TW200914363A - Micro-fluid device capable of enhancing mixing effect - Google Patents

Micro-fluid device capable of enhancing mixing effect Download PDF

Info

Publication number
TW200914363A
TW200914363A TW96135584A TW96135584A TW200914363A TW 200914363 A TW200914363 A TW 200914363A TW 96135584 A TW96135584 A TW 96135584A TW 96135584 A TW96135584 A TW 96135584A TW 200914363 A TW200914363 A TW 200914363A
Authority
TW
Taiwan
Prior art keywords
inlet
pulse signal
micro
fluid
microfluidic
Prior art date
Application number
TW96135584A
Other languages
Chinese (zh)
Inventor
Win-Jet Luo
Kao-Feng Yarn
Shou-Ping Hsu
Yu-Lieh Wu
Ming-Hsyan Shih
Original Assignee
Univ Far East
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Far East filed Critical Univ Far East
Priority to TW96135584A priority Critical patent/TW200914363A/en
Publication of TW200914363A publication Critical patent/TW200914363A/en

Links

Abstract

This invention is to disclose a micro-fluid device capable of enhancing mixing effect, comprising a mixer main body, an electrode unit, a pulse signal generator, and a power supply, wherein the mixer main body has a main channel, a first inlet, a second inlet, and an outlet communicated with each other. When first micro-fluid and second micro-fluid are introduced from the first inlet and the second inlet and are mixed in the main channel, DC driving voltage of the electrode unit provided by the power supply changes the electroosmotic flow field of the first micro-fluid and the second micro-fluid in the main channel; then a periodic pulse signal generated by the provision to the electrode unit from the pulse signal generator changes the flow rate of the first micro-fluid, making the first micro-fluid and the second micro-fluid mutually compressed to increase the contact area of two fluids so as to enhance the mixing effect.

