 電材料製成的平板屏蔽電極“Ο,以及屏蔽電極 & 43G,各該屏蔽電極彻正對著該驅動層細和 空層300中位於上方的一層中各電極所占區域。該屏蔽 =極410可以疋電懸空的’也可以接交流地,在本實施例 仏助屏蔽電極引出導線430,該互電容觸摸單元1000 各自的屏蔽電極41G與組合式互電容觸控板外設的直流源 800電連接。 本發明第九實施例,如第10圖所示,在第七實施例基 24 200915163 礎上在每個互電容觸摸單元1000中加入了屏蔽層4〇〇和次 電極層500。該屏蔽層4〇〇内的結構與第八實施例相同, 該次電極層300设置於驅動層2〇〇和傳感層3〇〇中位於上 方的一層的上方、下方或者嵌套在該層内。該次電極層5〇〇 包括用透明導電材料製成的平板次電極51〇,各該次電極 510正對著该驅動層200和傳感層3〇〇中位於下方的一層 中各電極所占區域。 另外,不同於所述第八實施例,如第1〇圖所示,該第 九實施例中還包括用透明導電材料製成的屏蔽層連接線 1420,以及屏蔽層引出導線143〇 ;借助該屏蔽層連接線 1420將該互電容觸摸單元1000各自的屏蔽層4〇〇電連接 在一起’並透過屏蔽層引出導線1430接地,當然,所述屏 蔽電極還可以是電懸空的,或者與組合式互電容觸控板外 設的直流源電連接。 所述第七至第九實施例中,驅動層2〇〇、傳感層3〇〇、 屏蔽層400和次電極層500的結構可以參考第一至第六實 施例中的任何一種,或者是任何符合本發明上述技術方案 的結構。 本發明所述透明導電材料是現有技術常用材料,包括 氧化銦錫Indium Tin Oxide,簡稱ITO ’以及銻摻雜氧化錫 Antimony Tin Oxide,簡稱 ΑΤΟ。 【圖式簡單說明】 第1一1圖至第1 — 6圖是關於本發明“互電容式觸控 25 200915163 板的第一實施例的結構和原理示意圖,包括: 第1—1圖是該第一實施例的傳感層3〇〇的正投影主視 示意圖; 第1 — 2圖是該第一實施例的驅動層2〇〇的正投影主視 示意圖; 第1 — 3圖是該第一實施例的正投影主視示意圖; 第1 — 4圖是第1 — 3圖的A—a剖視示意圖; 第1 — 5圖是第圖中〇1點在未被觸摸時的電場分 布示意圖; 第1 — 6圖是第1 — 4圖中〇1點在被觸摸時的電場分布 示意圖; 帛2-1圖至第2-5圖是關於本發明“互電容式觸控 板的第二實施例的結構和原理示意圖,包括: 第圖是該第二實施例的屏蔽層4〇〇的正投影主視示竟 因· ^ 圖, 第2-2圖是該第二實施例的嵌套在一起的驅動層綱 和屏蔽層400的正投影主視示意圖; 第2-3圖是該第二實施例的正投影仰視剖視示意圖; 第2-4圖是第2〜3圖中〇2點在未被觸摸時的電場分 布示意圖; 第2-5圖是第2〜3圖中a點在被觸摸時的電場分布 示意圖; 第3圖疋本發明第二實施例的驅動層與屏蔽働 與觸控板外設裝置的連接方式示意圖,包括第3—】圖至第 26 200915163 3 — 4圖四種連接方式; 第4—1圖至第4 —5圖是關於本發明“互電容式觸控 板”的第三實施例的結構和原理示意圖,包括: 第4— 1圖是該第三實施例的次電極層500的正投影主 視不意圖, 第4—2圖是該第三實施例的嵌套在一起的傳感層300 和次電極層500的正投影主視示意圖; 第4一 3圖是該第三實施例的正投影仰視剖視示意圖; 第4 —4圖是第4—3圖中03點在未被觸摸時的電場分 布示意圖; 第4—5圖是第4-3圖中03點在被觸摸時的電場分布 不意圖, 第5—1圖至第5 —3圖是關於本發明“互電容式觸控 板”的第四實施例的結構和原理示意圖,包括: 第5—1圖是該第四實施例的正投影仰視剖視示意圖; 第5 —2圖是第5—1圖中04點在未被觸摸時的電場分 布不意圖, 第5 — 3圖是第5—1圖中04點在被觸摸時的電場分布 示意圖; 第6—1圖至第6—5圖是關於本發明“互電容式觸控 板”的第五實施例的結構示意圖,包括: 第6-1圖是該第五實施例的驅動層200的正投影主視 不意圖, 第6—2圖是該第五實施例的傳感層300的正投影主視 27 200915163 不意圖, 第6—3圖是該第五實施例的屏蔽層400的正投影主視 示意圖; 第6 —4圖是該第五實施例的次電極層500的正投影主 視不意圖, 第6—5圖是該第五實施例按第6—1圖中的B — B方 向的剖視示意圖; 第7—1圖至第7—5圖是關於本發明“互電容式觸控 板”的第六實施例的結構示意圖,包括: 第7—1圖是該第六實施例的驅動層200的正投影主視 不意圖, 第7 —2圖是該第六實施例的傳感層300的正投影主視 不' 意圖, 第7—3圖是該第六實施例的屏蔽層400的正投影主視 不意圖, 第7 —4圖是該第六實施例的次電極層500的正投影主 視不意圖, 第7 —5圖是該第六實施例按第7—1圖中的C—C方 向的剖視示意圖。 第8—1圖至第8 — 2圖是關於本發明“組合式互電容觸 控板”的第七實施例的結構示意圖,包括·· 第8—1圖是該第七實施例的正投影主視示意圖; 第8 —2圖是該第七實施例的正投影仰視示意圖; 第9—1圖至第9 — 2圖是關於本發明“組合式互電容觸 28 200915163 控板”的第八實施例的結構示意圖,包括: 第9一1圖是該第八實施例的正投影主視示意圖; 第9一 2圖是該第八實施例的正投影仰視示意圖; 第10—1圖至第10 —2圖是關於本發明“組合式互電容 觸控板”的第九實施例的結構示意圖,包括: 第10—1圖是該第九實施例的正投影主視示意圖; 第10 — 2圖是該第九實施例的正投影仰視示意圖; 第11 —1圖至第11 —4圖是現有技術互電容觸控板的 結構和原理示意圖,包括: 第11—1圖是該觸控板的正投影主視示意圖; 第11 —2圖是第11 —1圖的仰視剖面示意圖; 第11 一3圖是未觸摸該觸控板時的電場分布示意圖; 第11 一 4圖是觸摸該觸控板時的電場分布示意圖。 【主要元件符號說明】 100 觸摸平面 100’ 觸摸平面 110 觸摸區域 120 保護平面 150 手指 150’ 手指 200 驅動層 200’ 驅動層 210 平板驅動電極 29 200915163 210’ 驅動線 211 矩形驅動電極 212 菱形驅動電極 213 六邊形驅動電極 220 驅動電極連接線 230 驅動電極引出導線 240 驅動電極組 300 傳感層 300’ 傳感層 310 平板傳感電極 3105 傳感線 311 矩形傳感電極 312 菱形傳感電極 313 菱形傳感電極 320 傳感電極連接線 330 傳感電極引出導線 340 傳感電極組 400 屏蔽層 410 平板屏蔽電極 430 屏蔽電極引出導線 500 次電極層 510 次電極 600 激勵信號模塊 700 傳感控制模塊 30 200915163 800 直流源 910 電容介質平面 9105 介質平面 1000 互電容觸摸單元 1100 觸摸面板 1420 屏蔽層連接線 1430 屏蔽層引出導線 31BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch-sensing input device, and more particularly to a touch input device using a mutual capacitance as an inductive device. [Prior Art] A touch panel is a touch sensing input device that is now widely used. According to the principle of touch sensing, the prior art touch panel includes a resistive touch panel, a capacitive touch panel, a surface infrared touch panel, and the like. Among them, the resistive touch panel has been popular for many years because of its low cost, easy implementation, and simple control. Recently, capacitive touch panels have been popularly popular for their high light transmittance, wear resistance, environmental temperature change, environmental humidity resistance, long life, and advanced complex functions such as multi-touch. The use of capacitive changes as a sensing principle has been around for a long time. In order for the touchpad to work effectively, a transparent capacitive sensing array is required. When the human body or a special touch device such as a stylus approaches the sensing electrode of the capacitor, the magnitude of the capacitance value detected by the sensing control circuit is changed, and according to the distribution of the capacitance value change in the touch region, it can be determined that the human body or the dedicated touch device is Touch the touch in the area. According to the manner in which the capacitor is formed, the prior art touch panel includes a self-capacitive touch panel and a mutual capacitive touch panel. The self-capacitive touch panel utilizes a change in capacitance value formed by the sensing electrode and the alternating current or direct current electrode as a touch sensing signal; the mutual capacitive touch panel utilizes a change in capacitance value formed between the two electrodes as a touch sensing The signal is sometimes referred to as a projected capacitor. 5 200915163 As shown in FIG. 11, the prior art mutual capacitive touch panel includes a touch plane 100', a driving line 210 not in the same plane, and a sensing line 310, and is sandwiched between the driving line 210' and the sensing line 310, between the media plane 910,. As shown in FIGS. 11-1 and 11-2, each of the driving lines 210 is parallel to each other, and the sensing lines 31 (V are parallel to each other) and the driving lines 21〇 and the sensing lines 31〇, The driving line 210 is electrically connected to the excitation signal, and the sensing line 310' is electrically connected to the sensing control circuit to form a mutual capacitance between the driving line 21 and the sensing line 31〇f. 21〇, and the sensing line 31〇, the mutual capacitance C formed at the intersection is the main capacitance data signal detected by the sensing control circuit. As shown in FIG. 11-3, the mutual capacitance c includes the driving line 21〇, and The capacitance CB between the bottom of the sensing line 310' and the driving line 21A, and the sensing line 31〇, the capacitance between the top, ie c=Cb + Ct. As shown in Figure u-4, when the finger 150 'When the touch plane is touched, and in the touch area, the finger 150' corresponds to an electrode above the sensing line 31A, changing the electric field between the driving line 2HV and the top of the sensing line 310', This change can be seen as the finger 150' will drive the line 210, to the sense line 31〇, the top electric field line is sucked away, and the change from CT = The mutual capacitance 〇 changes. The sensing control circuit detects the change of the mutual capacitance c in the entire touch area of the touch plane 1′′ to determine the position and intensity of the touched point in the touch area. The sensing control circuit can simultaneously detect the top (four) multi-gate sub-tree conditions, and realize the transmission point touch function. The proportion of the cT value change range in the mutual capacitance c when no touch occurs is called For the effective permittivity, as shown in FIG. 11, when the prior art touch panel is touched, the capacitance CB between the drive 200915163 line 2HV and the bottom of the sense line 310' is not affected by the touch, since the sense line 310 'Bottom and drive line 21〇, facing, so that the capacitor 占 _ _ in the mutual capacitance C 从而 从而 令 该 该 该 该 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有 现有To achieve the left and right, resulting in a low ratio of the control panel, it is necessary to design a complex sensing control circuit to accurately determine the human body or the device to touch the touch panel, increasing the design and manufacturing cost of the touch panel. [invention The technical problem to be solved by the present invention is to avoid the deficiencies of the prior art and to propose a mutual capacitive touch panel and a combined mutual capacitance touch panel capable of greatly increasing the effective permittivity. The following technical solutions are adopted to: Measure and manufacture a mutual capacitive touch panel, including a touch plane made of a transparent insulating medium, a driving layer and a sensing layer covered by the touch plane, and sandwiching the driving layer An electric valley dielectric plane made of a transparent insulating medium between the sensing layer and, in particular, the driving layer comprises a flat driving electrode made of a transparent conductive material spaced apart in the same plane; the sensing layer is included Flat-plate sensing electrodes made of a transparent conductive material spaced apart in the same plane, each of the sensing electrodes being distributed in a region of the sensing layer opposite to the gap region between the driving electrodes in the driving layer, The driving electrode and the sensing electrode together fill the touch area of the touch plane; the driving electrode is electrically connected to the excitation signal module of the touch panel peripheral, The sensing electrode is electrically connected to the sensing control module of the 200915163 touchpad peripheral. In order to further increase the effective permittivity, the touch panel further includes a shielding layer; the shielding layer is disposed above, below or at the lower layer of the driving layer and the sensing layer; the shielding layer comprises transparent conductive a flat shield electrode made of a material, and a shield electrode lead wire; each of the shield electrodes facing an area occupied by each electrode in the upper layer of the driving layer and the sensing layer; the shield electrode is electrically suspended; or Shield electrode · Lead wire, all shield electrodes grounded or DC source with touchpad peripherals.  