TW200914177A - Lathe - Google Patents

Lathe Download PDF

Info

Publication number
TW200914177A
TW200914177A TW096150562A TW96150562A TW200914177A TW 200914177 A TW200914177 A TW 200914177A TW 096150562 A TW096150562 A TW 096150562A TW 96150562 A TW96150562 A TW 96150562A TW 200914177 A TW200914177 A TW 200914177A
Authority
TW
Taiwan
Prior art keywords
cam
workpiece
spindle
lathe
tool
Prior art date
Application number
TW096150562A
Other languages
Chinese (zh)
Other versions
TWI464024B (en
Inventor
Mari Itoh
Isao Ogawa
Junji Teraya
Michihiro Hoshi
Masaharu Sugiyama
Original Assignee
Seiko Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instr Inc filed Critical Seiko Instr Inc
Publication of TW200914177A publication Critical patent/TW200914177A/en
Application granted granted Critical
Publication of TWI464024B publication Critical patent/TWI464024B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B7/00Automatic or semi-automatic turning-machines with a single working-spindle, e.g. controlled by cams; Equipment therefor; Features common to automatic and semi-automatic turning-machines with one or more working-spindles
    • B23B7/02Automatic or semi-automatic machines for turning of stock
    • B23B7/06Automatic or semi-automatic machines for turning of stock with sliding headstock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/341Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission cam-operated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

Intended is to perform the cam adjustment of a cam type lathe easily. The movement of a blade (21) in a cutting direction is controlled by a cam mechanism (10), and the movement of a spindle stock (2) in a Z-axis direction is numerically controlled by a servo-motor (6). A lathe (1) detects the rotating angle, the rotating speed and so on of a camshaft (16) with sensors. On the basis of the values detected, moreover, the lathe (1) controls the movement of the spindle stock (2) so that it can move the cam mechanism (10) and the spindle stock (2) synchronously. On the other hand, a ball screw (7) and a nut (8) are arranged so that the driving force in the Z-axis direction by the servo-motor (6) may act homogeneously on a slide face (17), thereby to prevent the heterogeneous wear of the slide face (17).; Thus, the lathe (1) controls the spindle stock (2) numerically, and separates the same from the cam mechanism (10), thereby to facilitate the adjustment of the cam mechanism (10) and the setting of the offset value of the spindle stock (2).