Description

200914363 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種微流體裝置,特別是此微流體 裝置在存有一電動驅動狀態(electrokinetic)下,藉由外加 一脈衝信號以增加兩微流體混合面積。 【先前技術】 近幾年來,由於微機電系(Micro_electro-mechanical system,MEMS)技術的成熟,其可被廣泛地運用在不同 的學問上,例如:光電、化學、生醫檢測、機械、航空等 方面。微總體分析系統(Micro Total Analysis System)便是 將生醫檢測上取樣、樣本傳輸、混合、分離,及偵測等 功能,利用微機電技術將分析儀器縮小並整合到一信用 卡大小之生醫晶片上。在檢體(Sample)與試劑(Reagent) 的混合中,傳統上是利用外界的擾動而產生之紊流,幫 助二者的混合,但在微管道中,其流場多屬層流,很難 到達紊流的狀況而幫助不同液體間的混合。 然而,在生醫晶片上欲達到取樣、樣本傳輸、混合、 分離,及偵測等功能,仍有許多需要克服的問題,例如: 在微管道中,二種不同液體之混合,並不如大尺寸的管 道中來得容易。在一般所熟悉的大尺度流場中 (macro-scale flow field),二種以上不同液體的混合是藉 由在流場中加入一些擾動,使得流場中產生紊流’增加 二種不同液體之接觸面積,而達到混合的效果。如第1 圖所示,此圖係為習知微流體裝置係利用電動 200914363 (electrokinetic)技術而進行兩流體混合示意圖。顯而易見 地,此微流體裝置1〇包含一混合腔(chamber)llO、一第 一入口 115、一第二入口 120、一出口 125、一第一微流 體元件A及一第二微流體元件B,其中,第一微流體元 件A與第二微流體元件B分別用以盛裝一第一微流體A, 及一第二微流體B’,且此第一入口 115與第二入口 120 係用以分別導入第一微流體A’及第二微流體B,至混合 腔110進行混合,及出口 125係用以導出混合後之微流 體。在混合腔110之至少一部分係由如矽或鋁此類的介 電材料所構成’用以支持電滲透(electroosmosis)的進 行。而在混合腔11〇之部分介電材料之係上側及下侧之 各一邊係配置分隔一間距之兩組電極130及電極140, 且此兩組電極130及電極14〇之每一電極係分別與直流 電供應器135及145連接。請注意,上述在混合腔ι1〇 内所混合第一微流體A’及第二微流體B,之流動速度的 大小係由直流電供應器連接135及145所控制。 依上述所言’當第一微流體A’及第二微流體B,於混 合腔110内進行混合時’因分隔一間距之兩組電極13〇及 電極140在直流電供應器135與145施加的電場下,混合腔 110之孔壁電雙層(electrical double layer ’ EDL)内之淨電 荷受電場作用力,誘發兩微流體流動,特指在與混合腔 110之介電材料所接觸的電解液(electrolyte)。而當混合腔 110缺少淨電荷流時,此第一微流體A’及第二微流體B, 會各自在第一微流體元件A與第二微流體元件B内再循 環(recirculation)。而此再循環現象會產生重覆的層流層 200914363 疊(laminar folding),且此層流層疊現象亦使每一流體接 觸表面(interfacial area)增加,以致擴散(diffusion)現象快 速地發生,並會引起一均相混合物的形成。其中,前述 ' 之層流亦指流體本身流動模式且此些流體的流速往往偏 低。 顯而易見地,在習知微流體裝置的結構中,直流電 供應器135及145分別提供的電子流都以一單一方向移 動。換言之,此種電動狀態無法增加第一微流體A’及第 二微流體B’兩者微流體之混合面積。此外,對於微流 體裝置之結構上,因混合腔110之至少一部分必為介電 材料,以致才可裝配上、下兩組電極130及電極140。 所以此微流體結構,如能提供一種更為精巧的幾何結構 或在微流體生物分析裝置及其系統上提出一種有效益的 混合流程的機制亦是必要地。 【發明内容】 因此本發明之主要目的在於提供一種提高混合效果 之微流體裝置,係用以混合兩種電導液不同之微流體, 其中在此微流體裝置在直流電產生電滲透驅動流體 (electrokinetically-driven flow)之狀態下,驅動一第一微 流體及一第二微流體在一主管道内進行混合,並利用周 期性脈衝信號,以改變第一微流體之流量,使得第一微 流體及第二微流體交互擠壓而增加接觸面積,藉此,以 提高混合效果。 7 200914363 根據本發明之上述目的,本發明係遂提出一種可提 高混合效果之微流體裝置,本發明係揭露出一種可提高 混合效果之微流體裝置,此微流體混合裝置包含一混合 器本體、一電極單元、一脈衝信號產生器及一電源供應 器,且混合器本體具有連通之一主管道、一第一入口、 一第二入口及一出口。當一第一微流體及一第二微流體 分別由第一入口及第二入口導入而在主管道内混合時, 由電源供應器供給電極單元之直流驅動電壓,改變主管 道内之第一微流體及第二微流體之電滲透流場,接者, 由脈衝信號產生器供給電極單元而產生一周期性脈衝信 號,以改變第一微流體之流量,使得第一微流體及第二 微流體交互擠壓而增加接觸面積,藉此,以提高混合效 果。 【實施方式】 以下詳細地討論目前較佳的實施例。然而應被理解 的是,本發明提供許多可適用的發明觀念,而這些觀念 能被體現於很寬廣多樣的特定具體背景中。所討論的特 定具體的實施例僅是說明使用本發明的特定結構,而且 不會限制本發明的範圍。 請參閱第2圖所示,此圖係繪本發明之微流體混合 裝置之示意圖。由圖中可知,此微流體混合裝置2包含 一混合器本體21、一電極單元22、一脈衝信號產生器 23及一電源供應器24。其中混合器本體21具有連通之 一主管道211、至少一第一入口 212、至少一第二入口 8 200914363 213及一出口 214。而所謂的第一入口 212及第二入口 213亦是用於導入欲混合一第一微流體A,及一第二微流 體B,且在第一入口 212及第二入口 213之間分別還設 有一第一引道215及一第二引道216,用以連通主管道 211,並於第一微流體A’及第二微流體b,混合後,藉由 出口 214導出混合後之一微流體。電極單元22,包含複 數個正極微型電極板221及負極微型電極板222,且正 極微型電極板221係設在第一入口 212及第二入口 213 之内側及負極微型電極板板222係置入出口 214之内 側,為人所熟知地,此些正極微型電極板丨與負極微 型電極板222為白金、銅、鈦、鉻、鋁、鉑之任一導電 性材料所製成,以本實施例以鉑為代表例。脈衝信號產 生器23,係連接於電極單元22之正極微型電極板221 與負極微型電極板222,且脈衝信號產生器23係能提供 三角波形或方波形之一脈衝信號,且此脈衝信號係為周 期性脈衝信號。電源供應器24係連接於電極單元22之 正極微型電極板221與負極微型電極板222,且提供不 同之電壓模式來作為第一微流體A,及一第二微流體B, 驅動之用。 再者,本發明之微流體混合裝置2之混合器本體是 以一T型結構作為幾何外型的設計。其原因為在固定的 雷諾數之下,主管道211之高度與第一入口 212與第二 入口 213之寬度的高度/寬度之比值愈大則產生愈好的混 合’換言之,亦指混合器本體21之主管道211之高度大 於第一入口 212及第二入口 213之寬度。 200914363 如在一實施例中,對電導濃度不同的第一微流體A’ 與第二微流體B’欲進行混合。請參閱第3圖所示,此圖為 根據第2圖而繪示兩微流體在主管道混合過程之示意 圖,其中本發明之微流體裝置亦提供一平板25,用以將 混合器本體21置放其上。而在兩微流體欲進行混合之 前,本實施例中遂利用有色染料來判斷第一微流體A’與 第二微流體B’混合的程度,首先,以四硼酸鈉作為緩衝 溶液,亦是當作第一微流體A’,且用四硼酸鈉加上螢光 粉料作為螢光染料,亦是當第二微流體B’。接著,將緩 衝溶液A’倒入第一入口 212及螢光染料B’倒入第二入口 213,而與混合器本體之第一入口 212、第二入口 213及出 口 214所相連接的電源供應器24施加一直流驅動電源 (D/C power supply),明顯地,此直流驅動電源係產生電 動(electrokinetice)/電滲流場(electroosmosis flow field) 現象,藉以推動此缓衝溶液A’與螢光染料B’。 於進行兩微流體混合期間,係以直流電壓所產生的 電滲流場驅動下,使得緩衝溶液A’與螢光染料B’流向主 管道211之過程中相互層疊(folding),並藉由脈衝信號產 生器23所輸出的三角波形或方波形等周期性脈衝信號, 來改變螢光染料B’流量大小,如第4圖所示,此圖係根據 第3圖而繪示緩衝溶液A’與螢光染料B’於主管道進行混 合之狀態示意圖。由圖中可知,當周期性脈衝信號係為 高電位(H狀態)及低電位時(L狀態)交替期間,此時,螢 光染料B’會存有多個連續正旋突波,而產生此些正旋突 波意謂能改變螢光染料B’之流量,所以,緩衝溶液A’及 200914363 螢光染料B’兩流體之間交互擠壓,而此交互擠壓過程亦 能增加緩衝溶液A’及螢光染料B’之兩流體的接觸介面, 此舉,能增加兩流體之分子交換機率進而提高混合效果。 ·· 本發明所設計之微流體裝置係為一種主動式微混合 器(Active micromixers),係探討主動式微混合器之二維 流場現象與混合效果,且此主動式混合器主要設計構想 是在有限的空間下,能增加至少兩微流體間的接觸面 積,並在延長兩微流體之混合距離,遂利用主管道之空 間擴大的結構來降低流速,以增大兩微流體濃度擴散的 效果。 且在層流狀態下,欲提高兩微流體的混合效率,本 發明之微流體裝置主要的設計概念可分為下列兩種模 式:第一種方式是藉由改變流道的幾何結構,本發明之 微流體裝置之混合器本體外觀設計係為T型混合器本 體,於混合過程中,兩不同電導濃度之第一微流體及第 二微流體分別以第一入口及第二入口之不同方向分別注 入主管道中,經數值模擬結果顯示,在有限空間中由於 擠壓而產生局部渦流和增加兩股微流體間的接觸面積, 以利分子間擴散作用的進行,有效提升液體接觸面,使 得混合效果大大提升。