Electrical connection. In order to further increase the effective permittivity, the touch panel further includes a sub-electrode layer; the sub-electrode layer is disposed above or below the upper layer of the driving layer and the sensing layer or nested within the layer; the sub-electrode The layer includes a planar secondary electrode made of a transparent conductive material. Each of the secondary electrodes is opposite the area occupied by the electrodes in the lower layer of the driving layer and the sensing layer. The 5H mutual capacitive touch panel further includes a driving electrode connection line and a sensing electrode connection line made of a transparent conductive material, and a driving electrode lead-out wire and a sensing electrode lead-out wire. The driving electrodes are connected in series by means of driving electrode connection lines, and the positional relationship between the driving electrode connection lines in the driving layer includes collinear and parallel; the sensing electrodes are grouped together by means of sensing electrode connection lines. The positional relationship between the sensing electrode connection lines in the sensing layer includes collinear and parallel; the driving electrode connection line and the sensing electrode connection line are perpendicular to each other. Each of the driving electrode sets is electrically connected to the excitation signal module of the touch panel peripheral by means of the driving electrode lead wires; the sensing electrode sets are electrically connected to the sensing control module of the touch panel peripheral by means of the sensing electrode lead wires 8 200915163. The shape of the driving electrode and the sensing electrode may be as follows: each of the driving electrodes is a rectangular electrode of the same size; the sensing electrodes are rectangular electrodes of the same size; or each of the driving electrodes is a diamond electrode of the same size; The sensing electrodes are diamond-shaped electrodes of the same size; or each of the driving electrodes is a hexagonal electrode of the same size; the sensing electrodes are diamond-shaped electrodes of the same size. The present invention further provides a group-f-type mutual-capacitance touch panel based on the mutual-capacitive touch panel, which can be realized by adopting the following technical solutions: designing and manufacturing a combined mutual-capacitance touch panel, including A touch panel made of a transparent insulating medium, in particular, further includes at least two mutual capacitive touch units closely arranged by the touch panel, the mutual capacitive touch unit filling a touch area of the touch panel together. The mutual capacitance touch unit includes a driving layer and a sensing layer, and a plane of a capacitive medium made of a transparent insulating medium sandwiched between the driving layer and the sensing layer. The driving layer comprises a flat driving electrode made of a transparent conductive material which is spaced apart in the same plane; the sensing layer comprises a flat sensing electrode made of a transparent conductive material in the same plane, and each of the sensing electrodes is distributed In the region of the sensing layer and the gap region between the driving electrodes in the driving layer, the driving electrode and the sensing electrode together fill the touch region of the mutual capacitance touch unit. The driving electrode is electrically connected to the excitation signal module of the mutual capacitance touch panel of the combined mutual capacitance touch panel peripheral, and the sensing electrode and the combined mutual capacitance touch panel peripheral correspond to the transmission The sensing control module of the mutual capacitance touch unit where the sensing electrodes are located is electrically connected. 9 200915163 Screen Interconnect: The capacitive touch panel also includes a transparent conductive material and includes m ^ and shield lead wires. The shielding layer on the lower layer of the mutual capacitance touch is disposed on the lower layer of the driving layer and the sensing layer, or the flat shielding electrode made of the transparent shielding material in the layer H shielding layer and the screen, and the screen The square wire ^ is opposite to the area occupied by the electrodes in the upper layer of the driving layer and the sensing layer. The shield electrode is electrically suspended. Or old::: screen: layer connection line, the respective shielding layers of the mutual capacitance touch unit are electrically connected together, and the lead wire is grounded through the shielding layer or electrically connected with the DC source of the combined mutual power valley touch panel peripheral; Alternatively, the shielding electrodes are used to lead the wires, and the respective shielding electrodes of the mutual capacitance touch units are grounded or electrically connected to the DC source of the combined mutual capacitance touch panel peripheral. The mutual capacitance touch unit further includes a sub-electrode layer disposed above or below the upper layer of the driving layer and the sensing layer or nested within the layer; the sub-electrode layer includes a transparent conductive material The fabricated plate sub-electrodes' each of the sub-electrodes are opposite the area occupied by the electrodes in the lower layer of the drive layer and the sensing layer. Compared with the prior art, the technical effect of the "reciprocal capacitive touch panel and the combined mutual capacitance touch panel" of the present invention is that: the driving electrode and the sensing electrode are not in a spatial relationship, the driving electrode and the sensing electrode The capacitance cB formed between the bottom portions is greatly reduced, and the ratio of the capacitance cT formed between the driving electrode and the top of the sensing electrode in the mutual capacitance C is increased, thereby improving the change of the CT caused by the touch sensing. The ratio of the mutual capacitance c in the touch increases the effective permittivity of the mutual capacitive touch panel 200915163; a shield electrode and the secondary electrode can improve the electric field between the driving electrodes, so that the mutual capacitance Γ, the Dan 1 finder electrode The electric valley cB in c is smaller, and the capacitance c is further improved. The effective electrode of the mutual capacitive touch panel can also make the transmittance of the mutual capacitive touch panel uniform. In addition, the "Hai-Combined Mutual Capacitive Touch Panel proposes a structure of the board to avoid the mutual resistance of the large-area touch electrodes caused by the New Year's Eve". Bandwidth reduction question. [Embodiment] Each of the illustrated embodiments is described in detail. Or the image display 妒, a kind of mutual capacitive touch panel for covering the surface of the graphic-to-graphic or de-fixed display screen, through the peripheral control device, the section®I image to the seventh figure-V The content of the display is controlled. As shown in FIG. 1 , the stone-shaped touch panel of the stone is composed of a transparent insulating medium and a transparent layer of the driving layer 3 covered by the touch plane 100. And a capacitive dielectric plane 910 made of a quality can be disposed on the driving layer 200 and the sensing layer 300. In addition, 200, a protective plane made of insulating material of the sensing layer Π〇 'the driving layer 100 buckle only w 3Q () and the capacitive medium plane 910 is set between the touch plane 榇 batch-t printing 120 'the protection plane 120 is in contact with a display that does not diverge in graphics or images. The driving layer 200 of the present invention comprises a flat driving electrode 210 made of a transparent conductive material of 200915163 distributed in the same plane; the sensing layer 3 includes a flat plate made of a transparent conductive material and spaced apart in the same plane. The sensing electrode 310 is distributed in the sensing layer 3 与 in a region facing the gap region between the driving electrodes 21 驱动 in the driving layer 200, and the driving electrode 210 is transmitted. The sensing electrodes 310 together fill the touch area 110 of the touch plane 100. The driving electrode 21 is electrically connected to the excitation signal module 600 of the touch panel peripheral, and the sensing electrode 310 is electrically connected to the sensing control module 700 disposed outside the touch panel. The driving electrode 21A of the mutual capacitive touch panel of the present invention does not face the sensing electrode 310. Therefore, the capacitance Cb formed between the driving electrode and the bottom of the sensing electrode 310 of the present invention is higher than that of the prior art. The line 21A, and the capacitance Cb formed between the sensing line 31 and the bottom portion are small, so that the ratio of the capacitance CB in the mutual capacitance C is small in the present invention, and the effective permittivity of the mutual capacitance C of the present invention