Description

200914177 九、發明說明 【發明所屬之技術領域】 本發明係關於一種車床裝置,例如關於一種組 値控制功能的凸輪式之車床裝置。 【先前技術】 車床,係一種從棒材藉由切削加工予以切削出 的機械加工裝置。在該種車床中雖然有各種的車床 尙有一種藉由凸輪來控制刀具之動作或主軸台之動 輪驅動式車床。 第2 0圖係習知凸輪驅動式車床的正面圖。該 例如係被使用於從棒材切削出手錶之零件等小型 時。 車床101,係具備:基盤部105;及在基盤部 可朝主軸方向滑動的主軸台1 〇 2與頂心台1 0 4 ;以 於基盤部105的刀具台103。 在基盤部1 〇 5,係將凸輪機構1 1 0、1 5 1、1 5 2 輪軸116而保持於同軸,凸輪軸 116,係夾介 1 1 5,藉由凸輪驅動馬達而旋轉驅動。 另外,凸輪軸馬達,由於在第20圖中係位於 輪部1 1 5之死角的位置所以並未圖示。 凸輪機構1 1 0,係由複數個凸輪所構成,各凸 分別限定與個別刀具1 2 1之主軸垂直的方向之動作 1 2 1,係以工件爲中心而於周圍具備複數個成輻射先 合有數 加工品 ,但是 作的凸 車床, 的零件 105上 及固定 藉由凸 齒輪部 成爲齒 輪,係 。刀具 -5- 200914177 另一方面,凸輪機構151,係限定工件夾持的時序, 凸輪機構1 5 2 ’係限定主軸台1 0 2之主軸方向的動作。 頂心台1 〇4 ’係藉由頂心而支撐工件,且藉由與主軸 台102連結而與主軸台102 —起移動。 各凸輪的形狀、以及安裝於凸輪軸116的凸輪之相對 角度’係從工件以加工品自動地被切削加工的方式而設 定,車床1 0 1 ’係藉由驅動凸輪軸丨i 6使…—工件供給— 夾頭閉合^刀具121與主軸台1〇2動作而可使工件反覆進 行切削—工件切斷θ夾頭打開—工件供給—…之循環作 業。 再者,與本習知例的車床同樣,有一種NC自動車床 被公開作爲在工件之周圍配置刀具成輻射狀的技術(例 如,參照專利文獻1)。該技術,並非是利用凸輪,而是 藉由數値控制來進行刀具的動作。 專利文獻1:日本特開平4-135103號公報 如此’雖然對刀具進行數値控制的車床被開始使用, 但是喜用凸輪驅動式車床的使用者仍多。 又,凸輪驅動式車床由於係使刀具仿照凸輪之外周而 滑順地移動,所以比起數位控制的數値控制方式,還具有 可容易地形成平滑加工面的優點。 【發明內容】 (發明所欲解決之問題) 但是,凸輪驅動式車床中,由於係以1支的凸輪軸$ -6 - 200914177 行朝垂直於主軸的方向移動的刀具之控制、以及朝主軸之 方向移動的主軸台之控制(亦即,由於係以1支的凸輪軸 進行移動方向不同的控制),所以很難進行凸輪的調節, 且需要闻度的熟練技術。 因此,本發明之目的,係在於提供一種可容易地進行 凸輪調整的車床裝置。 (解決問題之手段) 本發明爲了達成前述目的,申請專利範圍第1項所記 載的發明,係提供一種車床裝置,其特徵在於:具備:主 軸,其在軸線上具備夾持被加工物的夾持手段;及主軸旋 轉手段,其旋轉前述主軸;及主軸移動手段,其藉由數値 控制將前述主軸朝軸線方向移動;及刀具保持手段,其保 持對前述被加工物進行切削的刀具;及刀具移動手段,其 將前述刀具保持手段,仿照旋轉的凸輪之形狀,朝與前述 主軸之軸線垂直的方向移動;以及凸輪旋轉手段,其使前 述凸輪旋轉。 申請專利範圍第2項所記載的發明,係提供一種申請 專利範圍第1項所記載的車床裝置,其中,具備檢測前述 凸輪之旋轉角度的旋轉角度檢測手段,前述主軸移動手 段,係根據前述檢測出的旋轉角度使前述主軸移動。 申請專利範圍第3項所記載的發明,係提供一種申請 專利範圍第1或2項所記載的車床裝置,其中前述主軸移 動手段,係將使前述主軸移動之力,在包含前述主軸之軸 -7- 200914177 線的鉛垂面內,作用於與前述軸線平行的方向。 申請專利範圍第4項所記載的發明,係提供一種申請 專利範圍第1、2或3項所記載的車床裝置,其中,具 備:支撐手段,其從與前述夾持手段相對向之側來支撐前 述被加工物;以及連結手段,其將前述夾持手段與前述支 撐手段之距離維持於預定距離來連結。 申請專利範圍第5項所記載的發明,係提供一種申請 專利範圍第4項所記載的車床裝置,其中前述連結手段, 係以從前述被加工物切削所得的加工品之長度單位,可調 節地構成前述所連結的長度。 申請專利範圍第6項所記載的發明,係提供一種申請 專利範圍第1至5項中任一項所記載的車床裝置,其中, 具備:旋轉刀具保持手段,其將旋轉的刀具保持於與前述 主軸成預定角度的旋轉軸之周圍;以及旋轉刀具移動手 段’其在以前述旋轉的刀具切削前述被加工物時,使前述 旋轉刀具保持手段移動。 申請專利範圍第7項所記載的發明,係提供一種申請 專利範圍第6項所記載的車床裝置,其中前述旋轉刀具移 動手段’係仿照旋轉的旋轉刀具用凸輪之形狀來移動前述 旋轉的刀具。 申請專利範圍第8項所記載的發明,係提供一種申請 專利範圍第7項所記載的車床裝置,其中,在前述旋轉刀 具用凸輪’設定有:前述旋轉的刀具進刀切入於前述被加 工物的第1旋轉角度、以及前述旋轉的刀具離開被加工物 -8- 200914177 的第2旋轉角度,前述凸輪旋轉手段,係將前述旋轉刀具 用凸輪的旋轉角度,交互地旋轉於前述第1旋轉角度與前 述第2旋轉角度。 申請專利範圍第9項所記載的發明,係提供一種申請 專利範圍第8項所記載的車床裝置,其中,前述主軸旋轉 手段’係在前述旋轉刀具用凸輪被保持於前述第1旋轉角 度之期間’將前述被加工物之旋轉角度保持於預定角度, 在前述旋轉刀具用凸輪被保持於前述第2旋轉角度之期 間’以前述旋轉的刀具切削下一個切削部位的方式使前述 被加工物只旋轉預定角度。 申請專利範圍第1 0項所記載的發明,係提供一種申 請專利範圍第9項所記載的車床裝置,其中前述主軸移動 手段,係在前述旋轉刀具用凸輪被保持於前述第1旋轉角 度之期間,將前述主軸移動於朝向前述旋轉的刀具導出前 述被加工物的方向,而在前述旋轉刀具用凸輪被保持於前 述第2旋轉角度之期間將前述主軸復位於移動前的位置。 申請專利範圍第1 1項所記載的發明,係提供一種申 請專利範圍第1至5項中任一項所記載的車床裝置,其中 前述刀具保持手段,係具備將前述所保持的刀具旋轉於與 前述主軸成預定角度的旋轉軸之周圍的刀具旋轉手段。 申請專利範圍第1 2項所記載的發明,係提供一種申 請專利範圍第4或5項所記載的車床裝置,其中,具備: 彈壓手段,其將前述支撐手段彈壓於前述被加工物;以及 彈壓解除手段,其解除前述彈壓手段之彈壓,前述連結手 -9 - 200914177 段,係在前述彈壓手段彈壓前述被加工物之狀態時連 述夾持手段與前述支撐手段,而在以前述彈壓解除手 除彈壓之狀態時不連結前述夾持手段與前述支撐手段 申請專利範圍第1 3項所記載的發明,係提供一 請專利範圍第4、5或1 2項所記載的車床裝置,其中 備: 材料導出手段,其導出前述被加工物之材料;以 定手段’其藉由使前述被導出的材料之前端抵接於抵 件來限定導出量。 申請專利範圍第1 4項所記載的發明,係提供一 請專利範圍第1 3項所記載的車床裝置,其中前述抵 件,係前述所保持的刀具、或前述支撐手段。 (發明效果) 依據本發明,則藉由將主軸方向之控制當作數値 並使主軸台之控制從刀具之控制中獨立出,即可容易 行凸輪的調整。 【實.施方式】 (1)實施形態之槪要 第1圖(b)中,刀具21(第1圖(a))之進刀切入方 移動係藉由凸輪機構來控制,而主軸台2之Z軸 的移動係藉由伺服馬達6來進行數値控制。 車床1,係藉由感測器來檢知凸輪軸1 6之旋轉 結前 段解 〇 種申 ,具 及限 接構 種申 接構 控制 地進 向的 方向 角度 -10- 200914177 或旋轉速度等。然後’車床1 ’係根據被檢知的値來控制 主軸台2之移動,藉此可使凸輪機構10與主軸台2同步 移動。 又,滾珠螺桿7與螺帽8,係以使伺服馬達6所進行 的Z軸方向之驅動力均等地作用於滑動面1 7的方式而配 置,防止滑動面1 7的不均等磨損。 如此,車床1,藉由將主軸台2之控制當作數値控制 而從凸輪機構1 0分離’即可容易地進行凸輪機構1 〇之調 整,又亦可容易地進行主軸台2之偏位値的設定。 更且,由於可防止滑動面1 7之不均等磨損,所以可 維持工件的加工精度,且亦可容易地進行滑動面1 7的補 修作業。 (2 )實施形態之詳細 第1圖係顯示本實施形態的車床裝置,第1圖(a)係 顯示凸輪部分的側面,第1圖(b)係顯示車床裝置的正面 圖。 如第1圖(b)所示’車床1,大致區分,係由基盤部 5、主軸台2、刀具台3以及頂心台4所構成。 基盤部5(底座台),係在上面設置有主軸台2、刀具 台3以及頂心台4 ’在內部形成有用以驅動被設置於刀具 台3的刀具(切削刀)之凸輪機構1 〇。 又’基盤部5之主軸台2與頂心台4的設置部分,係 成爲形成有鳩尾槽(dovetail slot)構造等的滑件導座(slide -11 - 200914177 guide)之滑動面。因而,主軸台2與頂心台4,係可分別 將基盤部5之上面導引至滑件導座並朝Z軸方向移動。 主軸台2,係具備旋轉主軸的主軸馬達1 1、保持工件 (被加工物)的夾頭(第3圖中係以元件符號2 7來圖示)、將 工件導出於加工位置的工件供給裝置1 2、螺帽8以及主 軸1 8等,且被設置於基盤部5的滑動面1 7之上方。 主軸馬達1 1,係設置於主軸台2之上部,藉由使用 滑輪或皮帶等的驅動力傳遞機構將旋轉力提供給主軸 1 8。主軸馬達1 1,係具有作爲主軸旋轉手段之功能。 螺帽8 ’係固定於主軸台2之後部(頂心台4側的相 反側)’在內徑螺合有滾珠螺桿7。螺帽8與滾珠螺桿7, 係具有作爲將伺服馬達6之旋轉運動轉換成主軸台2的Z 軸方向之運動的運動方向轉換機構之功能。另外,將主軸 台2的+Z軸方向稱爲進給方向。 工件供給裝置1 2、主軸1 8以及夾頭,係同軸地形成 於主軸18之軸線(作爲C軸)上。 在主軸1 8、及工件供給裝置1 2,係於主軸1 8之軸線 上形成有使工件貫穿的貫穿孔,工件係***通於貫穿孔並 安裝於車床1。 工件供給裝置12,係藉由來自後述的控制器之指 令’將工件以預定量導出於刀具台3之方向(+ Z軸方向) 並進行工件之裝載。 夾頭’係形成於主軸1 8之前端,具有作爲將工件供 給裝置1 2所導出的工件予以夾持的夾持手段之功能。夾 -12 - 200914177 頭,例如係利用空氣壓力進行開閉,且藉由來自控制器之 指令,在工件供給裝置1 2供給工件時打開,在工件加工 時閉合而將工件予以夾持。 主軸1 8、工件供給裝置1 2、夾頭,係成爲一體並在 主軸18之軸線周圍旋轉,一旦主軸馬達11使主軸18旋 轉,工件就會隨之而旋轉。 在主軸台2之-Z軸方向,伺服馬達6固定於基盤部5 上。在伺服馬達6之旋轉軸形成有滾珠螺桿7。 伺服馬達6,係按照控制器之指令,將滾珠螺桿7以 被指定於正負之方向的量以及被指定的旋轉速度而旋轉, 藉由滾珠螺桿7與螺帽8之螺合,使主軸台2以預定量及 預定速度朝Z軸方向移動。 伺服馬達6、滾珠螺桿7、螺帽8以及主軸台2,係 具有作爲將主軸1 8朝軸線方向移動的主軸移動手段之功 能。 螺帽8及滾珠螺桿7,係以該等之中心線與主軸1 8 平行,且涵蓋於包含主軸1 8之軸線的鉛垂面內的方式而 配置,伺服馬達6帶給主軸台2的力量,係在包含主軸 1 8之軸線的鉛垂面內,成爲平行作用於該軸線。 因此’伺服馬達6使主軸台2移動的力量會均等地施 加於滑動面1 7,不會使滑動面1 7偏磨損。 再者’第20圖所示的習知例之車床裝置,依凸輪機 構1 52所造成的力量會施加於主軸台1 02的側面。 因此’偏荷重會作用於滑動面1 7或滑件導座,使該 -13- 200914177 等的磨損提早,並且磨損不均等且偏荷重較大的部分會磨 損較大而造成單邊減少。 因此,有使後述的導套(guide bush)與主軸之同軸精 度降低,使工件的加工精度降低的可能性。然後,在滑動 面1 7之修正方面需要高度的熟練技術。 但是,本實施形態的車床1,由於荷重被均等地分散 施加於滑動面1 7,所以滑動面1 7幾乎不會磨損。又,由 於即使有磨損亦可使磨損量均等,所以與習知相較可容易 地進行滑動面1 7的修正作業。 如第1圖(b)所示,刀具台3,係固定於主軸台2與頂 心台4之間,於其下部的基盤部5內,收納有將複數個凸 輪9a、9b、9c、…(第1圖(a))固定於凸輪軸16的凸輪機 構10。但是,爲了避免圖之繁雜化,元件符號只圖示凸 輪9a。又,在沒有特別區別凸輪9a、9b、9c、…時只簡 單記爲凸輪9。 在凸輪軸1 6之頂心台4側端部形成有齒輪,並收納 於基盤部5之頂心台4側所設置的齒輪部1 5內。 齒輪部15,係將在垂直於Z軸的方向形成有轉子軸 的凸輪驅動馬達之旋轉驅動力傳遞於Z軸方向來驅動凸輪 軸1 6 〇 另外,第1圖(b)中’凸輪驅動馬達係成爲齒輪部J 5 之死角而未圖示。 在此’凸輪驅動馬達、齒輪部1 5以及凸輪軸1 6,係 具有作爲使凸輪旋轉的凸輪旋轉手動之功能。 -14- 200914177 如第1圖(a)所示,在刀具台3設置有導套23,該導 套2 3係形成有以主軸1 8之軸線c爲中心線的導孔,工件 22係插通於該導孔而被定位,並且被導引於加工位置。 在工件22之周圍’配置有複數個刀具21a、21b、 21c、···(圖中爲5個)成爲輻射狀。 刀具2 1 a、2 1 b、2 1 c、…,係分別藉由設置於個別的 機械臂25a、25b、25c、…之前端的刀具保持手段而可裝 卸地安裝。 ^ 另外,第1圖(a)中,爲了簡化圖雖然只在1個刀具 21a、及機械臂25a附記元件符號,但是從刀具21a、機 械臂25a開始依序爲刀具21b、機械臂25b、刀具21c、 機械臂25c、…。 又’以下’在沒有特別區別刀具 21a、刀具 21 b.....以及機械臂25a、機械臂25b.....時,只簡單 地記爲刀具2 1、機械臂2 5。 機械臂25a,係具備可在平行於主軸18之軸線C的 旋轉軸之周圍迴旋的固定軸,一旦機械臂25a迴旋於固定 軸之周圍’就會隨之使刀具21a朝進刀切入方向移動。另 外’將刀具21的進刀切入方向設爲X軸,將遠離主軸18 的軸線C之方向設爲+X軸方向。 另一方面,在機械臂25a之端部,形成有接觸件 24a,接觸件24a之目(j端係被按壓於凸輪9a之外周。 因此’一旦凸輪9 a旋轉,接觸件2 4 a就會仿照凸輪 9a之外周面而移動’且隨之而使刀具21a朝X軸方向移 -15- 200914177 動。亦即,凸輪9a之外周的形狀會限制刀具21a之移 動。 機械臂25a、及接觸件24a,係具有作爲將刀具保持 手段’仿照旋轉的凸輪9 a之外周,朝垂直於主軸1 8之軸 線的方向移動的刀具移動手段之功能。 同樣地’凸輪機構1 0,係組合複數個凸輪9(凸輪 9a、9b、9c'…)而成,各凸輪9a、9b、9c、…之外周的 形狀’係分別限定刀具2 1 a、2 1 b、2 1 c、…的運動。 因此,一旦使凸輪機構10旋轉,就可使各刀具21個 別地進行事先設定好的動作。 另外,本實施形態的凸輪9,係被稱爲板凸輪。 凸輪除此以外上有平面溝槽凸輪、圓筒溝槽凸輪、端 面凸輪等的各種凸輪,車床1亦可使用任何種類的凸輪。 即使在任何的凸輪中,亦仿照事先形成於外周或溝槽 等的凸輪之形狀而使刀具2 1動作。 雖未圖示,但是在凸輪軸1 6,設置有由編碼器等所 構成的旋轉角度檢測手段,後述的控制器係可檢測凸輪機 構1 0之旋轉角度。 車床1,係使用所檢測出的凸輪機構1 〇之旋轉角 度、及主軸台2之Z座標値,以凸輪機構1 〇之動作與主 軸台2之動作同步的方式來控制凸輪驅動馬達與伺服馬達 6 〇 又,亦可以從旋轉角度中計算凸輪機構1〇之角速 度,或從Z座標値中計算主軸台2之速度(亦可以其他的 -16- 200914177 角速度感測器或速度感測器來檢知該等),並使用該等來 控制主軸台2之動作的方式所構成。 另外,由於凸輪機構10之角速度、角加速度以及主 軸台2之速度、加速度,係分別爲凸輪機構10之旋轉角 度的時間變化、主軸台2之Z座標値的時間變化,所以使 用該等的控制亦涵蓋於凸輪機構10之旋轉角度與主軸台 2之Z座標値的控制中。 該種控制的具體例,例如係將凸輪軸1 6之角度設爲 Dx,將主軸台2之Z座標設爲Dz,將凸輪軸16之角速度 設爲Vx’將主軸台2之速度設爲Vz,且如下所示,限定 Dx、Dz、Vx的數値控制程式被輸入於車床i。 (Dx [度;]、Dz(mm)、Vx[度 /[mm]]) = (0、〇、10)、(5、 0、 10)、 (7、 10、 10)、 (8、 0、 10)、 (12、 -5、 10)、 (13、 0、10)…(數式1) 該等的値之輸入’例如係操作者藉由使凸輪軸1 6旋 轉並確認各工序(p r 〇 c e s s)的開始角度、結束角度而輸入作 爲Dx(凸輪9a ’由於包含有製作誤差或安裝誤差所以進行 實測)’並輸入被事先提供作爲設計値的Dz、及所期望的 V X而進行。 控制’係從該資料中,藉由Vz=(Dz/Dx)xVx_··(數 式2)而計算Vz’且可藉由此而控制主軸台2之移動速 度。 -17- 200914177 如第1圖(b)所示,頂心台4(芯提台),係藉由: 而支撐工件22之端部。頂心1 3,係可使用固定式 轉式的頂心。 頂心台4係與主軸台2同樣地設置於基盤部5 所形成的滑動面1 7,可藉由滑動導座朝主軸1 8之 向(Z軸方向)移動。 頂心台4,係可藉由連結機構而與主軸台2連 此與主軸台2 —同朝Z軸方向移動。如後述般,該 構,係可變更頂心台4與主軸台2的連結距離。 第2圖係顯示以車床2加工後的加工品之一例 亦圖示Z軸方向。另外,第2圖中雖未圖示X軸 係爲垂直於Z軸的方向。 該加工品,係藉由刀具2 1而從棒材切削加工 例如,藉由黃銅等的金屬所構成。 如圖所示,加工品,係長度2.5 [mm]、直徑1 左右,例如當作手錶等的小型精密機械的零件來使 以下,使用該加工品並就凸輪機構1 0與主軸ί 之動作例加以說明。 另外,該加工例爲其一例,例如尙有粗糙切削 精細加工等的各種加工方法。 加工品的+ Ζ軸側之端部,係形成有垂直於Ζ 面201。端面201,係在固定刀具21之Ζ座標的 (亦即,固定主軸台2的狀態),藉由凸輪機構1 〇 21朝-X軸方向移動來加工。 頁心1 3 、或旋 之上面 軸線方 結,藉 連結機 。圖中 ,但是 所成, .5 [ m m ] 甲。 !達11 後進行 軸的端 狀態下 將刀具 -18- 200914177 該情況,數値控制程式,係以凸輪軸1 6之旋轉角度 從形成端面20 1用之開始角度至到達結束角度,將主軸台 2之Z座標保持於固定的方式所構成。 在端面 201之-Z軸側形成有推拔面 202。推拔面 202,係朝-Z軸方向使外徑以固定比例變大的方式來加 工,該加工,係藉由一邊使刀具21朝-Z軸方向以固定速 度移動(亦即,使主軸台2朝-Z軸方向以固定速度移動), 一邊使刀具21利用凸輪機構10朝X軸方向以固定速度 移動而加工。 該情況,數値控制程式,係在凸輪軸1 6之旋轉角度 從形成推拔面202用的開始角度到達結束角度爲止,以將 主軸台2的Z座標之變化率對旋轉角度之變化率保持於預 定的固定値之方式而構成。 在推拔面202之-Z軸側形成有圓柱面203。圓柱面 203,係藉由使刀具21,在利用凸輪機構1〇固定X軸的 狀態下朝-Z軸方向移動(亦即,使主軸台2朝-Z軸方向移 動)而形成。 該情況,數値控制程式,係在凸輪軸1 6之旋轉角度 從形成圓柱面203用的開始角度到達結束角度爲止,以將 主軸台2的Z座標之變化率對旋轉角度之變化率保持於預 定的固定値之方式而構成。 在圓柱面203之-Z軸側,形成有外徑比圓柱面203 更大的圓柱面204,在圓柱面203與圓柱面204之境界形 成有階差部。 -19- 200914177 該階差部’係與端面20 1同樣地在固定刀具2 i 座標的狀態下(亦即,固定主軸台2的狀態下),藉由 具2 1利用凸輪機構1 0朝X軸方向移動而形成。 該情況’數値控制程式,係在凸輪軸1 6之旋轉 從形成階差部用的開始角度到達結束角度爲止,以將 台2之Z座標保持於固定的方式而構成。 圓柱面204之形成方法係與圓柱面203相同。 在圓柱面204之-Z軸方向,係形成有外徑比圓 204更小的圓柱面205,在圓柱面204與圓柱面205 界形成有階差部。 圓柱面205之形成,係與圓柱面203、及圓柱面 相同。 在圓柱面2 0 5之_ Z軸側形成有圓錐面2 0 6。圓 206,係以朝向-Z軸方向使外徑以固定比例變小的方 加工。 該加工’係藉由一邊使刀具2 1朝-Z軸方向以固 度移動(亦即’使主軸台2朝-Z軸方向以固定速度移| 一邊使刀具21利用凸輪機構1〇朝-X軸方向以固定 移動而加工。 該情況’數値控制程式,係在凸輪軸1 6之旋轉 從形成圓錐面206用的開始角度到達結束角度爲止, 主軸台2的Z座標之變化率對旋轉角度之變化率保持 定的固定値之方式而構成。 如以上所述,車床1,係藉由使刀具21之X軸 之Z 將刀 角度 主軸 柱面 之境 204 錐面 式而 定速 办), 速度 角度 以將 於預 方向 -20- 200914177 的移動、與主軸台2之Z軸方向的移動同步(連動),可對 棒材進行二維加工。 又’第2圖的工件,雖然加工了推拔面、圓柱面及圓 錐面,但是除此以外,例如亦可加工如在ZX面內描繪圓 弧或橢圓弧、或者自由曲線的側面。 其次,使用第3圖,就主軸台2與頂心台4的連結機 構加以說明。 第3圖係在車床1之整體圖中,顯示車床1之連結機 構。另外,爲了避免圖的繁雜化而省略了凸輪機構10 等。 如第3圖所示,在基盤部5之內部,以不與凸輪機構 10或凸輪16等干涉的方式設置有由連結桿31、固定構件 32、夾緊機構33等所構成的連結機構。 夾緊機構33,係固定於主軸台2,且插通有連結桿 3 1之其中一端側。夾緊機構3 3,係例如可藉由壓縮空氣 之力等,來夾持或開放連結桿31。 另一方面,連結桿3 1之其中另一端側係固定於固定 構件3 2,進而固定構件3 2係固定於頂心台4。 在如此所構成的連結機構中,車床1,係在打開夾緊 機構33後的狀態移動主軸台2(由於連結被解除所以頂心 台4靜止於固定的位置),在將主軸台2與頂心台4的距 離設爲所期望之値後,藉由閉合夾緊機構3 3,可以該距 離來連結主軸台2與頂心台4。 藉由該連結機構,車床1,係可藉由連結桿31之夾 -21 - 200914177 緊位置而任意地設定主軸台2與頂心台4的連結距離。 如此,車床1,係具備從與夾頭2 7相對向之側來支 撐工件22的頂心1 3 (支撐手段),並且具備將頂心1 3與主 軸台2的距離保持於預定距離而連結的連結機構(連結手 段)。 其次,使用第4圖,就利用該種連結機構的工件供給 方法加以說明。 在習知的凸輪驅動式車床中,由於主軸台的移動、與 刀具的移動係以單一的凸輪軸16來連動,所以一旦加工 1個工件,就以藉由切斷加工等來切斷工件並供給1個份 的下一個工件之方式,在每次製造1個加工品時逐個供給 工件。 相對於此,本實施形態的車床1,由於係藉由以主軸 馬達11進行主軸台2之移動來分離主軸台2之控制機構 與刀具21的控制機構,所以可一次供給能如次地製造複 數個加工品的長度之工件。 例如’第4圖(a)係顯示供給加工品5個份的工件 22(可確保工件22a〜22e)之情況。 工件22的其中一端係利用夾頭27來夾持,其中另一 端係由頂心1 3所支撐。 主軸台2與頂心台4,係藉由連結機構而保持連結加 工品5個份的工件22 ’ 一旦伺服馬達6(第1圖)將頂心台 4朝Z軸方向驅動’頂心台4就會與主軸台2成爲一體而 移動。 -22- 200914177 另外,爲了避免圖的繁雜化,主軸台2與頂心台4並 未圖示,而以夾頭2 7與頂心13直接利用連結桿3 1來連 結的方式而記載。 車床1,係將刀具21抵接於如此被固定的工件22之 前端側的部分(第4圖(a)中爲工件22a)並對之進行加工, 一旦加工結束,就將完成的加工品從工件22切斷。 車床1,係在切斷加工品之後,打開夾緊機構3 3使 主軸台2朝頂心台4之方向移動。 然後,車床1,係工件22之端部一旦抵接於頂心 1 3 (亦即,一旦將主軸台2與頂心台4的距離以加工品i 個份的距離而靠近),就閉合夾緊機構3 3並固定主軸台2 與頂心台4之間的距離。 藉此,工件22的殘餘部分(工件22b~22e的加工品4 個份)可如第4圖(b)所示地藉由頂心13與夾頭27而固 定。 如此,車床1,係一次夾緊加工品複數個份的工件 22’每當工件完成時就將主軸台2與頂心台4之距離以逐 個工件份而縮小。 然後,一旦工件22e之加工結束,工件供給裝置 12(第1圖)就會供給5個份的工件,而連結機構會連結主 軸台2與頂心台4,並進行同樣的加工。 亦即,連結機構,係以從工件22切削的加工品之長 度單位,可調節地構成所連結的長度。 因此,本實施形態的車床1,係可一次夾緊加工品複 -23- 200914177 數個份的工件22,由於沒有必要進行如習知車床 成加工品時進行夾緊作業,所以可縮短工件2 2的 間。 第5圖係以模型顯示車床丨之控制系統的方塊 控制系統46 ’係將操作盤42 '凸輪驅動馬達 服馬達6、主軸馬達丨〗、連結機構驅動裝置4 3以 供給裝置1 2等連接於控制器4 1而構成。 操作盤42,係車床1之操作者用以操作車床 機介面,例如,形成有由液晶顯示器等所構成的 置、輸入文字或數字的鍵盤、各種硬鍵、各種軟鍵 鈕、緊急停止鈕等。 又,亦具備連接來自終端之電纜的介面、磁碟 裝置等。 車床1的操作者,係操作操作盤42 ,並輸入 値控制程式,或執行所輸入的數値控制程式,或者 動控制而操作車床1。 又’操作者’係藉由以車床1進行預定的操作 將主軸台2之位置或凸輪軸16之旋轉角度偏位而 輪軸1 6之旋轉角度與主軸台2之位置的相對關係。 控制器 41 ’ 係具備有 CPU(Central Processing 中央處理單兀)、R0M(Read Only Memory,唯丨 體)、RAM(Random Only Memory,隨機記憶體)以 部(例如,EEPROM(ElectricallyErasable and Programmable ROM,可電性抹除可編程唯讀記憶f 每當完 加工時 圖。 45、伺 及工件 1的人 顯示裝 、啓動 的驅動 編輯數 利用手 ,即可 微調凸 Unit, 讀記憶 及記億 豊)等的 -24- 200914177 電腦,用以控制凸輪驅動馬達45、伺服馬達6、主軸馬達 1 1、連結機構驅動裝置43以及工件供給裝置1 2等。 在記憶部,係儲存有〇 S ( 0 p e r a t i n g S y s t e m,操作系 統)、或數値控制程式,而CPU,係按照該等程式進行數 値控制或其他的控制。 又,在操作者設定凸輪軸16之旋轉角度與主軸台2 之位置的偏位値時,該偏位値亦被儲存於記憶部,在加工 時供C P U參考。 凸輪驅動馬達45,係具有作爲X軸馬達的功能,根 據來自控制器4 1之指令使凸輪軸1 6旋轉。 伺服馬達6,係具有作爲Z軸馬達的功能,用以從控 制器4 1對旋轉角度、旋轉速度、旋轉方向等進行數値控 制。另外,控制器4 1,係監視凸輪軸1 6之旋轉角度或旋 轉速度等,並根據此而對伺服馬達6進行數値控制。 主軸馬達1 1,係具有作爲C軸馬達的功能,根據來 自控制器4 1之指令使主軸1 8旋轉。 連結機構驅動裝置4 3,係根據來自控制器4 1之指 令,例如藉由供給壓縮空氣而對夾緊機構3 3進行開閉作 業。 工件供給裝置1 2,係根據來自控制器4 1之指令供給 工件22,並且例如使用壓縮空氣來對夾頭27進行開閉作 業。 其次,使用第6圖的時序圖說明車床1的動作。 該時序圖,係以橫軸表示凸輪軸1 6的旋轉角度,以 -25- 200914177 縱軸表示刀具21a、21b、21c、主軸台2之前進後退、以 及夾頭27之開閉。在此,爲了簡潔說明,車床1,係具 備三個刀具21,亦即,具備刀具21 a〜2 1 c。 另外’關於主軸台2,係將朝+軸方向之移動當作前 進’將朝相反方向之移動當作後退,關於刀具2 1 ,係將_ X軸方向(亦即’靠近工件2 2的方向)當作前進,將朝相 反方向之移動當作後退。 首先’在凸輪軸16從0度旋轉至30度之期間,車床 1 ’係在打開夾頭2 7並使主軸台2後退之後閉合夾頭 27,並與此同時進行,一邊使已前進中的刀具21a後退一 邊使刀具21c同時前進。另外,車床1,係將刀具21b保 持於後退後的位置。 凸輪軸16之角度一旦超過30度,車床1,就會閉合 夾頭27,一邊使主軸台2前進,一邊使刀具21b後退, 繼續切削工件22。 凸輪軸16之角度一旦超過135度,車床1,就會使 刀具2 1 c後退而結束刀具2 1 c所進行的切削作業,並且與 刀具21c之後退同時使刀具211^前進而開始刀具21b所進 行的切削作業。 凸輪軸16之角度一旦超過270度,車床1,在使主 軸台2後退若干後’會使主軸台2更加前進。又,車盤 1 ’係使刀具2 1 b後退而結束刀具2丨b所進行的切削作 業’並且使刀具2 1 a前進而開始刀具2 1所進行的切削作 業。 -26- 200914177 主軸台16之角度一旦到達360度就完成加工品。 其次’使用第7圖的時序圖說明車床1之自動循環動 作。 首先’操作者’係在凸輪軸16安裝凸輪9a、9b、 9c、…而構成凸輪機構1〇。 在各凸輪9’於觸及凸輪軸16之預定角度的位置藉 由精細描繪線等施予記號’當凸輪軸1 6成爲其預定角度 時,以凸輪的記號與凸輪格式記號(施於凸輪軸1 6的記號) 一致的方式安裝凸輪。 其次’操作者’係在車床1裝設工件2 2,使操作操 作盤42而對該工件22進行加工的數値控制程式載入於控 制器41之CPU(或如(數式1)從操作盤42直接輸入)。 在有必要的情況,操作者’係試作加工品,且計測其 外形而決定凸輪軸16之旋轉角度與主軸台2之Z座標的 偏位値。該偏位値,係藉由操作者而從操作盤42輸入, 並儲存於控制器4 1之記憶部。 操作者一旦按下操作盤42的啓動鈕,CPU就會執行 該數値控制程式,並開始凸輪驅動馬達4 5、伺服馬達6、 主軸馬達〗1以及冷卻劑供給裝置等的控制。 另外,以下的控制,係控制器4 1之C P U根據數値控 制程式進行的。 首先,車床1,係將計數器k初始化爲〇(步驟 (s t e p ) 5 )。計數器k,係關於1個棒材,計數工件供給裝 置1 2供給工件2 2的次數之參數。在此,將工件供給裝置 -27- 200914177 12可導出工件22的次數當作Μ次(Μ爲自然數),且記錄 於數値控制程式中。 其次’車床1 ’係停止全軸(凸輪驅動馬達4 5、伺服 馬達6、主軸馬達〗丨)(步驟1 〇)。 其次’車床1,係驅動主軸馬達11並移動主軸台2, 使頂心台4(與主軸台2處於連結狀態)復位於工件供給時 的初始位置(步驟I5),並打開夾頭27(步驟20)。 其次’車床丨’係打開夾緊機構3 3,並依連結桿3 j 解除與頂心台4的連結’且驅動伺服馬達6而使主軸台2 後退(步驟2 5 )。 其次’車床1’係藉由驅動工件供給裝置12而將工 件2 2只導出預定量(端部抵接於頂心台4的量)來供給(步 驟 3 0)。 在供給工件之後’車床1 ’係閉合夾頭2 7,並且閉合 夾緊機構3 3而連結主軸台2與頂心台4 (步驟3 5 )。另 外’亦可在供給工件22之前閉合夾緊機構3 3。 其次’車床1 ’係將計數器i初始化爲〇 (步驟4 〇)。 5十數器i ’係在供給工件2 2之後計數加工完的加工品之各 數的參數。 如以上所述,車床1,係在設定工件22之後,開始 進行工件22之加工作業(步驟45)。 車床1 ’係驅動主軸馬達11使工件2 2旋轉於主軸之 周圍’並且驅動凸輪驅動馬達45來驅動刀具2 1。 更且’車床1,係一邊監視凸輪軸1 6之旋轉角度一 -28- 200914177 邊根據此而驅動伺服馬達6,使主軸台2與頂心台4移 動。 車床1,係加工品一旦完成,便將此加工品從工件2 2 切斷,而計數器i判斷是否未滿N。 在此的N,係預先設定的自然數,對1次之工件22 供給所加工的加工品之個數。 .在i未滿N的情況(步驟5 0 ;是),車床1,會對i進 位加1(步驟55)。 然後,車床1,係打開夾緊機構33 (步驟60)使主軸台 2只前進加工品1個份(步驟65),並閉合夾緊機構33而 連結主軸台2與頂心台4(步驟70)。 之後,回到步驟45對工件22加工。 另外,亦可在連結主軸台2與頂心台4之後,將一端 夾頭2 7打開並將工件22藉由工件供給裝置1 2按壓於頂 心1 3之後以再次閉合夾頭2 7的方式所構成。藉由該動 作,可更加確實地支撐頂心1 3。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lathe device, such as a cam type lathe device for a group control function. [Prior Art] A lathe is a machining device that cuts from a bar by cutting. In this type of lathe, although there are various lathes, there is a type of lathe that controls the operation of the tool by a cam or a spindle-driven lathe. Figure 20 is a front view of a conventional cam-driven lathe. This is used, for example, when cutting a part of a watch from a bar or the like. The lathe 101 includes a base portion 105 and a spindle table 1 〇 2 and a top center 1 0 4 which are slidable in the direction of the main axis, and a cutter table 103 for the base portion 105. In the base portion 1 〇 5, the cam mechanisms 1 1 0, 1 5 1 , and 1 5 2 are held coaxially with the axle 116, and the cam shaft 116 is coupled to the slider 115 by a cam drive motor. Further, the camshaft motor is not shown in Fig. 20 because it is located at the dead angle of the wheel portion 115. The cam mechanism 110 is composed of a plurality of cams, and each of the protrusions defines an action 1 2 in a direction perpendicular to the main axis of the individual tool 1 2 1 , and has a plurality of radiation-forming first around the workpiece. There are a number of processed products, but the parts 105 of the convex lathe are fixed and fixed by the convex gear portion. Tool -5- 200914177 On the other hand, the cam mechanism 151 defines the timing of the workpiece clamping, and the cam mechanism 1 5 2 ' defines the motion of the spindle stage 102 in the main axis direction. The top center 1 〇 4 ′ supports the workpiece by the center of the core and is moved together with the spindle stage 102 by being coupled to the spindle stage 102. The shape of each cam and the relative angle 'the cam of the cam shaft 116 are set from the workpiece to be automatically cut by the workpiece, and the lathe 1 0 1 ' is driven by the camshaft 丨i 6 ... Workpiece supply - chuck closing ^ tool 121 and spindle table 1 〇 2 action to allow the workpiece to be repeatedly cut - workpiece cut θ chuck open - workpiece supply - ... cycle operation. Further, similarly to the lathe of the prior art, an NC automatic lathe is disclosed as a technique in which a cutter is disposed around the workpiece (see, for example, Patent Document 1). This technique does not use a cam, but rather performs the operation of the tool by means of digital control. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei-4-135103. Although a lathe that controls the number of tools is started, there are still many users who prefer a cam-driven lathe. Further, since the cam-driven lathe smoothly moves the tool in accordance with the outer circumference of the cam, it has an advantage that the smoothing processed surface can be easily formed as compared with the digital control method of the digital control. SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) However, in a cam-driven lathe, the control of the cutter moving toward the direction perpendicular to the main shaft by one camshaft $ -6 - 200914177 is performed, and the spindle is moved toward the main shaft. The control of the headstock that moves in the direction (that is, since the movement direction is different by one cam shaft) is difficult to adjust the cam, and the skill of the sound is required. Accordingly, it is an object of the present invention to provide a lathe apparatus that can easily perform cam adjustment. In order to achieve the above object, the present invention provides a lathe device comprising: a main shaft having a clamp for holding a workpiece on an axis thereof; And a spindle rotating means for rotating the spindle; and a spindle moving means for moving the spindle in the axial direction by a digital control; and a tool holding means for holding the cutter for cutting the workpiece; and The tool moving means moves the cutter holding means in a direction perpendicular to the axis of the main shaft in accordance with the shape of the rotating cam, and a cam rotating means that rotates the cam. The invention according to claim 2, wherein the lathe device according to the first aspect of the invention, further comprising: a rotation angle detecting means for detecting a rotation angle of the cam, wherein the spindle moving means is based on the detecting The angle of rotation causes the aforementioned spindle to move. The invention according to claim 3, wherein the spindle moving means is configured to move the spindle to a shaft including the spindle - 7- 200914177 The vertical plane of the line acts in a direction parallel to the aforementioned axis. The invention according to claim 4, wherein the lathe device according to claim 1, wherein the support device is provided with a supporting means that supports from a side opposite to the holding means And the connecting means, wherein the distance between the holding means and the supporting means is maintained at a predetermined distance and connected. The invention according to claim 5, wherein the connecting device is configured to adjust the length of the processed product obtained by cutting the workpiece from the workpiece according to the fourth aspect of the invention. The length of the aforementioned connection is formed. The invention according to any one of claims 1 to 5, further comprising: a rotary cutter holding means for holding a rotating cutter and the aforementioned The periphery of the rotating shaft having a predetermined angle of the main shaft; and the rotating tool moving means for moving the rotating tool holding means when the workpiece is cut by the rotating tool. The invention described in claim 7 is the lathe device according to the sixth aspect of the invention, wherein the rotating tool moving means moves the rotating tool in the shape of a rotating rotary tool cam. The invention according to claim 8, wherein the rotary tool cam is configured to: the rotary cutter is cut into the workpiece The first rotation angle and the second rotation angle of the rotating tool are separated from the workpiece -8-200914177, and the cam rotation means alternately rotates the rotation angle of the rotary tool cam to the first rotation angle And the aforementioned second rotation angle. The present invention provides a lathe device according to claim 8, wherein the spindle rotating means is in a state in which the rotary cutter cam is held at the first rotation angle. 'The rotation angle of the workpiece is maintained at a predetermined angle, and the workpiece is rotated only when the rotating cutter is held at the second rotation angle to cut the next cutting portion by the rotating cutter. Predetermined angle. The invention according to claim 10, wherein the spindle moving device is configured to hold the rotary cutter cam at the first rotation angle. The spindle is moved in a direction in which the workpiece is rotated toward the rotating tool, and the spindle is returned to a position before the movement while the rotary cutter cam is held at the second rotation angle. The invention according to any one of claims 1 to 5, wherein the tool holding means is configured to rotate the tool held by the tool The cutter rotating means around the rotating shaft of the predetermined angle is a predetermined angle. The invention according to claim 12, further comprising: a lathe device according to claim 4, further comprising: a biasing means for biasing the supporting means to the workpiece; and a biasing a releasing means for releasing the biasing force of the biasing means, wherein the connecting hand -9 - 200914177 is a method of releasing the hand by the biasing force when the biasing means biases the workpiece In addition to the above-described clamping means and the above-mentioned supporting means, the invention described in claim 1 is a lathe device according to claim 4, 5 or 12, wherein: A material deriving means for deriving a material of the workpiece; and determining a derivative amount by abutting the front end of the material to be derived. The invention described in claim 1 is the lathe device according to the first aspect of the invention, wherein the fastener is a tool held by the tool or the supporting means. (Effect of the Invention) According to the present invention, the adjustment of the cam can be easily performed by taking the control of the spindle direction as a number 値 and independently controlling the spindle stage from the control of the tool. 【real. (1) In the first diagram (b), the infeed of the cutter 21 (Fig. 1 (a)) is controlled by a cam mechanism, and the Z axis of the spindle table 2 The movement is performed by the servo motor 6 for digital control. The lathe 1 detects the rotation of the camshaft 16 by the sensor, and the direction of the direction of the feed direction of the camshaft is -10-200914177 or the rotation speed. Then, the 'lathe 1' controls the movement of the spindle head 2 based on the detected flaw, whereby the cam mechanism 10 can be moved synchronously with the spindle head 2. Further, the ball screw 7 and the nut 8 are disposed such that the driving force in the Z-axis direction by the servo motor 6 acts uniformly on the sliding surface 17 to prevent uneven wear of the sliding surface 17 . In this way, the lathe 1 can be easily adjusted from the cam mechanism 10 by controlling the spindle table 2 as a number of turns, and the cam mechanism 1 can be easily adjusted, and the headstock 2 can be easily biased.値 settings. Further, since the unevenness of the sliding surface 17 can be prevented from being worn, the machining accuracy of the workpiece can be maintained, and the repairing operation of the sliding surface 17 can be easily performed. (2) Detailed Description of Embodiments Fig. 1 shows a lathe device according to the present embodiment. Fig. 1(a) shows a side surface of a cam portion, and Fig. 1(b) shows a front view of a lathe device. As shown in Fig. 1(b), the lathe 1 is roughly divided into a base portion 5, a headstock 2, a cutter table 3, and a top plate 4. The base portion 5 (base table) is provided with a spindle unit 2, a tool holder 3, and a top center 4', and a cam mechanism 1 for driving a cutter (cutting blade) provided on the tool table 3 is formed therein. Further, the mounting portion of the spindle head 2 and the centering table 4 of the base portion 5 is a sliding surface on which a slider guide (slide -11 - 200914177 guide) having a dovetail slot structure or the like is formed. Therefore, the headstock 2 and the centering table 4 can respectively guide the upper surface of the base portion 5 to the slider guide and move in the Z-axis direction. The spindle head 2 is a spindle motor 11 having a rotating spindle, a chuck for holding a workpiece (object to be processed) (indicated by a component symbol 27 in FIG. 3), and a workpiece supply device for guiding a workpiece to a machining position. 