第二種方式是採用有效且持續的 擾動源來增強流場紊亂度和不穩定性(electrokinetic instability,EKI),而增加兩股流體間接觸的機會次數。 不同於習知混合技術,以兩股微流體流動方向只有沿著 單一 X軸方向對衝混合,本發明之實施例遂利用直流驅 動電源而產生電動(electrokinetice)現象/電滲流場 11 200914363 (electroosmosis flow Held),藉以推動此兩電導濃度不同 之微流體,之後,由脈衝信號產生器所產生至少一周期 性脈衝信號,係改變主流道内的螢光染料B’流量,使得 ' 緩衝溶液A’與螢光染料B’交互擠壓,藉此,增加此些微 - 流體混合的面積。且為了混合器本體能在電渗透 (electroosmosis)的環境下進行混合,混合器本體之至少 一部分係由如石夕(silica)或铭(alumina)此類的介電材料所 構成,及為增強脈衝信號之強度,再請參閱第3圖,本 發明之微流體裝置2更包含一放大器26,且此放大器26 係耦接脈衝信號產生器23,用以放大脈衝信號。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作各種之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施 例能更明顯易懂,所附圖式之詳細說明如下: 第1圖係為習用微流體裝置係利用電動技術而進行兩流 體混合示意圖; 第2圖係為本發明之微流體裝置之示意圖; 第3圖係根據第2圖繪示實驗微流體混合裝置之示意 圖;以及 第4圖係根據第3圖繪示第一微流體及第二微流體於於 主管道内進行混合之狀態示意圖。 12 200914363 【主要元件符號說明】 A:第一微流體元件; 25:平板;以及 B:第二微流體元件; 26:放大器。 A’ :第一微流體; . B’ :第二微流體; 10:微流體裝置; 110:混合腔; 115:第一入口; 120:第二入口; 125:出口; 130及140:電極; 135及145:直流電供應器;; 2:微流體裝置; 21:混合器本體; 211:主管道; 212:第一入口; 213:第二入口; 214:出口; 215:第一引道; 216:第二引道; 22:電極單元; 221:正極微型電極板; 222:負極微型電極板; 23·.脈衝信號產生器; 2 4:電源供應器, 13200914363 IX. Description of the Invention: [Technical Field] The present invention relates to a microfluidic device, in particular, the microfluidic device is provided with an electrokinetic state, by adding a pulse signal to increase two micros Fluid mixing area. [Prior Art] In recent years, due to the maturity of Micro-electro-mechanical system (MEMS) technology, it can be widely used in different studies, such as: optoelectronics, chemistry, biomedical testing, machinery, aviation, etc. aspect. The Micro Total Analysis System is a function that takes biomedical detection upsampling, sample transfer, mixing, separation, and detection. Microelectromechanical technology is used to narrow down and integrate the analytical instrument into a credit card-sized biomedical wafer. on. In the mixture of sample and reagent, it is traditional to use the turbulence generated by the external disturbance to help the mixing of the two, but in the micro-pipe, the flow field is mostly laminar, which is difficult. Arriving at turbulent conditions helps to mix between different liquids. However, there are still many problems to be overcome in order to achieve sampling, sample transfer, mixing, separation, and detection on biomedical wafers. For example: In microchannels, the mixing of two different liquids is not as large as large The pipeline is easy to come by. In the generally familiar macro-scale flow field, the mixing of two or more different liquids is caused by adding some disturbances in the flow field, causing turbulence in the flow field to increase two different liquids. Contact area to achieve the effect of mixing. As shown in Fig. 1, this figure is a schematic diagram of a two-fluid mixing using a conventional 200910363 (electrokinetic) technique for a conventional microfluidic device. Obviously, the microfluidic device 1A includes a mixing chamber 110, a first inlet 115, a second inlet 120, an outlet 125, a first microfluidic element A and a second microfluidic element B, The first microfluidic component A and the second microfluidic component B are respectively configured to receive a first microfluidic fluid A and a second microfluidic fluid B', and the first inlet 115 and the second inlet 120 are respectively used to respectively The first microfluidic A' and the second microfluidic B are introduced into the mixing chamber 110 for mixing, and the outlet 125 is used to derive the mixed microfluidics. At least a portion of the mixing chamber 110 is constructed of a dielectric material such as tantalum or aluminum to support electroosmosis. The two sides of the upper and lower sides of the dielectric material of the mixing chamber 11 are provided with two sets of electrodes 130 and electrodes 140 separated by a pitch, and each of the two sets of electrodes 130 and 14 is respectively It is connected to DC power supplies 135 and 145. Note that the flow velocity of the first microfluidic A' and the second microfluid B mixed in the mixing chamber ι1〇 is controlled by the direct current supplier connections 135 and 145. As described above, when the first microfluidic A' and the second microfluidic B are mixed in the mixing chamber 110, the two sets of electrodes 13 