is improved. The shape of the driving electrode 210 and the sensing electrode 31A of the mutual capacitive touch panel of the present invention and their connection distribution in the respective driving layer 2〇〇 and the sensing layer 3(8) can be various, and the present invention The examples to the seventh embodiment propose several shapes and arrangements suitable for application and practice. The mutual capacitive touch panel of each embodiment of the present invention adopts the following technical solutions. The mutual capacitive touch panel further includes a driving electrode connection line 220 and a sensing electrode connection line 320 made of a transparent conductive material, and driving. The electrode lead wire 230 and the sensing electrode lead wire 33Q; the driving electrode 21 〇 is driven by the driving electrode connecting wire 22G green (four), and the position of the wire driving electrode 12 200915163 connecting wire 220 in the driving layer 200 The relationship includes collinearity and parallelism; the sensing electrodes 310 are connected in series by means of the sensing electrode connection lines 32. The positional relationship between the sensing electrodes 3 and the sensing layers 3 and the second ones includes collinearity. And the driving electrode connecting line 22 〇 and the sensing electrode connecting line 320 are perpendicular to each other; each driving electrode group 24 〇〇 is electrically connected to the excitation signal module 6 触控 of the touch panel peripheral by the driving electrode lead line 230 , and each is transmitted The sensing electrode group 340 is electrically connected to the sensing control module 700 of the touch panel peripheral via the sensing electrode lead-out line. As shown in the first to seventh embodiments, the positional relationship between the driving electrode connection line 22A and the sensing electrode connection line 320 of the embodiments of the present invention is both collinear and parallel, that is, each driving in the driving electrode group 240. The geometric center of the electrode 21〇 is on the same line as each of the driving electrode connection lines 220, and the lines of the driving electrode group 24 are respectively parallel to each other; the sensing electrodes of the sensing electrode group 34〇 are The geometric center of 310 and each of the sensing electrode connection lines 32 are on the same straight line, and the straight lines of the sensing electrode connection lines 32 of the sensing electrode group 34 are parallel to each other; that is, for the driving layer 2 The driving electrode connection line 220 and the sensing electrode connection line 32〇 in the sensing layer 3〇〇, the positional relationship of the electrode connection lines in the electrode group is collinear, and the positional relationship of the electrode connection lines between the electrode groups It is parallel. In the first embodiment of the present invention, as shown in FIG. 19, each of the driving electrodes 21A is a rectangular driving electrode 211'. In this embodiment, there are 25 rectangular driving electrodes 2', and each of the sensing electrodes 31' is rectangular sensing. The electrode 311 has 36 rectangular sensing electrodes 3丨i in this embodiment. As shown in FIG. 1-11, the rectangular sensing electrodes 311 are grouped in series through the sensing electrodes 13 200915163 connecting lines 320 into six groups of sensing electrode groups 340, and each rectangular sensing electrode in each group of sensing electrode groups 340 The geometric center of 311 and the rectangular sensing electrode 310 connecting lines 320 are on the same straight line, and the straight lines of the sensing electrode connecting lines 320 in the sensing electrode groups 340 are parallel to each other. Each of the sensing electrode sets 340 is electrically coupled to the sensing control module 700 of the touchpad peripheral via the sensing electrode lead wires 330. As shown in FIGS. 1-2, the rectangular drive electrodes 211 are grouped in series through the drive electrode connection lines 220 into five sets of drive electrode groups 240, and the geometric centers and the respective drives of the rectangular drive electrodes 211 in each set of drive electrode groups 240 are shown. The electrode connection lines 220 are on the same straight line, and the straight lines in which the drive electrode connection lines 220 in the respective drive electrode groups 240 are located are parallel to each other. Each of the driving electrode groups 240 is electrically connected to the excitation signal module 600 of the touch panel peripheral via the driving electrode lead wires 23A. As shown in FIGS. 1 to 3, each of the rectangular sensing electrodes 3u is distributed in a region in the sensing layer j00 and the gap region between the rectangular driving electrodes 211 in the driving layer 200, and the rectangular driving electrode is arranged. The 211 and the sensing electrode 311 together fill the touch area 110 of the touch panel. The drive electrode connection line 220 and the sense electrode connection line 32 are perpendicular to each other. ▲ As shown in Figures 1-3 and 丨_4, the area occupied by the rectangular sensing electrode 311 in the entire touch area is complementary to the area occupied by the rectangular driving electrode 211, so that the rectangular sensing electrode 311 and The rectangular drive electrode 不会 does not have a positive positional relationship. For the 〇1 point shown in Figure 1-4, when there is no touch on 〇1 point, the electric field distribution at 〇1 point is as shown in Figure 1-5; when finger 150 is on 200915163 (^ point touch, The electric field distribution of the 〇1 point is as shown in Fig. 1 to 6. Since the bottom of the rectangular sensing electrode 311 does not have the rectangular driving electrode 211, the capacitance CB formed between the bottom of the rectangular sensing electrode 311 and the rectangular driving electrode 211 The capacitance value is greatly reduced compared with the prior art, that is, the capacitance cB formed between the bottom of the rectangular sensing electrode 311 and the rectangular driving electrode 211 is greatly reduced in the mutual capacitance C of the 〇ι point, thereby effectively improving the ratio. The effective capacitance ratio of the mutual capacitance C of the mutual capacitive touch panel. According to the second embodiment of the present invention, as shown in FIG. 2, the driving layer 200 and the sensing layer 300 are identical to the first embodiment except that the shielding is added. The shielding layer 400 is disposed above or below the layer below the driving layer 200 and the sensing layer 300 or nested within the layer; the shielding layer 400 includes a flat plate made of a transparent conductive material Shielding electrode 410, each of the shielding electrodes 41 0 is opposite to the area occupied by each electrode in the upper layer of the driving layer 2〇〇 and the sensing layer 3〇〇. In this embodiment, the sensing layer 3〇〇 is located above the driving layer 2〇〇 Therefore, as shown in FIG. 2-1, each of the shield electrodes 41 is distributed in the shield layer 400 facing the area occupied by each of the sensing electrodes 310 in the sensing layer 3GG, and is connected into six shield electrodes 410. In other words, the shield electrode 410 is distributed in a region of the shield layer 4 that is opposite to the gap region between the drive electrodes of the drive layer 2A. As shown in FIG. 2-2, The area occupied by the shield electrode 41 is complementary to the rectangular drive electrode 211. In this embodiment, the shield layer 4A and the drive layer 2 (8) are nested together, as shown in FIG. 2 to FIG. 3, that is, the shield layer and the drive 200. In the same layer. 15 200915163 For the 〇2 point shown in Figure 2-3, when there is no 〇2 point touch, the electric field distribution of the 〇2 point is as shown in Figure 2_4; At 2 o'clock touch, the electric field distribution of the 〇2 point is as shown in Fig. 2-5. It can be seen from Fig. 2-4 and Fig. 2-5 that the shielding The function of the pole 410 is to change the electric field at the bottom of the rectangular sensing electrode 311, so that the capacitance cB formed between the bottom of the rectangular sensing electrode 311 and the rectangular driving electrode 211 is further reduced, which can be understood as 'the shielding electrode 410 will drive the rectangular driving electrode 211 A portion of the electric field lines in the electric field at the bottom of the rectangular sensing electrode 311 are sucked away. The shielding electrode 410 may be electrically suspended, that is, not electrically connected to any excitation signal, AC ground, and DC source of the mutual capacitive touch panel peripheral. The following scheme can also be adopted: as shown in FIG. 3, the shielding layer 400 further includes a shield electrode lead-out wire 430, by which the lead wire 43 is led, all the shield electrodes 410 are grounded or DC with the touch panel peripheral The source 8 is electrically connected. In addition, in order to reduce the number of the shield electrode lead wires 430, one or two shield electrode lead wires 43G are generally used to electrically connect all the shield wires to the money source _, or to the AC ground; and at the same time avoid the