1 . The nut 8 and the main shaft 1 8 and the like are disposed above the sliding surface 17 of the base portion 5 . The spindle motor 1 1 is disposed on the upper portion of the spindle head 2, and supplies a rotational force to the spindle 18 by using a driving force transmitting mechanism such as a pulley or a belt. The spindle motor 1 1 has a function as a spindle rotation means. The nut 8' is fixed to the rear portion of the headstock 2 (opposite side on the side of the top platen 4). The ball screw 7 is screwed to the inner diameter. The nut 8 and the ball screw 7 have a function as a movement direction changing mechanism that converts the rotational motion of the servo motor 6 into the Z-axis direction of the spindle head 2. Further, the +Z-axis direction of the spindle table 2 is referred to as a feed direction. The workpiece supply device 1, the spindle 18 and the chuck are coaxially formed on the axis of the spindle 18 (as the C axis). In the spindle 18 and the workpiece supply device 12, a through hole for inserting a workpiece is formed on the axis of the spindle 18. The workpiece is inserted into the through hole and attached to the lathe 1. The workpiece supply device 12 guides the workpiece in a direction (+Z-axis direction) of the tool table 3 by a predetermined amount from a controller from a controller to be described later. The chuck is formed at the front end of the main shaft 18, and has a function as a holding means for holding the workpiece derived from the workpiece feeding device 12. The clamp -12 - 200914177 head is opened and closed by, for example, air pressure, and is opened when the workpiece supply device 12 supplies the workpiece by a command from the controller, and is closed while the workpiece is being machined to clamp the workpiece. The spindle 18, the workpiece supply device 1, and the chuck are integrated and rotated about the axis of the spindle 18. Once the spindle motor 11 rotates the spindle 18, the workpiece rotates accordingly. In the -Z-axis direction of the spindle head 2, the servo motor 6 is fixed to the base portion 5. A ball screw 7 is formed on the rotating shaft of the servo motor 6. The servo motor 6 rotates the ball screw 7 in the direction specified in the positive and negative directions and the designated rotation speed in accordance with a command from the controller, and the spindle table 2 is screwed by the ball screw 7 and the nut 8 to make the spindle table 2 The Z-axis direction is moved by a predetermined amount and a predetermined speed. The servo motor 6, the ball screw 7, the nut 8, and the spindle head 2 have functions as a spindle moving means for moving the spindle 18 in the axial direction. The nut 8 and the ball screw 7 are disposed such that the center line is parallel to the main shaft 18 and is disposed in a vertical plane including the axis of the main shaft 18, and the servo motor 6 brings the force to the main shaft 2. In the vertical plane including the axis of the main shaft 18, it acts in parallel on the axis. Therefore, the servo motor 6 applies the force of the headstock 2 to the sliding surface 17 uniformly, without causing the sliding surface 17 to be worn. Further, in the conventional lathe device shown in Fig. 20, the force caused by the cam mechanism 152 is applied to the side surface of the spindle head 102. Therefore, the partial load acts on the sliding surface 17 or the slider guide, so that the wear of the -13-200914177 or the like is advanced, and the portion with uneven wear and large load is likely to be worn out to cause a unilateral decrease. Therefore, there is a possibility that the coaxiality of the guide bush and the spindle, which will be described later, is lowered, and the machining accuracy of the workpiece is lowered. Then, a high level of skill is required in the correction of the sliding surface 17. However, in the lathe 1 of the present embodiment, since the load is uniformly dispersed and applied to the sliding surface 17, the sliding surface 17 hardly wears. Further, since the amount of wear can be equalized even if there is wear, the correcting operation of the sliding surface 17 can be easily performed as compared with the prior art. As shown in Fig. 1(b), the tool holder 3 is fixed between the spindle head 2 and the top center 4, and a plurality of cams 9a, 9b, 9c, ... are accommodated in the base portion 5 of the lower portion thereof. (Fig. 1 (a)) The cam mechanism 10 fixed to the cam shaft 16. However, in order to avoid complication of the figures, the component symbols only show the cam 9a. Further, when the cams 9a, 9b, 9c, ... are not particularly distinguished, they are simply referred to as the cam 9. A gear is formed at an end portion of the cam shaft 16 at the center of the core 4, and is housed in the gear portion 15 provided on the side of the top core 4 of the base portion 5. The gear portion 15 transmits the rotational driving force of the cam driving motor in which the rotor shaft is formed in the direction perpendicular to the Z-axis to the Z-axis direction to drive the cam shaft 1 6 〇 In addition, the cam driving motor in Fig. 1(b) It is a dead angle of the gear part J 5 and is not shown. Here, the 'cam drive motor, the gear portion 15 and the cam shaft 66 have a function of rotating the cam as a cam rotation. -14- 200914177 As shown in Fig. 1(a), a guide sleeve 23 is provided on the tool holder 3, and the guide sleeve 23 is formed with a guide hole centered on the axis c of the spindle 18, and the workpiece 22 is inserted. It is positioned through the guide hole and guided to the machining position. A plurality of cutters 21a, 21b, 21c, and (three in the figure) are disposed around the workpiece 22 in a radial shape. The cutters 2 1 a, 2 1 b, 2 1 c, ... are detachably mounted by tool holding means provided at the front ends of the individual robot arms 25a, 25b, 25c, ..., respectively. In addition, in Fig. 1(a), the component symbol is attached to only one tool 21a and the robot arm 25a in order to simplify the drawing, but the tool 21b, the robot arm 25b, and the tool are sequentially arranged from the tool 21a and the robot arm 25a. 21c, robot arm 25c, .... Further, the following is not particularly distinguished from the cutter 21a and the cutter 21 b. . . . . And the mechanical arm 25a, the mechanical arm 25b. . . . . At the time, it is simply recorded as the tool 2 1 and the robot arm 25. The robot arm 25a is provided with a fixed shaft that is rotatable around a rotation axis parallel to the axis C of the main shaft 18. Once the robot arm 25a is rotated around the fixed shaft, the cutter 21a is moved in the feed cutting direction. Further, the direction in which the cutter 21 is cut is set to the X axis, and the direction away from the axis C of the spindle 18 is set to the +X axis direction. On the other hand, at the end of the robot arm 25a, a contact member 24a is formed, and the purpose of the contact member 24a (j end is pressed against the outer circumference of the cam 9a. Therefore, once the cam 9a is rotated, the contact member 24a will The movement of the outer surface of the cam 9a is followed by 'and the tool 21a is moved -15-200914177 toward the X-axis direction. That is, the shape of the outer circumference of the cam 9a restricts the movement of the cutter 21a. The robot arm 25a, and the contact member 24a has a function as a tool moving means for moving the outer periphery of the cam 9a which is a tool holding means to follow the rotation of the cam 9a. Similarly, the 'cam mechanism 10 is a combination of a plurality of cams. 9 (cam 9a, 9b, 9c'...), the shape of the outer circumference of each of the cams 9a, 9b, 9c, ... defines the movement of the cutters 2 1 a, 2 1 b, 2 1 c, ..., respectively. When the cam mechanism 10 is rotated, each of the cutters 21 can be individually set in advance. The cam 9 of the present embodiment is called a plate cam. The cam has a flat groove cam and a circle. Various convexities of the grooved cam, the end cam, etc. Any type of cam can be used for the lathe 1. Even in any cam, the tool 2 1 is operated in the shape of a cam formed in advance on the outer circumference or the groove, etc. Although not shown, the cam shaft 16 A rotation angle detecting means including an encoder or the like is provided, and a controller to be described later can detect the rotation angle of the cam mechanism 10. The lathe 1 uses the detected rotation angle of the cam mechanism 1 and the spindle head. The Z coordinate mark of 2 controls the cam drive motor and the servo motor 6 in synchronization with the action of the cam mechanism 1 与 in synchronization with the action of the spindle table 2, and can also calculate the angular velocity of the cam mechanism 1 旋转 from the rotation angle, or The speed of the headstock 2 is calculated in the Z coordinate (which can be detected by other-16-200914177 angular velocity sensors or speed sensors), and the manner in which the spindle table 2 is controlled is used. In addition, due to the angular velocity of the cam mechanism 10, the angular acceleration, and the speed and acceleration of the headstock 2, the time difference of the rotation angle of the cam mechanism 10 and the Z coordinate of the headstock 2, respectively. The time is changed, so the use of such control is also included in the control of the rotation angle of the cam mechanism 10 and the Z coordinate of the spindle table 2. For example, the angle of the camshaft 16 is set to Dx. The Z coordinate of the headstock 2 is set to Dz, the angular velocity of the camshaft 16 is set to Vx', and the speed of the spindle head 2 is set to Vz, and as shown below, the number control program defining Dx, Dz, and Vx is input. On the lathe i. (Dx [degrees;], Dz (mm), Vx [degrees/[mm]]) = (0, 〇, 10), (5, 0, 10), (7, 10, 10), (8, 0, 10), (12, -5, 10), (13, 0, 10)... (Expression 1) The input of the enthalpy 'for example, the operator rotates the camshaft 16 by It is confirmed that the start angle and the end angle of each step (pr 〇 cess) are input as Dx (the cam 9a 'is actually measured due to the production error or the mounting error) and input the Dz which is provided as the design 事先 in advance, and the desired VX is carried out. The control 'from the data, Vz' is calculated by Vz = (Dz / Dx) x Vx_ (Third 2) and the moving speed of the headstock 2 can be controlled thereby. -17- 200914177 As shown in Fig. 1(b), the centering table 4 (core lifting table) supports the end portion of the workpiece 22 by: For the top center 1 3, the fixed center of the rotary type can be used. Similarly to the headstock 2, the centering table 4 is provided on the sliding surface 17 formed by the base portion 5, and is movable in the direction of the main shaft 18 (Z-axis direction) by the sliding guide. The centering table 4 is connected to the headstock 2 by a coupling mechanism. This moves in the Z-axis direction with the spindle table 2. As will be described later, the connection distance between the centering table 4 and the headstock 2 can be changed. Fig. 2 is a view showing an example of a processed product processed by the lathe 2, and also shows a Z-axis direction. Further, in the second drawing, the X-axis is not shown as being perpendicular to the Z-axis. This processed product is cut from a bar by a cutter 21, for example, by a metal such as brass. As shown in the figure, the processed product has a length of 2. 5 [mm], and a diameter of about 1, for example, as a small precision machine component such as a watch, the following is an example of the operation of the cam mechanism 10 and the spindle ί. Further, this processing example is an example of various processing methods such as rough cutting and fine processing. The end portion of the workpiece on the side of the x-axis is formed perpendicular to the surface 201. The end surface 201 is formed by the coordinate of the fixed cutter 21 (i.e., the state in which the spindle head 2 is fixed), and is moved by the cam mechanism 1 〇 21 in the -X-axis direction. The page core 1 3 , or the upper axis of the spine, by the link machine. In the picture, but it is made, . 5 [ m m ] A. After reaching 11, the tool will be in the end state of the axis. -18- 200914177 In this case, the number of the control program is based on the angle of rotation of the camshaft 16 from the angle from the end face 20 1 to the end angle. The Z coordinate of 2 is maintained in a fixed manner. A push-out surface 202 is formed on the -Z-axis side of the end surface 201. The push-out surface 202 is processed such that the outer diameter is increased in a fixed ratio toward the -Z-axis direction by moving the cutter 21 at a fixed speed in the -Z-axis direction (that is, the spindle head is moved) 2 is moved at a constant speed in the -Z-axis direction), and the cutter 21 is moved by the cam mechanism 10 at a fixed speed in the X-axis direction. In this case, the number control program is such that the rotation angle of the cam shaft 16 reaches the end angle from the start angle for forming the push surface 202 to maintain the rate of change of the Z coordinate of the headstock 2 with respect to the rotation angle. It is constructed in a predetermined manner. A cylindrical surface 203 is formed on the -Z-axis side of the push-out surface 202. The cylindrical surface 203 is formed by moving the cutter 21 in the -Z-axis direction while the X-axis is fixed by the cam mechanism 1 (i.e., moving the spindle head 2 in the -Z-axis direction). In this case, the number control program maintains the rate of change of the Z coordinate of the headstock 2 to the rotation angle when the rotation angle of the camshaft 16 reaches the end angle from the start angle for forming the cylindrical surface 203. It is constructed by a predetermined fixed method. On the -Z-axis side of the cylindrical surface 203, a cylindrical surface 204 having an outer diameter larger than that of the cylindrical surface 203 is formed, and a step portion is formed at the boundary between the cylindrical surface 203 and the cylindrical surface 204. -19- 200914177 The step portion ' is in the same state as the end surface 20 1 in the state where the tool 2 i is fixed (that is, in the state where the headstock 2 is fixed), and the cam mechanism 10 is used to face X by the cam 1 The axis direction moves to form. In this case, the number control program is configured such that the rotation of the cam shaft 16 reaches the end angle from the start angle for forming the step portion, and the Z coordinate of the table 2 is held constant. The cylindrical surface 204 is formed in the same manner as the cylindrical surface 203. In the -Z-axis direction of the cylindrical surface 204, a cylindrical surface 205 having an outer diameter smaller than the circle 204 is formed, and a step portion is formed at the boundary between the cylindrical surface 204 and the cylindrical surface 205. The cylindrical surface 205 is formed in the same manner as the cylindrical surface 203 and the cylindrical surface. A conical surface 2 0 6 is formed on the Z-axis side of the cylindrical surface 2 0 5 . The circle 206 is machined such that the outer diameter becomes smaller at a fixed ratio toward the -Z-axis direction. This machining 'by moving the tool 2 1 in the -Z axis direction by solidity (that is, 'moving the spindle head 2 at a fixed speed in the -Z axis direction| while the cutter 21 is tilted toward the -X by the cam mechanism 1) The axial direction is processed by a fixed movement. In this case, the number control program is the rate of change of the Z coordinate of the headstock 2 to the rotation angle when the rotation of the camshaft 16 reaches the end angle from the start angle for forming the conical surface 206. The rate of change is maintained in a fixed manner. As described above, the lathe 1 is fixed by setting the X-axis of the tool 21 to the radius of the spindle cylinder 204. The speed angle can be two-dimensionally processed by the movement of the pre-direction -20-200914177 in synchronization with the movement of the spindle table 2 in the Z-axis direction. Further, in the workpiece of Fig. 2, the push surface, the cylindrical surface, and the tapered surface are processed, but other than the side surface of the ZX plane, for example, a circular arc or an elliptical arc or a free curve may be processed. Next, the connection mechanism between the spindle head 2 and the centering table 4 will be described using Fig. 3 . Fig. 3 shows the connection mechanism of the lathe 1 in the overall view of the lathe 1. Further, the cam mechanism 10 and the like are omitted in order to avoid complication of the drawings. As shown in Fig. 3, a coupling mechanism including a connecting rod 31, a fixing member 32, a clamp mechanism 33, and the like is provided inside the base portion 5 so as not to interfere with the cam mechanism 10 or the cam 16 or the like. The clamp mechanism 33 is fixed to the spindle head 2 and is inserted into one end side of the connecting rod 31. The clamp mechanism 33 can hold or open the connecting rod 31 by, for example, compressing the force of air or the like. On the other hand, the other end side of the connecting rod 31 is fixed to the fixing member 32, and the fixing member 32 is fixed to the topping table 4. In the connection mechanism configured as described above, the lathe 1 moves the spindle head 2 in a state in which the clamp mechanism 33 is opened (the centering table 4 is stationary at a fixed position because the connection is released), and the spindle head 2 and the top are After the distance between the cores 4 is set to a desired value, the spindle table 2 and the centering table 4 can be connected by closing the clamping mechanism 33. With the connection mechanism, the lathe 1 can arbitrarily set the connection distance between the headstock 2 and the centering table 4 by the clamp position of the connecting rod 31 - 21 - 200914177. In this manner, the lathe 1 includes a center of the center 13 (support means) for supporting the workpiece 22 from the side opposite to the chuck 27, and is provided with a distance between the center of the center 13 and the headstock 2 at a predetermined distance. Linkage mechanism (link means). Next, a workpiece supply method using such a connection mechanism will be described using Fig. 4 . In the conventional cam-driven lathe, since the movement of the spindle head and the movement of the tool are interlocked by a single cam shaft 16, once the workpiece is machined, the workpiece is cut by cutting or the like. By supplying one part of the next workpiece, the workpiece is supplied one by one each time one workpiece is manufactured. On the other hand, in the lathe 1 of the present embodiment, since the control mechanism of the headstock 2 and the control mechanism of the cutter 21 are separated by the movement of the spindle head 2 by the spindle motor 11, the plurality of supplies can be manufactured in a single pass. The workpiece of the length of the finished product. For example, Fig. 4(a) shows the case where the workpiece 22 (the workpieces 22a to 22e can be secured) is supplied to the processed product in five parts. One end of the workpiece 22 is held by the collet 27, and the other end is supported by the top core 13. The spindle head 2 and the centering table 4 are held by the connecting mechanism to hold the workpiece 22' of the workpiece 5 pieces. Once the servo motor 6 (Fig. 1) drives the centering table 4 in the Z-axis direction, the centering table 4 is driven. It moves integrally with the spindle head 2. -22- 200914177 In addition, in order to avoid complication of the drawing, the headstock 2 and the top center 4 are not shown, and the chuck 27 and the top core 13 are directly connected by the connecting rod 3 1 . The lathe 1 abuts the cutter 21 against the portion on the front end side of the workpiece 22 thus fixed (the workpiece 22a in Fig. 4(a)), and processes the finished tool once the machining is completed. The workpiece 22 is cut. The lathe 1 is opened after the workpiece is cut, and the chuck mechanism 3 is opened to move the spindle head 2 in the direction of the centering table 4. Then, the lathe 1, the end portion of the workpiece 22 abuts against the top center 13 (i.e., once the distance between the headstock 2 and the top center 4 is close to the distance of the processed product i), the closing clip is closed. The mechanism 3 3 is fixed and the distance between the headstock 2 and the top core 4 is fixed. Thereby, the remaining portion of the workpiece 22 (four parts of the workpieces 22b to 22e) can be fixed by the center of the core 13 and the chuck 27 as shown in Fig. 4(b). Thus, the lathe 1 is a workpiece 22' that clamps a plurality of portions of the processed product at a time, and the distance between the headstock 2 and the centering table 4 is reduced by the workpiece portion each time the workpiece is completed. Then, once the processing of the workpiece 22e is completed, the workpiece supply device 12 (Fig. 1) supplies five workpieces, and the coupling mechanism connects the main spindle stage 2 and the top core table 4, and performs the same processing. That is, the connecting means adjustably configures the length to be connected by the length of the workpiece cut from the workpiece 22. Therefore, in the lathe 1 of the present embodiment, the workpiece 22 of the processed product -23-200914177 can be clamped at a time, and since it is not necessary to perform the clamping work when the conventional lathe is processed, the workpiece 2 can be shortened. 2 rooms. Fig. 5 is a block control system 46 for displaying a control system of a lathe by a model. The operation panel 42 is a cam drive motor clothing motor 6, a spindle motor, and a connection mechanism driving device 4 is connected to the supply device 1 2 and the like. The controller 41 is constructed. The operation panel 42 is an operator of the lathe 1 for operating the lathe machine interface. For example, a keyboard composed of a liquid crystal display or the like, a keyboard for inputting characters or numbers, various hard keys, various soft key buttons, an emergency stop button, etc. are formed. . Further, it also has an interface for connecting a cable from the terminal, a disk device, and the like. The operator of the lathe 1 operates the operation panel 42 and inputs the 値 control program, or executes the input number control program, or operates the lathe 1 by motion control. Further, the 'operator' is a relative position between the rotation angle of the axle 16 and the position of the spindle head 2 by shifting the position of the headstock 2 or the rotation angle of the cam shaft 16 by a predetermined operation of the lathe 1. The controller 41' includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Only Memory) unit (for example, an EEPROM (Electrically Erasable and Programmable ROM). Electrically erasable programmable read-only memory f Whenever processing is completed. 45. The person who is working on the workpiece 1 displays the number of driver edits for loading and starting, and can use the hand to fine-tune the convex unit, read the memory and remember the billion. The -24-200914177 computer controls the cam drive motor 45, the servo motor 6, the spindle motor 11, the connection mechanism drive unit 43, the workpiece supply device 1 2, etc. In the memory unit, 〇S ( 0 perating) is stored. System, or a number of control programs, and the CPU performs digital control or other control according to the programs. Further, the operator sets the rotation angle of the cam shaft 16 and the position of the spindle table 2 When in position, the offset 値 is also stored in the memory section and is referenced by the CPU during processing. The cam drive motor 45 has a function as an X-axis motor, according to The command of the controller 4 1 rotates the camshaft 16. The servo motor 6 has a function as a Z-axis motor for performing digital control of the rotation angle, the rotation speed, the rotation direction, and the like from the controller 41. The controller 4 1 monitors the rotation angle or the rotation speed of the camshaft 16 and the like, and performs the number control on the servo motor 6. The spindle motor 1 1 has a function as a C-axis motor, according to the controller. The command of 4 1 rotates the spindle 18. The connecting mechanism driving device 4 3 opens and closes the clamping mechanism 3 3 by supplying compressed air, for example, according to a command from the controller 41. The workpiece feeding device 1 2, The workpiece 22 is supplied in accordance with a command from the controller 41, and the chuck 27 is opened and closed, for example, using compressed air. Next, the operation of the lathe 1 will be described using the timing chart of Fig. 6. The timing chart is based on the horizontal axis. The rotation angle of the camshaft 16 is shown, and the vertical axis represents the cutters 21a, 21b, 21c, the front and rear of the spindle head 2, and the opening and closing of the chuck 27. Here, for the sake of brevity, the lathe 1, There are three cutters 21, that is, the cutters 21 a to 2 1 c. In addition, 'the spindle head 2 moves forward in the + axis direction as the forward movement', and the movement in the opposite direction is regarded as the backward movement. 2 1 , the _ X-axis direction (that is, the direction of 'close to the workpiece 2 2 ) is taken as the forward direction, and the movement in the opposite direction is regarded as the backward movement. First, during the rotation of the camshaft 16 from 0 to 30 degrees, the lathe 1' closes the chuck 27 after opening the chuck 27 and retracting the spindle head 2, and simultaneously, while proceeding The cutter 21a is retracted while the cutter 21c is simultaneously advanced. Further, in the lathe 1, the cutter 21b is held at the position after the retreat. When the angle of the cam shaft 16 exceeds 30 degrees, the lathe 1 closes the chuck 27, and while the spindle head 2 is advanced, the cutter 21b is retracted, and the workpiece 22 is continuously cut. Once the angle of the camshaft 16 exceeds 135 degrees, the lathe 1 will cause the cutter 2 1 c to retreat to end the cutting operation performed by the cutter 2 1 c, and forward the cutter 211 to move the cutter 21b to start the cutter 21b. The cutting work carried out. Once the angle of the camshaft 16 exceeds 270 degrees, the lathe 1 will move the spindle table 2 further after the main axle table 2 is retracted. Further, the vehicle disc 1' causes the cutter 2 1 b to retreat to end the cutting operation by the cutter 2 丨 b and advances the cutter 2 1 a to start the cutting operation by the cutter 2 1 . -26- 200914177 Once the angle of the spindle head 16 reaches 360 degrees, the finished product is completed. Next, the automatic cycle operation of the lathe 1 will be described using the timing chart of Fig. 7. First, the 'operator' mounts the cams 1a, 9b, 9c, ... on the cam shaft 16 to constitute the cam mechanism 1''. At the position where each cam 9' touches the predetermined angle of the cam shaft 16, the mark is given by a fine drawing line or the like. When the cam shaft 16 becomes its predetermined angle, the mark of the cam and the cam format mark are applied (applying to the cam shaft 1) Mark of 6) Install the cam in a consistent manner. Next, the 'operator' installs the workpiece 2 2 on the lathe 1, and the number control program that operates the operation panel 42 to process the workpiece 22 is loaded into the CPU of the controller 41 (or (from Equation 1) Disk 42 is directly input). When necessary, the operator's test is performed on the processed product, and the outer shape of the camshaft 16 is determined by the deviation of the rotation angle of the camshaft 16 from the Z coordinate of the spindle head 2. The offset 输入 is input from the operation panel 42 by the operator and stored in the memory unit of the controller 41. When the operator presses the start button of the operation panel 42, the CPU executes the number control program and starts control of the cam drive motor 45, the servo motor 6, the spindle motor 1-1, and the coolant supply device. In addition, the following control is performed by the CPU P of the controller 4 1 according to the number control program. First, the lathe 1 initializes the counter k to 〇 (step (s t e p ) 5 ). The counter k is a parameter for counting the number of times the workpiece supply device 12 supplies the workpiece 2 2 with respect to one bar. Here, the number of times the workpiece supply device -27-200914177 12 can export the workpiece 22 is regarded as a Μ (Μ is a natural number), and is recorded in the data control program. Next, the 'lathe 1' stops the entire axis (the cam drive motor 45, the servo motor 6, and the spindle motor) (step 1 〇). Next, the 'turning machine 1' drives the spindle motor 11 and moves the spindle head 2 to reset the centering table 4 (connected with the spindle head 2) to the initial position at the time of workpiece supply (step I5), and opens the chuck 27 (step 20). Next, the 'turner 丨' opens the clamp mechanism 3 3 and releases the connection with the top core 4 by the connecting rod 3 j and drives the servo motor 6 to retract the spindle head 2 (step 25). Next, the "lathe 1" is supplied by driving the workpiece supply device 12 to extract the workpiece 2 2 by a predetermined amount (the amount at which the end portion abuts against the centering table 4) (step 30). After the workpiece is supplied, the 'lathe 1' closes the collet 2, and the clamping mechanism 3 3 is closed to connect the main table 2 and the top table 4 (step 35). Alternatively, the clamping mechanism 33 can be closed prior to feeding the workpiece 22. Next, the 'lathe 1' initializes the counter i to 〇 (step 4 〇). The ninth number i' is a parameter for counting the number of processed products after the workpiece 2 2 is supplied. As described above, the lathe 1 starts the machining operation of the workpiece 22 after the workpiece 22 is set (step 45). The lathe 1 'drives the spindle motor 11 to rotate the workpiece 2 2 around the spindle' and drives the cam drive motor 45 to drive the cutter 2 1 . Further, the 'turning machine 1' monitors the rotation angle of the cam shaft 16 to -28-200914177, and drives the servo motor 6 to move the headstock 2 and the centering table 4. On the lathe 1, once the finished product is finished, the processed product is cut off from the workpiece 2 2, and the counter i judges whether it is less than N. Here, N is a predetermined natural number, and the number of processed workpieces is supplied to the workpiece 22 once. . In the case where i is less than N (step 50; YES), the lathe 1 adds 1 to the i-position (step 55). Then, the lathe 1 opens the clamp mechanism 33 (step 60), and causes the spindle head 2 to advance only one portion of the processed product (step 65), and closes the clamp mechanism 33 to connect the spindle head 2 and the top core table 4 (step 70). ). Thereafter, returning to step 45, the workpiece 22 is machined. In addition, after the main head table 2 and the top core table 4 are connected, the end chuck 27 is opened and the workpiece 22 is pressed against the top core 13 by the workpiece feeding device 12 to close the chuck 27 again. Composition. By this action, the center of the heart 13 can be more reliably supported.