and electrodes 140 separated by a pitch are applied to the direct current suppliers 135 and 145. Under the electric field, the net charge in the electrical double layer ' EDL of the mixing chamber 110 is subjected to an electric field force to induce two microfluidic flows, specifically the electrolyte in contact with the dielectric material of the mixing chamber 110. (electrolyte). When the mixing chamber 110 lacks a net charge flow, the first microfluidic A' and the second microfluidic B are each recirculated in the first microfluidic element A and the second microfluidic element B. This recycling phenomenon will result in repeated laminar folding, and this laminar stacking phenomenon will also increase the interfacial area of each fluid, so that the diffusion phenomenon occurs rapidly, and Will cause the formation of a homogeneous mixture. Among them, the above laminar flow also refers to the flow mode of the fluid itself and the flow rate of such fluids tends to be low. It will be apparent that in the construction of the conventional microfluidic device, the electron currents supplied by the DC power supplies 135 and 145, respectively, are moved in a single direction. In other words, such an electric state cannot increase the mixing area of the microfluids of both the first microfluidic A' and the second microfluidic B'. Moreover, for the structure of the microfluidic device, at least a portion of the mixing chamber 110 must be a dielectric material so that the upper and lower sets of electrodes 130 and electrodes 140 can be assembled. Therefore, it is also necessary for the microfluidic structure to provide a more elaborate geometry or to propose a beneficial mixing process on the microfluidic bioanalyzer and its system. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a microfluidic device for improving mixing effects for mixing two different fluids of a different conductivity liquid, wherein the microfluidic device generates an electroosmotic driving fluid in direct current (electrokinetically- Driving a first microfluid and a second microfluid in a main conduit for mixing, and using a periodic pulse signal to change the flow of the first microfluid, such that the first microfluid and the second The microfluids are alternately squeezed to increase the contact area, thereby increasing the mixing effect. According to the above object of the present invention, the present invention provides a microfluidic device capable of improving mixing effect, and the present invention discloses a microfluidic device capable of improving mixing effect, the microfluidic mixing device comprising a mixer body, An electrode unit, a pulse signal generator and a power supply, and the mixer body has a main pipe, a first inlet, a second inlet and an outlet. When a first microfluid and a second microfluid are respectively introduced into the main conduit by the first inlet and the second inlet, the DC drive voltage of the electrode unit is supplied by the power supply to change the first microfluid in the main pipeline and An electroosmotic flow field of the second microfluid, which is supplied to the electrode unit by the pulse signal generator to generate a periodic pulse signal to change the flow rate of the first microfluid, so that the first microfluid and the second microfluid are mutually squeezed Press to increase the contact area, thereby increasing the mixing effect. [Embodiment] The presently preferred embodiment will be discussed in detail below. It should be understood, however, that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific specific contexts. The specific embodiments discussed are merely illustrative of specific constructions of the invention and are not intended to limit the scope of the invention. Referring to Figure 2, there is shown a schematic view of the microfluidic mixing device of the present invention. As can be seen from the figure, the microfluidic mixing device 2 comprises a mixer body 21, an electrode unit 22, a pulse signal generator 23 and a power supply 24. The mixer body 21 has a main pipe 211, at least a first inlet 212, at least a second inlet 8 200914363 213 and an outlet 214. The first inlet 212 and the second inlet 213 are also used for introducing a first microfluid A and a second