shield electrode lead wires and the wires. The drive electrode lead wire (10) and the sensor electrode lead wire 33 () intersect. For the second embodiment of the present invention, FIG. 3 shows four cases to show the lead-out conditions of the four shield electrode lead-outs'. Among them, the first figure and the third figure 2 show two shielded electric= The lead wires electrically connect all of the shield electrodes 41G to the alternating ground or, and the figures 3 and 4 show that all of the shield electrodes 41 () are electrically connected to the ground by a shield electrode lead wire 43G. For other embodiments of the present invention having the shielding layer, the shielding electrode 410 can be connected to the DC source 800 of the touch panel peripheral or can be electrically connected to the DC source 800 of the touch panel peripheral. Other ways in which the shield electrode lead-out line 430 and the drive electrode lead-out line 230 do not intersect each other in space. In the third embodiment of the present invention, as shown in Fig. 4, the driving layer 2 and the sensing layer 300 are identical to the first embodiment' except that the sub-electrode layer 500 is added. The sub-electrode layer 500 is disposed above or below the upper layer of the driving layer 200 and the sensing layer 3, or nested within the layer; the sub-electrode [layer 500 includes a plate made of a transparent conductive material The electrode 510 is opposite to the area occupied by each electrode in the lower layer of the driving layer 200 and the sensing layer 300. In this embodiment, the driving layer 200 is located below the sensing layer 300. Therefore, as shown in FIG. 4-1, 'the sub-electrodes 510 are facing the area occupied by the electrodes in the driving layer 200.' The sub-electrodes 510 are distributed in a region of the sub-electrode layer 500 that is directly opposite the region occupied by the driving electrodes 21A of the driving layer 200. In the region of the sub-electrode layer 500 facing a certain driving electrode 210 of the driving layer 200, a plurality of sub-electrodes 510' may be distributed to fill the region or only one sub-electrode 510 may be used; in this embodiment, at the sub-electrode Sixteen sub-electrodes 510 having a small area are closely arranged in each of the layers 500 facing the driving electrodes 210. This structure can make the electric field distribution more uniform and facilitate touch sensing. Each of the electrodes 510 is not connected to each other, and is not electrically connected to any signal excitation source, DC source or ground like ordinary electrodes, and is in an electrically floating state, so it is called a sub-electrode or a dummy battery. 0 17 200915163 As shown in FIG. 4-2, the area occupied by the sub-electrode 410 is complementary to the rectangular sensing electrode 311. In this embodiment, the sub-electrode layer 500 and the sensing layer 300 are nested together, as shown in FIG. It is shown that the secondary electrode layer 500 is in the same layer as the sensing layer 300. For point 03 shown in Figure 4-3, when there is no touch to 03, the electric field distribution of the 03 point is as shown in Figure 4-4; when the finger 150 touches 3 points, the point is 3 points. The electric field distribution is shown in Figure 5-5. As can be seen from FIGS. 4-4 and 4-5, the secondary electrode 510 functions to change the electric field at the top of the rectangular sensing electrode 311 to further form a capacitance CT formed between the top of the rectangular sensing electrode 311 and the rectangular driving electrode 211. Increase to increase the range of CT variation. It can be understood that the secondary electrode 510 increases the electric field line in the electric field at the top of the rectangular driving electrode 211 and the rectangular sensing electrode 311. In addition, the secondary electrode 510 also functions to make the transmittance of the touch panel uniform. According to a fourth embodiment of the present invention, as shown in FIG. 5, the driving layer 200 and the sensing layer 300 are identical to the first embodiment except that the same shielding layer 400 as that of the second embodiment is added and the third embodiment is added. The same secondary electrode layer 500. As shown in Figure 5-1, the shield layer 400 is nested with the drive layer 200, and the secondary electrode layer 500 is nested with the sensing layer 300. For the 04 point shown in Figure 5-1, when there is no touch to 04, the electric field distribution of the 04 point is as shown in Figure 5-2; when the finger 150 touches 4 points, the 〇4 point The electric field distribution is shown in Figure 5-3. It can be seen from FIGS. 6-2 and 5-3 that the capacitor cB formed between the bottom of the rectangular sensing electrode 311 and the rectangular driving electrode 211 is further formed by the combination of the shielding electrode 410 and the sub-electrode 18 200915163 pole 510. The capacitance & formed between the top of the rectangular sensing electrode 311 and the rectangular driving electrode 211 is further increased, thereby further increasing the effective permittivity of the mutual capacitance C. According to a fifth embodiment of the present invention, as shown in Fig. 6, the mutual capacitive touch panel includes a driving layer 200, a sensing layer 300, a shielding layer 400, and a sub-electrode layer 500. As shown in Fig. 6-1, the driving layer 200 includes the driving electrodes 210, and each of the driving electrodes 210 is a diamond driving electrode 212. In this embodiment, 25 diamond driving electrodes 212 are provided. The diamond drive electrodes 212 are grouped into five groups of drive electrode groups 240 through the drive electrode connection lines 220. The geometric centers of the diamond drive electrodes 212 in each set of drive electrode groups 240 and the drive electrode connection lines 220 are on the same line. Further, the straight lines in which the drive electrode connection lines 220 in the drive electrode groups 240 are located are parallel to each other. The case where each of the driving electrode groups 240 is electrically connected to the excitation signal module 6 of the touch panel peripheral is as in the first embodiment. As shown in Fig. 6-2, the driving layer 3 includes sensing electrodes 310' and each sensing electrode 310 is a diamond sensing electrode 312. In this embodiment, 36 diamond sensing electrodes 312 are provided. The diamond sensing electrodes 312 are grouped into six groups of sensing electrode groups 340 through the sensing electrode connection lines 320. The geometric centers of the diamond sensing electrodes 312 in each group of sensing electrode groups 340 are connected to the respective diamond sensing electrodes. The lines 320 are on the same line, and the lines in which the sensing electrodes, and the sensing electrode connection lines 320 in the respective electrodes 340 are located, are parallel to each other. Each of the sensing electrode groups 340 is electrically connected to the sensing control module 7 of the touch panel peripheral. 200915163 The situation is the same as the first embodiment. Each of the diamond-shaped sensing electrodes 312 is distributed in a region of the sensing layer 300 opposite to the gap region formed between each of the diamond-shaped driving electrodes 212 in the driving layer 200, and the diamond-shaped driving electrode 212 and the diamond-shaped sensing electrode 312 are disposed. The touch area 110 filling the touch panel is filled. The drive electrode connection line 220 and the sense electrode connection line 320 are perpendicular to each other. In the fifth embodiment, the driving layer 200 is located above the sensing layer 300. As shown in FIGS. 6-3, the shielding layer 400 includes a flat shielding electrode 410 made of a transparent conductive material. 410 is opposite to the area occupied by each of the diamond driving electrodes 212 in the driving layer 200, that is, the shielding electrode 410 is distributed in the shielding layer 400 and the gap region between the sensing electrodes 310 in the sensing layer 300 is opposite to each other. Within the area. The function of the shield layer 400 of this embodiment is substantially the same as that of the second embodiment and the fourth embodiment. In the fifth embodiment, the driving layer 200 is located above the sensing layer 300. As shown in FIG. 6-4, the sub-electrode layer 500 includes spaced-apart planar sub-electrodes 510 made of a transparent conductive material. In this embodiment, the sub-electrode 510 has a diamond shape, and each of the sub-electrodes 510 is opposite to the area occupied by each of the diamond-shaped sensing electrodes 312 in the sensing layer 300, that is, each of the sub-electrodes 510 is distributed in the sub-electrode layer 500 and the driving layer. 