另一方面’在i並非未滿N的情況(亦即,i已到達N 的情況)(步驟50 ;否),車床1,係進而判斷k是否未滿 Μ(步驟75)。 在k未滿μ的情況(步驟7 5 ;是),車床1,係對k進 位加1(步驟8〇)。然後,車床1,係回到步驟1〇之處理, 使對工件供給裝置i 2供給工件22。 另—方面’在k並非未滿μ的情況(步驟7 5 ;否), 車床1 ’係停止全軸(凸輪驅動馬達4 5、伺服馬達6、主 -29- 200914177 軸馬達1 1)(步驟85),例如使顯示燈點亮等以對操作者通 知加工已結束。 一旦工件22的加工結束,操作者,亦可將下一個工 件供給至工件供給裝置1 2並執行相同的數値控制程式, 或者’進行程序更換(在有必要的情況,交換凸輪機構1 〇) 而製作其他的加工品。 藉由以上說明的本實施形態可獲得如下的效果。 (1) 由於將主軸台2之移動與凸輪機構10之旋轉作機 構性分離,所以沒有必要利用凸輪機構1 〇來進行主軸台 2之移動,可容易地進行凸輪機構10之調整。 亦即,在習知的車床裝置中,當主軸台移動用凸輪與 刀具切槽用凸輪存有製作誤差或組裝誤差時,雖然有必要 加工修正凸輪以維持精度,且需要熟練於凸輪安裝及修正 的技能,但是在本實施形態的車床1中,並不需要主軸台 移動用凸輪的調整作業。 (2) 由於將滾珠螺桿7形成於滑動面1 7之中央,且以 按壓平均地作用於滑動面1 7的方式所形成,所以可防止 滑動面17之偏荷重。因此,可防止滑動面17之不均等的 磨損,並且可穩定工件的加工精度。 (3) 藉由防止滑動面17之不均等的磨損,可容易地進 行滑動面1 7之修正作業。 (4) 由於將主軸台2之移動設爲數値控制’所以可使 主軸台2之移動量配合刀具21之活動而以數値或控制碼 來設定。 -30- 200914177 (5) 藉由檢測凸輪機構10之旋轉角度,並使用此來控 制主軸台2之移動,即可使凸輪機構10之凸輪軸速度與 主軸台2之移動同步。 (6) 由於將主軸台2之移動設爲數値控制,所以可容 易地進行主軸台2之位置的偏位値之設定。 (7) 由於配合凸輪機構10之精度而發出主軸台2之移 動指令,所以修正作業在主軸台2之一方係以數値來進 行,而不需要凸輪機構1 〇之修正作業。 (8) 由於可以1次之夾緊作業來夾持加工品複數個份 的工件2 2,所以可縮短加工時間。 其次,就本實施形態的變化例加以說明。 第8圖係顯示本變化例的車床裝置,第8圖(a)係顯 示凸輪部分之側面,第8圖(b)係顯示車床裝置之正面 圖。 如第8圖(b)所示’車床1,係在基盤部5上,除了具 備主軸台2、刀具台3以外’尙具備齒輪加工台51。另 外,頂心台4,亦可具備或不具備。 齒輪加工台5 1,係在工件2 2之前端形成齒輪的單 元,固定在基盤部5之上面。 如第8圖(a)所示,齒輪加工台5 1,係由機械臂 25z、連結構件60以及工具保持部59等所形成。 工具保持部59 ’係可保持各種工具,在本變化例 中,係保持切斷器5 3。 切斷器53’係具有如第8圖(c)所示的圓筒形狀,且 -31 - 200914177 以其軸線爲旋轉軸而驅動刀具55並使之旋轉。 然後,齒輪加工台5 1,係將切斷器5 3之旋轉軸成爲 與主軸垂直,且以刀具5 5成爲工件22之下側的方式保持 切斷器53。 如此,切斷器5 3之旋轉軸係相對於主軸具有作爲輔 助軸的功能。另外,切斷器53之旋轉軸,雖然係與主軸 垂直,但是並非限定於此,亦可以旋轉軸與主軸構成預定 角度俾使齒輪加工台5 1保持切斷器5 3的方式所構成。 如此,工具保持部5 9,係具有作爲旋轉刀具保持手 段的功能,該旋轉刀具保持手段係用以保持旋轉於與前述 主軸構成預定角度的旋轉軸之周圍的刀具。 第8圖(d)係擴大刀具55的示意圖。 刀具55,係形成圓盤狀之旋轉對稱體,而對稱軸與 切斷器53之旋轉軸一致。 然後,在刀具5 5之外周部遍佈於周圍形成有切刀’ 一旦刀具5 5旋轉,就可利用刀具5 5之外周部發揮切削功 能。 刀具55,係以切刀所形成的平面包含工具22之中心 線的方式保持,切刀會進刀切入於工件22之側面可將齒 輪的溝槽朝主軸方向進行切削加工。 刀具55,由於係位於工件22之下側’所以一旦刀具 53上升就會切削加工工件22之下側面’而一旦刀具53 下降,刀具55就會離開工件22。 車床1,係在加工齒輪的溝槽時’使切斷器53上 -32- 200914177 升,並且主軸一邊保持旋轉角度(亦即,不旋轉而停止)一 邊使朝+Z方向移動來切削工件22之側面。 然後,齒輪之溝槽一旦完成,車床1,在使切斷器53 下降並離開工件22之後,就會使主軸朝-Z方向移動,並 且使主軸只旋轉預定角度(2tt/L(L爲齒輪之溝槽數)),同 樣地加工下一個溝槽。 其次,使用第9圖之各圖就齒輪加工台51使切斷器 5 3上下移動的機構加以說明。 如第9圖(a)所示,在齒輪加工台51中,機械臂 2 5 z、與工具保持部5 9係藉由連結構件6 0來連結。 另外,第9圖(a)之中,工具保持部59,係成爲第8 圖(a)之箭頭線A方向的視圖,機械臂2 5 z,係成爲第8圖 (b )之箭頭線B方向的視圖。 機械臂25z’係由支點57所軸支,於其中—端形成 有接觸件24z,於其中另一端軸支有連結構件6〇。 接觸件2 4 z ’係與凸輪9 z (旋轉刀具用凸輪)之外周相 接’仿照凸輪9z之形狀而移動。因此,接觸件24z 一旦 仿照凸輪9z之形狀而上下移動,連結構件6〇就以支點 5 7爲中心而亦上下移動。 另一方面’工具保持部5 9,係由支點5 8所軸支,於 其中一端保持有切斷器S3,於其中另一端軸支有連結構 件6 0 〇 因此,連結構件60—旦上下移動’切斷器53就以支 點5 8爲中心而亦上下移動。 -33- 200914177 如第9圖U)所示’切斷器53與接觸件24z ’係相對 於支點5 8、5 7形成於相同側’而連結構件60,由於係形 成於與此等相對向的側,所以接觸件24z與切斷器53, 係同步上下移動。 亦即,在接觸件24上升的情況’切斷器5 3亦會上 升,而在接觸件24下降的情況切斷器5 3亦會下降。 凸輪9z,係具有圓盤形狀,而於外周之1個部位形 成有凹部5 2 ° 在接觸件24z接觸到凹部52時,由於接觸件24會上 升,所以切斷器53亦會上升’而在接觸件24z接觸到凹 部52以外的部位時,由於接觸件24會下降,所以切斷器 53亦會下降。 在工件22藉由其他的凸輪9a、9b、9c、…而加工的 期間,爲了使接觸件24z接觸到凸輪9z之凹部52以外的 部分,而設定有凸輪9z與其他的凸輪9之安裝角度。 V " 第9圖(b)係顯示接觸件24z與凹部52相接,而切斷 器5 3上升的情形。 工件22之切削加工,係如此地以接觸件24z與凹部 5 2相接的狀態進行。 車床1,係在加工齒輪的情況,不進行使凸輪9 z旋 轉3 60度之作業’而是交互地反覆進行第9圖(a)所示的 位置(亦即,從凹部5 2與接觸件2 4 z相接的位置使凸輪9 z 只旋轉角度0的位置,第2旋轉角度)、以及第9圖(b)所 示的位置(凹部52與接觸件24z相接的位置,第1旋轉角 -34- 200914177 度)。 如此,齒輪加工台5 1 ’係具有作爲旋轉刀具移動手 段的功能’該旋轉刀具移動手段係藉由移動旋轉刀具保持 手段,來以旋轉的刀具切削被加工物。 其次’使用第1 〇圖的流程圖,就車床1對工件2 2加 工齒輪的順序加以說明。 車床1,係在使用凸輪9a、9b、9c、…加工工件22 之側面之後,停止主軸並移行至齒輪加工模式,驅動切斷 器5 3,開始刀具5 5之旋轉。 首先,車床1,係將計數器j設定爲j = l(步驟105)。 J係計數經加工後的溝槽之個數的參數。 其次,車床1,係藉由伺服馬達6而使主軸後退(亦 即,朝-Z軸方向移動),並將工件2 2移動至即使切斷器 53上升亦不會干涉刀具55與工件22的位置(步驟110)。 其次,車床1,係藉由凸輪驅動馬達45而使凸輪9Z 只旋轉角度0並使接觸件2 4接觸到凹部5 2,使切斷器5 3 上升(步驟1 15)。 另外,在此,凸輪9z之初始位置’係離開凹部52與 接觸件24z相接的位置而位於角度0之位置(第9圖(a)之 位置)。 正轉、反轉雖然亦可定義於某一方向’但是在此’係 將右螺旋朝-Z軸方向前進的旋轉方向爲正轉。 其次,車床1,係藉由伺服馬達6而使主軸前進(亦 即’朝+Z方向移動),將工件22導出於切斷器53’進行 -35- 200914177 溝槽的切削加工(步驟丨20)。 此期間’主軸馬達1 1,並保持主軸不旋轉。或是, 亦可設置軔(brake)等的制動機構俾使主軸不會旋轉。 車床1 ’係溝槽之切削加工一旦結束,就藉由凸輪驅 動馬達45使凸輪9z只旋轉角度β並使接觸件24接觸到 未形成有凹部52的部分,且使切斷器53下降(步驟 1 25) ° 其次’車床1 ’係判斷j是否比L小(步驟丨3 〇)。在 此’ L係形成於齒輪之溝槽的個數。 當j比L小時(步驟丨30 ; Y),由於尙有未加工的溝槽 所以繼續進行加工。 此情況’車床1 ’係將j進位成j = j + 1 (步驟丨3 5 ),並 且藉由主軸馬達11使Z軸只旋轉預定角度(2tt/L)(步驟 1 40),更且’回到步驟1 1 〇藉由伺服馬達6使主軸復位於 原來的位置,進行下一個溝槽的加工。 另一方面,在j達到L時(步驟130;否),車床1, 會停止切斷器5 3,且結束齒輪的切削加工。 如以上所述,主軸馬達1 1 (主軸旋轉手段),係在凸輪 9 z保持於第1旋轉角度的期間(切削加工溝槽的期間),將 工件22的旋轉角度保持於預定角度,而在凸輪9z保持於 第2旋轉角度的期間,使工件22只旋轉預定角度俾使刀 具5 5切削下一個切削部位。 又,伺服馬達6(主軸移動手段),係在凸輪9z保持於 前述第1旋轉角度的期間,將主軸朝向刀具55導出工件 -36- 200914177 22的方向移動’而在凸輪9z保持於第2旋轉角度的期間 將主軸復位於移動前的位置。 如此,在本變化例中,藉由使齒輪配合使用凸輪機構 與主軸之數値控制可在工件22切削加工齒輪。 再者,第10圖之齒輪加工工序中,由於係在步驟 1 2 5反轉凸輪9並加工切斷器,所以在進行最後的齒輪切 割(齒輪的溝槽之加工)之後,凸輪9會成爲反轉的狀態。 因此,爲了加工下一個齒輪,有必要在此之前讓工件 22脫離而使凸輪9正轉。 因此’如第1 1圖的流程圖所示,在進行最後的齒輪 切割時’藉由使凸輪9正轉並使切斷器下降,即可與最後 的齒輪切割同時使凸輪9正轉,而可使加工高速化。 以下,就該工序加以說明。 步驟105〜125,係與第1〇圖相同。 在步驟125將切斷器下降進行齒輪切割之後,車床 1 ’係判斷j是否未滿L-1,亦即判斷加工後的溝槽之數量 是否已達到L-1(步驟133)。 在j未滿L-1時(亦即,加工後的溝槽之數量未達到 L-1時K133 ;是),車床】,係與第1〇圖同樣地對】進位 加1(步驟⑴),並將z軸旋轉預定角度(步驟14〇),而移 行至步驟1 1 0。 另一方面, 槽之數量已達到 最後1個溝槽, 在j並非未滿L -1時(亦即,加工後的溝 L-1時)(133 ·’否),車床〗,爲了要加工 而將Z軸後退(步驟145),並將凸輪9正 '37. 200914177 轉來使切斷器上升(步驟丨50)。 接著’車床1 ’係使Z軸前進(步驟155),將凸輪9 正轉使切斷器加工’而加工最後的溝槽(步驟160)。 藉由以上的工序’可在凸輪9正轉的狀態下結束最後 的溝槽之加工。藉此’在進行下一個齒輪切割時,就沒有 必要脫離工件來將凸輪9正轉,而可更效率佳地進行齒輪 之加工。 其次,使用第1 2圖之各圖,就效率更佳的工件22之 供給方法、及工件22之支撐方法加以說明。 首先,在利用工件供給裝置12導出並供給工件22 時,雖然有必要支撐工件之前端,但是於此有利用刀具 2 1來支撐的情況以及利用頂心1 3來支撐的情況(參照第 1 2圖之各圖)。 在工件供給裝置1 2所賦予的工件供給力小、且工件 供給負載較小時,由於即使利用刀具2 1來支撐工件22亦 不會損傷到刀具2 1,所以利用刀具2 1來進行供給時的工 件支撐在效率上很有效° 另一方面,在工件供給的負載較大時’使用頂心13 較佳。 亦即,在工件供給裝置1 2供給工件2 2之力量較小的 狀態時,使刀具2 1位於主軸1 8支軸上’將工件供給裝置 1 2所供給的工件22觸及刀具2 1來限定供給量,而在工 件供給裝置1 2供給工件2 2之力量較大的狀態時’將工件 供給裝置1 2所供給的工件2 2觸及頂心1 3來限定供給 -38- 200914177On the other hand, when i is not less than N (i.e., when i has reached N) (step 50; NO), the lathe 1 further determines whether k is not full (step 75). In the case where k is less than μ (step 7 5; YES), the lathe 1 is incremented by k (step 8 〇). Then, the lathe 1 is returned to the process of step 1 to supply the workpiece 22 to the workpiece supply device i 2 . On the other hand, 'when k is not less than μ (step 7 5; No), the lathe 1 'stops the full axis (cam drive motor 45, servo motor 6, main -29-200914177 shaft motor 1 1) (step 85), for example, lighting the display lamp or the like to notify the operator that the processing has ended. Once the machining of the workpiece 22 is completed, the operator can also supply the next workpiece to the workpiece supply device 1 2 and execute the same number control program, or 'program change (if necessary, exchange cam mechanism 1 〇) And make other processed products. According to the embodiment described above, the following effects can be obtained. (1) Since the movement of the spindle head 2 is mechanically separated from the rotation of the cam mechanism 10, it is not necessary to perform the movement of the spindle head 2 by the cam mechanism 1 ,, and the adjustment of the cam mechanism 10 can be easily performed. That is, in the conventional lathe device, when the headstock moving cam and the tool grooving cam have manufacturing errors or assembly errors, it is necessary to process the correcting cam to maintain the accuracy, and it is necessary to be skilled in cam mounting and correction. However, in the lathe 1 of the present embodiment, the adjustment operation of the headstock moving cam is not required. (2) Since the ball screw 7 is formed at the center of the sliding surface 17 and is pressed to act on the sliding surface 17 in an average manner, the uneven load of the sliding surface 17 can be prevented. Therefore, uneven wear of the sliding surface 17 can be prevented, and the machining accuracy of the workpiece can be stabilized. (3) The correction work of the sliding surface 17 can be easily performed by preventing the unevenness of the sliding surface 17 from being worn. (4) Since the movement of the headstock 2 is set to the number control, the amount of movement of the headstock 2 can be set by the number or control code in accordance with the movement of the tool 21. -30- 200914177 (5) By detecting the rotation angle of the cam mechanism 10 and using this to control the movement of the spindle head 2, the camshaft speed of the cam mechanism 10 can be synchronized with the movement of the spindle head 2. (6) Since the movement of the spindle head 2 is set to the number of revolutions, the setting of the misalignment of the position of the spindle head 2 can be easily performed. (7) Since the movement command of the spindle head 2 is issued in accordance with the accuracy of the cam mechanism 10, the correction operation is performed on the one side of the spindle head 2 by a number of turns without the correction operation of the cam mechanism 1 . (8) Since the workpiece 2 2 of the processed product can be held in one clamping operation, the machining time can be shortened. Next, a modification of this embodiment will be described. Fig. 8 is a view showing the lathe device of the present modification, and Fig. 8(a) shows the side of the cam portion, and Fig. 8(b) shows the front view of the lathe device. As shown in Fig. 8(b), the lathe 1 is attached to the base portion 5, and includes a gear processing table 51 in addition to the spindle table 2 and the tool holder 3. In addition, the top center 4 may or may not be provided. The gear processing table 51 is a unit that forms a gear at the front end of the workpiece 2 2 and is fixed to the upper surface of the base portion 5. As shown in Fig. 8(a), the gear processing table 51 is formed by a robot arm 25z, a coupling member 60, a tool holding portion 59, and the like. The tool holding portion 59' holds various tools, and in the present modification, the cutter 53 is held. The cutter 53' has a cylindrical shape as shown in Fig. 8(c), and -31 - 200914177 drives the cutter 55 to rotate and rotates with its axis as a rotation axis. Then, the gear table 51 is such that the rotary shaft of the cutter 53 is perpendicular to the main axis, and the cutter 53 is held such that the cutter 55 becomes the lower side of the workpiece 22. Thus, the rotary shaft of the cutter 53 has a function as an auxiliary shaft with respect to the main shaft. Further, although the rotating shaft of the cutter 53 is perpendicular to the main shaft, the present invention is not limited thereto, and the rotating shaft may be formed at a predetermined angle with the main shaft so that the gear processing table 51 holds the cutter 53. In this manner, the tool holding portion 5.9 has a function as a rotating tool holding means for holding a tool that rotates around a rotating shaft that forms a predetermined angle with the aforementioned main shaft. Fig. 8(d) is a schematic view showing the enlarged cutter 55. The cutter 55 is formed into a disk-shaped rotationally symmetric body, and the axis of symmetry coincides with the rotational axis of the cutter 53. Then, a cutter is formed around the outer periphery of the cutter 5 5. When the cutter 5 5 is rotated, the cutting function can be utilized by the outer peripheral portion of the cutter 5 5 . The cutter 55 is held in such a manner that the plane formed by the cutter includes the center line of the tool 22, and the cutter cuts the cutter into the side of the workpiece 22 to cut the groove of the gear toward the main shaft. The cutter 55, since it is located on the lower side of the workpiece 22, cuts the lower side of the workpiece 22 once the cutter 53 is raised and the cutter 55 leaves the workpiece 22 once the cutter 53 is lowered. The lathe 1 is configured to raise the cutter 53 by -32-200914177 when the groove of the gear is machined, and the spindle is moved in the +Z direction while maintaining the rotation angle (that is, stopping without rotating). The side. Then, once the groove of the gear is completed, the lathe 1 moves the spindle in the -Z direction after the cutter 53 is lowered and leaves the workpiece 22, and the spindle is rotated only by a predetermined angle (2 tt / L (L is a gear The number of grooves)), the same groove is processed in the same manner. Next, a mechanism for moving the cutter 5 3 up and down by the gear processing table 51 will be described using the drawings of Fig. 9. As shown in Fig. 9(a), in the gear processing table 51, the robot arm 25z and the tool holding portion 59 are coupled by the connecting member 60. Further, in Fig. 9(a), the tool holding portion 59 is a view in the direction of the arrow line A of Fig. 8(a), and the robot arm 25z is the arrow line B of Fig. 8(b). Directional view. The mechanical arm 25z' is pivotally supported by the fulcrum 57, and a contact member 24z is formed at the end thereof, and a coupling member 6'' is axially supported at the other end. The contact piece 2 4 z ' is moved in contact with the outer periphery of the cam 9 z (the rotary tool cam) to follow the shape of the cam 9z. Therefore, the contact member 24z moves up and down in the manner of the shape of the cam 9z, and the connecting member 6 is also moved up and down around the fulcrum 57. On the other hand, the tool holding portion 590 is pivotally supported by the fulcrum 58 and has a cutter S3 held at one end thereof, and a coupling member 60 is pivotally supported at the other end thereof. Therefore, the coupling member 60 is moved up and down. The cutter 53 also moves up and down around the fulcrum 58. -33- 200914177 As shown in Fig. 9(), the 'cutter 53 and the contact member 24z' are formed on the same side with respect to the fulcrums 5 8 and 57, and the connecting member 60 is formed in the opposite direction. On the side, the contact member 24z and the cutter 53 move up and down in synchronization. That is, the cutter 5 3 also rises when the contact member 24 is raised, and the cutter 5 3 also descends when the contact member 24 is lowered. The cam 9z has a disk shape, and a concave portion is formed at one portion of the outer circumference. When the contact member 24z contacts the concave portion 52, since the contact member 24 rises, the cutter 53 also rises. When the contact member 24z comes into contact with a portion other than the recess 52, the contact member 24 is lowered, so that the cutter 53 is also lowered. While the workpiece 22 is being processed by the other cams 9a, 9b, 9c, ..., the mounting angle of the cam 9z and the other cams 9 is set so that the contact 24z comes into contact with the portion other than the recess 52 of the cam 9z. V " Fig. 9(b) shows the case where the contact member 24z is in contact with the recess 52 and the cutter 53 is raised. The cutting of the workpiece 22 is performed in such a manner that the contact member 24z is in contact with the recessed portion 52. The lathe 1 is in the case of machining a gear, and does not perform the operation of rotating the cam 9 z by 3 60 degrees, but alternately repeats the position shown in Fig. 9 (a) (i.e., from the recess 5 2 and the contact member). 2 4 z position is the position where the cam 9 z is rotated by only the angle 0, the second rotation angle), and the position shown in FIG. 9(b) (the position where the recess 52 is in contact with the contact 24z, the first rotation) Corner -34- 200914177 degrees). As described above, the gear processing table 5 1 ' has a function as a moving tool for moving the tool. The rotary tool moving means cuts the workpiece by a rotating tool by moving the rotary tool holding means. Next, the sequence of machining the gears of the lathe 1 to the workpiece 2 2 will be described using the flowchart of the first drawing. The lathe 1 is machined on the side of the workpiece 22 using the cams 9a, 9b, 9c, ..., the spindle is stopped and moved to the gear machining mode, and the cutter 53 is driven to start the rotation of the cutter 55. First, on the lathe 1, the counter j is set to j = 1 (step 105). The J system counts the number of processed grooves. Next, the lathe 1 retracts the main shaft by the servo motor 6 (i.e., moves in the -Z-axis direction), and moves the workpiece 2 2 so as not to interfere with the cutter 55 and the workpiece 22 even if the cutter 53 is raised. Location (step 110). Next, the lathe 1 is caused by the cam drive motor 45 to rotate the cam 9Z by only the angle 0 and the contact member 24 to the recess 5 2 to raise the cutter 5 3 (step 1 15). Here, the initial position ' of the cam 9z is located at a position of the angle 0 from the position where the concave portion 52 is in contact with the contact piece 24z (the position of Fig. 9(a)). The forward rotation and the reverse rotation may be defined in a certain direction 'but the rotation direction in which the right spiral advances in the -Z-axis direction is the forward rotation. Next, the lathe 1 advances the spindle by the servo motor 6 (that is, 'moves in the +Z direction'), and the workpiece 22 is led to the cutter 53' to perform the cutting process of the -35-200914177 groove (step 丨20) ). During this period, the spindle motor 1 1 keeps the spindle from rotating. Alternatively, a brake mechanism such as a brake may be provided so that the spindle does not rotate. Once the cutting process of the lathe 1' groove is completed, the cam 9z is rotated by the cam drive motor 45 only by the angle β and the contact member 24 is brought into contact with the portion where the recess 52 is not formed, and the cutter 53 is lowered (step 1 25) ° Next, the 'lathe 1' judges whether j is smaller than L (step 丨3 〇). Here, the number of L-shaped grooves formed in the gears. When j is less than L (step 丨30; Y), processing continues because there are unprocessed grooves. In this case, the 'lathe 1' is to carry j into j = j + 1 (step 丨 3 5 ), and the spindle motor 11 rotates the Z axis by only a predetermined angle (2 tt / L) (step 1 40), and more ' Returning to step 1 1 〇 the spindle is returned to the original position by the servo motor 6, and the next groove is processed. On the other hand, when j reaches L (step 130; NO), the lathe 1 stops the cutter 53 and ends the cutting process of the gear. As described above, the spindle motor 1 1 (spindle rotation means) maintains the rotation angle of the workpiece 22 at a predetermined angle while the cam 9 z is held at the first rotation angle (during the cutting groove). While the cam 9z is held at the second rotation angle, the workpiece 22 is rotated only by a predetermined angle so that the cutter 55 cuts the next cutting portion. Further, the servo motor 6 (spindle moving means) moves the spindle toward the tool 55 in the direction of the workpiece -36 - 200914177 22 while the cam 9z is held at the first rotation angle, and holds the second rotation in the cam 9z. The period of the angle resets the spindle to the position before the movement. Thus, in the present modification, the gear can be machined in the workpiece 22 by using the gear mechanism in conjunction with the number of the cam mechanism and the spindle. Further, in the gear processing step of Fig. 10, since the cam 9 is reversed and the cutter is processed in step 152, after the final gear cutting (processing of the groove of the gear), the cam 9 becomes Reversed state. Therefore, in order to machine the next gear, it is necessary to disengage the workpiece 22 before the cam 9 is rotated forward. Therefore, as shown in the flowchart of FIG. 1, when the final gear cutting is performed, 'by rotating the cam 9 forward and lowering the cutter, the cam 9 can be rotated forward while the final gear is being cut. The processing speed can be increased. Hereinafter, this step will be described. Steps 105 to 125 are the same as in the first drawing. After the cutter is lowered and gear cut in step 125, the lathe 1' judges whether j is less than L-1, that is, whether the number of processed grooves has reached L-1 (step 133). When j is less than L-1 (that is, when the number of grooves after processing does not reach L-1, K133; Yes), the lathe is the same as in the first drawing, and the carry is incremented by 1 (step (1)). And rotating the z-axis by a predetermined angle (step 14A), and moving to step 110. On the other hand, the number of slots has reached the last groove, when j is not less than L -1 (that is, when the groove L-1 is processed) (133 · 'No), the lathe is in order to be processed The Z-axis is retracted (step 145), and the cam 9 is turned "37.200914177" to raise the cutter (step 丨 50). Next, the 'lathe 1' advances the Z axis (step 155), and the cam 9 is rotated forward to process the cutter to process the last groove (step 160). By the above process ', the processing of the last groove can be ended in the state where the cam 9 is rotated forward. Therefore, when the next gear cutting is performed, it is not necessary to disengage the workpiece to rotate the cam 9 forward, and the gear can be processed more efficiently. Next, the method of supplying the workpiece 22 with higher efficiency and the method of supporting the workpiece 22 will be described using the drawings of Fig. 2 . First, when the workpiece 22 is taken out and supplied by the workpiece supply device 12, it is necessary to support the front end of the workpiece, but it is supported by the cutter 21 and supported by the top core 13 (refer to the first 2 Figure of each figure). When the workpiece supply force given by the workpiece supply device 12 is small and the workpiece supply load is small, even if the workpiece 22 is supported by the tool 21, the tool 2 is not damaged, so when the tool 2 1 is used for supply. The workpiece support is effective in efficiency. On the other hand, it is preferable to use the center 13 when the load supplied by the workpiece is large. That is, when the workpiece supply device 12 supplies a small force to the workpiece 2 2, the tool 2 1 is placed on the spindle 18 shaft, and the workpiece 22 supplied from the workpiece supply device 12 is touched by the cutter 2 1 to define When the workpiece supply device 12 supplies a large force to the workpiece 2 2, the workpiece 2 2 supplied from the workpiece supply device 1 is touched by the center of the core 1 to limit the supply. -38 - 200914177