microfluid B, and are respectively disposed between the first inlet 212 and the second inlet 213. There is a first approach channel 215 and a second approach channel 216 for connecting the main conduit 211, and after mixing the first microfluidic A' and the second microfluid b, the first microfluid is extracted by the outlet 214. . The electrode unit 22 includes a plurality of positive electrode microelectrode plates 221 and a negative electrode microelectrode plate 222, and the positive electrode microelectrode plate 221 is disposed inside the first inlet 212 and the second inlet 213 and the negative electrode electrode plate 222 is placed in the outlet. The inside of the 214 is well known, and the positive electrode microelectrode plate and the negative electrode plate 222 are made of any conductive material of platinum, copper, titanium, chromium, aluminum or platinum. Platinum is a representative example. The pulse signal generator 23 is connected to the positive electrode microelectrode plate 221 and the negative electrode microelectrode plate 222 of the electrode unit 22, and the pulse signal generator 23 is capable of providing a pulse signal of a triangular waveform or a square waveform, and the pulse signal is Periodic pulse signal. The power supply unit 24 is connected to the positive electrode microelectrode plate 221 and the negative electrode microelectrode plate 222 of the electrode unit 22, and provides different voltage modes for the first microfluidic A and a second microfluid B for driving. Further, the mixer body of the microfluidic mixing device 2 of the present invention has a T-shaped structure as a geometric shape. The reason for this is that under a fixed Reynolds number, the greater the ratio of the height of the main duct 211 to the height/width of the width of the first inlet 212 and the second inlet 213, the better the mixing is produced. In other words, the mixer body is also referred to. The height of the main pipe 211 of 21 is greater than the width of the first inlet 212 and the second inlet 213. 200914363 As in an embodiment, the first microfluidic A' and the second microfluidic B' having different conductance concentrations are intended to be mixed. Please refer to FIG. 3 , which is a schematic diagram showing the mixing process of two microfluids in the main pipeline according to FIG. 2 , wherein the microfluidic device of the present invention also provides a flat plate 25 for placing the mixer body 21 . Put it on. In the present embodiment, before the two microfluids are to be mixed, the ruthenium dye is used to judge the degree of mixing of the first microfluidic A' and the second microfluidic B'. First, sodium tetraborate is used as a buffer solution, and As the first microfluidic A', and using sodium tetraborate plus fluorescent powder as the fluorescent dye, also as the second microfluidic B'. Next, the buffer solution A' is poured into the first inlet 212 and the fluorescent dye B' is poured into the second inlet 213, and the power supply is connected to the first inlet 212, the second inlet 213 and the outlet 214 of the mixer body. The device 24 applies a DC/DC power supply. Obviously, the DC drive power source generates an electrokinetice/electroosmosis flow field to promote the buffer solution A' and the fluorescent light. Dye B'. During the mixing of the two microfluids, the electroosmotic flow field generated by the DC voltage is driven to cause the buffer solution A' and the fluorescent dye B' to flow to each other during the process of flowing to the main pipe 211, and by pulse signals. The periodic pulse signal such as a triangular waveform or a square waveform outputted by the generator 23 changes the flow rate of the fluorescent dye B'. As shown in FIG. 4, the figure shows the buffer solution A' and the firefly according to FIG. Schematic diagram of the state in which the light dye B' is mixed in the main pipe. As can be seen from the figure, when the periodic pulse signal is in the high potential (H state) and the low potential (L state) alternately, at this time, the fluorescent dye B' will have a plurality of continuous positive spiral waves, resulting in These positive swirling waves mean that the flow rate of the fluorescent dye B' can be changed, so that the buffer