200. The driving electrodes 210 are in a region facing each other with a gap region therebetween. In the region of the secondary electrode layer 500 that faces a certain sensing electrode 310 of the sensing layer 300, only one secondary electrode 510 is used. The function of the sub-electrode layer 500 of this embodiment is substantially the same as that of the third embodiment and the fourth embodiment. As shown in Figures 6-5, the sub-electrode layer 500 is located on the drive layer 200 of 20 200915163. The shield layer 400 is located below the sensing layer 300. The formation of the mutual capacitance C and the electric field distribution of the present embodiment are substantially the same as those of the fourth embodiment. Therefore, the present embodiment can effectively increase the effective permittivity of the mutual capacitance C. According to a sixth embodiment of the present invention, as shown in FIG. 7, the mutual capacitive touch panel includes a driving layer 200, a sensing layer 300, a shielding layer 4A, and a sub-electrode layer 500. As shown in Fig. 7-1, the driving layer 200 includes driving electrodes 210, and each of the driving electrodes 210 is a hexagonal driving electrode 213. In this embodiment, 16 hexagonal driving electrodes 213 are provided. The hexagonal driving electrodes 213 are grouped into four groups of driving electrode groups 240 through the driving electrode connection lines 220. The geometric centers of the respective hexagonal driving electrodes 213 and the driving electrode connecting lines 22 in the mother group driving electrode group 240 are arranged. On the same straight line, the straight lines in which the drive electrode connection lines 22 in the drive electrode groups 240 are located are parallel to each other. The case where each of the driving electrode groups 240 is electrically connected to the excitation signal module 600 of the touch panel peripheral is as in the first embodiment. As shown in Fig. 7-2, the sensing layer 300 includes sensing electrodes 310, and each sensing electrode 31 is a diamond sensing electrode 313. In this embodiment, 25 diamond sensing electrodes 313 are provided. The diamond-shaped sensing electrodes 313 are grouped into five groups of sensing electrode groups 340 through the sensing electrode connection lines 320. Each group, the geometric center of each diamond-shaped sensing electrode 313 in the sensing electrode group 340 is connected with each diamond-shaped sensing electrode. The lines 32 are on the same line, and the lines in which the sensing electrode connection lines 320 in the respective sensing electrode groups 340 are located are parallel to each other. The sensing electrode module 340 is electrically connected to the sensing control module 7 of the touch panel peripheral as in the first embodiment. 21 200915163 The diamond-shaped sensing electrodes 313 are distributed in the region of the sensing layer 300 opposite to the gap region formed between the hexagonal driving electrodes 213 in the driving layer 2, and the hexagonal driving is performed. The electrode 213 and the diamond shaped sensing electrode 313 together fill the touch area 110 of the touch panel. The drive electrode connection line 220 and the sense electrode connection line 320 are perpendicular to each other. In the sixth embodiment, the driving layer 200 is located under the sensing layer 3〇〇 as shown in FIG. 7 , and the shielding layer 4 includes a flat shielding electrode 410 made of a transparent conductive material, and the shielding layers are shielded. The electrode 410 faces the region occupied by each sensing electrode in the sensing device, that is, each of the shielding electrodes is distributed in the shielding layer _ and the driving region 21 所述 between the driving layers 200 is positive In the opposite area. The function of the shielding layer 400 in this embodiment is basically the same as that of the fourth embodiment. In the sixth embodiment, the driving layer 200 is located under the sensing layer 300: as shown in FIG. 7-4, the sub-electrode layer 5 includes a spacer sub-electrode made of a moon-electric material. 510. Each of the sub-electrodes 510 is in a region occupied by each of the driving electrodes 210, that is, in each of the sub-electrodes-phase yttrium-pole layer 500 and in the region facing the sensing electrode 310 of the sensing layer . In the embodiment, the sub-electrode 510, 'the human electrode layer 500 and the one of the hexagonal driving electrodes 213 of the driving layer 200 are opposite to each other in the region of the Γ3· #雷+ η & The electric field distribution is designed such that the area of the sub-electrode 510 is deducted from the sub-electrode layer 500 by the touch sensing. This embodiment is the same. The first embodiment and the fourth embodiment are substantially phased. 22 200915163 As shown in FIGS. 7-5, the sub-electrode layer 500 is located under the sensing layer 300, and the shielding layer 400 is located above the driving layer 200. The formation of the mutual capacitance C and the electric field distribution of the present embodiment are substantially the same as those of the fourth embodiment. Therefore, the present embodiment can effectively increase the effective permittivity of the mutual capacitance C. The invention also relates to a combined mutual capacitance touch panel suitable for a touch panel having a large area. When the area of the mutual capacitive touch panel is large, the number of driving electrodes and sensing electrodes needs to be increased. If the electrode group is too long, the resistance is too large, resulting in a decrease in the bandwidth of the mutual capacitance path, which brings circuit driving and sensing. inconvenient. In order to avoid the above situation, the present invention provides a combined mutual capacitance touch panel composed of a mutual capacitive touch panel. As shown in FIGS. 8-10, the combined mutual capacitance touch panel includes a touch panel 1100 made of a transparent insulating medium, and in particular, at least two closely arranged by the touch panel 1100. The mutual capacitance touch unit 1000 forms a touch area filled with the touch panel 1100. The mutual capacitance touch unit 1000 is similar in structure to the mutual capacitance type touch panel of the present invention, and includes a driving layer 200 and a sensing layer 300, and a transparent insulating medium sandwiched between the driving layer 200 and the sensing layer 300. Capacitive dielectric plane 910. The driving layer 200 includes a flat driving electrode 210 made of a transparent conductive material and spaced apart in the same plane; the sensing layer 300 includes a flat sensing electrode 310 made of a transparent conductive material and spaced apart in the same plane, Each of the sensing electrodes 310 is distributed in a region of the sensing layer 300 opposite to the gap region between the driving electrodes 210 of the driving layer 200, so that the driving electrode 210 and the sensing electrode 310 are filled together. The touch area 110 of the capacitive touch unit 1000 is electrically connected to the excitation signal module 600 of the mutual-capacitive touch unit 1000 of the combined mutual-capacitive touch panel peripheral corresponding to the driving electrode 210. The electrode 31A is electrically connected to the sensing control module 700 of the mutual capacitance touch panel 1A of the combined mutual capacitance touch panel peripheral corresponding to the sensing electrode 310. According to a seventh embodiment of the present invention, as shown in FIG. 8, the combined mutual capacitance touch panel includes four mutual capacitance contact unit surfaces, and the structure of the driving layer 200 and the sensing layer 3〇〇 of the mutual capacitance touch unit 1000 Any of the first to eighth embodiments may be used. The combined mutual-capacitive touch panel can separately collect the electric valley distribution data of each mutual-capacitance touch unit 1000 through the control circuit of the peripheral device, and then accurately determine the touched condition of the entire touch panel 1100 through data summarization and analysis. . According to the eighth embodiment of the present invention, as shown in FIG. 9, a shielding layer _ is added to each mutual capacitance touch unit 基础 based on the seventh embodiment, and the shielding layer 400 is disposed on the driving layer 传感 and the sensing layer 300. The shield layer 400 includes a flat shield electrode made of an electric material, and a shield electrode & 43G, each of which is completely facing the drive layer. The area occupied by each electrode in the upper layer of the thin and empty layer 300. The shield=pole 410 can be electrically suspended or connected to the ground. In this embodiment, the shield electrode leads the lead 430, and the mutual capacitance touch The respective shield electrodes 41G of the unit 1000 are electrically connected to the DC source 800 of the combined mutual capacitance touch panel peripheral. The ninth embodiment of the present invention, as shown in FIG. 10, is based on the seventh embodiment base 24 200915163. The shielding layer 4 and the sub-electrode layer 500 are added to the mutual capacitance touch unit 1000. The structure in the shielding layer 4 is the same as that in the eighth embodiment, and the sub-electrode layer 300 is disposed on the driving layer 2 Above the sensory layer 3 a layer above, below or nested within the layer. The sub-electrode layer 5 includes a planar sub-electrode 51 用 made of a transparent conductive material, each of the sub-electrodes 510 facing the driving layer 200 and the sensing layer The area occupied by each of the electrodes in the lower layer is different from the eighth embodiment. As shown in FIG. 1, the ninth embodiment further includes a shield made