如此’工件供給裝置1 2,係具有導出被加工物之材 料的材料導出手段之功能,而刀具21或頂心13(支撐手 段)’係具有作爲使材料之前端抵接的抵接構件之功能。 然後’車床1 ’係具備限定使用工件供給裝置1 2、或 刀具2 1、頂心1 3而被導出的材料之導出量的限定手段。 然後’在對工件22進行加工時,於有必要之情況利 用頂心1 3來支撐工件2 2。 亦即,在工件22之直徑十分大、或工件22之加工部 分的長度較短之狀態時,不利用頂心1 3來支撐而是利用 導套2 3來懸臂加工,而在工件2 2之直徑較小、或加工部 分之長度較長的狀態時,利用頂心1 3來支撐工件2 2之前 端而加工。 又,在加工中途加工部分之長度變長的情況等,亦可 從加工中途利用頂心1 3來支撐工具22之前端。 第12圖(a)係顯示頂心13的驅動機構。 在基盤部5,係於刀具台3之+Z側設置有支柱67。 在支柱6 7形成有用以使頂心1 3插通的貫穿孔,並且固定 有以Z軸方向爲長度方向之由棒材所構成的限度擋具 6 4 〇 限度擋具6 4 ’係限定固定構件3 2朝Z軸方向移動時 之-Z方向的界限,固定構件’32 —旦朝-Z方向移動預定量 就會抵接限度擋具64而可限制固定構件3 2之移動。 固定構件3 2,由於係固定於未圖示的頂心台4,所以 -39- 200914177 頂心台4之移動及頂心13之移動亦由限度擋具6 4所限 定。 彈簧66,係具有作爲將頂心1 3朝-Z方向彈壓的彈壓 手段之功能,彈壓力,係設定爲比工件供給裝置1 2之工 件供給力還強。 氣缸61,係可藉由空氣之壓力而動作/不動作 (ON/OFF),其力量設定得比彈簧66之彈壓力還大。 因此,一旦氣缸61動作(ON),氣缸61之前端就會抵 接構件6 5並使此朝+Z方向移動。 構件65係與頂心13連結,構件65 —旦藉由氣缸61 而朝+Z方向移動,頂心1 3亦會朝+Z方向移動。 另外,在頂心1 3之前端附近,設置有將頂心1 3朝-Z 方向彈壓的緩衝彈簧63,用以緩和未圖示之工件22與頂 心1 3相接時的撞擊。 如以上所述,頂心1 3,係在氣缸 6 1不動作(〇 F F) 時,藉由彈簧66朝-Z軸方向,彈壓於由限度擋具64所 限定的位置,而在氣缸61動作時,頂心1 3,係朝+Z方向 移動。 如此,氣缸6 1,係具有作爲解除彈簧6 6之彈壓的彈 壓解除手段之功能。 第12圖(b)係顯示利用導套23支撐工件22,而工件 22之前端不支撐而以懸臂方式加工的示意圖。 在工件2 2之長度較短的情況、或工件2 2之直徑十分 大的情況等’可利用懸臂式來加工工件22時,就可如此 -40- 200914177 地支撐工件22並予以加工。 該情況,由於沒有必要利用頂心13來支撐工件22, 所以車床卜係事先打開夾緊機構33而解除頂心13與主 軸台2之連結,並且使氣缸61動作而將頂心13朝+2方 向移動。 第圖(c)係顯示利用導套23與頂心13支撐工件22 並予以加工的示意圖。 在工件22之長度較長的情況、或工件22之直徑較小 的情況等’很難利用懸臂式對工件22進行加工時就以如 此方式來支撐。 該h況’車床1 ’係在對工件2 2進行加工時,使氣 缸61不動作並使頂心1 3移動至限度擋具64之位置,並 且閉合夾緊機構3 3而連結主軸台2與頂心1 3,且利用導 套2 3與頂心1 3來保持工件2 2並利用刀具2 1來對工件 2 2進行加工。 第1 3圖係說明在供給工件2 2時利用刀具2 1支撐工 件2 2之前端並進行定位的狀態時車床1所進行的自動循 環之流程圖。 以下的流程圖中,計數器k,係計數工件供給裝置1 2 供給工件2後的次數之參數,Μ係工件供給裝置1 2導出 工件22的次數。 又’參數Ν,係對1次之工件2 2的導出而加工的加 工品之個數,計數器i,係計數供給工件22之後加工所得 的加工品之個數的參數。 -41 - 200914177 首先’操作者,係在將成爲工件22之棒材設定於車 床1之後’與第7圖之流程圖同樣地使車床1開始動作。 此時’操作者’也實施數値控制程式之部分修正或依 偏位功能之時序的校正。 如此’車床1,就會將主軸18旋轉(步驟200),且將 計數器k初始化爲〇 (步驟2 〇 5)。 其次’車床1 ’係使凸輪軸i 6與主軸台2待機於預 定的基準位置(步驟2 1 0 ),並打開夾頭2 7 (步驟2 1 5 )。 在凸輪軸16之基準位置,以被導出的工件22觸及刀 具2 1而定位的方式,使該刀具2丨位於主軸1 8之中心軸 上。 或者’亦可在使凸輪軸1 6朝基準位置移動之後,以 將決定工件22之位置的刀具2 1位於主軸1 8之中心軸上 的方式來將凸輪軸1 6旋轉及移動。 其次,車床1,係將主軸台2之位置,復位於可供給 對加工品N個份進行加工用的工件22之位置(切削原點-加工品之Z方向的尺寸χΝ)(步驟22〇),且驅動工件供給 裝置12來供給工件22(步驟225)。 被供給的工件22 —旦觸及刀具2 1就可藉此來限制工 件22之導出(亦即,工件22之前端碰到刀具21而停止工 件22之供給),且導出加工Ν個加工品所需的量。 然後,工件22之供給一旦完成,車床1就會閉合夾 頭27並夾持工件22(步驟230)。 其次,接續於第1 4圖之流程圖(藉由以圓圏符號包圍 -42 - 200914177 接續部位的A來顯示),車床1,係將計數器i初始化爲 〇(步驟23 5),且開始凸輪軸16之旋轉(步驟240),並對工 件22進行加工(步驟245)。 車床1,係在對工件2 2進行加工時,按照需要而閉 合夾緊機構33(步驟250),並且使氣缸61不動作而利用 頂心1 3來支撐工件22之前端並對工件22進行加工(步驟 2 5 5 ) ° 該情況’車床1,係一旦結束加工,就打開夾緊機構 3 3 (步驟2 6 0 ),並解除主軸台2與頂心丨3之連結。 車床1 ’例如在工件22之長度較長的狀態時,從加 工之最初就利用頂心1 3來支撐工件22,隨著加工而在工 件2 2之長度變長時’於加工中途驅動頂心1 3來支撐工件 22 ° 在哪個時序支撐、或者不支撐,係由數値控制程式所 規定。 如此’連結頂心1 3與主軸台2的連結手段,就會在 彈壓手段(彈簧66)彈壓被加工物(工件22)之狀態時連結夾 持手段(設置有夾頭27的主軸台2)與支撐手段(頂心13), 而在利用彈壓解除手段(氣缸1 6)解除彈壓之狀態時就不進 行連結作業。 車床1,一旦結束工件22之加工,就藉由切斷加工 等來切斷加工品。 然後,車床1,係使凸輪軸16待機(步驟265),且使 計數器i只進位加1(步驟2 70)。 -43- 200914177 其次,車床1 ’例如係判斷是否有來自操作者之停止 操作等的停止命令(步驟275),在有停止命令時(步驟 275 ;有),車床1,就會停止全軸而處於待機狀態(步驟 295) 〇 另一方面,在沒有停止命令時(步驟275;無),車床 1,就判斷i是否未滿N(步驟280) ’在未滿N時(步驟 2 8 0 ;是),由於加工後的加工品之個數並未達到N個’所 以車床1,會移行至步驟24〇之工序’製作下一個加工 品。 在並非未滿N時(步驟280;否),由於加工後的加工 品之個數已達到N個’所以車床1 ’僅使計數器i進位加 1 (步驟 2 8 5 )。 然後,車床1,會判斷k是否未滿Μ(步驟290),在 未滿Μ時(步驟2 9〇 ;是),由於工件22之供給次數並未 達到Μ次,所以車床1,會移行至第13圖之流程圖的步 驟2 1 5之工序(藉由以圓圈符號包圍接續部位的a來表 示),進行工件2 2之供給。 另一方面,在並非未滿Μ時(步驟290;否),由於工 件2 2之供給次數已達到Μ次,所以車床1 ’會停止全軸 而處於待機狀態(步驟2 9 5 ) ° 第1 5圖係說明在供給工件22時利用頂心1 3支撐工 件2 2之前端來進行定位之狀態時車床1所進行的自動循 環用之流程圖。 步驟2 0 0至步驟2 1 0係與第1 3圖之流程圖相同。 -44- 200914177 車床1,係在步驟210將凸輪軸或主軸台2待機 於基準位置之後’打開夾緊機構33(步驟212),且使氣缸 61不動作而使頂心13朝工件22之方向(_z方向)前進(步 驟 2 1 3 )。 然後’車床1,係與第1 3圖之流程圖同樣地進行主 軸台位置復位(步驟22 0)、工件供給(步驟225)。 該情況’工件22之前端會觸及頂心1 3的前端而工件 22之供給量會受到限定。 之後’車床1’係閉合夾頭27(步驟230),並使氣缸 6 1動作’使頂心1 3朝+ Z方向後退(步驟2 3 2)。 以後’車床1,係按照第14圖之流程圖而進行加 工。 其次,就本實施形態的更另一變化例加以說明。 第1圖所示的凸輪9a、9b、…(其中,凸輪9b以後於 以省略)’係藉由精細描繪線配合互爲相對的位置而利用 螺栓固定於凸輪軸1 6。 該等凸輪9之相對的安裝角度一旦有偏移,就會產生 加工誤差’且加工品之形狀會與當初設計的有所差異。 以往,凸輪9之安裝以及位置調整,係藉由熟練作業 者,一邊加工材料一邊使現物配合各凸輪9之位置等,亦 即,一邊觀看加工形狀一邊調節凸輪9之安裝角度。 本變化例中,係將各個凸輪9的安裝角度之偏移輸入 於數値控制程式中,使主軸台2之移動配合凸輪9進行校 正。 -45- 200914177 藉此,熟練作業者就沒有必要在凸輪軸1 6上微調凸 輪9的位置,即便是一般的作業者亦可容易地進行校正。 在進行高精度加工時,通常雖然係以偏移大致成爲(Γ (通常爲±0.1°左右之公差內)的方式進行嚴格的安裝作業, 但是藉由使用本變化例的功能,則即使是0.5°前後之偏移 亦可藉由偏位來進行校正。 首先,就各凸輪9之安裝角度的偏移之檢測方法加以 說明。 凸輪9之安裝角度的偏移,係以其中某一個凸輪 9 (在此爲凸輪9 a)爲基準,且利用編碼器來檢測相對角度 對成爲該基準的凸輪9之偏移。 更詳言之則如下所述。作業者係可利用操作盤42(第 5圖)將編碼器之角度以數値形成角。 首先,使用編碼器使凸輪軸1 6旋轉,俾其成爲凸輪 9 a之精細描繪線的角度。 此時,若接觸件24a(第1圖(a))與精細描繪線一致, 就可判斷沒有凸輪9 a之安裝偏移。在與精細描繪線不一 致的情況’就使凸輪軸1 6旋轉至接觸件24a與精細描繪 線一致的位置。 此時的編碼器之値與由精細描繪線所指示的角度之差 係相當於凸輪9a之安裝角度的偏移。 亦就其他的凸輪9進行以上的作業,且可針對全部的 凸輪9檢測安裝角度之偏移。 9之安裝 第1 6圖係顯不利用數値控制程式偏位凸輪 -46- 200914177 角度時的各刀具21等之移動的時序圖。 此例中,係顯示凸輪9b的安裝角度對標準的安裝角 度偏移-1 ,將此當作偏位値而設定於數値控制程式中, 使主軸台2之移動配合凸輪9b之偏移而進行校正的情 況。 藉此主軸台2之移動的時序就可校正,而與刀具21b 之活動一致。 實線301’係表示凸輪9b之安裝角度沒有偏移時的 刀具21b之移動,虛線302’係顯示將凸輪9b之安裝角 度的偏位値設爲-1 °時的刀具2 1 b之移動。 如圖所示,由於凸輪9b之安裝角度偏移_1。,所以刀 具21b之移動亦只延遲Γ份。 另一方面,實線303’係表示凸輪9b之安裝角度沒 有偏移時的主軸台2 (主軸1 8 )之移動,虛線3 0 4,係顯示 將主軸台2之移動配合凸輪9之安裝角度而偏位時的移 動。 另外’由於在時序圖的主軸台2之欄位中一旦記載兩 者就很難進行判別,所以要記載於欄位外。 如圖所示,主軸台2之移動時序與實際的凸輪9b吻 合。 此係在凸輪9 b進行加工工序時,藉由控制器4 1使主 軸台2之移動只前進+1°份,而進行主軸台2導入凸輪9b 之安裝角度的偏移之活動所致。 另外’ 一旦將主軸台2之活動偏位,雖然下一個凸輪 -47- 200914177 9(例如凸輪9c)之移動與主軸台2之移動有可能變成不同 步,但是在各凸輪9之安裝角度上設置有足夠的餘裕度, 而可在作業從凸輪9b移行至下一個凸輪9的期間之餘裕 區間.吸收因主軸台2之移動的偏位所造成的偏移。 其次,使用第17圖之圖表,就凸輪9之安裝狀況與 數値控制程式之間的關係加以說明。 項目「刀具」,係表示安裝於車床1的各刀具21。 項目「凸輪」,係驅動刀具2 1的凸輪。如圖所示, 刀具21,係可藉由單數個或複數個凸輪9來驅動。 圖之例中,刀具2 1 a係藉由凸輪9 a所驅動,刀具 2 1b係藉由凸輪9b與凸輪9c所驅動。 項目「數値控制程式」,係表示數値控制程式的邏輯 結構,且由「工序編號」、「偏位」、「步驟編號」、 「凸輪軸角度」、「主軸移動量」、「凸輪軸速度」等之 項目所構成。 項目「工序編號」’係賦予工序的編號。工序,係凸 輪9驅動刀具2 1而進行的一輪作業,各工序係由更細的 步驟所構成。 項目「步驟編號」’係表示構成該工序的步驟之編 號。亦即’各工序係由更小的作業單位之步驟所構成。 圖之例中’工序1係由步驟1〜5所構成,工序2係由 步驟6、7所構成。 一般而言,工序i,係由步驟N(i_1) + 1至步驟Ni所 構成。 -48- 200914177 項目「偏位」’係表示凸輪9 偏位値。凸輪9a係成爲角度計測 成爲0。 凸輪9b係相對於凸輪9a偏移 9c係相對於凸輪9a偏移-0.1。安裝角 該等偏位値,係作業者從操作盤 一般而言’將工序i之偏位値表 圖之例中,凸輪9a對應工序1 α 1,設定有凸輪9a之偏位値〇°。藉 1至步驟5中適用校正値〇;1。 同樣地,凸輪9 η對應工序i, i ’設定有凸輪9n之偏位値α i。藉 N(i-1) + 1至步驟Ni中適用校正値α i 項目「凸輪軸角度」,係旋轉凸 如,由於工序1之步驟2的凸輪軸ί 驟1係爲0°,所以車床1,係在從 時,使凸輪軸16從0°旋轉至10°。 項目「主軸移動量」,係使主軸 工序1之步驟3的主軸移動量係成怎 係在從步驟 2移行至步驟3時, 2.5 [mm] 〇 項目「凸輪軸速度」,係旋轉凸 位爲[V秒]。 在如以上所構成的數値控制程式 L安裝角度的偏移,即 7基準,因此,偏位値 + 0.2°安裝角度,凸輪 度。 :42(第5圖)輸入。 示爲<2 i。 ,在工序1之校正値 丨此,在工序1之步驟 在工序i之校正値α 此,在工序i之步驟 〇 I輪軸 1 6的角度。例 _度係成爲1〇°,而步 步驟1移行至步驟2 台2移動的量。例如 I -2_ 5 [mm],車床 1, ‘使主軸台2移動- 輪軸1 6的速度,單 ,中,控制器41 (第5 -49 - 200914177 圖)’係利用屬於該工序的各步驟之碼,將成爲主軸台2 之·移動基準的「凸輪軸角度」只偏位校正値而移動主軸台 1。 藉此’主軸台2,係只以對應凸輪9之偏位値的量, 來偏位動作時序而移動。 例如’在凸輪9之安裝角度沒有偏移的情況,利用某 一步驟的碼,於凸輪軸1 6之角度爲D X 1時開始進行主軸 台2的移動’且以Vz = (Dz/Dx)xVx_.·(數式2)的速度移動 主軸台的方式來限定。其中,Dx爲凸輪軸16之角度,可 藉由絕對座標系來記載。 在該碼中’於Dx 1 + α i時開始進行主軸台2之移動, 右將(數式2)設爲Vz={Dz/(Dx+〇:i)}xVx··.(數式3),則主 軸台2之移動可藉由^丨來偏位。 另外’在碼由相對座標系來記載的情況,係變換成絕 對座標而進行校正。 如以上所述,本變化例中,控制器41係具有作爲主 軸移動手段的功能,該主軸移動手段,係藉由電腦執行根 據所檢測出的旋轉角度控制主軸1 8之移動量的數値控制 程式’來移動主軸18使主軸台2朝Z方向移動,更且, 控制器41係具備:偏位値取得手段,其藉由作業者所設 定的a i,來取得對凸輪9之旋轉角度的偏位値;以及偏 位手段,其在該數値控制程式中,只以對應該取得的偏位 値之量來將主軸1 8之移動,例如,藉由數式3來偏位。 又,車床1中之凸輪9係存在有複數個,控制器41 -50- 200914177 係依偏位値取得手段,並藉由接受a i之設定而取得每一 個凸輪9之偏位値。 然後,控制器41,係具備在該數値控制程式中,藉 由使ai對應工序編號,使凸輪9與主軸18之移動對應的 對應手段,該偏位手段,係將主軸1 8之移動,對於對應 該移動的凸輪9只以所取得的偏位値之量,例如,藉由數 式3來偏位。 其次,使用第1 8圖之流程圖,就控制器4 1所進行的 偏位處理之順序加以說明。 首先,作業者,係計測各凸輪9之安裝角度的偏移並 將各個凸輪9之角度的偏移從操作盤42輸入於控制器 4 1 〇 又,作業者,係將凸輪9與數値控制程式之工序的對 應從操作盤42輸入於控制器4 1。 相對於此’控制器41,係接受每一個凸輪9之偏位 値的輸入而儲存於RAM等的記憶裝置,更且,接受偏位 値與工序之對應的輸入而儲存於記憶裝置(步驟3 0 0)。 其次’控制器41 ’係將工序編號i與步驟編號j初始 化爲1 (步驟3 0 5 )。 其次’控制器41,係判斷i是否爲Μ以下(步驟 3 1 0)。在此,Μ爲工序編號之最大値,就全部的μ確認 是否已設定偏位値。 在i比Μ還大時(步驟3 1 0 ;否),由於係就全部的步 驟進行偏位處理’所以控制器4 1會結束偏位處理。 -51 - 200914177 在i爲Μ以下時(步驟 〜 ^驟310’是),控制器41就將j設 定爲 N(i-1) + 1(步驟 315)。 在此N(i υ ’係表示工序編號Ν(Ν1)之最後的步驟 之步驟編號’而N(i-l) + i,炫卖— 、1 ) + 1,係表不工序編號i之最小的步 驟之步驟編號。其中,N〇 = 〇。 其次,控制器41,係確認j是否爲Ni以下(步驟 :2〇)。在此’ m係爲工序編號丨之最後的步驟之步驟編 號’並就工序編號i之全部的步驟確認是否已設定偏位。 在j比Ni還大時(步驟32〇 ;否),由於就工序編號丨 之全部的步驟設定偏位,所以控制器4〗,係將丨只進位加 1(步驟3 25 )並回到步驟310。 另一方面,在j爲Ni以下時(步騾32〇;是),控制器 4 1 ’係藉由在步驟編號j之碼中將〇 x j設爲d X j + ct i,而 將凸輪軸1 6之移動只偏位α i (步驟3 3 〇)。在此,D χ j,係 步驟j中的凸輪軸1 6之角度D X。 κ 然後’控制器4 1 ’係將j只進位加丨(步驟3 3 5 )並回 到步驟3 2 0。 藉由以上順序,可就全部的工序進行相應於凸輪9之 安裝角度的校正。 其次,使用第1 9圖之流程圖就車床1所進行的加工 處理之順序加以說明。 首先,控制器41,係藉由操作盤42從作業者,接受 執行已有設定的數値控制程式,或者執行新的數値控制程 式之選擇(步驟3 5 0)。 -52- 200914177 在執行已有設定的數値控制程式時(步驟3 5 0 ;否), 控制器4 1 ’係從記憶裝置讀出有關該數値控制程式的凸 輪資料(凸輪9之對應或偏位値等)(步驟3 60)。 另—方面’在執行新的數値控制程式時(步驟3 50 ; 是)’控制器41係經由記憶裝置、或例如軟碟等之記憶媒 體、或者網路等來讀入並設定該數値控制程式(步驟 3 5 5 ) 〇 其次,控制器41,係從作業者接受凸輪9與步驟之 對應、或每一個凸輪9的偏位値之輸入(步驟3 6 5)。該步 驟’係對應第1 8圖之流程圖的步驟5。 該等之對應或偏位値一旦被設定,控制器4 1,就會 進行校正資料的計算(步驟3 70)。該步驟,係對應第i 8圖 之流程圖的步驟1〇至步驟40。 如以上所述’控制器4 1,係在完成保存資料的讀出 之後(步驟60),或結束校正資料的計算之後(步驟3 70), 藉由作業者按下操作盤42之啓動鈕而開始自動運轉 (3 75) ’且按照數値控制程式進行車床1之運轉(步驟 3 80)〇 然後,控制器41,係一旦全部執行數値控制程式就 結束車床1之運轉(步驟385)。 另外’數値控制程式中,可設定車床1之動作速度, 控制器41,係在步驟3 75之後計算此並以該速度使車床1 動作。 此在車床1不具有重寫(overwrite)功能(使由數値控 200914177 制程式所指定的速度只以被指定的比例產生變化並使車床 1動作的功能)時可使用作爲取代重寫功能。 另外,重寫功能,係爲了進行數値控制程式之確認, 而被使用於將車床1快送空轉的情況等。 藉由以上說明的本變化例可獲得如下的效果。 (1) 即使凸輪9之對於凸輪軸1 6的安裝角度已偏移的 情況,亦可將該偏移當作偏位値而設定於數値控制程式 中。藉此,就沒有必要在凸輪軸1 6上微調凸輪9之安裝 位置,而可迅速容易地校正凸輪9之偏移。 (2) 依工序編號,藉由將數値控制程式的步驟區分成 對應於凸輪9的群組即可設定凸輪9與步驟之對應。藉 此,可將凸輪9之偏位値反映於所對應的步驟。藉由以 上,則不用重新安裝凸輪9,而可以數値輸入來調節安裝 角度。 (3) 調查修正各個凸輪9之安裝角度之偏移的作業, 由於與利用凸輪9來移動主軸台2的習知凸輪式車床之槪 念相近,所以即使對習於舊有機之作業者而言亦可容易作 業。 以上說明的本實施形態中,可提供如下的構成。 亦即,可提供一種車床裝置,其特徵在於··具備:主 軸,其在軸線上具備夾持被加工物的夾持手段;及主軸旋 轉手段,其旋轉前述主軸;及主軸移動手段,其藉由數値 控制將前述主軸朝軸線方向移動;及刀具保持手段,其保 持對前述被加工物進行切削的刀具;及刀具移動手段,其 -54- 200914177 將前述刀具保持手段,仿照旋轉的凸輪之形狀,朝與 主軸之軸線垂直的方向移動;以及凸輪旋轉手段,其 述凸輪旋轉(第1構成)。 在第1構成中,前述凸輪存在有複數個,前述偏 取得手段,係取得每一前述凸輪的偏位値,在前述數 制程式中,具備對應前述凸輪與前述主軸之移動的對 段,前述偏位手段,係將前述主軸之移動,對該移動 以相對於前述的凸輪而對應前述所取得的偏位値之量 位的方式所構成(第2構成)。 在第1構成、或第2構成中,前述主軸移動手段 亦可將使前述主軸移動之力,在包含前述主軸之軸線 垂面內,以作用於與前述軸線平行的方向所構成(第 成)。 在第1構成、第2構成、或第3構成中,申請專 圍第4項所記載的車床裝置,亦可具備:支撐手段, 與前述夾持手段相對向之側來支撐前述被加工物;以 結手段,其將前述夾持手段與前述支撐手段之距離維 預定距離來連結的方式所構成(第4構成)。 在第4構成中,前述連結手段,係亦可以從前述 工物切削所得的加工品之長度單位,可調節地構成前 連結的長度之方式所構成(第5構成)。 在第1構成至第5構成中任一構成中’亦可具備 轉刀具保持手段,其將旋轉的刀具保持於與前述主軸 定角度的旋轉軸之周圍;以及旋轉刀具移動手段,其 前述 使前 位値 値控 應手 可只 來偏 ,係 的鉛 3構 利範 其從 及連 持於 被加 述所 :旋 成預 在以 -55- 200914177 前述旋轉的刀具切削前述被加工物時’使前述旋轉刀具保 持手段移動的方式所構成(第6構成)° 在第6構成中,前述旋轉刀具移動手段,係亦可以仿 照旋轉的旋轉刀具用凸輪之形狀來移動前述旋轉的刀具之 方式所構成(第7構成)。 在第7構成中,在前述旋轉刀具用凸輪,設定有:前 述旋轉的刀具進刀切入於前述被加工物的第1旋轉角度、 以及前述旋轉的刀具離開被加工物的第2旋轉角度,前述 凸輪旋轉手段,係亦可以將前述旋轉刀具用凸輪的旋轉角 度,交互地旋轉於前述第1旋轉角度與前述第2旋轉角度 的方式所構成(第8構成)。 在第8構成中,前述主軸旋轉手段,係亦可以在前述 旋轉刀具用凸輪被保持於前述第1旋轉角度之期間,將前 述被加工物之旋轉角度保持於預定角度,在前述旋轉刀具 用凸輪被保持於前述第2旋轉角度之期間,以前述旋轉的 刀具切削下一個切削部位的方式使前述被加工物只旋轉預 定角度的方式所構成(第9構成)。 在第9構成中,前述主軸移動手段,係亦可以在前述 旋轉刀具用凸輪被保持於前述第1旋轉角度之期間,將前 述主軸移動於朝向前述旋轉的刀具導出前述被加工物的方 向,而在前述旋轉刀具用凸輪被保持於前述第2旋轉角度 之期間將前述主軸復位於移動前的位置之方式所構成(第 1 0構成)。 在第1構成至第5構成中任一構成中,前述刀具保持 -56- 200914177 手段’係亦可以具備將前述所保持的刀具旋轉於與前述主 軸成預定角度的旋轉軸之周圍的刀具旋轉手段之方式所構 成(第1 1構成)。 【圖式簡單說明】 第1圖(a)及(b)係顯示本實施形態的車床裝置。 第2圖係顯示以本實施形態的車床裝置所加工成的加 工品之一'例。 第3圖係連結機構的說明圖。 第4圖(a)及(㈧係使用連結機構的工件供給方法之說 明圖。 第5圖係以模型顯示車床之控制系統的方塊圖。 第6圖係顯示時序圖之一例。 第7匱I彳系說明本實施形態的車床裝置之自動循環動作 用的流程圖。 第8圖(a)至(d)係顯示本變化例的車床裝置。 第9 BI(a)及(b)係齒輪加工台使切割器上下移動的機 構之說明圖。 第1 〇圖係說明加工齒輪之順序用的流程圖。 第11匱1係說明加工齒輪之順序之變化例用的流程 圖。 第12圖(a)至(c)係效率佳的工件之供給方法、及支撐 方法等的說明圖。 第1 3圖係以刀具支撐工件時的流程圖。 -57- 200914177 第14圖係以刀具支撐工件時的流程圖之接續。 第1 5圖係以頂心支撐工件時的流程圖。 第1 6圖係顯示以數値控制程式偏位凸輪之安裝角度 時的各刀具等之移動的時序圖。 第1 7圖係凸輪之安裝狀況與數値控制程式的關係用 的說明圖。 第1 8圖係說明控制器所進行的偏位處理之順序用的 流程圖。 第1 9圖係說明車床所進行的加工處理之順序用的流 程圖。 第2 〇圖係顯示習知的車床裝置。 【主要元件符號說明】 1 ·’車床 2 :主軸台 3 :刀具台 4 :頂心台 5 :基盤部 6 :伺服馬達 7 :滾珠螺桿 8 :螺帽 9 :凸輪 1 〇 :凸輪機構 1 1 :主軸馬達 -58- 200914177 1 2 :工件供給裝置 1 3 :頂心 1 5 :齒輪部 1 6 :凸輪軸 1 7 :滑動面 1 8 :主軸 21 :刀具 2 2 :工件 23 :導套 24 :接觸件 2 5 :機械臂 2 7 :夾頭 3 1 :連結棒 3 2 :固定構件 3 3 :夾緊機構 41 :控制器 4 2 :操作盤 5 1 :齒輪加工台 5 2 :凹部 5 3 :切割器 55 :刀具 5 9 :工具保持部 61 :氣缸 63 :緩衝彈簧 -59 200914177 64 :限度擋具 6 5 :構件 66 :彈簧 6 7 :支柱 -60Thus, the workpiece supply device 1 2 has a function of a material deriving means for deriving a material of the workpiece, and the cutter 21 or the top core 13 (support means) has a function as an abutting member for abutting the front end of the material. . Then, the 'lathe 1' is provided with a limiting means for limiting the amount of material to be derived using the workpiece supply device 1, 2, or the cutter 2 1 and the center of the core 13. Then, when the workpiece 22 is machined, the top core 13 is used to support the workpiece 2 2 as necessary. That is, when the diameter of the workpiece 22 is very large, or the length of the processed portion of the workpiece 22 is short, the support is not supported by the top core 13 but by the guide sleeve 23, and the workpiece 2 2 When the diameter is small or the length of the processed portion is long, the top end 13 is used to support the front end of the workpiece 2 2 for processing. Further, in the case where the length of the processed portion is increased in the middle of the machining, the tip end of the tool 22 can be supported by the center of the core 13 from the middle of the machining. Fig. 12(a) shows the driving mechanism of the center core 13. In the base portion 5, a stay 67 is provided on the +Z side of the tool holder 3. A through hole for inserting the center of the core 13 is formed in the pillar 67, and a limit stopper 64 which is formed of a bar in the longitudinal direction of the Z-axis direction is fixed, and the limit stopper 6 4 ' is fixed. When the member 3 2 moves in the Z-axis direction in the -Z direction, the fixing member '32 is moved in the -Z direction by a predetermined amount to abut against the limit stopper 64, and the movement of the fixing member 32 can be restricted. Since the fixing member 32 is fixed to the top center 4 (not shown), the movement of the top center 4 and the movement of the center 13 are also limited by the limit stopper 64. The spring 66 has a function as a biasing means for biasing the center of the center 13 in the -Z direction, and the spring pressure is set to be stronger than the workpiece supply force of the workpiece supply device 12. The cylinder 61 is operable/not operated (ON/OFF) by the pressure of the air, and its force is set to be larger than the spring pressure of the spring 66. Therefore, once the cylinder 61 is actuated (ON), the front end of the cylinder 61 abuts against the member 65 and moves this in the +Z direction. The member 65 is coupled to the top core 13, and the member 65 is moved in the +Z direction by the cylinder 61, and the top core 13 is also moved in the +Z direction. Further, a buffer spring 63 that biases the center of the center 13 toward the -Z direction is provided in the vicinity of the front end of the center of the center 13 to relieve the impact when the workpiece 22 (not shown) is in contact with the center 13 . As described above, when the cylinder 6 1 does not operate (〇FF), the spring 66 is biased in the -Z-axis direction by the spring 66 in the position defined by the limit stopper 64, and is actuated in the cylinder 61. At the same time, the top center 1 3 moves in the +Z direction. Thus, the cylinder 61 has a function as a spring releasing means for releasing the bias of the spring 66. Fig. 12(b) is a schematic view showing the workpiece 22 being supported by the guide bushing 23, and the front end of the workpiece 22 is not supported and processed in a cantilever manner. When the length of the workpiece 22 is short, or the diameter of the workpiece 2 2 is extremely large, etc., when the workpiece 22 can be processed by the cantilever type, the workpiece 22 can be supported and processed by the -40-200914177. In this case, since it is not necessary to support the workpiece 22 by the top core 13, the lathe is previously opened by the clamp mechanism 33 to release the connection between the top core 13 and the spindle head 2, and the cylinder 61 is operated to bring the center 13 toward the +2 Move in direction. Figure (c) shows a schematic view of the workpiece 22 supported by the guide sleeve 23 and the top core 13 and processed. In the case where the length of the workpiece 22 is long or the diameter of the workpiece 22 is small, etc., it is difficult to support the workpiece 22 by the cantilever type. In the case of the lathe 1', when the workpiece 22 is processed, the cylinder 61 is prevented from moving and the center of the core 13 is moved to the position of the limit stopper 64, and the clamp mechanism 3 is closed to connect the spindle table 2 with The center of the core 13 is used, and the workpiece 2 2 is held by the guide sleeve 23 and the top core 13 and the workpiece 22 is processed by the cutter 2 1 . Fig. 1 is a flow chart showing the automatic circulation performed by the lathe 1 when the workpiece 2 2 is used to support the front end of the workpiece 2 2 and is positioned while the workpiece 2 2 is being supplied. In the following flowchart, the counter k is a parameter for counting the number of times the workpiece supply device 1 2 supplies the workpiece 2, and the number of times the workpiece supply device 1 2 exports the workpiece 22. Further, the parameter Ν is the number of processed products processed by the first workpiece 2 2, and the counter i is a parameter for counting the number of processed products obtained after the workpiece 22 is supplied. -41 - 200914177 First, the operator sets the bar 1 to be the workpiece after the setting of the bar of the workpiece 22 to the lathe 1 as in the flowchart of Fig. 7. At this time, the 'operator' also performs partial correction of the number control program or correction according to the timing of the offset function. Thus, the lathe 1 rotates the spindle 18 (step 200) and initializes the counter k to 〇 (step 2 〇 5). Next, the 'lathe 1' is such that the camshaft i 6 and the headstock 2 stand by at a predetermined reference position (step 2 1 0), and the chuck 2 7 is opened (step 2 15). At the reference position of the camshaft 16, the tool 2 is positioned on the central axis of the spindle 18 in such a manner that the extracted workpiece 22 is positioned in contact with the tool 21. Alternatively, the cam shaft 16 may be rotated and moved to move the cam shaft 16 toward the reference position so that the tool 2 1 that determines the position of the workpiece 22 is positioned on the central axis of the main shaft 18. Next, the lathe 1 resets the position of the spindle head 2 to a position at which the workpiece 22 for processing N parts of the workpiece can be supplied (cutting origin - dimension in the Z direction of the processed product) (step 22) And the workpiece supply device 12 is driven to supply the workpiece 22 (step 225). The supplied workpiece 22 can thereby restrict the derivation of the workpiece 22 by touching the tool 2 (i.e., the front end of the workpiece 22 hits the cutter 21 to stop the supply of the workpiece 22), and the processing of the processed workpiece is required. The amount. Then, once the supply of the workpiece 22 is completed, the lathe 1 closes the collet 27 and grips the workpiece 22 (step 230). Next, following the flowchart of FIG. 14 (displayed by A of the connecting portion surrounded by a circle symbol -42 - 200914177), the lathe 1 initializes the counter i to 〇 (step 23 5), and starts the cam. Rotation of the shaft 16 (step 240) and machining of the workpiece 22 (step 245). The lathe 1 closes the clamping mechanism 33 as needed (step 250), and causes the cylinder 61 to be inoperative to support the front end of the workpiece 22 and process the workpiece 22 by the center of the core 31. (Step 2 5 5 ) ° In this case, the lathe 1 is opened, and the clamping mechanism 3 3 is opened (step 2 60 0), and the connection between the spindle head 2 and the top core 3 is released. When the length of the workpiece 22 is long, for example, the lathe 1' supports the workpiece 22 from the beginning of the machining by the center of the core, and when the length of the workpiece 2 becomes longer as the machining becomes longer, the top core is driven in the middle of the machining. 