solution A' and the 200914363 fluorescent dye B' are mutually squeezed, and the inter-extrusion process can also increase the buffer solution. The contact interface between the two fluids of A' and the fluorescent dye B' can increase the molecular exchange rate of the two fluids and thereby improve the mixing effect. The microfluidic device designed by the present invention is an active micromixer, which discusses the two-dimensional flow field phenomenon and mixing effect of the active micromixer, and the main design concept of the active mixer is limited. In the space, the contact area between at least two microfluids can be increased, and the mixing distance of the two microfluids is extended, and the space expansion of the main pipe is used to reduce the flow rate to increase the diffusion effect of the two microfluids. In the laminar flow state, in order to improve the mixing efficiency of the two microfluidics, the main design concept of the microfluidic device of the present invention can be divided into the following two modes: the first mode is to change the geometry of the flow channel, the present invention The mixer body design of the microfluidic device is a T-type mixer body. During the mixing process, the first microfluid and the second microfluid of different conductivity concentrations are respectively in different directions of the first inlet and the second inlet respectively. Injected into the main pipeline, the numerical simulation results show that the local eddy current and the contact area between the two microfluids are generated in the limited space due to the extrusion, so as to facilitate the intermolecular diffusion, effectively improve the liquid contact surface, so that the mixing effect Huge improvements. The second approach is to use an effective and continuous source of disturbance to enhance flow field turbulence and electrokinetic instability (EKI) and increase the number of exposures between the two fluids. Different from the conventional hybrid technique, the two microfluidic flow directions are only mixed and buffered along a single X-axis direction, and the embodiment of the present invention generates a electrokinetice phenomenon/electroosmotic flow field by using a DC driving power source 11 200914363 (electroosmosis flow Held), in order to promote the microfluids with different conductivity levels, and then at least one periodic pulse signal generated by the pulse signal generator changes the flow rate of the fluorescent dye B' in the main channel, so that 'buffer solution A' and firefly The photodye B' is alternately extruded, thereby increasing the area of such micro-fluid mixing. And for the mixer body to be capable of mixing in an electroosmosis environment, at least a portion of the mixer body is composed of a dielectric material such as a silica or an alumina, and is an enhancement pulse. The intensity of the signal, and then referring to FIG. 3, the microfluidic device 2 of the present invention further includes an amplifier 26, and the amplifier 26 is coupled to the pulse signal generator 23 for amplifying the pulse signal. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the detailed description of the drawings is as follows: Figure 1 is a conventional microfluidic device utilizing electric technology 2 is a schematic diagram of a microfluidic device of the present invention; FIG. 3 is a schematic view showing an experimental microfluidic mixing device according to FIG. 2; and FIG. 4 is a diagram according to FIG. A schematic diagram of the state in which the first microfluid and the second microfluid are mixed in the main conduit. 12 200914363 [Description of main component symbols] A: first microfluidic component; 25: flat plate; and B: second microfluidic component; 26: amplifier. A': first microfluid; .B': second microfluid; 10: microfluidic device; 110: mixing chamber; 115: first inlet; 120: second inlet; 125: outlet; 130 and 140: electrode; 135 and 145: DC power supply; 2: microfluidic device; 21: mixer body; 211: main pipe; 212: first inlet; 213: second inlet; 214: outlet; 215: first approach; : second approach; 22: electrode unit; 221: positive microelectrode plate; 222: negative microelectrode plate; 23 · pulse signal generator; 2 4: power supply, 13