of a transparent conductive material. a layer connection line 1420, and a shield layer lead-out wire 143〇; the shield layer 4〇〇 of the mutual-capacitive touch unit 1000 is electrically connected together by the shield layer connection line 1420 and grounded through the shield layer lead wire 1430, of course, The shielding electrode may also be electrically suspended or electrically connected to a DC source of the combined mutual capacitance touch panel peripheral. In the seventh to ninth embodiments, the driving layer 2〇〇 and the sensing layer 3〇 The structure of the 〇, the shielding layer 400 and the sub-electrode layer 500 may refer to any one of the first to sixth embodiments, or any structure that conforms to the above technical solution of the present invention. The transparent conductive material of the present invention is commonly used in the prior art. Indium tin oxide (Indium Tin Oxide, referred to as ITO ' and mon 氧化 antimony Tin Oxide, ΑΤΟ ΑΤΟ 【 【 【 【 【 【 【 【 【 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The structure and principle diagram of the first embodiment of the touch panel 25 200915163 board includes: FIG. 1 is a front view of the sensor layer 3 该 of the first embodiment; FIG. 1 - 2 is A schematic front view of the driving layer 2 该 of the first embodiment; a first front view of the first embodiment; a first front view of the first embodiment; a cross-sectional view; Figure 1 - 5 is a schematic diagram of the electric field distribution when 〇1 is not touched in the figure; Figure 1-6 is the electric field distribution when 〇1 is touched in the first 1-4 FIG. 2 to FIG. 2-5 are schematic diagrams showing the structure and principle of the second embodiment of the mutual capacitance touch panel of the present invention, including: FIG. 2 is a shielding layer of the second embodiment. The front projection of the main projection shows the result of the ^ ^ diagram, and the second diagram of the second embodiment is nested together. Front view of the moving layer and the shielding layer 400; Figure 2-3 is a schematic cross-sectional side elevational view of the second embodiment; Figure 2-4 is the second to third points in the second to third Schematic diagram of electric field distribution when touched; FIG. 2-5 is a schematic diagram of electric field distribution when point a is touched in FIGS. 2 to 3; FIG. 3 is a driving layer and shielding 働 and touch of the second embodiment of the present invention Schematic diagram of the connection mode of the board peripheral device, including the three connection modes from the 3rd to the 26th, 200915163 3 - 4; the 4th to 4th to 5th are related to the "mutual capacitance touch panel" of the present invention A schematic diagram of the structure and principle of the third embodiment includes: FIG. 4-1 is a front projection front view of the sub-electrode layer 500 of the third embodiment, and FIG. 4-2 is a third embodiment of the third embodiment. A schematic front view of the sensor layer 300 and the sub-electrode layer 500 nested together; FIG. 4 is a schematic cross-sectional side view of the third embodiment; FIG. 4 - 4 is a 4th to 3rd Schematic diagram of electric field distribution when 03 points are not touched; Figure 4-5 is the electric field distribution when 03 points in 4-3 are touched It is not intended that FIGS. 5-1 to 3-5 are schematic diagrams showing the structure and principle of the fourth embodiment of the "mutual capacitance touch panel" of the present invention, including: FIG. 5-1 is the fourth embodiment The orthographic projection is a cross-sectional view of the cross-sectional view; the fifth and second graphs are the intentional distribution of the electric field when the 04 o'clock in the fifth 5-1 is not touched, and the fifth to third is that the 04 o'clock in the fifth 5-1 is touched FIG. 6-1 to FIG. 6-5 are structural diagrams of a fifth embodiment of the "mutual capacitance touch panel" of the present invention, including: Figure 6-1 is the fifth implementation The front projection of the driving layer 200 of the example is not intended, and the sixth projection is the front projection of the sensing layer 300 of the fifth embodiment. The present invention is not intended, and the sixth embodiment is the fifth embodiment. The front view of the shielding layer 400 is a front view; the sixth drawing is the front projection of the secondary electrode layer 500 of the fifth embodiment, and the sixth embodiment is the sixth embodiment. 1 is a cross-sectional view in the B-B direction; FIGS. 7-1 to 7-5 are a sixth embodiment of the "mutual-capacitive touch panel" of the present invention. The schematic diagram of the structure includes: FIG. 7-1 is an orthographic projection of the driving layer 200 of the sixth embodiment, and FIG. 7-2 is an orthographic projection of the sensing layer 300 of the sixth embodiment. 7-3 is an orthographic projection of the shielding layer 400 of the sixth embodiment, and FIG. 7-4 is an orthographic projection of the secondary electrode layer 500 of the sixth embodiment. Fig. 7-5 is a cross-sectional view showing the sixth embodiment in the C-C direction in Fig. 7-1. 8 to 1 to 8-2 are schematic views showing the structure of a seventh embodiment of the "combined mutual-capacitive touch panel" of the present invention, including the eighth projection of the seventh embodiment. Figure 8-2 is a schematic view of the orthographic projection of the seventh embodiment; Figures 9-1 to 9-2 are the eighth of the "combined mutual capacitance contact 28 200915163 control board" of the present invention. A schematic diagram of the structure of the embodiment includes: FIG. 9 is a schematic front view of the eighth embodiment; and FIG. 9 is a schematic front view of the eighth embodiment; FIG. 10-1 to FIG. 10 is a schematic structural view of a ninth embodiment of the “combined mutual-capacitive touch panel” of the present invention, including: FIG. 10-1 is a schematic front view of the ninth embodiment; 10th to 2nd The figure is a schematic view of the orthographic projection of the ninth embodiment; FIGS. 11-1 to 11-4 are schematic diagrams showing the structure and principle of the prior art mutual capacitance touch panel, including: FIG. 11-1 is the touch panel Front view of the front view; Figure 11-2 is a bottom cross-sectional view of the 11th 1st; Figure 11-3 shows a schematic diagram of electric field distribution when the touch panel is not touched; Figure 11-4 shows a schematic diagram of electric field distribution when the touch panel is touched. [Main component symbol description] 100 touch plane 100' touch plane 110 touch area 120 protection plane 150 finger 150' finger 200 drive layer 200' drive layer 210 flat drive electrode 29 200915163 210' drive line 211 rectangular drive electrode 212 diamond drive electrode 213 Hexagonal driving electrode 220 driving electrode connection line 230 driving electrode extraction wire 240 driving electrode group 300 sensing layer 300' sensing layer 310 flat sensing electrode 3105 sensing line 311 rectangular sensing electrode 312 diamond sensing electrode 313 diamond shape Sensing electrode 320 sensing electrode connection line 330 sensing electrode lead-out wire 340 sensing electrode group 400 shielding layer 410 plate shielding electrode 430 shielding electrode extraction wire 500 secondary electrode layer 510 secondary electrode 600 excitation signal module 700 sensing control module 30 200915163 800 DC source 910 Capacitive dielectric plane 9105 Media plane 1000 Mutual capacitance touch unit 1100 Touch panel 1420 Shield connection line 1430 Shield lead wire 31

Claims (1)

200915163 十、申請專利範圍: 1、一種互電容式觸控板,包括用透明絕緣介質製成的觸摸 平面(100),被該觸摸平面(100)覆蓋的驅動層(2〇〇) 和傳感層(300),以及夾在該驅動層(200)和傳感層 ( 300)之間的用透明絕緣介質製成的電容介質平面 (910),其特徵在於: 該驅動層(200)包括在同一平面内間隔分布的用 透明導電材料製成的平板驅動電極(21〇);該傳感層 ( 300)包括在同一平面内間隔分布的用透明導電材料 製成的平板傳感電極(310),各該傳感電極(31〇)分 布在傳感層(300)中與驅動層(200)中各該驅動電極 (210)相互間空隙區域正對著的區域内,令該驅動電 極(210)和傳感電極(310) 一起填充所述觸摸平面(1〇〇) 的觸摸區域(110); 該驅動電極(210)與觸控板外設的激勵信號模塊 (600)電連接,該傳感電極(31〇)與觸控板外設的傳 感控制模塊(700)電連接。 2、如申請專利範圍第1項所述的互電容式觸控板,其 在於: ' 還包括屏蔽層(400);該屏蔽層(4〇〇)設置於驅 動層(200)和傳感層( 300)中位於下方的一層的上方、 下方或者嵌套在該層内; 該屏蔽層(4GG)包括用透明導電材料製成的平板 屏蔽電極(410),以及屏蔽電極引出導線(43〇);各該 32 200915163 屏蔽電極(410)正對著該驅動層(2〇〇)和傳感層( 300) 中位於上方的一層中各電極所占區域; 該屏蔽電極(410)電懸空;或者,借助該屏蔽電 極引出導線(430),所有屏蔽電極(41〇)接地威者與 觸控板外設的直流源(8〇〇)電連接。 3、如申請專利範圍第1項所述的互電容式觸控板,其特徵 在於: 還包括次電極層(5〇〇);該次電極層(5〇〇)設置 於驅動層(200)和傳感層(3〇〇)中位於上方的〆層的 上方、下方或者嵌套在該層内; 該次電極層( 500)包括用透明導電材料製成的平 板次電極(51〇),各該次電極(51〇)正對著所述驅動 層(200)和傳感層(300)中位於下方的一層中各電極 所占區域。 4如申明專利範圍第1至;3項中任一項所述的互電容式觸 , 控板,其特徵在於: 還包括用透明導電材料製成的驅動電極連接線 、 (22〇)和傳感電極連接線( 320),以及驅動電極引出 導線(230)和傳感電極引出導線(33〇); 該驅動電極(210)借助驅動電極連接線(22〇)分 組串聯在一起’各該驅動電極連接線( 220)在驅動層 (200 )内的相互之間的位置關係包括共線和平行;該 傳感電極(3丨〇)借助傳感電極連接線(320)分組串聯 起各遠傳感電極連接線(32〇)在傳感層(3〇〇) 33 200915163 内相互之間的位置關係包括共線和平行;該驅動電極連 接線(220)與傳感電極連接線(32〇)互相垂直; 各驅動電極組(240)借助驅動電極引出線(mo) 與觸控板外設的激勵信號模塊(600 )電連接;各傳感 電極組(340)借助傳感電極引出線(33〇)與觸控板外 設的傳感控制模塊(700)電連接。 5、 如申請專利範圍第1至3項中任一項所述的互電容式觸 控板,其特徵在於: 各該驅動電極(210)是矩形驅動電極(211);各該 傳感電極(310)是矩形傳感電極(311)。 6、 如申請專利範圍第1至3項中任一項所述的互電容式觸 控板,其特徵在於: 各該驅動電極(210)是菱形驅動電極(212);各該 傳感電極(310)是菱形傳感電極(312)。 7、 如申請專利範圍第1至3項中任一項所述的互電容式觸 控板,其特徵在於: 各該驅動電極(210)是六邊形驅動電極(213);各 該傳感電極(310)是菱形傳感電極(313)。 