1 3 to support the workpiece 22 ° at which timing support, or no support, is specified by the number control program. When the coupling means (the spring 66) presses the workpiece (the workpiece 22), the clamping means (the spindle table 2 provided with the chuck 27) is connected in such a manner as to "connect the center of the core 13 to the spindle table 2". The supporting means (top center 13) does not perform the joining operation when the biasing means (cylinder 16) is used to release the biasing force. When the machining of the workpiece 22 is completed, the lathe 1 cuts the processed product by cutting processing or the like. Then, the lathe 1 causes the camshaft 16 to stand by (step 265), and increments the counter i by only 1 (step 2 70). -43- 200914177 Next, the lathe 1' determines whether there is a stop command from the operator's stop operation or the like (step 275), and when there is a stop command (step 275; yes), the lathe 1 stops the full axis. In the standby state (step 295) 〇 On the other hand, when there is no stop command (step 275; no), the lathe 1 determines whether i is not full N (step 280) 'when less than N (step 2 80; Yes), since the number of processed products after processing does not reach N', so the lathe 1 will move to the step of step 24〇 to make the next processed product. When it is not less than N (step 280; NO), since the number of processed products has reached N ', the lathe 1 ' only increments the counter i by 1 (step 2 8 5 ). Then, the lathe 1 will judge whether k is not full (step 290). When it is not full (step 2 9 〇; YES), since the number of supply of the workpiece 22 has not reached the number of times, the lathe 1 will move to The process of step 2 1 5 of the flowchart of Fig. 13 (indicated by a surrounded by a circle symbol) is used to supply the workpiece 22. On the other hand, when it is not too full (step 290; No), since the number of times of supply of the workpiece 2 2 has reached the number of times, the lathe 1 'will stop the full axis and be in the standby state (step 2 9 5 ) ° 1 5 is a flow chart for explaining the automatic circulation performed by the lathe 1 when the workpiece 22 is supplied with the top end 13 to support the front end of the workpiece 2 2 for positioning. Step 2 0 0 to step 2 1 0 is the same as the flowchart of Fig. 13. -44- 200914177 The lathe 1 'opens the clamping mechanism 33 after the camshaft or the spindle head 2 stands by at the reference position in step 210 (step 212), and causes the cylinder 61 to be inactive so that the center of the core 13 faces the workpiece 22. (_z direction) advance (step 2 1 3 ). Then, the lathe 1 is reset in the same position as the flowchart of Fig. 3 (step 22 0) and workpiece supply (step 225). In this case, the front end of the workpiece 22 touches the front end of the top core 13 and the supply amount of the workpiece 22 is limited. Thereafter, the 'lathe 1' closes the chuck 27 (step 230), and the cylinder 6 1 is operated to retract the center of the center 1 in the +Z direction (step 2 3 2). In the future, the lathe 1 was processed in accordance with the flow chart of Fig. 14. Next, another modification of this embodiment will be described. The cams 9a, 9b, ... (where the cams 9b are hereinafter omitted) shown in Fig. 1 are fixed to the cam shaft 16 by bolts by the positions where the fine drawing lines are aligned with each other. Once the relative mounting angles of the cams 9 are offset, a machining error 'causes' and the shape of the processed product may differ from the original design. Conventionally, the attachment and position adjustment of the cam 9 are performed by the skilled worker, and the position of the cams 9 is adjusted while the material is being processed, that is, the mounting angle of the cam 9 is adjusted while viewing the machining shape. In the present modification, the offset of the mounting angle of each cam 9 is input to the number control program, and the movement of the spindle table 2 is corrected by the cam 9. -45- 200914177 Therefore, it is not necessary for the skilled operator to finely adjust the position of the cam 9 on the cam shaft 16 so that the average operator can easily perform the correction. In the case of performing high-precision machining, although the offset is substantially (Γ (usually within a tolerance of about ±0.1°)), the mounting operation is strictly performed. However, even if it is 0.5 using the function of this modification. The offset before and after the ° can also be corrected by the offset. First, the method of detecting the offset of the mounting angle of each cam 9 will be described. The offset of the mounting angle of the cam 9 is one of the cams 9 ( Here, the cam 9 a) is used as a reference, and the encoder is used to detect the offset of the relative angle to the cam 9 that becomes the reference. More specifically, it is as follows. The operator can use the operation panel 42 (Fig. 5) The angle of the encoder is formed at an angle of several turns. First, the encoder is used to rotate the camshaft 16 to become the angle of the fine line of the cam 9a. At this time, if the contact 24a (Fig. 1 (a )) Consistent with the fine drawing line, it can be judged that there is no mounting offset of the cam 9a. In the case of inconsistency with the fine drawing line, the cam shaft 16 is rotated to a position where the contact piece 24a coincides with the fine drawing line. Encoder and precision The difference in the angle indicated by the drawing line corresponds to the offset of the mounting angle of the cam 9a. The above operation is also performed for the other cams 9, and the mounting angle can be detected for all the cams 9. The figure shows the timing chart of the movement of each tool 21 and so on when the angle is not used. In this example, the mounting angle of the cam 9b is displayed to the standard mounting angle offset-1. This is set as a misalignment and is set in the digital control program to correct the movement of the spindle head 2 in accordance with the offset of the cam 9b. Thereby, the timing of the movement of the spindle table 2 can be corrected, and The movement of the cutter 21b coincides. The solid line 301' indicates the movement of the cutter 21b when the mounting angle of the cam 9b is not shifted, and the broken line 302' indicates the tool when the offset angle 安装 of the mounting angle of the cam 9b is -1 °. 2 1 b movement. As shown in the figure, since the mounting angle of the cam 9b is shifted by _1, the movement of the cutter 21b is only delayed. On the other hand, the solid line 303' indicates that the mounting angle of the cam 9b is not Headstock 2 at offset The movement of the shaft 1 8 ), the broken line 3 0 4, shows the movement when the movement of the spindle head 2 is offset with the mounting angle of the cam 9. In addition, since two of the fields of the spindle head 2 in the timing chart are recorded, It is difficult to determine, so it is to be recorded outside the field. As shown in the figure, the movement timing of the spindle head 2 coincides with the actual cam 9b. This is the controller 4 1 when the cam 9 b performs the machining process. The movement of the spindle table 2 is only advanced by +1°, and the movement of the mounting angle of the spindle table 2 into the cam 9b is shifted. In addition, 'the movement of the spindle table 2 is once shifted, although the next cam-47 - The movement of the 200914177 9 (for example, the cam 9c) and the movement of the spindle table 2 may become asynchronous, but a sufficient margin is provided at the mounting angle of each cam 9, and the work can be moved from the cam 9b to the next cam. The margin of the period of 9 is absorbed by the offset caused by the deviation of the movement of the spindle head 2. Next, using the graph of Fig. 17, the relationship between the mounting state of the cam 9 and the number control program will be described. The item "tool" means each tool 21 attached to the lathe 1. The item "cam" is the cam that drives the tool 2 1 . As shown, the tool 21 can be driven by a single or multiple cams 9. In the example of the figure, the cutter 2 1 a is driven by the cam 9 a , and the cutter 2 1b is driven by the cam 9b and the cam 9c. The item "number control program" is a logical structure of the number control program, and includes "process number", "bias", "step number", "cam axis angle", "spindle movement amount", and "cam axis". The project consists of speed and other items. The item "process number" is the number assigned to the process. The process is a one-round operation in which the cam 9 drives the cutter 21, and each step is constituted by a thinner step. The item "step number" indicates the number of the steps constituting the process. That is, each process consists of a step of a smaller unit of work. In the example of the figure, the step 1 is composed of steps 1 to 5, and the step 2 is composed of steps 6 and 7. In general, the step i is composed of the step N(i_1) + 1 to the step Ni. -48- 200914177 The item "offset" indicates the cam 9 offset. The cam 9a is angled to 0. The cam 9b is offset from the cam 9a by 9c relative to the cam 9a by -0.1. Mounting angles These offsets are caused by the operator from the operating panel. In the example of the offset of the step i, the cam 9a is set to the offset 1 of the cam 9a in accordance with the step 1 α1. Use 1 to 5 to apply the correction 値〇;1. Similarly, the cam 9 η sets the offset 値 α i of the cam 9n in correspondence with the step i, i ′. By using N(i-1) + 1 to step Ni, the correction 値α i item "camshaft angle" is rotated, and since the camshaft ί step 1 of step 2 of the process 1 is 0°, the lathe 1 When in the slave, the camshaft 16 is rotated from 0° to 10°. The "spindle movement amount" of the item is such that when the spindle movement amount in step 3 of the spindle process 1 is changed from step 2 to step 3, 2.5 [mm] 〇 item "camshaft speed" is rotated. [V seconds]. In the numerical control program L constructed as described above, the offset of the mounting angle is 7 reference, and therefore, the offset 値 + 0.2° mounting angle, cam degree. : 42 (Figure 5) input. Shown as <2 i. Correction in the step 1 , , 在 , 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在For example, the degree _ degree becomes 1 〇, and step 1 moves to the amount of step 2 of the 2 move. For example, I -2_ 5 [mm], lathe 1, 'moving the spindle table 2 - the speed of the axle 16 , the single, the middle, the controller 41 (Fig. 5 - 49 - 200914177)' utilizes the steps belonging to the process In the code, the "camshaft angle" of the movement reference of the headstock 2 is shifted only by the offset correction, and the spindle head 1 is moved. Thereby, the spindle head 2 is moved by the offset operation timing only by the amount of the offset 对应 of the corresponding cam 9. For example, in the case where the mounting angle of the cam 9 is not offset, the movement of the spindle table 2 is started when the angle of the camshaft 16 is DX 1 by the code of a certain step, and Vz = (Dz/Dx) x Vx_ .. (Expression 2) The speed is limited by the way the spindle head is moved. Here, Dx is the angle of the camshaft 16, and can be described by an absolute coordinate system. In this code, the movement of the spindle head 2 is started when Dx 1 + α i , and the right (Formula 2) is set to Vz={Dz/(Dx+〇:i)}xVx··. (Expression 3) Then, the movement of the spindle table 2 can be biased by ^丨. In addition, when the code is described by the relative coordinate system, it is converted into an absolute coordinate and corrected. As described above, in the present modification, the controller 41 has a function as a spindle moving means for controlling the number of movements of the spindle 18 based on the detected rotation angle by the computer. The program "moves the spindle 18 to move the spindle table 2 in the Z direction. Further, the controller 41 includes a bias 値 acquisition means for obtaining a deviation of the rotation angle of the cam 9 by the ai set by the operator. And a biasing means for shifting the spindle 18 in the number control program only by the amount of offset 对 that is to be obtained, for example, by Equation 3. Further, there are a plurality of cams 9 in the lathe 1, and the controllers 41 - 50 - 2009 14177 are based on the bias 値 acquisition means, and the offset 値 of each of the cams 9 is obtained by accepting the setting of a i . Then, the controller 41 is provided with a corresponding means for causing the cam 9 to correspond to the movement of the main shaft 18 by the a corresponding step number in the number control program, and the offset means moves the main shaft 18. For the cam 9 corresponding to the movement, only the amount of the obtained offset 値 is offset, for example, by Equation 3. Next, the sequence of the offset processing performed by the controller 41 will be described using the flowchart of Fig. 18. First, the operator measures the offset of the mounting angle of each of the cams 9 and shifts the angular offset of each of the cams 9 from the operating panel 42 to the controller 4, and the operator controls the cam 9 and the number of turns. The correspondence of the program steps is input from the operation panel 42 to the controller 41. In contrast, the controller 41 stores the input of the offset 値 of each cam 9 and stores it in a memory device such as a RAM, and receives the input corresponding to the offset 値 and the process and stores it in the memory device (step 3). 0 0). Next, the controller 41 initializes the process number i and the step number j to 1 (step 3 0 5 ). Next, the controller 41 determines whether i is Μ or less (step 3 1 0). Here, Μ is the maximum number of the process number, and all μs are confirmed whether or not the offset 已 has been set. When i is larger than Μ (step 3 1 0; No), since all the steps are subjected to the offset processing, the controller 41 ends the offset processing. -51 - 200914177 When i is below (step - step 310' is), the controller 41 sets j to N(i-1) + 1 (step 315). Here, N(i υ ' is the step number of the last step of the process number Ν (Ν1) and N(il) + i, Hyun-sell-, 1) + 1, the minimum step of the process number i is not shown. Step number. Where N〇 = 〇. Next, the controller 41 confirms whether or not j is equal to or less than Ni (step: 2 〇). Here, the 'm system is the step number of the last step of the process number ’' and it is confirmed whether or not the offset has been set in the procedure of all the process numbers i. When j is larger than Ni (step 32〇; No), since the offset is set for all the steps of the process number ,, the controller 4 adds 1 to the carry only (step 3 25 ) and returns to the step. 310. On the other hand, when j is less than Ni (step 32〇; YES), the controller 4 1 ' is a camshaft by setting 〇xj to d X j + ct i in the code of step number j The movement of 1 6 is only biased by α i (step 3 3 〇). Here, D χ j is the angle D X of the camshaft 16 in step j. κ then 'controller 4 1 ' adds up only j (step 3 3 5 ) and returns to step 3 2 0. By the above sequence, the correction corresponding to the mounting angle of the cam 9 can be performed for all the processes. Next, the sequence of the processing performed by the lathe 1 will be described using the flowchart of Fig. 19. First, the controller 41 accepts from the operator the execution of the previously set number control program by the operation panel 42, or performs a selection of a new digital control mode (step 305). -52- 200914177 When executing the previously set number control program (step 3 5 0; No), the controller 4 1 ' reads the cam data about the number control program from the memory device (corresponding to cam 9 or Offset, etc.) (Step 3 60). On the other hand, when a new digital control program is executed (step 3 50; YES), the controller 41 reads in and sets the number via a memory device, a memory medium such as a floppy disk, or a network. Control Program (Step 3 5 5) Next, the controller 41 accepts the input of the cam 9 from the step or the offset of each of the cams 9 from the operator (step 3 6 5). This step corresponds to step 5 of the flowchart of Fig. 18. Once the corresponding or offsets are set, the controller 4 1 performs the calculation of the corrected data (step 3 70). This step corresponds to step 1 to step 40 of the flowchart of Fig. As described above, the controller 4 1 is after completing the reading of the saved material (step 60), or after the calculation of the correction data is finished (step 3 70), by the operator pressing the start button of the operation panel 42 The automatic operation (3 75) is started and the operation of the lathe 1 is performed in accordance with the number control program (step 3 80). Then, the controller 41 terminates the operation of the lathe 1 once all the number control programs are executed (step 385). Further, in the 'number control program', the operating speed of the lathe 1 can be set, and the controller 41 calculates this after step 3 75 and operates the lathe 1 at this speed. This can be used as a substitute for the rewrite function when the lathe 1 does not have an overwrite function (a function of causing the speed specified by the number control program 200914177 to change only at a specified ratio and operating the lathe 1). In addition, the rewriting function is used to confirm the number of control programs, and is used to idling the lathe 1 quickly. The following effects can be obtained by the present variation described above. (1) Even if the mounting angle of the cam 9 with respect to the cam shaft 16 is shifted, the offset can be set as a misalignment and set in the digital control program. Thereby, it is not necessary to finely adjust the mounting position of the cam 9 on the cam shaft 16, and the offset of the cam 9 can be quickly and easily corrected. (2) According to the process number, the correspondence between the cam 9 and the step can be set by dividing the steps of the number control program into groups corresponding to the cams 9. By this, the deviation of the cam 9 can be reflected in the corresponding step. With the above, it is possible to adjust the mounting angle by counting the input without reinstalling the cam 9. (3) The investigation for correcting the offset of the mounting angle of each of the cams 9 is similar to the conventional cam-type lathe for moving the headstock 2 by the cam 9, so that even for the old-fashioned operator It is also easy to work. In the embodiment described above, the following configuration can be provided. That is, a lathe device is provided, comprising: a spindle having a clamping means for holding a workpiece on an axis; and a spindle rotating means for rotating the spindle; and a spindle moving means Moving the spindle to the axis direction by the number control; and a tool holding means for holding the tool for cutting the workpiece; and a tool moving means, -54-200914177, the tool holding means, imitating the rotating cam The shape is moved in a direction perpendicular to the axis of the main shaft; and the cam rotating means is described as a cam rotation (first configuration). In the first configuration, the plurality of cams are present, and the offset obtaining means obtains a misalignment 每一 of each of the cams, and the number system has a pair corresponding to the movement of the cam and the main shaft. The offset means is configured such that the movement of the spindle is performed in accordance with the amount of the offset obtained by the cam with respect to the cam (second configuration). In the first configuration or the second configuration, the spindle moving means may be configured such that a force for moving the spindle is formed in a direction parallel to the axis in a plane perpendicular to the axis of the spindle (first) . In the first aspect, the second configuration, or the third configuration, the lathe device according to the fourth aspect of the invention may further include: a supporting means for supporting the workpiece with respect to the side of the holding means; The knot means is configured such that the distance between the gripping means and the support means is connected by a predetermined distance (fourth configuration). In the fourth configuration, the connecting means may be configured to have a length unit of the processed product obtained by cutting the workpiece, and the length of the front connection may be adjusted (the fifth configuration). In any of the first to fifth configurations, the rotary tool holding means may be provided to hold the rotating tool around the rotation axis that is at a predetermined angle with respect to the main axis, and the rotary tool moving means. The position of the control unit can only be biased, and the lead 3 structure of the system can be used in the above-mentioned manner: when the cutter is used to cut the workpiece by the above-mentioned rotating tool of -55-200914177 In the sixth configuration, the rotary tool moving means may be configured to move the rotating tool in accordance with the shape of the rotating rotary tool cam ( The seventh composition). In the seventh configuration, the rotary cutter cam is configured such that the rotating tool advances a first rotation angle of the workpiece and the second rotation angle of the rotating cutter from the workpiece, The cam rotating means may be configured to alternately rotate the rotation angle of the rotary cutter cam to the first rotation angle and the second rotation angle (eighth configuration). In the eighth configuration, the spindle rotating means may hold the rotation angle of the workpiece at a predetermined angle while the rotary cutter cam is held at the first rotation angle, and the rotary cutter cam may be used. While the second rotation angle is being maintained, the workpiece is rotated by a predetermined angle so that the workpiece is rotated by the next cutting position (ninth configuration). In the ninth configuration, the spindle moving means may move the spindle to a direction in which the workpiece is guided toward the rotating tool while the rotating tool cam is held at the first rotation angle. When the rotary cutter cam is held at the second rotation angle, the spindle is reset to the position before the movement (the tenth configuration). In any one of the first to fifth configurations, the tool holder-56-200914177 means may include a tool rotation means for rotating the held tool around a rotation axis at a predetermined angle with respect to the main spindle. The method is constituted (the first one is constituted). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (a) and (b) show a lathe device of the present embodiment. Fig. 2 is a view showing an example of a workpiece processed by the lathe device of the embodiment. Fig. 3 is an explanatory view of the connection mechanism. Fig. 4 (a) and (8) are explanatory views of a workpiece supply method using a connection mechanism. Fig. 5 is a block diagram showing a control system of a lathe by a model. Fig. 6 is a view showing an example of a timing chart. The flow chart for the automatic circulation operation of the lathe device according to the present embodiment will be described. Fig. 8 (a) to (d) show the lathe device of the present modification. The 9th BI (a) and (b) are gear processing. Description of the mechanism for moving the cutter up and down. Fig. 1 is a flow chart for explaining the sequence of machining gears. Section 11匮 is a flow chart for explaining a variation of the order of machining gears. Fig. 12 (a (c) An explanatory diagram of the method of supplying the workpiece with high efficiency, and the supporting method, etc. The first 3rd drawing is a flowchart when the workpiece is supported by the tool. -57- 200914177 Figure 14 is a diagram when the workpiece is supported by the tool. The flow chart is continued. Fig. 15 is a flow chart when the workpiece is supported by the top center. Fig. 16 shows the timing chart of the movement of each tool when the mounting angle of the offset cam is controlled by a number of numbers. 7 The relationship between the installation status of the cam and the digital control program Fig. 18 is a flow chart for explaining the sequence of the misalignment processing performed by the controller. Fig. 19 is a flow chart for explaining the sequence of processing performed by the lathe. Known lathe device. [Description of main components] 1 · 'Lathe 2: Spindle table 3 : Tool table 4 : Top plate 5 : Base plate 6 : Servo motor 7 : Ball screw 8 : Nut 9 : Cam 1 〇: Cam mechanism 1 1 : Spindle motor - 58 - 200914177 1 2 : Workpiece supply device 1 3 : Top center 1 5 : Gear portion 1 6 : Camshaft 1 7 : Sliding surface 1 8 : Spindle 21 : Tool 2 2 : Work piece 23 : Guide sleeve 24: contact piece 2 5 : robot arm 2 7 : chuck 3 1 : connecting rod 3 2 : fixing member 3 3 : clamping mechanism 41 : controller 4 2 : operating panel 5 1 : gear processing table 5 2 : Recess 5 3 : cutter 55 : cutter 5 9 : tool holding portion 61 : cylinder 63 : buffer spring - 59 200914177 64 : limit stopper 6 5 : member 66 : spring 6 7 : strut - 60