Claims (1)

200914363 十、申請專利範圍: 1. 一種提高混合效果之微流體裝置,至少包含: 一混合器本體,該混合器本體具有連通之一主管 道、至少一第一入口、至少一第二入口及一出口,其 中該第一入口及第二入口係用以分別導入所欲混合之 至少一第一微流體及至少—第二微流體,且該出口係 用以導出混合後之微流體; 一電極單元’包含複數個正極及負極微型電極 板,且該些正極微型電極板係分別置入該第一入口及 该第二入口及該些負極微型電極板係置入該出口; 一脈衝信號產生器,係連接於該電極單元,且該 脈衝彳§號產生器係產生一脈衝信號;以及 電源供應器,係連接於該電極單元,且該電源 供應器提供不同之電壓模式作為該些微流體驅動之 其中,藉由該脈衝信號係能改變該主流道内的該 ^微=體,使得該第一微流體及該第二微流體交互 擠壓,藉此,來增加此些微流體混合的面積。 專利範圍第1項所述之裝置,其中該電源供應 器包含一直流驅動電源。 Ιΐΐ專利範圍第1項所述之裝置,其中該混合器本 體係為一 τ型混合器本體。 Hi專利範圍第1項所述之裝置,其中該電極單元 以白金、銅、鈦、鉻、錫、鉬之任_導電性材料所 200914363 申請專利範圍第i項所述之裝置,其中該脈衝信號 係為一周期性脈衝信號。 申ί專利範圍第1項所述之I置,其中該脈衝信號 生器係能產生三角波形或方波形之一周期性脈衝信 就。 7·如申請專利範圍第i項所述之裝置,其中該混合器本 體之至〉、一部分係由石夕(silica)或銘(alumina)的介電材 料所構成。 8.如申請專利範圍第1項所述之裝置’其中該T型混合 器本體之主管道之高度大於該第一入口及該第二入口 之寬度。 9.如申請專利範圍第1項所述之裝置,其中該微流體裝 置更包合一放大器,該放大器用以放大該脈衝信號。 15200914363 X. Patent application scope: 1. A microfluidic device for improving mixing effect, comprising at least: a mixer body having a main pipe connected to the main pipe, at least one first inlet, at least one second inlet and one An outlet, wherein the first inlet and the second inlet are respectively for introducing at least one first microfluid and at least a second microfluid to be mixed, and the outlet is for deriving the mixed microfluid; 'containing a plurality of positive and negative microelectrode plates, and the positive electrode microelectrode plates are respectively placed in the first inlet and the second inlet and the negative electrode microelectrode plates are placed in the outlet; a pulse signal generator, Connected to the electrode unit, and the pulse generator generates a pulse signal; and a power supply is connected to the electrode unit, and the power supply provides different voltage modes as the microfluidic drive The pulse signal system can change the micro-body in the main channel, so that the first micro-fluid and the second micro-fluid are mutually squeezed. Thereby, to increase the area of such microfluid mixing. The device of claim 1, wherein the power supply comprises a DC drive power source. The device of claim 1, wherein the mixer system is a τ type mixer body. The device of the first aspect of the invention, wherein the electrode unit is a device according to the invention of claim 1, wherein the pulse signal is a platinum, copper, titanium, chromium, tin, or molybdenum material. It is a periodic pulse signal. The I-position described in claim 1 of the patent range, wherein the pulse signal generator is capable of generating a periodic pulse signal of a triangular waveform or a square waveform. 7. The device of claim i, wherein the mixer body is formed by a dielectric material of a silica or an alumina. 8. The device of claim 1, wherein the height of the main conduit of the T-type mixer body is greater than the width of the first inlet and the second inlet. 9. The device of claim 1, wherein the microfluidic device further comprises an amplifier for amplifying the pulse signal. 15
TW96135584A 2007-09-21 2007-09-21 Micro-fluid device capable of enhancing mixing effect TW200914363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96135584A TW200914363A (en) 2007-09-21 2007-09-21 Micro-fluid device capable of enhancing mixing effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96135584A TW200914363A (en) 2007-09-21 2007-09-21 Micro-fluid device capable of enhancing mixing effect

Publications (1)

Publication Number Publication Date
TW200914363A true TW200914363A (en) 2009-04-01

Family

ID=44725439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96135584A TW200914363A (en) 2007-09-21 2007-09-21 Micro-fluid device capable of enhancing mixing effect

Country Status (1)

Country Link
TW (1) TW200914363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708848A (en) * 2015-05-29 2018-02-16 港大科桥有限公司 Method and apparatus for the quick mixing of high-viscosity fluid
CN110468048A (en) * 2019-09-16 2019-11-19 许中伟 Micromation device and method based on microfluidic system control production engineering immunocyte
CN110585938A (en) * 2018-06-13 2019-12-20 武汉神宝宠物用品有限公司 Device for mixing cleaning solution, water and air by using vacuum negative pressure principle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708848A (en) * 2015-05-29 2018-02-16 港大科桥有限公司 Method and apparatus for the quick mixing of high-viscosity fluid
CN107708848B (en) * 2015-05-29 2021-06-29 港大科桥有限公司 Method and apparatus for rapid mixing of high viscosity fluids
CN110585938A (en) * 2018-06-13 2019-12-20 武汉神宝宠物用品有限公司 Device for mixing cleaning solution, water and air by using vacuum negative pressure principle
CN110585938B (en) * 2018-06-13 2024-02-09 深圳市阿可美电器有限公司 Device for mixing cleaning solution, water and air by using vacuum negative pressure principle
CN110468048A (en) * 2019-09-16 2019-11-19 许中伟 Micromation device and method based on microfluidic system control production engineering immunocyte
CN110468048B (en) * 2019-09-16 2022-09-02 许中伟 Micro-scale equipment and method for controlling production of engineered immune cells based on micro-fluidic system

Similar Documents

Publication Publication Date Title
US6482306B1 (en) Meso- and microfluidic continuous flow and stopped flow electroösmotic mixer
Nazari et al. Mixing process and mass transfer in a novel design of induced-charge electrokinetic micromixer with a conductive mixing-chamber
Wu et al. A novel micromixer based on the alternating current-flow field effect transistor
Venancio-Marques et al. Microfluidic mixing triggered by an external LED illumination
Zhao et al. Tunable droplet manipulation and characterization by AC-DEP
Wang et al. Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows
Xiong et al. Numerical study of a three‐dimensional electroosmotic micromixer with Koch fractal curve structure
Meng et al. AC electrothermal mixing for high conductive biofluids by arc-electrodes
Fu et al. Rapid vortex microfluidic mixer utilizing double-heart chamber
CN109569392A (en) A kind of active micro-mixer of Y type based on surface acoustic wave
JP2004053370A (en) Chemical analysis method and apparatus
Zhang et al. Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection
Liu et al. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: Physical perspectives and theoretical analysis
Tai et al. Micromixer utilizing electrokinetic instability‐induced shedding effect
Liu et al. Simulation analysis of rectifying microfluidic mixing with field‐effect‐tunable electrothermal induced flow
Tavari et al. A systematic overview of electrode configuration in electric‐driven micropumps
Wu et al. AC electroosmosis micromixing on a lab-on-a-foil electric microfluidic device
CN101757864B (en) Bubble swinging micro-mixing system
TWI322032B (en) Microfluid mixer
TW200914363A (en) Micro-fluid device capable of enhancing mixing effect
Chen et al. Mixing performance of the induced charge electro-osmosis micromixer with conductive chamber edges for viscoelastic fluid
US8662860B2 (en) Microfluidic driving system
Chen et al. Design and numerical simulation of a novel microfluidic electroosmotic micromixer with three electrode pairs
CN201596477U (en) Bubble oscillating micro-mixing system
US9221023B2 (en) Liquid mixing apparatus