8、 一種組合式互電容觸控板,包括用透明絕緣介質製成的 觸摸面板(1100),其特徵在於: 還包括被該觸摸面板(11〇0)覆蓋的緊密排布的至 少兩個互電容觸摸單元(1000),該互電容觸摸單元 ( 1000) —起填充觸摸面板(11〇〇)的觸摸區域; 該互電容觸摸單元(1〇〇〇)包括驅動層( 200)和 34 200915163 傳感層(300),以及夾在該驅動層(200)和傳感層( 300) 之間的用透明絕緣介質製成的電容介質平面(910); 該驅動層(200)包括有同一平面内間隔分布的用 透明導電材料製成的平板驅動電極(210);該傳感層 (300)包括在同一平面内用透明導電材料製成的平板 傳感電極(310),各該傳感電極(31〇)分布在傳感層 ( 300)中與驅動層(200)中各該驅動電極(21〇)相 互間空隙區域正對著的區域内,令該驅動電極(21 〇 ) 和傳感電極(310) —起填充它們所在互電容觸摸單元 (1000)的觸摸區域(110); 該驅動電極(210)與組合式互電容觸控板外設的 對應於該驅動電極(210)所在互電容觸摸單元(1〇〇〇) 的激勵信號模塊(600)電連接,該傳感電極(31〇)與 組合式互電容觸控板外設的對應於該傳感電極(31〇) 所在的互電谷觸摸單元(1〇〇〇)的傳感控制模塊(7〇〇) 電連接。 9、如申請專利範圍第8項所述的組合式互電容觸控板,其 特徵在於: 還包括用透明導電材料製成的屏蔽層連接線 ( 1420),以及屏蔽層引出導線(143〇); 該互電容觸摸單it (1G00)還包括屏蔽層(4〇〇); 該屏蔽層(400)設置於驅動層(2〇〇)和傳感層(3⑷ 中位於下方的-層的上方、下方或者嵌套在該層内; 該屏蔽層(4GG)包括用透明導電材料製成的平板 35 200915163 屏蔽電極(410),以及屏蔽電極引出導線(430);各該 屏蔽電極(410)正對著該驅動層(200)和傳感層( 300) 中位於上方的一層中各電極所占區域; 該屏蔽電極(410)電懸空;或者,借助該屏蔽層 連接線(1420),該互電容觸摸單元(1000)各自的屏 蔽層( 400)電連接在一起,並透過屏蔽層引出導線 (1430)接地或者與組合式互電容觸控板外設的直流源 ( 800)電連接;又或者,借助屏蔽電極引出導線(430), 該互電容觸摸單元( 1000)各自的屏蔽電極(410)接 地或者與組合式互電容觸控板外設的直流源( 800)電 連接。 10、如申請專利範圍第8項或第9項所述的組合式互電容 觸控板,其特徵在於: 該互電容觸摸單元(1000 )還包括次電極層 ( 500);該次電極層( 500)設置於驅動層(200)和 傳感層( 300)中位於上方的一層的上方、下方或者嵌 套在該層内; 該次電極層( 500)包括用透明導電材料製成的平 板次電極(510),各該次電極(510)正對著該驅動層 (200)和傳感層( 300)中位於下方的一層中各電極 所占區域。 36200915163 X. Patent application scope: 1. A mutual capacitive touch panel comprising a touch plane (100) made of transparent insulating medium, a driving layer (2〇〇) covered by the touch plane (100) and sensing a layer (300), and a capacitive dielectric plane (910) sandwiched between the drive layer (200) and the sensing layer (300), made of a transparent insulating medium, characterized in that: the driving layer (200) is included a flat plate driving electrode (21 〇) made of a transparent conductive material spaced apart in the same plane; the sensing layer (300) includes a flat sensing electrode (310) made of a transparent conductive material spaced apart in the same plane Each of the sensing electrodes (31〇) is distributed in a region of the sensing layer (300) opposite to a gap region between the driving electrodes (210) in the driving layer (200), and the driving electrode (210) is disposed. Filling the touch area (110) of the touch plane (1) with the sensing electrode (310); the driving electrode (210) is electrically connected to the excitation signal module (600) of the touch panel peripheral, the transmission Sensing electrode (31〇) and sensor control module (700) of touchpad peripheral Access. 2. The mutual capacitive touch panel according to claim 1, wherein: 'the shielding layer (400) is further included; the shielding layer (4) is disposed on the driving layer (200) and the sensing layer (300) above, below or nested in the lower layer; the shield layer (4GG) comprises a flat shield electrode (410) made of a transparent conductive material, and a shield electrode lead wire (43〇) Each of the 32 200915163 shield electrodes (410) is opposite the area occupied by the electrodes in the upper layer of the drive layer (2〇〇) and the sensing layer (300); the shield electrode (410) is electrically suspended; or The shield electrode is used to lead the lead wire (430), and all of the shield electrode (41〇) grounding conductors are electrically connected to the DC source (8〇〇) of the touch panel peripheral. 3. The mutual capacitive touch panel of claim 1, further comprising: a secondary electrode layer (5〇〇); the secondary electrode layer (5〇〇) is disposed on the driving layer (200) And above or below the upper layer of the sensing layer (3〇〇) or nested within the layer; the secondary electrode layer (500) comprises a planar secondary electrode (51〇) made of a transparent conductive material, Each of the sub-electrodes (51 Å) faces the area occupied by each of the electrodes in the lower layer of the driving layer (200) and the sensing layer (300). The mutual capacitance type touch panel according to any one of claims 1 to 3, further comprising: a driving electrode connecting wire made of a transparent conductive material, (22 〇) and a sensing electrode connection line (320), and a driving electrode lead-out wire (230) and a sensing electrode lead-out wire (33〇); the driving electrode (210) is grouped in series by a driving electrode connecting wire (22〇) The positional relationship between the electrode connection lines (220) in the driving layer (200) includes collinear and parallel; the sensing electrodes (3丨〇) are grouped in series by the sensing electrode connecting lines (320). The positional relationship between the sensing electrode connection lines (32〇) in the sensing layer (3〇〇) 33 200915163 includes collinear and parallel; the driving electrode connecting line (220) and the sensing electrode connecting line (32〇) Each of the driving electrode groups (240) is electrically connected to the excitation signal module (600) of the touch panel peripheral by means of the driving electrode lead line (mo); each sensing electrode group (340) is connected to the sensing electrode lead line (33) 〇) Sensing control module with touchpad peripherals (700) ) Electrical connection. 5. The mutual capacitive touch panel according to any one of claims 1 to 3, wherein: each of the driving electrodes (210) is a rectangular driving electrode (211); and each of the sensing electrodes ( 310) is a rectangular sensing electrode (311). 6. The mutual capacitive touch panel according to any one of claims 1 to 3, wherein: each of the driving electrodes (210) is a diamond driving electrode (212); each of the sensing electrodes ( 310) is a diamond shaped sensing electrode (312). 7. The mutual capacitive touch panel according to any one of claims 1 to 3, wherein: each of the driving electrodes (210) is a hexagonal driving electrode (213); each of the sensing electrodes The electrode (310) is a diamond shaped sensing electrode (313). 8. A combined mutual capacitance touch panel comprising a touch panel (1100) made of a transparent insulating medium, further comprising: at least two mutual closely arranged by the touch panel (11〇0) a capacitive touch unit (1000), the mutual capacitive touch unit (1000) serves as a touch area for filling the touch panel (11〇〇); the mutual capacitance touch unit (1〇〇〇) includes a driving layer (200) and 34 200915163 a sensing layer (300), and a capacitive dielectric plane (910) sandwiched between the driving layer (200) and the sensing layer (300), which is made of a transparent insulating medium; the driving layer (200) includes the same plane a flat-plate driving electrode (210) made of a transparent conductive material; the sensing layer (300) includes flat sensing electrodes (310) made of a transparent conductive material in the same plane, each of the sensing electrodes ( 31〇) distributed in the sensing layer (300) and the driving layer (200) in the region of the gap between the driving electrodes (21〇), the driving electrode (21 〇) and the sensing electrode (310) - to fill the mutual capacitance touch unit where they are located a touch area (110) of the (1000); an excitation signal module of the mutual capacitive touch unit (1〇〇〇) corresponding to the driving electrode (210) of the driving electrode (210) and the combined mutual capacitance touch panel peripheral (600) electrical connection, the sensing electrode (31〇) and the combined mutual capacitance touchpad peripheral corresponding to the sensing electrode (31〇) where the mutual electricity valley touch unit (1〇〇〇) is transmitted The sense control module (7〇〇) is electrically connected. 9. The combined mutual capacitance touch panel according to claim 8, wherein the utility model further comprises: a shielding layer connecting wire (1420) made of a transparent conductive material, and a shielding layer lead wire (143〇). The mutual capacitance touch single (1G00) further includes a shielding layer (4〇〇); the shielding layer (400) is disposed above the driving layer (2〇〇) and the sensing layer (3(4) below the layer, Bottom or nested within the layer; the shielding layer (4GG) comprises a flat plate 35 200915163 shield electrode (410) made of a transparent conductive material, and a shield electrode lead wire (430); each of the shield electrodes (410) is opposite An area occupied by each electrode in the upper layer of the driving layer (200) and the sensing layer (300); the shielding electrode (410) is electrically suspended; or, by means of the shielding layer connecting line (1420), the mutual capacitance The respective shielding layers (400) of the touch unit (1000) are electrically connected together and grounded through the shielding layer lead wires (1430) or electrically connected to the DC source (800) of the combined mutual capacitance touch panel peripheral; or Leading the wire (430) by means of a shield electrode, The respective shield electrodes (410) of the mutual capacitance touch unit (1000) are grounded or electrically connected to a DC source (800) of the combined mutual capacitance touch panel peripheral. 10. As described in claim 8 or 9 The combined mutual capacitance touch panel is characterized in that: the mutual capacitance touch unit (1000) further comprises a sub-electrode layer (500); the sub-electrode layer (500) is disposed on the driving layer (200) and the sensing layer (300) Above or below the upper layer, or nested within the layer; the secondary electrode layer (500) includes a planar secondary electrode (510) made of a transparent conductive material, each of the secondary electrodes (510) facing each other The area occupied by each electrode in the lower layer of the driving layer (200) and the sensing layer (300).