Claims (1)

200914177 十、申請專利範圍 1. 一種車床裝置,其特徵在於: 具備: 主軸’其在軸線上具備夾持被加工 主軸旋轉手段,其旋轉前述主軸; 主軸移動手段,其藉由數値控制將 向移動;及 刀具保持手段,其保持對前述被加 具;及 刀具移動手段,其將前述刀具保持 凸輪之形狀’朝與前述主軸之軸線垂直 凸輪旋轉手段,其使前述凸輪旋轉 2 ·如申請專利範圍第1項所記載的: 具備檢測前述凸輪之旋轉角度的旋 前述主軸移動手段,係根據前述檢 前述主軸移動。 3 .如申請專利範圍第1或2項所記 中前述主軸移動手段,係將使前述主軸 前述主軸之軸線的鈴垂面內,作用於與 向。 4 ·如申請專利範圍第1、2或3 ] 置,其中, 具備: 支撐手段,其從與前述夾持手段相 物的夾持手段;及 及 前述主軸朝軸線方 工物進行切削的刀 手段,仿照旋轉的 的方向移動;以及 〇 氧床裝置,其中, 轉角度檢測手段, 測出的旋轉角度使 載的車床裝置,其 移動之力,在包含 前述軸線平行的方 頁所記載的車床裝 對向之側來支撐前 -61 - 200914177 連結手段,其將前述夾持手段與前述支撐手段之距離 維持於預定距離來連結。 5 ·如申請專利範圍第4項所記載的車床裝置,其中前 述連結手段,係以從前述被加工物切削所得的加工品之長 度單位,可調節地構成前述所連結的長度。 6. 如申請專利範圍第1至5項中任一項所記載的車床 裝置,其中, 具備: 旋轉刀具保持手段,其將旋轉的刀具保持於與前述主 軸成預定角度的旋轉軸之周圍;以及 旋轉刀具移動手段,其在以前述旋轉的刀具切削前述 被加工物時,使前述旋轉刀具保持手段移動。 7. 如申請專利範圍第6項所記載的車床裝置,其中前 旋轉刀具移動手段,係仿照旋轉的旋轉刀具用凸輪之形 狀來移動前述旋轉的刀具。 8. 如申請專利範圍第7項所記載的車床裝置,其中, 在前述旋轉刀具用凸輪,設定有:前述旋轉的刀具進 刀切入於前述被加工物的第1旋轉角度、以及前述旋轉的 刀具離開被加工物的第2旋轉角度, 前述凸輪旋轉手段,係將前述旋轉刀具用凸輪的旋轉 角度’交互地旋轉於前述第1旋轉角度與前述第2旋轉角 度。 9. 如申請專利範圍第8項所記載的車床裝置,其中, 前述主軸旋轉手段’係在前述旋轉刀具用凸輪被保持 -62- 200914177 於前述第1旋轉角度之期間,將前述被加工物之旋轉角度 保持於預定角度, 在前述旋轉刀具用凸輪被保持於前述第2旋轉角度之 期間’以前述旋轉的刀具切削下一個切削部位的方式使前 述被加工物只旋轉預定角度。 1 0 .如申請專利範圍第9項所記載的車床裝置,其中 前述主軸移動手段’係在前述旋轉刀具用凸輪被保持於前 述第1旋轉角度之期間,將前述主軸移動於朝向前述旋轉 的刀具導出前述被加工物的方向,而在前述旋轉刀具用凸 輪被保持於前述第2旋轉角度之期間將前述主軸復位於移 動前的位置。 1 1 .如申請專利範圍第1至5項中任一項所記載的車 床裝置,其中前述刀具保持手段,係具備將前述所保持的 刀具旋轉於與前述主軸成預定角度的旋轉軸之周圍的刀具 旋轉手段。 1 2 ·如申請專利範圍第4或5項所記載的車床裝置, 其中, 具備: 彈壓手段,其將前述支撐手段彈壓於前述被加工物; 以及 彈壓解除手段,其解除前述彈壓手段之彈壓, 前述連結手段,係在前述彈壓手段彈壓前述被加工物 之狀態時連結前述夾持手段與前述支撐手段,而在以前述 彈壓解除手段解除彈壓之狀態時不連結前述夾持手段與前 -63- 200914177 述支撐手段。 1 3 ·如申請專利範圍第4、5或1 2項所記載的車床裝 置,其中, 具備: 材料導出手段,其導出前述被加工物之材料;以及 限定手段,其藉由使前述被導出的材料之前端抵接於 抵接構件來限定導出量。 1 4 .如申請專利範圍第1 3項所記載的車床裝置,其中 前述抵接構件’係前述所保持的刀具、或前述支撐手段。 -64 -200914177 X. Patent application scope 1. A lathe device, characterized in that: a main shaft 'having a rotation means for clamping a spindle to be machined on an axis, and rotating the spindle; the spindle moving means is controlled by a number of turns Moving; and a tool holding means for holding the aforementioned tool; and a tool moving means for rotating the shape of the tool holding cam toward a axis perpendicular to the axis of the spindle, which rotates the cam 2 According to the first aspect of the invention, the spindle moving means for detecting the rotation angle of the cam is configured to detect the spindle movement based on the detecting. 3. The spindle moving means as recited in claim 1 or 2, wherein the spindle is actuated in the bellows plane of the axis of the spindle. (4) The method of claim 1, wherein the method includes: a supporting means for gripping the material from the holding means; and a cutting means for cutting the spindle toward the axis And moving in the direction of rotation; and a helium bed device, wherein the rotation angle detecting means detects the rotation angle of the lathe device, and the force of the movement thereof is mounted on the lathe including the square parallel to the axis The front side supports the front-61 - 200914177 connecting means for maintaining the distance between the holding means and the supporting means at a predetermined distance. In the lathe device according to the fourth aspect of the invention, the connecting means is configured to adjust the length of the connected body by the length of the processed product obtained by cutting the workpiece. 6. The lathe device according to any one of claims 1 to 5, further comprising: a rotary cutter holding means for holding a rotating cutter around a rotation shaft at a predetermined angle with respect to the main shaft; The rotary cutter moving means moves the rotary cutter holding means when the workpiece is cut by the rotating tool. 7. The lathe device according to claim 6, wherein the front rotary cutter moving means moves the rotary cutter in a shape resembling a rotating rotary cutter cam. 8. The lathe device according to the seventh aspect of the invention, wherein the rotating tool cam is configured to: the rotating tool is cut into a first rotation angle of the workpiece, and the rotating tool The cam rotation means intermittently rotates the rotation angle of the rotary cutter cam to the first rotation angle and the second rotation angle, respectively, away from the second rotation angle of the workpiece. 9. The lathe device according to claim 8, wherein the spindle rotating means "the workpiece is processed while the rotating tool cam is held -62-200914177 at the first rotation angle" The rotation angle is maintained at a predetermined angle, and the workpiece is rotated by only a predetermined angle so that the rotating tool cuts the next cutting portion while the rotary cutter cam is held at the second rotation angle. The turning device according to claim 9, wherein the spindle moving means moves the spindle to the rotating tool while the rotating tool cam is held at the first rotation angle. The direction of the workpiece is derived, and the spindle is reset to a position before the movement while the rotary cutter cam is held at the second rotation angle. The lathe device according to any one of claims 1 to 5, wherein the tool holding means is configured to rotate the held tool around a rotation axis at a predetermined angle with the main spindle. Tool rotation means. The lathe device according to claim 4, further comprising: a biasing means for biasing the supporting means against the workpiece; and a biasing means for releasing the biasing force of the biasing means, In the connection means, when the biasing means biases the workpiece, the holding means and the supporting means are coupled, and when the biasing means releases the biasing, the clamping means and the front-63- are not connected. 200914177 Description of support means. The lathe device according to claim 4, wherein the material laundering device includes: a material deriving means for deriving a material of the workpiece; and a limiting means for deriving the The front end of the material abuts against the abutment member to define the amount of delivery. The lathe device according to claim 13, wherein the abutting member is the tool held by the tool or the supporting means. -64 -
TW096150562A 2006-12-28 2007-12-27 Lathe device TWI464024B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006354916 2006-12-28
PCT/JP2007/074572 WO2008081744A1 (en) 2006-12-28 2007-12-20 Lathe