TW97143195A 2008-11-07 2008-11-07 Mutual capacitive touchpad and modular mutual capacitive touchpad TWI436256B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143195A TWI436256B (en) 2008-11-07 2008-11-07 Mutual capacitive touchpad and modular mutual capacitive touchpad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143195A TWI436256B (en) 2008-11-07 2008-11-07 Mutual capacitive touchpad and modular mutual capacitive touchpad

Publications (2)

Publication Number Publication Date
TW200915163A true TW200915163A (en) 2009-04-01
TWI436256B TWI436256B (en) 2014-05-01

Family

ID=44725670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143195A TWI436256B (en) 2008-11-07 2008-11-07 Mutual capacitive touchpad and modular mutual capacitive touchpad

Country Status (1)

Country Link
TW (1) TWI436256B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396120B (en) * 2009-11-16 2013-05-11 Au Optronics Corp Multi-channel touch panel
TWI396125B (en) * 2009-11-19 2013-05-11 Raydium Semiconductor Corp Coupling capacitance eliminating apparatus and method
TWI401590B (en) * 2009-06-25 2013-07-11 Htc Corp Touch panel with unbalanced conductive patterns, and touch apparatus and method for determining multi-touch thereof
TWI403946B (en) * 2009-06-15 2013-08-01 Au Optronics Corp Display device and method of applying the same
US8587536B2 (en) 2009-06-05 2013-11-19 Higgstec Inc. Micro-electrode matrix and a touch panel with a micro-electrode matrix
TWI417598B (en) * 2009-09-11 2013-12-01 Century Display Shenzhen Co Touch panel
TWI423105B (en) * 2012-04-12 2014-01-11 Tpk Touch Solutions Xiamen Inc Conductor pattern structure of capacitive touch panel
TWI426440B (en) * 2010-03-22 2014-02-11 Ind Tech Res Inst Flexible slide-touch controlling device and related contact location determination method thereof
CN103677367A (en) * 2012-09-19 2014-03-26 宏达国际电子股份有限公司 Touch panel
TWI447628B (en) * 2011-08-17 2014-08-01 Shih Hua Technology Ltd Touch panel and optimization method of touch-control signal
TWI447634B (en) * 2009-12-18 2014-08-01 Fujitsu Component Ltd Touch panel and coordinate detection method in touch panel
US8816232B2 (en) 2012-09-19 2014-08-26 Htc Corporation Touch panel
TWI475456B (en) * 2012-08-23 2015-03-01 Egalax Empia Technology Inc Capacitive touch screen
TWI488101B (en) * 2013-06-20 2015-06-11 Focaltech Systems Ltd Capacitive touch screen and method for making the same
TWI488100B (en) * 2013-06-20 2015-06-11 Focaltech Systems Ltd Capacitive touch screen
TWI489364B (en) * 2013-08-23 2015-06-21 Pixart Imaging Inc Noise shielded capacitive touch device
TWI506511B (en) * 2008-12-23 2015-11-01 Samsung Electronics Co Ltd Large size capacitive touch screen panel and method of receiving user-defined touch data in a system
TWI512577B (en) * 2010-04-30 2015-12-11 Microchip Tech Inc Capacitive touch system using both self and mutual capacitance
TWI575430B (en) * 2014-12-17 2017-03-21 速博思股份有限公司 Mutual-capacitance input device with hovering touch

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506511B (en) * 2008-12-23 2015-11-01 Samsung Electronics Co Ltd Large size capacitive touch screen panel and method of receiving user-defined touch data in a system
US8587536B2 (en) 2009-06-05 2013-11-19 Higgstec Inc. Micro-electrode matrix and a touch panel with a micro-electrode matrix
TWI403946B (en) * 2009-06-15 2013-08-01 Au Optronics Corp Display device and method of applying the same
US8698779B2 (en) 2009-06-25 2014-04-15 Htc Corporation Touch panel with unbalanced conductive patterns, and touch-controlled apparatus and method for determining multi-touch thereof
TWI401590B (en) * 2009-06-25 2013-07-11 Htc Corp Touch panel with unbalanced conductive patterns, and touch apparatus and method for determining multi-touch thereof
TWI417598B (en) * 2009-09-11 2013-12-01 Century Display Shenzhen Co Touch panel
TWI396120B (en) * 2009-11-16 2013-05-11 Au Optronics Corp Multi-channel touch panel
TWI396125B (en) * 2009-11-19 2013-05-11 Raydium Semiconductor Corp Coupling capacitance eliminating apparatus and method
TWI447634B (en) * 2009-12-18 2014-08-01 Fujitsu Component Ltd Touch panel and coordinate detection method in touch panel
US8803840B2 (en) 2009-12-18 2014-08-12 Fujitsu Component Limited Touch panel and coordinate detection method in touch panel
TWI426440B (en) * 2010-03-22 2014-02-11 Ind Tech Res Inst Flexible slide-touch controlling device and related contact location determination method thereof
US8681117B2 (en) 2010-03-22 2014-03-25 Industrial Technology Research Institute Flexible slide-touch controlling device and the related position determination method
TWI512577B (en) * 2010-04-30 2015-12-11 Microchip Tech Inc Capacitive touch system using both self and mutual capacitance
TWI447628B (en) * 2011-08-17 2014-08-01 Shih Hua Technology Ltd Touch panel and optimization method of touch-control signal
TWI423105B (en) * 2012-04-12 2014-01-11 Tpk Touch Solutions Xiamen Inc Conductor pattern structure of capacitive touch panel
TWI475456B (en) * 2012-08-23 2015-03-01 Egalax Empia Technology Inc Capacitive touch screen
US8816232B2 (en) 2012-09-19 2014-08-26 Htc Corporation Touch panel
CN103677367A (en) * 2012-09-19 2014-03-26 宏达国际电子股份有限公司 Touch panel
CN103677367B (en) * 2012-09-19 2016-08-24 宏达国际电子股份有限公司 Contact panel
TWI488100B (en) * 2013-06-20 2015-06-11 Focaltech Systems Ltd Capacitive touch screen
TWI488101B (en) * 2013-06-20 2015-06-11 Focaltech Systems Ltd Capacitive touch screen and method for making the same
TWI489364B (en) * 2013-08-23 2015-06-21 Pixart Imaging Inc Noise shielded capacitive touch device
TWI575430B (en) * 2014-12-17 2017-03-21 速博思股份有限公司 Mutual-capacitance input device with hovering touch

Also Published As

Publication number Publication date
TWI436256B (en) 2014-05-01

Similar Documents

Publication Publication Date Title
TWI436256B (en) Mutual capacitive touchpad and modular mutual capacitive touchpad
JP5027860B2 (en) Alternating capacitive touch panel and combination alternating capacitive touch panel
US20110007030A1 (en) Ultrathin mutual capacitance touch screen and combined ultrathin touch screen
TWI426436B (en) Capacitive touch panel with multiple zones
TWI537652B (en) Capacitive touch device with single electrode layer and panel module thereof
TWI376627B (en) Sensing electrode layer and display panel
TW201102895A (en) Ultra-thin mutual capacitance touch panel and assembly-type ultra-thin touch panel
CN202771407U (en) Capacitive touch screen and single layer wiring electrode array
CN103927069B (en) Inductance touch screen and embedded inductance touch screen
CN103576998A (en) Capacitive touch screen and single-layer wiring electrode array
CN105094483A (en) Self-capacitance touch structure, touch screen and display device
CN103164091A (en) Single-layer electrode mutual capacitance touch screen
KR200468848Y1 (en) Projected capacitive touch panel
TWI559198B (en) A touch panel of the sensing structure
TWM446933U (en) Mutual capacitance touch panel with electrode dispersion coupling
US8907919B2 (en) Sensing structure of touch panel
CN201166842Y (en) Interior surface capacitance touch screen capable of multi-point touch control
CN104951161A (en) Liquid crystal display with touch function and conducting layer structure thereof
TWI467460B (en) Projected capacitive touch panel
KR20140093445A (en) Self capacitor type in-cell touch liquid crystal display device
CN106843591B (en) A kind of touch panel, its production method and touch control display apparatus
CN102314272B (en) Capacitance type touch screen with bi-layer structure
CN102968226B (en) A kind of double-layer capacitive touch screen
TWI529591B (en) Capacitive touch panel with mesh electrode
CN105022515B (en) Touch device