Publications (2)

Publication Number Publication Date
TW200914177A true TW200914177A (en) 2009-04-01
TWI464024B TWI464024B (en) 2014-12-11

Family

ID=39588428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096150562A TWI464024B (en) 2006-12-28 2007-12-27 Lathe device

Country Status (5)

Country Link
JP (2) JP5062417B2 (en)
CN (1) CN101573200B (en)
HK (1) HK1135644A1 (en)
TW (1) TWI464024B (en)
WO (1) WO2008081744A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744640A (en) * 2012-07-18 2012-10-24 张家港名阳精密机械制造有限公司 Stepless speed change device for camshaft of automatic lathe
CN103286327A (en) * 2013-05-31 2013-09-11 江苏唐音光电有限公司 Numerical-control automatic cam lathe
CN104001939A (en) * 2014-05-15 2014-08-27 孙小东 Intelligent cam numerically controlled lathe and control system thereof
CN105562720A (en) * 2014-10-24 2016-05-11 江苏拓海煤矿钻探机械有限公司 Automatic adapter machining equipment with cam mechanism
JP6372383B2 (en) * 2015-02-09 2018-08-15 スター精密株式会社 Machine Tools
CA3040310A1 (en) * 2016-11-08 2018-05-17 Belvac Production Machinery, Inc. Method and apparatus for trimming a can
JP7156897B2 (en) * 2018-10-10 2022-10-19 シチズン時計株式会社 Machine Tools
CN113458423A (en) * 2020-03-30 2021-10-01 东莞市佑昌精密机械有限公司 Automatic lathe of numerical control computer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618330B2 (en) * 1972-11-02 1981-04-28
JPS5632242Y2 (en) * 1979-05-23 1981-07-31
JPS5816964B2 (en) * 1979-07-20 1983-04-04 セイコ−精機株式会社 Multi-tasking automatic lathe
JPS59174914A (en) * 1983-03-24 1984-10-03 Matsushita Electric Ind Co Ltd Device for controlling cam type precision lathe
JPS6020803A (en) * 1983-07-14 1985-02-02 Tsugami Corp Center supporting device in headstock moving lathe
JPS62224551A (en) * 1986-03-27 1987-10-02 Fanuc Ltd Preparation of nc data for bar feeding tool
JP2877839B2 (en) * 1989-06-09 1999-04-05 野村精機株式会社 Machining method using a spindle moving type automatic lathe
DE4140466A1 (en) * 1991-09-21 1993-04-01 Index Werke Kg Hahn & Tessky MULTI-SPINDLE LATHE
JPH06312302A (en) * 1993-04-28 1994-11-08 Toyoda Mach Works Ltd Work holding device
JP2002066807A (en) * 2000-08-31 2002-03-05 Star Micronics Co Ltd Automatic lathe
JP3790781B2 (en) * 2000-10-02 2006-06-28 スター精密株式会社 Automatic lathe and cutting tool damage judgment method for automatic lathe
EP1383017B1 (en) * 2001-04-27 2007-09-05 Citizen Holdings Co., Ltd. Automatic lathe, method for controlling the same, and device for controlling the same
JP4382426B2 (en) * 2003-09-18 2009-12-16 株式会社ツガミ lathe
CN1886222B (en) * 2003-12-26 2010-06-09 西铁城控股株式会社 Automatic lathe

Also Published As

Publication number Publication date
JP2008178971A (en) 2008-08-07
TWI464024B (en) 2014-12-11
JPWO2008081744A1 (en) 2010-04-30
JP5105371B2 (en) 2012-12-26
WO2008081744A1 (en) 2008-07-10
JP5062417B2 (en) 2012-10-31
CN101573200A (en) 2009-11-04
CN101573200B (en) 2013-05-08
HK1135644A1 (en) 2010-06-11

Similar Documents

Publication Publication Date Title
TW200914177A (en) Lathe
JP5863929B1 (en) Processing equipment
JP5944754B2 (en) End polishing machine
JP6768154B2 (en) Tool change control method for machine tools
JP4870593B2 (en) Broach grinding apparatus and broach grinding method
JP4572133B2 (en) Internal processing equipment for hollow workpieces
JPH05285755A (en) Pipe processing device
JPH10507692A (en) CNC machining system
JP6652745B2 (en) Machining tool holder and precision finishing robot system
JP5603608B2 (en) Marking method, marking tool, punch press
JP5726791B2 (en) Tool holder and lathe device
JPH10193239A (en) Working device
KR101518061B1 (en) Machine tool that oval processing is available
JP4585339B2 (en) Roll forming device
JP2012030234A (en) Rotational plastic working apparatus and operation method for rotational plastic working apparatus
JP3205262U (en) End polishing machine
JP2005335055A (en) Apparatus and method for machining circular bore
JP2009023075A (en) Work gripping device and machining device
JP2021010959A (en) Machine tool and machining method
CN104625918A (en) Numerical control linkage full-automatic straight groove grinding machine
JP2007105864A (en) Method and apparatus for lathe turning
JP5815462B2 (en) Centering correction mechanism for workpieces on a lathe.
JPH07241918A (en) Blade stage for cutting presnel lens
JP2005111650A (en) Numerically controlled lathe
JP6135287B2 (en) Grinder

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees