TW200913347A - Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery - Google Patents

Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery Download PDF

Info

Publication number
TW200913347A
TW200913347A TW097117387A TW97117387A TW200913347A TW 200913347 A TW200913347 A TW 200913347A TW 097117387 A TW097117387 A TW 097117387A TW 97117387 A TW97117387 A TW 97117387A TW 200913347 A TW200913347 A TW 200913347A
Authority
TW
Taiwan
Prior art keywords
layer
active material
positive electrode
negative electrode
electrolyte
Prior art date
Application number
TW097117387A
Other languages
Chinese (zh)
Other versions
TWI527289B (en
Inventor
Mamoru Baba
Shoichi Iwaya
Hitoshi Masumura
Noriyuki Sakai
Takayuki Fujita
Hiroshi Sasagawa
Hiroshi Sato
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Publication of TW200913347A publication Critical patent/TW200913347A/en
Application granted granted Critical
Publication of TWI527289B publication Critical patent/TWI527289B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material

Abstract

This invention provides a lithium ion rechargeable battery which can solve problems of a multilayered all solid-state lithium ion rechargeable battery formed of a laminate of an electrode layer and an electrolyte layer that an impurity layer not contributable to a charge/discharge reaction is formed at the interface of the electrode layer and the electrolyte layer resulting in a deterioration in battery properties and, in the conventional battery which does not form any reaction product at the interface, the bonding at the interface is not satisfactorily strong.; In the present invention, the material for the electrode layer and the electrolyte layer is selected so that, after the lamination of the electrode layer and the electrolyte layer, in the step of sintering, an intermediate layer formed of a reaction product contributable to the charge/discharge reaction is formed at the interface of the electrode layer and the electrolyte layer. Further, a positive electrode layer and a negative electrode layer are formed using a paste formed of a mixture composed of an active material and an electroconductive material at a predetermined ratio. According to the above constitution, a reduction in electrode resistance and interfacial resistance and an improvement in charge/discharge cycle properties can be realized.

Description

200913347 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種包含由正極層、電解質層和負極層 所構成之層積體之多層全固體型之鋰離子二次電池及其製 造方法。 【先前技術】 專利文獻1 專利文獻2 專利文獻3 專利文獻4 專利文獻5 曰本特開2007 — 5279號公報 曰本特開2000 — 1 64252號公報 曰本特開2004 — 281316號公報 曰本特公平6— 9141號公報 曰本特開2001 - 21 0360號公報 專利文獻6 ··曰本特開2〇〇1一 351615號公報 非專利文獻 1 : J. P〇wer S〇urces,8卜82,(1999),853 非專利文獻 2. J.Electrochem.Soc·, 124,(1 977), 1240-1242 在近年來,電子技術之發達係非常驚人,達到可攜式 電子機器之小型輕量化、薄型化及多功能化。隨著這個而 對於成為電子機器電源之電池,強烈地要求小型輕量化、 薄型化及可靠性之提升。為了應付這些要求,因此,提議 透過電解質層而層積複數個正極層和負極層之多層型經離 子二次電池。多層型鋰離子二次電池係層積及組裝厚度數 十M m之電池胞,因此,可以實現電池之小型輕量化及薄 型化。使用固體電解質來取代電解液之全固體型經離子二 5 2015-9667-PF;Ahddub 200913347 人電池係不用擔心液體洩漏、液體括竭,可靠性變高。此 外’成為使用鋰之電、池,因此’能夠得到高電壓 '高 密度。 —在電解質層使用無機固體電解質之全固體型鋰電池係 藉由透過電解質層而依序地層積正極活性物質層和負極活 性物質層來形成層積體而製作電池。在此種全固體型鋰電 池’向來係報告有各種之問題。 μ例如在非專利文獻卜報告:在層積成為正極活性物 質之Li Co〇2和成為固體雷解暂 τ ¥解負之LlTl2⑽h而進行燒成之 “下’於燒成過程,兩者發生反應,由不貢獻於充放電 =之C〇Ti〇3、C〇祕、UC〇p〇4等之化合物所組成之不純 ㈣二,=朴層之界形成這些不純 =之時’界面電阻變高,因此,發生能量損失變大或無 法發揮作為電池功能等之問題。 ^、’、 、在專利文獻^揭示:藉由使用特定之材料,來作為 活性物質及固體電解質, 為 貞而抑制刖述不純物層之形虚,拟 成電化學活性之活性物質^成形 小之古… 篮電解質界面,提供内部電阻 之之全固體鋰離子二次電池之技術。 作為活性物質及D體電解質之材料係最好是 活性物質:LiMPGM係φ Mn、Fe 而選屮夕;^丨、证、 C〇及Nl所組成之群組 、之至^ 一種)、固體電解質:Li ^ W所組成之群組而選出之 S X S 0. 6)和負極活性物質:Fep 、 UFeP2〇7)e 層積由這些 4 13 _〇4)3、 叶所組成之正極活性物質層、電 2〇15-'9667-pp;^hddub 6 200913347 解質層和負極活性物質 射法所造成之分析之積體係在進行藉由x射線繞 解質層之構成成分以外:成分並無檢測出活性物質層和電 圖12係專利文齡彳 ^ _ s己載之習知之鋰離子二次電池之 口 |J面圖,顯不正極層和電解 '曰之界面。圖12所示之電池 係藉由以下之製程而進 丁取作。準備由LiC0PO4所組成之 正極活性物質粉體和由丨 ]· Mil)· 3Ti 1. 7(Ρ04)3 所組成之固體 電解質粉體,分別混合於黏合劑、溶劑和可塑劑,形成聚 體:進订塗佈及乾燥’製作生胚薄片(⑽n sheet)。在層 積製作之正極活性物暂& Br @ 質生胚溥片和固體電解質生胚薄片之 後於900 C,進行燒成,形成由電解質層103和正極層 102所組成之層積體’在正極層1〇2之表面,滅鑛金,形 成金屬層101。 藉由專利文獻1所製作之鋰離子二次電池係在正極層 102和電解質$ 1〇3之界面,並無形成不妨礙電池充放電 反應之不純物層。此外’即使是在並未圖示之負極層和電 解資層之界面,也無形成不純物層。此外,也包含妨礙充 放電反應之不純物層,在電極層和電解質層之界面,並無 形成由反應生成物所組成之區域。因此,電極層和電解質 層之界面之接合係並非牢固,並且,無法充分大幅度地確 保界面之電極層和電解質層之接觸面積。因此,由於長期 之電池使用而產生脫層’增大内部電阻,所以,有所謂無 法得到良好之充放電循環特性之問題發生。 2015-9667-PF;Ahddub 7 200913347 【發明内容】 【發明所欲解決的課題】 本發明之目的係提供一種在層積正極層、電解質層和 負極層之夕層全固體型之鋰離子二次電池,能夠藉由使得 層積體界面之接合變得牢固同時降低電極電阻及界面電阻 而達到電池之㈣電崎低及充放電循環雜之改善的鐘 離子二次電池及其製造方法。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer all-solid type lithium ion secondary battery comprising a laminate comprising a positive electrode layer, an electrolyte layer and a negative electrode layer, and a method for producing the same. [Prior Art] Patent Document 1 Patent Document 2 Patent Document 3 Patent Document 4 Patent Document 5 曰本特开2007 — 5279 曰本本开 2000 — 1 64252 曰本特开2004 — 281316号。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 (1999), 853 Non-Patent Document 2. J. Electrochem. Soc·, 124, (1 977), 1240-1242 In recent years, the development of electronic technology has been amazing, achieving the lightweight and lightweight of portable electronic devices. , thin and multi-functional. With this, there is a strong demand for small, lightweight, thinner, and more reliable batteries that are used as power sources for electronic equipment. In order to cope with these demands, it is proposed to laminate a plurality of multi-layered ion secondary batteries of a positive electrode layer and a negative electrode layer through an electrolyte layer. The multilayer lithium ion secondary battery is laminated and assembled with a battery cell having a thickness of several megameters, so that the battery can be reduced in size, weight, and thickness. The solid electrolyte is used to replace the electrolyte. The solid-state ion 5 5 2015-9667-PF; Ahddub 200913347 The human battery system does not have to worry about liquid leakage, liquid entrapment, and high reliability. In addition, the use of lithium batteries and pools enables high voltages to be obtained. An all-solid-state lithium battery using an inorganic solid electrolyte in an electrolyte layer is formed by sequentially laminating a positive electrode active material layer and a negative electrode active material layer through an electrolyte layer to form a laminate. Various problems have been reported in such an all-solid type lithium battery. For example, in the non-patent literature, it is reported that Li Co〇2 which is a positive electrode active material is laminated, and L1T12 (10)h which is a solid solution is dissolved and "burned down" in the firing process. It consists of impure (four) two, which does not contribute to charge and discharge = C〇Ti〇3, C〇 secret, UC〇p〇4, etc., = when the boundary of the layer forms these impure = when the interface resistance becomes high Therefore, there is a problem that the energy loss is increased or the battery function is not exhibited. ^, ', , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The shape of the impure layer is imaginary, and it is intended to be an electrochemically active active material. The shape of the electrolyte interface is the technology of an all-solid lithium ion secondary battery that provides internal resistance. The material of the active material and the D-electrolyte is the most It is good that the active substance: LiMPGM is selected from the group consisting of φ Mn and Fe, and the group consisting of 丨 丨, 证, C 〇 and Nl, and ^), solid electrolyte: Li ^ W SXS 0. 6) and negative Active material: Fep, UFeP2〇7)e laminated positive electrode active material layer composed of these 4 13 _〇4) 3, leaves, electric 2〇15-'9667-pp; ^hddub 6 200913347 cleavage layer and negative electrode The product of the analysis caused by the active material injection method is carried out in addition to the constituents of the cleavage layer by x-rays: the component does not detect the active material layer and the electrogram 12 is a patent for the age of 彳^ _ s The interface of the lithium ion secondary battery is known as the J-side diagram, and the interface between the positive electrode layer and the electrolysis is shown. The battery shown in Fig. 12 is taken by the following process. The positive electrode active composed of LiC0PO4 is prepared. The material powder and the solid electrolyte powder composed of 丨·· Mil)· 3Ti 1. 7(Ρ04)3 are respectively mixed with a binder, a solvent and a plasticizer to form a polymer: binding coating and drying A green sheet ((10)n sheet) is fired at 900 C after laminating the positive active material active & Br @ protoplast sheet and solid electrolyte green sheet to form an electrolyte layer 103 and a positive electrode layer 102. The layered body composed 'on the surface of the positive electrode layer 1〇2, demineralized gold, forming gold Layer 101. The lithium ion secondary battery produced by Patent Document 1 has no impurity layer formed at the interface between the positive electrode layer 102 and the electrolyte $1〇3, and does not form an impurity layer which does not interfere with the charge and discharge reaction of the battery. The interface between the negative electrode layer and the electrolysis layer shown in the figure does not form an impurity layer. Further, an impurity layer which hinders the charge and discharge reaction is also included, and an interface composed of the reaction product is not formed at the interface between the electrode layer and the electrolyte layer. Therefore, the bonding between the electrode layer and the electrolyte layer is not strong, and the contact area between the electrode layer and the electrolyte layer of the interface cannot be sufficiently ensured. Therefore, delamination occurs due to long-term use of the battery, and the internal resistance is increased. Therefore, there is a problem that a good charge and discharge cycle characteristic cannot be obtained. 2015-9667-PF; Ahddub 7 200913347 [Problem to be Solved by the Invention] An object of the present invention is to provide a lithium ion secondary in an all-solid type layer in which a positive electrode layer, an electrolyte layer, and a negative electrode layer are laminated. The battery can achieve a battery (four) low electric resistance and improved charge/discharge cycle, and a method for manufacturing the same, by making the bonding of the laminate interface firm and reducing the electrode resistance and the interface resistance.

【用以解決課題的手段】 本七月(1)係—種鋰離子二次電池’係包含正極活性物 質之正極層和包含負極活性物質之負極層成為由透過包含 固體電解質之電解質層而進行層積之層積體所構成之多層 全固體型的鐘離子-吹雷油 甘 子――人電池,其特徵在於:在前述正極層 或前迷負極層和前述電解質層之界面,具有由發 活性物質或電解質之功能之物質所組成之中間層。 本發明(2)係前述發明(1)之鋰 一 Λ私.今、+、τ Λ 〇 丁 一-人電池’其特徵 述正極層及/或前述負極層係在由導電性物質所也 成之¥電性基體載持活性物質之構造。 本發明(3)係前述發明(2)之鋰離子二 在於:前述正極層及/或前述負極層之剖面之二特徵 物質及/或前述負極活性物質和前述導電性:質== 係在20: 80乃至65: 35之範圍内。 積比 本:明⑷係前述發明⑴至前述 e載之鐘離子二次電池,其特徵在 彳項所 正極活性物質及/或前述負 ~’層係前述 物質和前述固體電解質 2015-9667-PF;Ahddub 8 200913347 發生反應所形成之層。 本心明(5)係一種鐘離子二次電 質之正極層和包含 ,,係包含正極活性物 固體電解質之電解㈣ 4為由透過包含 王固體型的鐘離子二次電池, =之夕層 一部分或全部俘由&,+、隹於.别述正極層之 糸由則述正極活性物質之 體電解質之起始材料發、 。材料和前述固 本發明⑻係-種㈣子二次電池二,成。 質之正極層和包含g ,、匕3正極活性物 固體電解質之電解f層 、成為由透過包含 王固體型的鐘離子二次電池,其特徵在於 ^層 一部分或全部係由前述負極活性物質之起於^負極層之 電:質之起始材料發生反應所生成之燒結體而構成。 發明⑺係-種㈣子三次電池, 質之3止極/舌性物 2正極層和包含負極活性物質之負極層成為過 固體電解質之電解皙屉 a 3 电解質層而進订層積之層積體所構 全固體型的鋰離子二次電池, 儿 具将徵在於.別述電解質層 之一部分或全部係由前述電解質物質之起始材料和前述負 極活性物質之起始材料及/或前述正極活性物質之起始材 料發生反應所生成之燒結體而構成。 本發明(8)係前述發明(5)至前述發明(7)之鋰離子二 次電池’其特徵在於:前述正極層及/或前述負極層係在由 導電性物質所組成之導電性基體載持活性物質之構造。 本發明(9)係前述發明(8)之鋰離子二次電池,其特徵 9 2015-9667-PF;Ahddub 200913347 在於:前述正極層及/或前述負極 物質及/或前述負極活性物質之:面之前述正極活性 係在U乃至135之範圍Γ導電性物質之面積比 :發:⑽係前述發明⑴至前述 次電池,其特徵在於··前述正極 此 千— 電解質層係由前述正極4貞極層及/或前述 …… "生物質之起始材料及/或前述負 極活性物質之起始材料和前 c ^ UfS電解質之起始材料發生 反應所形成且發揮作為活性物 構成。 〇負次電解質之功能之物質來 本發明(11)係前述發明「丨)丄 一〇、 發明(1)至前述發明(10)之鋰離子 一-人電池’其特徵在於:在播忐A山 在構成則述中間層或前述燒結體 之物質中,將不包含鐘之氧化物予以不含有。 本發明(12)係前述發明⑴至前述發明⑴)之鐘離子 二次電池’其特徵在於··前述固體電解質之起始材料係至 少包含鋰和第IV族元素之複合氧化物。 本發明(13)係前述發明m 5义 赞明(1)至剛述發明(12)之鋰離子 二次電池’其特徵在於:前述固體電解質之起始材料係至 少包含矽酸鋰。 _本發明⑽係前述發明⑴至前述發明⑽之鐘離子 —人電池’其特徵在於:前述固體電解質之起始材料係至 少包含石夕酸鐘和鱗酸鐘。 本發明(15)係前述發明(14)之鋰離子二次電池,其特 徵在於:前述料師前料隸线合比係在4: 6乃至 6 : 4之範圍内。 10 2015-9667-PF;Ahddub 200913347 之鋰離子 3 0私m以 本發明(16)係前述發明(1)至前述發明(i5) 人電池其特徵在於··前述電解質層之厚度係 下。 ’、 —本發明(17)係前述發明⑴至前述發明(16)之鐘離子 一次電池’其特徵在於:前述正極活性物質或前述負極活 性物質之起始材料係包含由賴氧化物、㈣氧化物、鐘 姑氧化物、鐘鈒氧化物、鐘鈦氧化物、二氧化猛、氧化欽、 氧化鈮、氧化鈒和氧化鶴之物質群而選擇出之—種或複數 種之物質。 本發明(18)係前述發明(17)之鋰離子二次電池,其特 徵在於:前述正極活性物質之起始㈣係包含缝氧化物。 本發明(19)係前述發明(18)之鋰離子二次電池,其特 徵在於··前述正極活性物質之起始材料係包含 =1〜2、y=i〜2、z=2 〜4)。 本發明(20)係前述發明(17)之鋰離子二次電池,其特 徵在於:前述負極活性物質之起始材料係包含鋰鈦氧化物。 本發明(21)係前述發明(20)之鋰離子二次電池,其特 徵在於:前述正極活性物質之起始材料係包含UxTH(x —1〜2、y=i 〜5/3、z=2 〜4)。 本發明(22)係一種鋰離子二次電池之製造方法,其特 徵在於:至少由透過電解質層用生胚薄片而交互地層積正 極層用生胚薄片和負極層用生胚薄片來形成層積體之層積 製耘以及總括地燒成前述層積體而形成燒結層積體之燒成 製程所構成,前述電解質層之起始材料係至少包含鋰和第 11 2015-9667-PF;Ahddub 200913347 ιν族元素之複合氧化物。 本發明(2 3 )係一種鐘黯工 m鋰離子二次電池之 :在於:至少由固體電解質材料分散於 媒而形 成固體電解質層用糊膏之缴 冷媒而形 m 塗佈及乾燥前述固體電解 免層用糊膏而形成固體電解質層用生胚薄片… 活性物質和導電性物質而分 1程、混合 層用糊膏及/或負極層用构膏 成極 a m M ^ ^塗佈及乾燥前述正極[Means for Solving the Problem] This July (1) is a lithium ion secondary battery, in which a positive electrode layer containing a positive electrode active material and a negative electrode layer containing a negative electrode active material are passed through an electrolyte layer containing a solid electrolyte. a multi-layer all-solid type of clock ion-bleed oil-like man-made battery composed of a laminated body of laminated layers, characterized in that it has active activity at the interface between the positive electrode layer or the front negative electrode layer and the electrolyte layer An intermediate layer of substances that function as a substance or electrolyte. According to a second aspect of the present invention, there is provided a lithium ion, a lithium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium The structure of the active substrate carrying the active material. According to a third aspect of the invention, the lithium ion of the invention (2) is characterized in that: the second characteristic material of the cross section of the positive electrode layer and/or the negative electrode layer and/or the negative electrode active material and the conductivity: quality == is 20 : 80 or even 65: 35. The present invention is directed to the above-mentioned invention (1) to the above-mentioned ion-exchanged secondary battery of the above-mentioned e, characterized in that the positive active material of the present invention and/or the aforementioned negative ~' layer of the foregoing substance and the aforementioned solid electrolyte 2015-9667-PF ; Ahddub 8 200913347 The layer formed by the reaction. Benxin Ming (5) is a positive electrode layer of a secondary ion secondary battery and contains, and contains electrolysis of a positive electrode active solid electrolyte (4) 4 is a clock ion secondary battery containing a king solid type, Part or all of the trapping of &, +, 隹. The other side of the positive electrode layer is derived from the starting material of the body electrolyte of the positive electrode active material. The material and the above-mentioned solid invention (8) are a type (four) sub-secondary battery. The positive electrode layer and the electrolyzed layer containing the g, 匕3 positive electrode active solid electrolyte, and the plasma ion secondary battery including the king solid type, wherein a part or all of the layer is composed of the foregoing negative electrode active material The electric material of the negative electrode layer is composed of a sintered body formed by the reaction of the starting material of the mass. Invention (7) is a seed-type (four) sub-battery battery, and a positive electrode layer of a mass of 3 and a tongue 2 and a negative electrode layer containing a negative electrode active material are layers of an electrolytic electrolyte of a solid electrolyte and a layer of a laminated layer. The solid-state lithium ion secondary battery of the integrated body is characterized in that part or all of the electrolyte layer is partially composed of the starting material of the electrolyte substance and the starting material of the foregoing negative electrode active material and/or the foregoing The starting material of the positive electrode active material is formed by a sintered body formed by the reaction. The lithium ion secondary battery of the invention (5) to (7), wherein the positive electrode layer and/or the negative electrode layer is a conductive substrate composed of a conductive material. Hold the structure of the active substance. The present invention (9) is the lithium ion secondary battery of the invention (8), characterized in that: 9:9-9-9-PF; Ahddub 200913347 is characterized in that: the positive electrode layer and/or the negative electrode material and/or the negative electrode active material are: The above-mentioned positive electrode activity is in the range of U or 135. The area ratio of the conductive material is: (10) The invention (1) to the above secondary battery, characterized in that the positive electrode of the positive electrode is composed of the positive electrode 4 The layer and/or the above-mentioned " biomass starting material and/or the starting material of the foregoing negative electrode active material and the starting material of the former c^UfS electrolyte are formed and reacted as an active material. The present invention (11) is a lithium ion mono-human battery of the invention (11), the invention (1) to the invention (10), characterized in that: The present invention (12) is a clock ion secondary battery of the invention (1) to the invention (1) above, which is characterized in that the material of the intermediate layer or the sintered body is not contained. The starting material of the solid electrolyte described above is a composite oxide containing at least lithium and a group IV element. The invention (13) is the lithium ion of the invention of the invention m 5 (1) to the invention (12) The secondary battery is characterized in that the starting material of the solid electrolyte contains at least lithium niobate. The invention (10) is the clock ion-human battery of the invention (1) to the invention (10), characterized in that: the start of the solid electrolyte The invention is characterized in that the lithium ion secondary battery of the invention (14) is characterized in that the material preparation of the material is in the 4: 6 or even Within the range of 6: 4. 10 2015-96 67-PF; Ahddub 200913347 Lithium ion 30 0 m The present invention (16) is the invention (1) to the invention (i5). The human battery is characterized by the thickness of the electrolyte layer. The invention is the clock ion primary battery of the invention (1) to (16), wherein the positive electrode active material or the starting material of the negative electrode active material is composed of a lanthanum oxide, a (tetra) oxide, and a clock. a substance selected from the group consisting of oxide, cerium oxide, cerium oxide, oxidized cerium, oxidized cerium, cerium oxide, cerium oxide, and oxidized crane. The invention (18) is the aforementioned The lithium ion secondary battery of the invention (17), characterized in that the starting (4) of the positive electrode active material is a slit ion oxide. The present invention (19) is the lithium ion secondary battery of the invention (18), characterized in that The present invention (20) is the lithium ion secondary battery of the above invention (17), which is characterized in that the starting material of the positive electrode active material is =1 2, y = i 〜 2, and z = 2 〜 4). In the case of the foregoing starting material of the negative active material The lithium ion secondary battery according to the invention (20), characterized in that the starting material of the positive electrode active material contains UxTH (x-1~2, y=i 〜5) The present invention (22) is a method for producing a lithium ion secondary battery, characterized in that at least a green sheet for a positive electrode layer is alternately laminated by a green sheet through a electrolyte layer and The negative electrode layer is formed by forming a laminate of a laminate using a green sheet, and a firing process for collectively firing the laminate to form a sintered laminate. The starting material of the electrolyte layer contains at least lithium and 11th 2015-9667-PF; Ahddub 200913347 Composite oxide of ιν group elements. The present invention (23) is a clock-pulverized m lithium ion secondary battery in which at least a solid electrolyte material is dispersed in a medium to form a solid electrolyte layer paste, and a cooling medium is formed to form and dry the solid electrolytic solution. Forming a green sheet for a solid electrolyte layer without using a paste for the layer... The active material and the conductive material are divided into one step, the paste for the mixed layer and/or the paste for the negative electrode layer is coated with a paste and dried. positive electrode

層用糊膏及/或負極層用糊膏 网霄而形成正極層用生胚薄片及/ 或負極層用生胚薄片之劁鞀 裂私、透過前述固體電解質層用生 胚薄片而交互地層積前述正極層用生胚薄片和前述負極声 用生胚薄片來形成層積體之層積製程以及總括地燒成前述 層積體而形成燒結層積體之燒成製程所構成,前述電解質 層之起始材料係至少包含鐘和第㈣元素之複合氧化物。 本發明(24)係前述發明(23)之鋰離子二次電池之製造 方法,其特徵在於:混合前述活性物質和前述導電性物質 之此合比係以體積比而成為2〇 : 8〇乃至65 : 35之範圍内。 本發明(25)係前述發明(22)至前述發明(24)之鋰離子 一次電池之製造方法,其特徵在於:前述燒成製程之燒成 溫度係6 0 0 °C以上、11 〇 〇它以下。 本發明(26)係前述發明(22)至前述發明(24)之鋰離子 二次電池之製造方法’其特徵在於:前述燒成製程之燒成 溫度係8 0 0 C以上、1 〇 5 〇 °C以下。 【發明效果】 如果藉由本發明(1)或(4)乃至(7)或(1〇)、(22)的話, 2015-9667-PF;Ahddub 12 200913347The paste for the layer and/or the paste for the negative electrode layer is formed into a green sheet for the positive electrode layer and/or the green sheet for the negative electrode layer is split, and the green sheet is alternately laminated with the green sheet through the solid electrolyte layer. The positive electrode layer green sheet and the negative acoustic green sheet are formed by a lamination process and a firing process for collectively firing the laminate to form a sintered laminate, wherein the electrolyte layer The starting material is a composite oxide containing at least a bell and a (four)th element. According to a second aspect of the invention, there is provided a method for producing a lithium ion secondary battery according to the invention (23), characterized in that the mixing ratio of the active material and the conductive material is 2 〇: 8 〇 or even in a volume ratio. Within 65: 35. The invention of claim 25, wherein the firing temperature of the baking process is 60 ° C or higher, 11 〇〇 the following. The invention (26) is the method for producing a lithium ion secondary battery according to the invention (22) to (24), characterized in that the baking temperature of the baking process is 8000 C or more and 1 〇 5 〇. Below °C. [Effect of the Invention] By the present invention (1) or (4) or (7) or (1〇), (22), 2015-9667-PF; Ahddub 12 200913347

則能夠藉由鐘離早_ A L 雕子一次電池之層積體界面之接合成為牢 固,同時,減低界面電阻,而改善電池之内部電阻降低和 充放電循環特性。 如果藉由本發明(2)、(3)、(8)、(23)或(24)的話,則 造成: j 1.藉由以活性物質和導電性物質之混合比成為面積 4处於20. 80乃至65: 35之範圍内,而使得電極之 構造成為在導電性基體載持活性物質之構造,f電性基體 進行低導電率之活性物質之導電辅助m阻^降 低、放電容量增加等之電池性能之提升,具有效果。 ::電極層係單層而發揮向來之活性物質層和集電體層 之力此因此,不需要集電體層,在製程之簡化、製造成 本之降低和板浸食之防止等,具有效果。 、3.可以藉由電極成為在導電性基體載持活性物質之 每而使传活性物質和導電性物質相互地纏繞,來抑制 於充放電所造成之膨脹、收縮所導致之活性物質和導電 物質之剝離’在充放電循環特性之改善,具有效果。 4·可以藉由因為向來導電率過度小而不容易採用之、 性物質材料,載持於導電性基體,來採用良好之活性物: 材料’作為鋰離子二次電池之電極材料。 則可以在電極層 活性物質或電解 如果藉由本發明(11)乃至(13)的話, 和電解質層之界面,促進有用地發揮作為 質之功能之反應生成物之形成。 如果藉由本發明(14)的話 則可以提高電解質層之離 2015-9667-PF;Ahddub 13 200913347 子傳導度。 如果藉由本發明(丨5)的話,則可以使得電解質層之離 子傳導度成為最適當。 果藉由本發明(1 6 )的話,則可以製作低内部電阻之 高性能之小型、大容量之鐘離子:次電池。 如果藉由本發明(17)乃至(21)的話,則可以使得有用 地貝獻於電池之充放電反應之中間層,形成於電極層和電 解質層之界面。 如果藉由本發明(25)的話,則可以形成有用之中間 層’能夠防止固體電解質之炼解、正極活性物質和負極活 性物質之構造變化、層積體之變形等之問題。 如果藉由本發明(26)的話,則能夠有效於電極層和電 解質層之緻擒化、電池内部電阻之降低。 【實施方式】 在以下,就本發明之最佳形態而進行說明。 本發明之鐘離子二次電池係在由透過電㈣層而交互 地層積正極層和負極層之層積體所組成之鋰離子二次電 池,在正極層和負極層之其中任何一邊之層或者是兩者之 層和電解質層之界面’言曼置藉由層積體之燒成而進行反應 所形成之中間層。此外,藉由適當地選擇電解質層之材料 而使得中間層發揮作為活性物質或電解質之功能。 本案發明人們係使用複數種之活性物質材料、複數種 之固體電解質材料’製造經離子二次電池,進行比較及檢 14 2015-9667-PF/Ahddub 200913347 討,結果發現:在使用包含石夕酸裡或鐘錯氧化物等之鐘和 第IV族元素之複合氧化物之起始材料之狀態下,於燒成製 程,在電極層和電解質層之界面,並無形成不純物層二在以 下,將由無發揮作為活性物f或電解質之輕之反應生成 物所組成之層,稱為「不純物層」。,活性物質和固體電 解質發生反應,形成由有用於貢獻在充放電反應之反應生 成物所組成之層(在以下,將由此種有用於發揮作為活性物 r" 質或電解質之功能之反應生成物所組成之層,稱為「令間 層r)。正極層、電解質層和負極層之各層之製法係將二 種粉末分散於溶媒、黏合劑所形成之糊膏,塗佈於板上, 進行乾燥,層積形成之生胚薄片,然後,進行燒成。得知 在構成中間層之物質中’將不包含鋰之氧化物予以不含 有,僅生成發揮作為鐘離子二次電池之活性物質或電 之功能之物質。 此外,得知在僅採用廣泛地使用之磷酸鋰等之磷酸系 材料來作為鐘離子二次電池之固體電解質之狀態下,於界 面’並無形成反應生成物。認為這個係由於鱗酸鐘等之磷 酸鹽成為單-鹽而不容易反應於活性物質之緣故。相對於 此’推測例如料鐘Li4係成為_和抓之複合氧 化物’藉由燒成而分離之高反應性之Lh0係反應於活性物 質。 此外’本案發明人們係發現:可以藉由使用混合活性 物貝和導電性物質之材料’來作為構成正極層及/或負極層 之材料’而降低電極之阻抗。此外,改變構成電極之活性 2〇15-9667-PF;Ahddub 15 200913347 物貝和導電性物質之混合比,製作電池,進行評價,结果 發現·在成為糊膏材料之正極活性物質和導電性物質之混 合比以及負極活性物質和導電性物質之混合比係以體積比 而皆成為20: 80〜65: 35之狀態下,可以製作高導電率、 大放電容量且特性良好的電池。藉由SEM及EDS而觀察利 用該最適當條件所製作之電池之剖面,結果得知:電極剖 面之活性物質和導電性物質之面積比係也相同於體積比而 成為20,· 80〜65 : 35。此外,還得知在導電性物質之混合 比係以體積比而成為35%以上之狀態下,導電性物質係在 剖面内,連續地成為基體狀,在此種基體狀導電性物質中, 載持活性物質。也得知為了形成此種基體構造,因此,必 須在6 0 0 °C以上之高溫,進行燒成。 在此,在本案之說明書,所謂「導電性基體」或「基 體狀導電性物質」係表示導電性物質粒子呈三次元連續相 互地接觸之構造體。在導電性物質成為金屬之狀態下,也 有使用所謂「金屬基體」之用語之狀態發生。此外,所謂 「在導電性基體載持活性物質之構造」係表示在呈三次元 連續相互地接觸之導電性物質粒子間來分布活性物質粒子 之構造體。活性物質粒子係可以連續地分布也可以非連 續地分布,但是’最好是均句地分布在電極内。此外,所 謂「呈三次元地連續」係即使是在二次元剖面,有部分非 連續之部分’如果是至少在其他剖面成為連續之面的話, 則也呈三次元地連續。 此外,即使是在除了活w物暂 1 沽性物貞、導電性物質以外而加 2015-9667-PF;Ahddub 16 200913347 入微量之添加物來作為電極材料之狀態下,如果並非由於 添加物之添加而大幅度地減少活性物質或導電性物質之量 之:度之量的話’則也可以藉由作為糊膏材料之活性“ :導電性物質之混合比成為2。:8。〜65:35之範圍而使得 ▲極構造成為載持活性物質之導電性基體,能夠製作低阻 抗、大放電容量之良好之電池。 本發明之鋰離子二次電池係如果是正極層及/或負 層和,體電解質層發生反應而形成有用之反應層的話,則 即使是不使得正極層及/或負極層,成為在導電性基體 載持活性物質之構造,也在高性能電池之製作,得到高效 果。此外’可以藉由正極層及/或負極層,成為在導電性 體載持活性物質之構造,而製作更加高性能之電池。 [電池之構造] 圖心)及圖1⑴係本發明之具體例之燒成前及 後之鐘離子—次電池之剖面圖。此外,圖丄⑷及圖1(b) 係具有最基本之層積體之構造之二次電池之剖面圖。 體係成為正極層1和負極層3透過電解質層2而進行層積 之構造。 .作為構成正極層1之正極活性物質係例如使用The bonding of the laminated body interface of the primary battery by the clock is improved, and the interface resistance is reduced to improve the internal resistance reduction and charge and discharge cycle characteristics of the battery. By the present invention (2), (3), (8), (23) or (24), it is caused that: j 1. The area 4 is at 20. by the mixing ratio of the active material and the conductive material. In the range of 80 to 65:35, the structure of the electrode is a structure in which the active material is supported on the conductive substrate, and the conductive substrate of the low conductivity of the electrically conductive substrate is reduced in resistance, m resistance is reduced, and discharge capacity is increased. The performance of the battery is improved and has an effect. The electrode layer is a single layer and exerts a force on the active material layer and the current collector layer. Therefore, the current collector layer is not required, and the process is simplified, the manufacturing cost is reduced, and the plate is prevented from being eaten. 3. The active material and the conductive material can be entangled by the electrode to carry the active material on the conductive substrate, thereby suppressing the active material and the conductive material caused by the expansion and contraction caused by the charge and discharge. The peeling 'has an effect on the improvement of the charge and discharge cycle characteristics. 4. A good active material: material ' can be used as an electrode material for a lithium ion secondary battery by carrying a material material which is not easily used because the conductivity is excessively small, and is carried on the conductive substrate. In the electrode layer active material or electrolysis, the interface between the electrode layer and the electrolyte layer can be used to promote the formation of a reaction product which functions as a substance. According to the invention (14), the electrolyte layer can be improved from the 2015-9667-PF; Ahddub 13 200913347 sub-conductivity. According to the present invention (丨5), the ion conductivity of the electrolyte layer can be made most appropriate. According to the invention (16), it is possible to produce a small-sized, large-capacity clock ion having a low internal resistance and a secondary battery. According to the invention (17) or (21), an intermediate layer which is usefully applied to the charge and discharge reaction of the battery can be formed at the interface between the electrode layer and the electrolyte layer. According to the invention (25), a useful intermediate layer can be formed to prevent problems such as refining of the solid electrolyte, structural changes of the positive electrode active material and the negative electrode active material, deformation of the laminate, and the like. According to the invention (26), the electrode layer and the electrolyte layer can be effectively degraded, and the internal resistance of the battery can be lowered. [Embodiment] Hereinafter, the best mode of the present invention will be described. The clock ion secondary battery of the present invention is a lithium ion secondary battery comprising a laminate of a positive electrode layer and a negative electrode layer alternately laminated by an electric (four) layer, a layer on either side of the positive electrode layer and the negative electrode layer or It is an intermediate layer formed by the reaction between the two layers and the electrolyte layer by the reaction of the laminate. Further, the intermediate layer functions as an active material or an electrolyte by appropriately selecting a material of the electrolyte layer. The inventors of the present invention used a plurality of kinds of active material materials and a plurality of kinds of solid electrolyte materials to manufacture an ion secondary battery, and compared and examined 14 2015-9667-PF/Ahddub 200913347, and found that: In the state of the starting material of the composite oxide of the group IV or the group IV element, in the firing process, at the interface between the electrode layer and the electrolyte layer, no impurity layer 2 is formed below, A layer composed of a light reaction product of the active material f or the electrolyte is not referred to as an "impurity layer". The active material reacts with the solid electrolyte to form a layer composed of a reaction product for contributing to the charge and discharge reaction (hereinafter, a reaction product for functioning as an active material r" The layer formed is referred to as "intermediate layer r." The layers of the positive electrode layer, the electrolyte layer, and the negative electrode layer are prepared by dispersing two kinds of powders in a paste formed of a solvent and a binder, and applying them to a plate. After drying, the green sheet formed by lamination is formed and then fired. It is found that the substance which does not contain lithium is not contained in the substance constituting the intermediate layer, and only the active material which is a secondary ion battery or In addition, it is known that a phosphate-based material such as lithium phosphate which is widely used is used as a solid electrolyte of a plasma ion secondary battery, and no reaction product is formed at the interface. It is because the phosphate such as the sulphuric acid clock is a single-salt and it is not easy to react with the active material. In contrast, it is estimated that, for example, the bell Li4 is _ and grasped. The highly reactive Lh0 which is separated by firing is reacted with the active material. Further, the inventors of the present invention found that the positive electrode layer can be formed by using a material of a mixed active material and a conductive material. And / or the material of the negative electrode layer to reduce the impedance of the electrode. In addition, changing the activity of the electrode 2〇15-9667-PF; Ahddub 15 200913347 mixing ratio of the material and the conductive material, making a battery, and evaluating, found that When the mixing ratio of the positive electrode active material and the conductive material to be the paste material and the mixing ratio of the negative electrode active material and the conductive material are 20:80 to 65:35 in a volume ratio, high conductivity can be produced. A battery having a high discharge capacity and a good characteristic. The cross section of the battery fabricated using the optimum conditions was observed by SEM and EDS, and it was found that the area ratio of the active material to the conductive material in the electrode profile was also the same. The volume ratio is 20, 80 to 65: 35. In addition, it is also known that the conductivity ratio of the conductive material is 35% or more in a volume ratio, and is electrically conductive. The substance is continuously formed into a matrix in the cross section, and the active material is carried in the matrix-shaped conductive material. It is also known that in order to form such a matrix structure, it is necessary to have a high temperature of 60 ° C or higher. Here, in the specification of the present invention, the "conductive substrate" or the "base-like conductive material" means a structure in which the conductive material particles are continuously in contact with each other in three dimensions. In the state where the conductive material is a metal, the state in which the term "metal substrate" is used also occurs. In addition, the "structure in which the active material is supported on the conductive substrate" means a structure in which active material particles are distributed between the conductive material particles which are continuously in contact with each other in three dimensions. The active material particles may be distributed continuously or non-continuously, but are preferably distributed uniformly within the electrode. Further, the term "continuously three-dimensionally continuous" is a portion that is discontinuous even if it is in the quadratic cross section, and is continuous in three dimensions if at least the other sections become continuous faces. In addition, in addition to the active material, the addition of 2015-9667-PF, Ahddub 16 200913347 into a trace amount of additives as an electrode material, if not due to additives Adding and greatly reducing the amount of the active material or the conductive material: if it is an amount, the activity of the material can be used as a paste material: the mixing ratio of the conductive material is 2. 8: ~ 65: 35 The ▲ pole structure is a conductive substrate carrying an active material, and a battery having a low impedance and a large discharge capacity can be produced. The lithium ion secondary battery of the present invention is a positive electrode layer and/or a negative layer. When the body electrolyte layer reacts to form a useful reaction layer, the positive electrode layer and/or the negative electrode layer are not required to have a structure in which the active material is supported on the conductive substrate, and a high-performance battery is produced, and a high effect is obtained. In addition, the positive electrode layer and/or the negative electrode layer can be used to support the active material in the conductive body, thereby producing a battery with higher performance. [Battery structure] Figure 1(1) A cross-sectional view of a clock ion-sub-battery before and after firing in a specific example of the present invention. Further, Fig. 4(4) and Fig. 1(b) are cross-sectional views of a secondary battery having a structure of a most basic layered body. The system is a structure in which the positive electrode layer 1 and the negative electrode layer 3 are permeable to each other through the electrolyte layer 2. The positive electrode active material constituting the positive electrode layer 1 is used, for example.

LiMm〇4作為構成電解f層2之固體電解質係例如使用LiMm〇4 is used as a solid electrolyte system constituting the electrolytic f layer 2, for example.

LmSuU”作為構成負極層3之負極活性物 使用 Li〇3Ti5/3〇4。 使用作為固體電解質之Li"SiuIV5〇4係' U3 Li祕之固溶體,進行實驗,結果得知:在構成電解質: 2015-9667-PF;Ahddub 17 200913347LmSuU" was used as the negative electrode active material constituting the negative electrode layer 3, and Li〇3Ti5/3〇4 was used. The experiment was carried out using a solid solution of Li"SiuIV5〇4 series 'U3 Li as a solid electrolyte, and it was found that the electrolyte was formed. : 2015-9667-PF; Ahddub 17 200913347

Li 3P〇4和Li 4S i 〇4中’ li di 〇4係大幅度地關係到和活性物質 之反應。在60(TC以上之溫度來燒成圖1(a)所示之層積體 時,正如圖i(b)所示,在正極層!和電解質層2之^面, 形成中間i 4’在負極層3和電解質層2之界面,形成中 間層5。在中間層4,包含·〇2、U2Mn〇3、Lu 等之物f,LlMnQ2、Ul係發揮作為活性物質之功 能,LuMnCh係發揮作為電解質之功能。在中間層5,包含 LiTi〇2、LhTi〇3等之物質,Lm〇2係發揮作為活性物質之 功能,Li 2T i Os係發揮作為電解質之功能。 例如在負極侧界面之中間層之形成係認為是由於以下 之反應而產生。 2Li3.5Si〇.5P〇.5〇4-. Li4Si〇4+ Li3P〇4-> 2Li2〇+ Si〇2 +The 'li di 〇 4 series in Li 3P 〇 4 and Li 4S i 〇 4 is largely related to the reaction with the active material. When the laminate shown in Fig. 1(a) is fired at a temperature of 60 or more (TC), as shown in Fig. i(b), in the positive electrode layer and the electrolyte layer 2, the intermediate i 4' is formed. The intermediate layer 5 is formed at the interface between the negative electrode layer 3 and the electrolyte layer 2. The intermediate layer 4 contains a substance f such as 〇2, U2Mn〇3, and Lu, and LlMnQ2 and U1 function as active materials, and the LuMnCh system functions as The function of the electrolyte. The intermediate layer 5 contains a substance such as LiTi〇2 or LhTi〇3, and the Lm〇2 system functions as an active material, and the Li 2T i Os system functions as an electrolyte. For example, in the middle of the negative electrode side interface The formation of the layer is believed to be due to the following reaction: 2Li3.5Si〇.5P〇.5〇4-. Li4Si〇4+ Li3P〇4-> 2Li2〇+ Si〇2 +

Li3P〇4Li3P〇4

Si〇2 + 2L i 2〇— L i 4S i 〇4Si〇2 + 2L i 2〇—L i 4S i 〇4

6L i 4/3T i 5/3Ο4 + Li2〇— l〇LiTi〇2 + 5/2〇2 个 3L ϊ 4/3T ΐ 5/3〇4 + 3Li2O—> 5Li 2Ti〇3 此外,還得知燒成溫度越高,而越加使得正極側界面 之反應生成物,由LiMruO4變化至更加u豐富之 LiuMm.A、LiuMm.A、LiMn〇2、Li2Mn〇3 ’ 負極側界面之 反應生成物’由LimTis^O4變化至更加u豐专之^^10、 LizTiCh。 2015-9667-PF;Ahddub 18 200913347 相二係鐘離子二次電池之剖面8㈣相片。圖2所~ 相月係顯不圖Ua) 所不之 面,在以升溫逮度辑/小時來之升1極層和電解質層之界 μ , 0 于不升溫至870°C為止之你 稭由保持2小時,進行放冷止之谈, 片而得知:在電解質層6 ^作。由左側所示之相 由相片而得知:中二I//之間’形成中間層7。 中間層之厚度係大約〗η 〃 m 士 , 相片係擴大左側所示之相片之各層之Α 、。則所示之 質層9、中間層!。和負極層u 分區域’顯示電解 U係明顯地存在於不门 ”電解質層9和負極層 f在於不同之中間層1〇,並且 2層7以及中間層7和_8係牢固地接I::和 並無形成中間層之材料之電池 在使用 種牢固之接合。進行分析而q〜片纟無確認到此 .Έ ( _ 刀析而、,,口果传知:構成中間層之物傲 <_ = ==包含 Μ102、""η。3 等。知道 LlTl。2 解質之功能之物質。之物f,—3係發揮作為電 不僅是電解質層和負極層之界面,即使是在電 …層之界面,也進行同樣之咖觀察, 層。即使是在正極側界面,也透過中間層而牢固地= 極層和電極層。此外,進行分析而結果得知:在正㈣正 中間層’正如前面之敘述,包含LiMn〇2、Li2M = 竭。知道UMn〇2、Lil.4Mni.7〇“系發揮作為活 之功能之物質’ U2Mn〇3係發揮作為電解f之:力能之物質。 此外,進行分析而結果確認:在中間層,並無存在 發揮作為活性物質或電解質之功能之不純 : 稭由在燒成 2015-9667-PF;Ahdciub 19 200913347 製程所形成之中間層而使得正極層、負極層和電解質層之 接合,變得牢固,同時,在中間層,活性物質和電解質之 接觸面積係顯著地變大,因此,實現界面電阻之大幅度之 降低。即使是經過長期間而重複地進行充放電,也使得界 面之接合強度變得牢固,因此,也在充放電循環特性之改 善,具有效果。 電池之内部電阻係如果是構成電池之層之厚 ^ 話’則比起電極層之電子傳導度或電解質層之離子傳马 度’還更加使得電極層和電解質層之界面之離子傳導度戈 影響變大。鋰離子二次電池係在今後還更加進行朝向於,】 型化、大容量化、高輸出電壓化之發展,有電極層和電每 質層之厚度更加薄之傾向發生。本發明之技術係能約大拆 度地減低界面電阻’因此,在適用於電解質層之厚度成肩 30# m以下之電池之狀態下’得到特別大之效果。 在圖1U)、(b)所示之具體例之電池,揭示:由夾住 / 層之電解質層而層積 I m 1層之正極層矛口 1層之負極層之1福 電池胞所級成之電池,但是,通常電池係層積許多之電池 =行製作。也就是說,具有透過電解質層而交互地層 積複數層之正極層和複數層之負 、極層之層積體,即使是斜 於此種電池,不用說當然也可以 ό ^^ ^用本發明之技術而得到 良好之效果。在電池胞之數目變客 而.增加界面之數目睹, 更加大幅度地顯現本發明之效果。 時 務明之:hfc I ”、、了充分地享受由於本 發明之技術所造成之優點,因 ♦ ?〜Rnrwm 電池胞之數目係最好是 2 500個、更加理想是5〜500個。 2015-9667-PF;Ahddub 20 200913347 此外,本發明之鋰離子二次電池之構造係可以是在電 極層並無層積集電體層之構造’也可以是在電極層來層積 集電體層之構造。 [電池之材料] (活性物質之材料) 作為構成本發明之鋰離子二次電池之電極層之活性物 質係最好是使用呈效率良好地釋出、吸附鐘離子之材料。 例如最好是使用遷移金屬氧化物、遷移金屬複合氧化物。 具體地說,最好是使用㈣複合氧化物'㈣複合氧化物、 鐘銘複合氧化物、鐘飢複合氧化物、鐘欽複合氧化物、二 氧化鐘、氧化鈦、氧化鈮、氧化鈒和氧化鎢等。此外,鐘 猛複合氧化物及鐘鈦複合氧化物係由於鐘離子之吸附和釋 出之所造成之體積變化特別小,不容Μ起f極之㈣ 化、剝離’因此’可以更加適當地使用作為活性物質材料。 在此,在正極活性物質和負極活性物質,並無明確之 區別,比較2種化合物之電位,可以使用顯示更貴電位之 化合物,來作為正極活性物 物質使用顯不更賤電位之化合 物,來作為負極活子 生及知# a 物質。作為正極活性物質係特別最好 疋使用經猛氣化物。必:¾ A , ㈣氧化物。作為負極活性物質係特別最好是使用 除了行說明時’所謂「複合氧化物」係 2種以上元素之氧化物,例如將「鋰 錄虱化物」稱為「鋰錳葙人 复口氧化物」。除了氧以外而還包 1種凡素之氧化物係僅稱為「氧化物」。但是,「氧化 2015-9667-PF;Ahddub 打 200913347 之上位之概念。因此, 「鐘猛氧化物」之物質 鐘猛 物」係包含「複合氧化物」 複合氧化物」係表示相同於 (導電性物質之材料) 本發明之鋰離子二+ Φ « ^ , ^ φ t 池之構造係可以是在電極層來 層積由導電性物質所組成之 呆冤體屬之構造。此外,可以 使得正極層及/或負極層, 成為在由導電性物質所組成之導 電性基體載持活性物質生 ^ θ ^ ^ ^ 冓&。作為此種導電性物質係最 好疋使用兩導電率之材料。 例如最好疋使用高度之耐氧化 性之金屬或合金。在此,所押古ή ^ 明向度之耐氧化性之金屬或合 金係在大氣氣氛下而推法 、 而進仃燒成之後,具有導電率IxlO^S/cm 以上之導電率之金屬或合金。具體地說’如果是金屬的話, 則最好是使用銀、把、金、粗翻、_。如果是合金的^ 則最好是由銀、鈀、舍Λ ^ 金白金、銅、鋁來選出之2種以上 之金屬所組成之合金’例如最好是使用Agpd,pd係最好 =用Ag粉末牙〇Pd粉末之混合粉末或者是_合金之粉 混合於活性物質而製作電極層之導電性物質係可以相 =於正極和負極,也可以不同於正極和負極。也就是說, 最好是選擇導電性物質之材料、混合比和製造條件等而分 別適用於各個正極、負極。 77 (固體電解質之材料) 作為構成本發明之鐘離子二次電池之電解質層之固體 電解質係最好是使用電子傳導性小且鋰離子傳導性高之材 料。此外,最好是可以燒成於大氣氣氛之無機材料。1外, 2015-9667-PF;Ahddub 22 200913347 為了形成貢獻於充放電之反應生成物,因此,最好是使用 石夕酸經等之鐘和第㈣元素之複合氧化物。例如最:是使 用由矽磷酸鋰(Li3 5Sifl 5ρ。5〇4)、磷酸鍺鋰 r--、u2。—…1〇2、Ll2。—Ge〇2 所組二:而 選出之至少一種材料。特別最好是使用矽磷酸鋰。矽磷酸 鋰係磷酸鋰和矽酸鋰之複合氧化物,也有表記$ Li3P〇4 — L^Si〇4之狀態發生。藉由將在有用於充放電反應之有用物 f6L i 4/3T i 5/3Ο4 + Li2〇—l〇LiTi〇2 + 5/2〇2 3L ϊ 4/3T ΐ 5/3〇4 + 3Li2O—> 5Li 2Ti〇3 In addition, it is also known The higher the calcination temperature, the more the reaction product at the positive electrode side interface is changed from LiMruO4 to the more abundant AuMm.A, LiuMm.A, LiMn〇2, and Li2Mn〇3 'reaction product at the negative electrode side interface' Changed from LimTis^O4 to more ^^10, LizTiCh. 2015-9667-PF; Ahddub 18 200913347 Section 8 (four) photo of the phase II ion secondary battery. Figure 2: The phase of the moon is not shown in Figure Ua). In the temperature rise arrest / hour, the boundary between the 1 pole layer and the electrolyte layer is raised, 0 is not warmed up to 870 °C. From the standpoint of keeping the cold for 2 hours, it is known that the electrolyte layer 6 is used. It is known from the corresponding photo shown on the left side that the intermediate layer 7 is formed between the middle two I//. The thickness of the intermediate layer is about η 〃 m 士 , and the photo is enlarged by the layers of the photo shown on the left side. The texture layer 9 and the middle layer are shown! . And the negative electrode layer u sub-region 'shows that the electrolytic U system is clearly present in the door." The electrolyte layer 9 and the negative electrode layer f are in different intermediate layers 1 , and the two layers 7 and the intermediate layers 7 and _8 are firmly connected to I: : The battery with the material without the intermediate layer is firmly bonded. The analysis is performed and the q~ film is not confirmed. ( _ Knife, and, <_ = == Contains Μ102, ""η.3, etc. Knows the function of LlTl.2 decomposing function. The material f, -3 functions as an interface between electricity and not only the electrolyte layer and the negative electrode layer, even At the interface of the electric layer, the same coffee observation layer is also applied. Even at the positive electrode side interface, the interlayer layer is firmly passed through the intermediate layer and the electrode layer is firmly formed. Further, the analysis is carried out and the result is as follows: The positive intermediate layer', as described above, contains LiMn〇2, Li2M = exhausted. Knowing that UMn〇2, Lil.4Mni.7〇 “the substance that functions as a living function” U2Mn〇3 system functions as electrolysis f: force In addition, the analysis confirmed the results: in the middle layer, there is no The impureness of the function as an active material or an electrolyte: the straw is bonded to the intermediate layer formed by the process of firing 2015-9667-PF; Ahdciub 19 200913347 to make the bonding of the positive electrode layer, the negative electrode layer and the electrolyte layer firm, and at the same time, In the intermediate layer, the contact area between the active material and the electrolyte is remarkably large, and thus the interface resistance is greatly reduced. Even if the charge and discharge are repeatedly performed over a long period of time, the joint strength of the interface is made firm. Therefore, it is also effective in improving the charge-discharge cycle characteristics. The internal resistance of the battery is more than the thickness of the layer constituting the battery, which is more than the electron conductivity of the electrode layer or the ion transfer degree of the electrolyte layer. The ion conductivity of the interface between the electrode layer and the electrolyte layer is greatly increased. In the future, the lithium ion secondary battery is further oriented toward the development of a large-capacity, high-output voltage, electrode layer and The tendency of the thickness of each layer of electricity to be thinner occurs. The technique of the present invention can reduce the interface resistance with a large degree of disassembly. Therefore, it is suitable for electricity. The thickness of the depolymerization layer is particularly large in the state of a battery of 30# m or less. The battery of the specific example shown in FIGS. 1U) and (b) reveals that the electrolyte layer is sandwiched/layered. A cell in which the anode layer of the positive electrode layer of the layer 1 m layer is laminated, and the battery of the first layer of the first layer of the electrode layer is laminated, but usually, the battery is laminated with a large number of cells. That is to say, a laminate having a positive electrode layer and a plurality of negative electrode layers of a plurality of layers which are alternately laminated through the electrolyte layer, even if oblique to the battery, needless to say, the invention can be used. The technology has a good effect. The effect of the present invention is more greatly exhibited when the number of battery cells is changed and the number of interfaces is increased. It is clear that hfc I ” fully enjoys the advantages of the technology of the present invention, and the number of battery cells of ♦ ≤ Rnrwm is preferably 2,500, more preferably 5 to 500. 2015-9667 - PF; Ahddub 20 200913347 Further, the structure of the lithium ion secondary battery of the present invention may be a structure in which the collector layer is not laminated in the electrode layer, or a structure in which the collector layer is laminated on the electrode layer. [Battery of Battery] (Material of Active Material) As the active material constituting the electrode layer of the lithium ion secondary battery of the present invention, it is preferable to use a material which efficiently releases and adsorbs clock ions. For example, it is preferable to use migration. Specifically, it is preferable to use (IV) a composite oxide '(4) composite oxide, a Zhongming composite oxide, a Zhonghan composite oxide, a Zhongqin composite oxide, a oxidized clock, Titanium oxide, cerium oxide, cerium oxide, tungsten oxide, etc. In addition, the volume change of the Zhong Meng composite oxide and the clock-titanium composite oxide due to the adsorption and release of the clock ions is particularly small, In the case of the positive electrode active material and the negative electrode active material, there is no clear difference between the positive electrode active material and the negative electrode active material, and the potential of the two compounds can be used for display. A compound of a more noble potential is used as a positive electrode active material as a compound having a lower zeta potential, and is used as a negative electrode active material and a known material. It is particularly preferable to use a gassing compound as a positive electrode active material. 3⁄4 A , (4) Oxide. As the negative electrode active material, it is particularly preferable to use an oxide of two or more kinds of elements, such as "the composite oxide", for example, "lithium manganese" is referred to as "lithium manganese". The monks retire the oxides." In addition to oxygen, it is also known as an "oxide". However, "oxidation 2015-9667-PF; Ahddub hits the concept of the upper position of 200913347. Therefore, the "material bell" of "Zhong Meng Oxide" contains "composite oxide" composite oxide" which means the same as (conductivity) Material of the material) The lithium ion two + Φ « ^ , ^ φ t cell structure of the present invention may be a structure in which an electrode layer is laminated to a genus of a genus of a conductive substance. Further, the positive electrode layer and/or the negative electrode layer can be made to carry the active material in a conductive substrate composed of a conductive material. As such a conductive material, it is preferable to use a material having two electrical conductivity. For example, it is preferred to use a metal or alloy of high oxidation resistance. Here, the metal or alloy of the oxidation resistance of the etched metal is a metal having a conductivity of IxlO^S/cm or more after being extruded in an air atmosphere. alloy. Specifically, if it is metal, it is best to use silver, handle, gold, rough, and _. If it is an alloy, it is preferably an alloy composed of two or more metals selected from the group consisting of silver, palladium, rhodium, gold, gold, copper, and aluminum. For example, it is preferable to use Agpd, and the pd system is preferably = Ag. The mixed powder of the powdered gingival Pd powder or the powder of the _ alloy mixed with the active material to form the electrode layer may be a phase of the positive electrode and the negative electrode, or may be different from the positive electrode and the negative electrode. In other words, it is preferable to select the material of the conductive material, the mixing ratio, the production conditions, and the like, and apply them to each of the positive electrode and the negative electrode, respectively. 77 (Material of Solid Electrolyte) As the solid electrolyte constituting the electrolyte layer of the clock ion secondary battery of the present invention, it is preferable to use a material having low electron conductivity and high lithium ion conductivity. Further, it is preferably an inorganic material which can be fired in an air atmosphere. 1st, 2015-9667-PF; Ahddub 22 200913347 In order to form a reaction product which contributes to charge and discharge, it is preferable to use a compound oxide of the core of the sulphuric acid and the element (4). For example, the most is: lithium ruthenium phosphate (Li3 5Sifl 5ρ. 5〇4), lithium ruthenium phosphate r--, u2. —...1〇2, Ll2. —Ge〇2 Group 2: At least one material selected. It is particularly preferable to use lithium bismuth phosphate. The composite oxide of lithium strontium phosphate lithium phosphate and lithium niobate also has a state of $ Li3P〇4 — L^Si〇4. By having a useful object for the charge and discharge reaction f

質之生成具有效果之矽酸鋰和高離子傳導率之磷酸鋰予以 混合’而在電解質層之離子傳導率之改善,具有高效果。 圖6係矽磷酸鋰之離子傳導率對於以3^^和Li4Si〇4之組成 (混合比)之依附性之圖形,以非專利文獻2所記載之資料 作為基礎而進行製圖。得知在U抓和Li4SiG4之混合比作 為莫爾數比而成為4: 6乃至6: 4之範圍内之狀態下,離 子傳導率變得最高。 _作為固體電解質材料係可以使用在這些材料換雜異種 凡素或 Li3P〇4、LiP〇3、Li4Si〇4、U2Si〇3、Μβ〇2 等之材料。 此外’電解質層之材料係可以是結晶質、非結晶質、玻璃 狀之任何一種。 [電池之製造方法] /冓成本發明之多層全固體型鐘離子二次電池之層積體 係藉由對於構成層積體之正極層、電解質I、負極層、以 及任意保4層之各種材料’進行糊膏化,進行塗佈及乾燥, 製作生胚薄片,層積此種生胚薄#,總括地壓合製作之層 積體,進行燒成而製造層積體。 2〇15-9667-PF;Ahddub 23 200913347 使用於糊膏化之正極活性物質、負極活性物質 # α拉電解質之各種村料係可以使用假燒成為各種原料之 無機鹽等。作為固體電解質之材料係最好是使用包含石夕酸 鐘等之第IV族、 ' 之複合氧化物之材料。由藉著假燒 來進行原料之化墨;5 @ 反應而在總括燒成後呈充分地發揮各個 功能之方面來丢 ' ,正極活性物質、負極活性物質和 固體電解質之假燒温度係最好u6G(rc以上。 糊膏化之方法係並無特別限定,但是,例如可以在有 機ί谷媒和黏合劑g • I K展H以前料㈣料之粉末而得 龍膏。例如作為正極活性物質係可以使得UM滅之粉末 刀:於溶媒和展色料’來製作正極糊膏。藉由相 而製作電解質層用糊膏、負極用糊膏。 此外’例如在使用由混合活性物 了成之電極之狀態下,可以在有機溶媒 = 色Γ混合前述各種材料之粉末而得到糊膏。例如 :比’來混合作為正極活性物質之UMn2。4之粉末 及作為導電性物質…Pd之金屬粉末…物= 混合物分散於溶媒和展色料,製作正極糊膏。 =物質粉末和導電性物質粉末之粒子之 係最好疋正極活性物質、負極活性物質和導電 :) 可種皆成為3㈣以下。此外,活性物質粉 任 質粉末之粒徑比係最好是也在正極活性物二電性物 質之任何-種狀態下,使得活性物質:^ ^活性物 5〇〜。如果是以上之範圍之包"導電&物質成為!: 圍之粒役、粒徑比的話,則藉 2〇15-9667-pF;Ahddub 24 200913347 由燒成而在電極中呈適當地形成導電性基體,活性物質呈 適當地載持於基體,因此,有效於阻抗之降低、放電容量 之增加等之電池之性能提升。混合活性物質粉末和導電性 物質粉末之體積比係最好是20: 80〜65: 35之範圍。在使 用AgPd來作為導電性物質之狀態下,除了紅和pd之金屬 粉末之混合物以外,也可以使用例如藉由Ag/pd共沉法所 造成之合成粉末或Ag/Pd合金之粉末。藉由此種方法而製 作正極層用糊膏、固體電解質層用糊膏、負極用糊膏。 以要求之順序而使得製作之糊膏塗佈於ρΕτ等之基材 上,在配合於需要而進行乾燥之後,剝離基材,製作生胚 薄片。糊膏之塗佈方法係並無特別限定,可以採用網版印 刷、塗佈、轉印、刮刀等之習知方法。 以要求之順序及層積數,配合於需要,對於製作之正 極層用、電解質層用及負極層用之各個生胚薄月,進行對 準,進行重疊及切斷等,製作層積體。 總括地壓合製作之層積體。進行加熱同時進行壓合, 但是,加熱溫度係例如40〜耽。例如在大氣氣氛下,加 熱壓合之層積體,進行燒成。在此,所謂燒成係指以燒結 作為目的之加熱處理。所謂燒結係指在低於炼點之溫度來 加熱固體粉末之集合體拄,a > 夺進仃减固而成為稱呼燒結體之 緻密物體之現象。 β在本發明之鋰離子二次電池之製造,燒成溫度係最好 是600〜11〇〇〇C之範圍。Α 為在未滿600°C,於電極層和電 解質層之界面’並無形成中間層,在超過HOW時,發生 2015-9667-PF;Ahddub 25 200913347 固體電解質炼解、正極活性物質和負極活性物質之構造改 變層積體變形等之問題之緣故。此外,燒成溫度係最好 疋800〜1〇5〇。〇之範圍。因為在8〇〇〜1〇5〇。匸之範圍,進行 電極層和電解質層之緻密化,有效於電池内部電阻之降低 就燒成製程之升溫速度和保持時間而言,最好是配合 於.燒成溫度而選擇及設定適合於電極層和電解質層之緻密 化以及中間層之形成之條件。此外,也考慮升溫迷度快、 保持時間短係生產性比較良好,例如升溫速度係最好是 C /小時〜60(TC /小時。此外,保持時間係最好是3〇分鐘 〜10小時。 作為製造方法之第1具體例係列舉包含下列製程(1 ) 〜(5)之多層全固體型鋰離子二次電池之製造方法。 製程(1”準備包含金屬末和正極活性物質之正極糊 膏、包含金屬粉末和負極活性物質之負極糊膏和包含固體 電解質粉末之固體電解質糊膏。 製程(2):在PET基材上,塗你 上,塗佈固體電解質糊膏,The formation of an effective lithium niobate and a lithium ion having a high ionic conductivity are mixed, and the ionic conductivity in the electrolyte layer is improved to have a high effect. Fig. 6 is a graph showing the dependence of the ionic conductivity of lithium bismuth phosphate on the composition (mixing ratio) of 3^^ and Li4Si〇4, based on the data described in Non-Patent Document 2. It is found that the ion conductivity becomes the highest in a state where the mixing ratio of U and Li4SiG4 is in the range of 4:6 or 6:4 as the molar ratio. _ As a solid electrolyte material, materials such as Lithopolysaccharide or Li3P〇4, LiP〇3, Li4Si〇4, U2Si〇3, Μβ〇2, etc. may be used. Further, the material of the 'electrolyte layer may be any of crystalline, amorphous or glassy. [Manufacturing Method of Battery] / 冓 The laminated system of the multilayer all-solid-type clock ion secondary battery of the invention is composed of various materials for the positive electrode layer constituting the laminate, the electrolyte I, the negative electrode layer, and any of the four layers. The paste is applied, coated, and dried to prepare a green sheet, and the raw sheet is laminated. The resulting laminate is collectively pressed and fired to produce a laminate. 2〇15-9667-PF; Ahddub 23 200913347 The positive electrode active material and the negative electrode active material used for the pasteification can be used as various inorganic materials for various raw materials. As the material of the solid electrolyte, it is preferable to use a material comprising a composite oxide of Group IV, ', such as a sulphuric acid clock. The ink of the raw material is made by the smoldering; the 5 @ reaction is lost in the aspect of fully performing the functions after the firing, and the calcination temperature of the positive electrode active material, the negative electrode active material and the solid electrolyte is the best. u6G (rc or more. The method of pasteification is not particularly limited, but, for example, it is possible to obtain a dragon paste by using a powder of the material of the organic material and the adhesive agent, for example, as a positive active material system. It is possible to produce a positive electrode paste by using a powder knife of UM: a solvent and a coloring material. A paste for an electrolyte layer and a paste for a negative electrode are produced by a phase. Further, for example, an electrode formed by mixing an active material is used. In the state of the organic solvent, the powder of the above various materials can be mixed to obtain a paste. For example, a powder of UMn2. 4 as a positive electrode active material and a metal powder as a conductive material...Pd are mixed. = The mixture is dispersed in a solvent and a color developing material to prepare a positive electrode paste. = The particles of the substance powder and the conductive substance powder are preferably the positive electrode active material, the negative electrode active material, and the conductive:) Species are becoming 3㈣ less. Further, it is preferable that the particle diameter ratio of the active powder of the active material powder is also in any state of the positive electrode active material and the second active material, so that the active material: ? If it is the above range of packages " Conductive & substance becomes! : For the granule ratio and particle size ratio, 2〇15-9667-pF; Ahddub 24 200913347 is formed by firing to form a conductive matrix in the electrode, and the active material is appropriately supported on the substrate. It is effective in improving the performance of the battery such as a decrease in impedance and an increase in discharge capacity. The volume ratio of the mixed active material powder to the conductive material powder is preferably in the range of 20:80 to 65:35. In the state in which AgPd is used as the conductive material, in addition to the mixture of the metal powder of red and pd, a powder of a synthetic powder or an Ag/Pd alloy by, for example, Ag/pd co-precipitation can be used. By this method, a paste for a positive electrode layer, a paste for a solid electrolyte layer, and a paste for a negative electrode are prepared. The prepared paste is applied to a substrate such as ρΕτ in the order required, and after drying as needed, the substrate is peeled off to prepare a green sheet. The coating method of the paste is not particularly limited, and a conventional method such as screen printing, coating, transfer, and doctor blade can be employed. In the order of the required order and the number of layers, it is necessary to prepare a laminate for the positive electrode layer, the electrolyte layer, and the negative electrode layer, and to form a laminate. The laminated body produced is collectively pressed. The pressing is performed while heating, but the heating temperature is, for example, 40 to 耽. For example, in an air atmosphere, a laminate laminated and heated is heated and fired. Here, the term "firing" means heat treatment for the purpose of sintering. The term "sintering" refers to a phenomenon in which the aggregate of solid powder is heated at a temperature lower than the temperature of the refining point, and a > is a phenomenon in which the crucible is reduced and becomes a dense object called a sintered body. β In the production of the lithium ion secondary battery of the present invention, the firing temperature is preferably in the range of 600 to 11 〇〇〇C. Α At the interface of the electrode layer and the electrolyte layer at less than 600 ° C, no intermediate layer is formed, and when HOW is exceeded, 2015-9667-PF occurs; Ahddub 25 200913347 Solid electrolyte refining, positive electrode active material and negative electrode activity The structure of matter changes the problem of deformation of the laminate, and the like. Further, the firing temperature is preferably 疋800~1〇5〇. The scope of 〇. Because at 8〇〇~1〇5〇. The range of the crucible, the densification of the electrode layer and the electrolyte layer, and the reduction of the internal resistance of the battery is effective. In terms of the heating rate and the holding time of the firing process, it is preferable to select and set the electrode suitable for the firing temperature. The densification of the layer and the electrolyte layer and the conditions for the formation of the intermediate layer. In addition, it is also considered that the temperature rise is fast and the holding time is short, and the productivity is relatively good. For example, the heating rate is preferably C / hour to 60 (TC / hour. In addition, the holding time is preferably 3 minutes to 10 hours. The first specific example of the production method includes a method for producing a multilayer all-solid lithium ion secondary battery comprising the following processes (1) to (5). Process (1) preparing a positive electrode paste containing a metal terminal and a positive electrode active material a negative electrode paste containing a metal powder and a negative electrode active material, and a solid electrolyte paste containing a solid electrolyte powder. Process (2): on a PET substrate, coated with a solid electrolyte paste,

乾燥,j 接著, 貧,進行乾燥,製 塗佈負極糊膏,進 作正極板。此外,在固體電解質板 行乾燥,製作負極板。Drying, j, followed by drying, drying, and coating the negative electrode paste to form a positive electrode plate. Further, the solid electrolyte plate was dried to prepare a negative electrode plate.

,來剝離層積固體電 交互地層積正極單元 製程(3):由PET基材, 極板之正極單元。此外’由 解質板和負極板之負極單元。接著, 2015'9667-PF;Ahddub 26 200913347 牙口負 1b -* ' %,透過固體電解質板而製作交互地層 和負極板之尽接地 + , + 和負極單-在時’配合於需要,進行正極單元To strip the laminated solid electricity and alternately laminate the positive electrode unit. Process (3): From the PET substrate, the positive electrode of the plate. In addition, the negative electrode unit consists of a solution plate and a negative plate. Then, 2015'9667-PF; Ahddub 26 200913347 tooth mouth negative 1b -* '%, through the solid electrolyte plate to make the interaction of the ground layer and the negative plate to the ground +, + and negative single - in the time of the need to carry out the positive unit

而廿70之對準’冑打層積而在層積體之某-邊之側 面,並無露屮$ & > + σ A 丨負極板,在另-邊之側面,並無露出正極板。 積體。呈(4):對於層積體,進行壓合及燒成,製作燒結層 製 f ς、. 極層,< 層積體之側面,形成正極端子而連接於正 之二成負極端子而連接於負極層。電極端子(拉出電極) :係例如可以在拉出電極糊膏來塗佈於電池之各個側 .之二日’於500〜9〇〇°C之溫度’進行燒成及設置。並無圖 ::疋’配合於需要而在層積體之最外部,形 完成電池。 胃 在製作於電極層來層積集電體層之構造之電池之狀態 為製造方法之第2具體例係列舉包含下列製程(ι,) 〜』)之多層全固體型鋰離子二次電池之製造方法。 製程(1 ):準備包含正極活性物質之正極糊膏、包含 負極活性物質之負極糊#和包含固體電解質 解質糊膏。 电 春製程(2’):纟PET基材上’以固體電解質糊膏、正極 糊膏、正極集電體糊膏和正極糊膏之财,塗佈糊膏,在 由於場合而進行乾燥之後,剝離基材,製作正極單元,在 基二上’以固體電解質糊膏、負極糊膏、負極集電體糊膏 和負極糊膏之順序’塗佈糊膏’在由於場合而進行乾燥之 後,韌離基材,製作負極單元。 ” 27 2015-9667-pp;Ahddub 200913347 製程(3,):交石认盛# Έ „ 俨雷紐哲4 4 層積正極单元和負極單元,透過固 體電解i板而製作交互地層積 —匕士 攸和員極板之層積體。 在此時,配合於需要,進行正極單元和 — 進行層積而在層積體之某一邊' 早凡之對準’ 在另-邊之側面,並無露出正極板。…、負極板, 製程(4 ):對於層積體,進行堡入 層積體。 運仃壓口及燒成,製作燒結 下搞^(5 ):在層積體之側面,形成正極端子而連接於 正極層,形成負極端子而連接於負極層。電極端子(拉出電 極)之形成係例如可以在拉出電極糊膏來塗佈於電池之各 =之::於—進行燒成及=I 護層,完成Ϊ池心^…㈣之最外部’形成保 此外作為製造方法之第3具體例係也列舉包人下丨 製程⑴〜⑻之多層全固體㈣子二次電 法0 >7 製程⑴··準傷包含金屬粉末和正極活性 糊膏、包含金屬粉末和負極活性物質之負極糊 = 離子傳導性無機物f粉末之㈣電解f㈣。^鐘 製知(Η ).以正極糊膏、固體電解質糊膏 和固體電解質糊膏之順序,進行塗佈及乾 = 薄片所組成之層積體…時’配合於需要= 層ΠΓ雜之某一邊之側*,並無露出負極二 一邊之側面,並無露出正極板。 在另 2015-9667-PF;Ahddub 28 200913347 製程(iil):配合於需要而剝離使用於生胚薄片製作之 基材,對於層龍’進行壓合及燒成,製作燒結層積體。 製程⑷:在層積體之侧面,形成正極端子而連接於 正極層,職負極端子而連接於負極層。配 層積體之最外部,形成保護層,完成電池。 要而在 [電極材料之混合比] (導電率、放電容量) 改變構成電極之活性物質和導電性物質之混合比而製 作電池’進行評價。就其細節而言,敘述於以下。 製作之電池之電極層形成用糊膏係以既定之體積比, 來混合活性物質粉末和導電性物f粉末,分散於溶媒和黏 合劑,來製作糊膏。成為電極層材料之正極活性物質係使 用UMn2〇4,負極活性物質係使用Li4/3Ti5/3〇4,混合之導電 性物質係使用重量比85/15之_。另—方面,固體電解 質層形成用糊膏係Li3.5Sl„.5Pe.5〇4分散於溶媒和黏合劑而 製作糊膏。 首先,就電池《導電率和放電容量之評價'结果而進行 說明。 圖8係導電率、放電容量之正極活性物質體積比例依 附性之圖开)。認為在導電率,體積比係比起重量比,還更 有貝獻進行以體積比例作為參數之評價。改變正極活 !·生物質和導電性粒子之混合比,由〇 ·· 1。。開始至剛:〇 為止,,°果得知在正極活性物質之體積比例2〇ν〇ι %以上、 下之狀態了 ’可以使得導電率相當高,有效於電 2015-9667-PF;Ahddub 29 200913347 . 池阻抗之降低,並且,放電容量也相當大。在該最適當條 件之體積比,導電率係lxlOW/cm以上。在活性物質之體 積比例未滿20vol%之狀態下,導電率變高,但是,活性物 質量變少’因此,降低放電容量。此外,得知在活性物質 之體積比例超過6 5vo 1 %時,急劇地降低導電率。 圖9係導電率、放電容量之負極活性物質體積比例依 附性之圖形。改變負極活性物質和導電性粒子之混合比, 由〇·· 100開始至1〇〇: 〇為止,結果得知相同於正極活性 物質之狀態’在負極活性物質之體積比例20vol%以上、 65vol%以下之狀態下,可以使得導電率相當高有效於電 池阻抗之降低,並且,放電容量也相當大。在該最適當條 件之體積比,導電率係還是lxl〇ls/cm以上。 [和類似先前技術之比較] 在專利文獻2,揭示:「在一對電極間來介在固體電 解質而組成之固體電解質電池,於電極和固體電解質之 Μ,設置具有該111體電解質和電極活性物質之反應界面之 中間層」之技術。該技術係以電池内部電阻之降低來作為 目的之技術。 專利文獻2所揭示之技術係將混合活性物質和固體電 解質而進订燒成及合成之物質所組成之糊膏,塗佈於電極 層上,進行乾燥而形成中間層。此外,在中間層上,藉由 塗佈及乾燥而形成固體電解f層,製作電池。並 極層和電解質層之層積後之燒成。此種製法係不同於藉由 在正極層電解質層、負極層形成用來層積塗佈.乾燥糊 2015-9667-PF;Ahddub 200913347 膏之生胚薄片後而進行燒成之本案發明所造成之製法。 #利文獻2 ’並無記載作為電解質材料係最 疋 w族元素和鋰所組成之複合氧化物。因此,在中 間=,不一定可以說是形成有用之反應生成物。此外,即 使疋在中間層内部,降低活性物質和電解質之界面電阻, 進行層積後之燒成,因此’並無改善中間層和電極 層或者疋中間層和電解質層之間之界面電阻或密合性,作 為電池整體係不可以說是改善電特性、機械特性。此外, 必須進行中間層之涂 因此,有製程複雜且 裟把成本向等之問題點發生。 因此,無法藉由專利文獻2所揭示之技術而否定本案 發明之專利性。 一 、專利文獻3,揭不:「成為使用固體電解質之電池, 至少-邊之電極和電解質之界面,形成電極之某一 一元素構成化合物之區域」之技術。該技術 内彻之降低、界面之剥離之抑制,來作為目的。 專利文獻3所揭示之技術係記载例如放置於含水分Ar 作為形成區域層之手段之方法。也可以藉由熱處理 而形成區域層’但是,並無記载詳細之製法。 5己載:區域層係氧化物、氮化物、氫氧化物,區域層 之厚度係成為0.01〜300nm之範圍,在更加厚於議⑽時, =礙充放電。因此,推測構成區域層之物質係並非發揮作 :活性物質或電解質之功能之物質。此外,並無記载作為 電解質材料係最好是由W族元素和輯組成之複合氧化 2〇15-9667-PF;Ahdclub 31 200913347 物。 因此,無去藉由專利文獻3所揭示之技術而否定本案 發明之專利性。 在專利文獻4,揭示:「電解質材料係使用具有v ” —磷酸鋰型結晶構造之電解質材料,在層積正極和電解質 之後,總括地進行燒成」之技術。該技術係以界面之接觸 電阻之降低’來作為目的。And the alignment of 廿70's is layered on the side of one side of the laminate, and there is no dew 屮$ &> + σ A 丨 negative plate, on the other side, no positive electrode is exposed board. Integral. (4): For the laminate, press-bonding and firing are performed to form a sintered layer of f ς, . an electrode layer, < a side surface of the laminate, a positive electrode terminal is formed, and a positive electrode terminal is connected to the positive electrode, and is connected to Negative layer. Electrode terminal (pull-out electrode): For example, the electrode paste can be pulled out and applied to each side of the battery, and the second electrode is fired and set at a temperature of 500 to 9 ° C. There is no picture ::疋' to complete the battery in the shape of the outermost part of the laminate. The state of the battery in which the stomach is formed in the electrode layer to laminate the current collector layer is the second specific example of the manufacturing method. The manufacturing process of the multilayer all-solid lithium ion secondary battery including the following processes (1, ~) method. Process (1): A positive electrode paste containing a positive electrode active material, a negative electrode paste # containing a negative electrode active material, and a solid electrolyte deodorizing paste are prepared. Electric spring process (2'): on a PET substrate, a solid electrolyte paste, a positive electrode paste, a positive electrode current collector paste, and a positive electrode paste, coated with a paste, after drying for occasions, The substrate is peeled off to prepare a positive electrode unit, and the 'coated paste' in the order of the solid electrolyte paste, the negative electrode paste, the negative electrode current collector paste, and the negative electrode paste on the base is dried after being dried for the occasion. A negative electrode unit was fabricated from the substrate. 27 2015-9667-pp;Ahddub 200913347 Process (3,): 交石赋盛# Έ „ 俨雷纽哲 4 4 laminated positive and negative units, through the solid electrolytic i-plate to create interactive stratification - gentleman The layered body of the scorpion and the plate. At this time, in the case where necessary, the positive electrode unit and the positive electrode unit are laminated, and one side of the laminated body is 'precisely aligned'. On the other side, the positive electrode plate is not exposed. ..., negative plate, process (4): For the laminate, a fortified laminate is performed. The crucible is pressed and fired, and sintered is produced. (5): A positive electrode terminal is formed on the side surface of the laminate to be connected to the positive electrode layer, and a negative electrode terminal is formed to be connected to the negative electrode layer. The electrode terminal (pull-out electrode) can be formed, for example, by pulling out the electrode paste and applying it to each of the batteries:: - baking and = I sheath, completing the outermost part of the battery core ... (4) In addition, the third specific example of the manufacturing method is also a multi-layer all-solid (four) sub-secondary method of the human squatting process (1) to (8) 0 > 7 Process (1)······································ Paste, negative electrode paste containing metal powder and negative electrode active material = (IV) Electrolysis f (4) of ion conductive inorganic substance f powder. ^钟制知(Η). In the order of positive paste, solid electrolyte paste and solid electrolyte paste, the layered body composed of coating and dry = sheet is used... when it is combined with the need = layer noisy On the side of one side, the side of the negative side is not exposed, and the positive electrode plate is not exposed. In addition, 2015-9667-PF; Ahddub 28 200913347 Process (iil): The substrate used for the production of the green sheet is peeled off as needed, and the layered dragon is pressed and fired to prepare a sintered laminate. Process (4): On the side of the laminate, a positive electrode terminal was formed and connected to the positive electrode layer, and the negative electrode terminal was connected to the negative electrode layer. With the outermost layer of the laminate, a protective layer is formed to complete the battery. In the case of [mixing ratio of electrode materials] (conductivity, discharge capacity), the mixing ratio of the active material and the conductive material constituting the electrode was changed to prepare a battery. In terms of its details, it is described below. The paste for forming an electrode layer of the produced battery is prepared by mixing an active material powder and a conductive material f powder in a predetermined volume ratio, and dispersing the solvent and the binder to prepare a paste. The positive electrode active material to be used as the electrode layer material was UMn2〇4, and the negative electrode active material was Li4/3Ti5/3〇4, and the mixed conductive material was used in a weight ratio of 85/15. On the other hand, the paste for forming a solid electrolyte layer is Li3.5Sl.5Pe.5〇4 dispersed in a solvent and a binder to prepare a paste. First, the battery "Evaluation of Conductivity and Discharge Capacity" results will be described. Fig. 8 is a diagram showing the dependence of the volume ratio of the positive electrode active material on the conductivity and the discharge capacity. It is considered that the conductivity and the volume ratio are more important than the weight ratio, and the evaluation is based on the volume ratio as a parameter. The positive electrode is active! The mixing ratio of the biomass and the conductive particles is from 〇··1. From the beginning to the beginning: °, the result is that the volume ratio of the positive electrode active material is 2〇ν〇ι % or more. The state of 'can make the conductivity is quite high, effective for electricity 2015-9667-PF; Ahddub 29 200913347. The cell impedance is reduced, and the discharge capacity is also quite large. In the volume ratio of the most suitable conditions, the conductivity is lxlOW/ When the volume ratio of the active material is less than 20 vol%, the conductivity becomes high, but the mass of the active material decreases. Therefore, the discharge capacity is lowered. Further, it is found that the volume ratio of the active material exceeds 65. When vo is 1%, the electrical conductivity is drastically reduced. Fig. 9 is a graph showing the dependence of the volume ratio of the negative electrode active material on the electrical conductivity and the discharge capacity. The mixing ratio of the negative electrode active material and the conductive particles is changed, starting from 〇··100 to 1 〇〇: 〇 , , , , ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The discharge capacity is also quite large. In the volume ratio of the most suitable conditions, the conductivity is still lxl 〇 ls / cm or more. [Comparative with similar prior art] In Patent Document 2, it is disclosed that "the solid phase is interposed between a pair of electrodes. A solid electrolyte battery composed of an electrolyte is provided with a technique of providing an intermediate layer of a reaction interface between the 111-electrode electrolyte and an electrode active material between the electrode and the solid electrolyte. This technology is a technique for the purpose of reducing the internal resistance of the battery. The technique disclosed in Patent Document 2 is a paste comprising a substance obtained by mixing an active material and a solid electrolyte and baking and synthesizing it, applying it on an electrode layer, and drying to form an intermediate layer. Further, a solid electrolytic f layer was formed on the intermediate layer by coating and drying to prepare a battery. And the layer of the electrode layer and the electrolyte layer are fired. This method is different from the invention of the present invention in which the raw layer of the positive electrode layer and the negative electrode layer are formed by laminating and coating the dried paste 2015-9667-PF; Ahddub 200913347 paste. System of law. #利文文2 ′ There is no description of a composite oxide composed of the most w-group element and lithium as an electrolyte material. Therefore, in the middle = it does not necessarily mean that a useful reaction product is formed. Further, even if the crucible is inside the intermediate layer, the interface resistance between the active material and the electrolyte is lowered, and the firing is performed after lamination, so that the interface resistance between the intermediate layer and the electrode layer or the intermediate layer of the crucible and the electrolyte layer is not improved. Synergy, as a whole battery, can not be said to improve electrical and mechanical properties. In addition, it is necessary to carry out the coating of the intermediate layer. Therefore, there are complicated processes and the problem of costing. Therefore, the patentability of the present invention cannot be denied by the technique disclosed in Patent Document 2. 1. Patent Document 3 discloses that "a battery using a solid electrolyte, at least an interface between an electrode and an electrolyte, forming a region in which a certain element of the electrode constitutes a compound". This technique is aimed at reducing the internal friction and suppressing the peeling of the interface. The technique disclosed in Patent Document 3 describes, for example, a method of placing the aqueous component Ar as a means for forming a region layer. The region layer can also be formed by heat treatment. However, the detailed method is not described. 5: The oxide of the region layer oxide, nitride, and hydroxide, and the thickness of the region layer is in the range of 0.01 to 300 nm. When it is thicker than the thickness (10), it is a charge and discharge. Therefore, it is presumed that the substance constituting the area layer is not a substance that functions as an active substance or an electrolyte. Further, there is no description as a composite material which is preferably composed of a group W element and a composite of ruthenium ruthenium 15-9667-PF; Ahdclub 31 200913347. Therefore, the patentability of the present invention is denied by the technique disclosed in Patent Document 3. Patent Document 4 discloses that "the electrolyte material is a technique in which an electrolyte material having a v"-lithium phosphate type crystal structure is used, and after the positive electrode and the electrolyte are laminated, the firing is collectively performed. This technique is aimed at reducing the contact resistance of the interface.

專利文獻4所揭示之技術係在對於加壓成型粉末之電 解質顆粒來進行燒結處理之後,在模具中,加入活性物質, 在進行加壓成型之後,總括地進行燒成,形成電池。該製 法係不同於藉由以燒成前之生胚薄片之狀態來層積正極 層、電解質層和負極層之後而進行燒成來形成由有用之反 應生成物所組成之中間層之本案發明。此外,專利文獻4 所揭示之技術係以活性物質和電冑f之粒子間之接觸電阻 之降低,來作為㈣,並非像本案發明而藉由新型之有用 之反應生成物之形成來進行低電阻化。 因此,無法藉由專利文獻4所揭示之技術而否定本案 發明之專利性。 在專利文獻5,揭示:使用Li2G—B2Q3—抓―Zn〇來 作為固體電解質材料之選擇項之全固體二次電池。專利文 、所揭不之技術係對於層積電極層和電解質層之生成形 體來進行微波加熱而燒成,藉由在 ^ 稭由在紐時間内,進行燒成而 J制電極和固體電解質中之各個粒子之反應並且提高這些 極和固體電解質之填充率來提高離子傳導度之技術。也 2〇15-9667-PF;Ahddub 200913347 就疋》兒’並非形成反應層之技術。不同於藉由選擇電極、 電解質之材料且利用燒成來積極地形成有用之中間層而提 高接合強度來降低界面電阻之本案發明之技術。 因此,無法藉由專利文獻5所揭示之技術而否定本案 發明之專利性。 在專利文獻6,揭示:使用l i 4Si 〇4來作為固體電解質 材料之選擇項之鋰二次電池。專利文獻6所揭示之技術係 藉由在成為負極之鐘金屬’利用減鍍來形成無機固體 電解質膜,並且,將正極活性物質和碳之混合物塗佈於鋁 箔上之所形成之正極,接合在電解質膜上而進行製作,因 :’在層積電極層和電解質層之後,並無進行燒成。也就 是說,並非藉由燒成而形成有用之中間層。 因此,無法藉由專利文獻6所揭示之技術而 發明之專利性。 +莱 [電池構造之具體例] 圖7(a)至(e)係本發明之具體例之經離子二次電池之 剖面圖及濃度分布之圖形。 在圖7(a)’在形成於正極層21和電解質層μ之界面 之中間層24’隨著傾斜之濃度分布而存在正極活性物質和 電解質’同樣地’在形成於負極層23和電解質層 面之中間層25,隨著傾斜農产 , 和電解質。 K辰度刀布而存在負極活性物質 也可以藉由控制燒成前 後’不僅是正極層、電解質 之膜厚、燒成條件,而在燒成 層及/或負極層之—部分,也反 2015-9667-PF;Ahddub 33 200913347 應整體’形成反應生成層。即使是在該狀態下,也可以藉 由形成農度分布而依序地支配正極活性物質/電解質/負極 活陡物質,來製作高接合強度、内部電阻小之良好之電池。 圖7(b)係藉由燒成而使得正極層全部成為反應生成層 之狀態之剖面圖。在反應生成層29,燒成後之組成係支配 正極活性物質。 圖7(c)係藉由燒成而使得負極層全部成為反應生成層 之狀態之剖面圖。在反應生成層3Q’燒成後之組成係支配 負極活性物質。 圖7⑷係藉由燒成而使得電解f層全部成為反應生成 層之狀態之剖面圖。在反應生成層3卜燒成後之組成係支 配電解質。 圖7(e)係藉由燒成而使得正極層、電解質層和負極層 全部成為反應生成層之狀態之剖面圖。在反應生成層犯, 燒成後之組成係支配正極活性物質,在反應生成層Μ,声 ^吏之組成係纽電解f,在反應生成層34,燒成後之: 成係支配負極活性物質。 正如以上所敘述的,本發明之鐘二次離子電池 具體例係一種鐘離子二次電池,係 '包含正極活性物質:正 極層和包含負極活性物質之負極層成為由透過包含固體電 解質之電解質層而進行層積之層積體所構成之多層全固體 型的鐘離子二次電池,其特徵在於:前述正極層之—部八 或全部係由前述正極活性物質之起始㈣和前 質之起始材料發生反應所生成之燒結體而構成。 解 2015-9667-PF/Ahddub 200913347 此外’本發明之鋰二次 ^ ^ ^ 子電池之其他具體例係—種 鋰離子一次電池,係包含正極 徑 極活性物質之負極層成為由读、負之正極層和包含負 Μ - Β 透過包含固體電解質之電解質 層而進订層積之層積體所構 肝負 次電池,其特徵在於:前述 于一 、十、έα 1 、極層之一部分或全部係由前 迷負極活性物質之起如絲斗立 w Η 則述固體電解質之起始材料 毛生反應所生成之燒結體而構成。 此外,本發明之鋰二次離子電池之 鐘離子二次電池,#$ /、㈣係種 糸匕3正極活性物質之正極層和包含負 極活性物質之負極声忐盔士戌 13貝 、_ 、 s成為由透過包含固體電解質之電解質 層而進行層積之層積體 厅構成之多層全固體型的鋰離子二 二人電池,其特徵在於:前 Φ ^ ^ t 電解貝層之一部分或全部係由 月1J述電解質物質之起妒好袓‘二上 身之起始材枓和刚述負極活性物質之起始材 /斗及/或别述正極活性物 ^ 视買之起始材料發生反應所生成之In the technique disclosed in Patent Document 4, after the sintering treatment is performed on the electrolytic particles of the pressure-molded powder, the active material is added to the mold, and after press molding, the battery is collectively fired to form a battery. This method is different from the present invention in which an intermediate layer composed of a useful reaction product is formed by laminating a positive electrode layer, an electrolyte layer and a negative electrode layer in a state in which a green sheet is formed before firing. Further, the technique disclosed in Patent Document 4 is based on the reduction of the contact resistance between the active material and the particles of the electric 胄f as (4), and is not a low resistance by the formation of a novel useful reaction product as in the present invention. Chemical. Therefore, the patentability of the present invention cannot be denied by the technique disclosed in Patent Document 4. Patent Document 5 discloses an all-solid secondary battery using Li2G-B2Q3-grabbing "Zn" as an option of a solid electrolyte material. The patent and the unexposed technique are used for microwave heating and firing of the laminated electrode layer and the electrolyte layer, and are fired in the J-electrode and the solid electrolyte by the baking time. The technique of increasing the ion conductivity by reacting individual particles and increasing the filling rate of these polar and solid electrolytes. Also 2〇15-9667-PF; Ahddub 200913347 is not a technique for forming a reaction layer. The present invention is different from the technique of the present invention in that the interface resistance is reduced by selecting a material of an electrode or an electrolyte and actively forming a useful intermediate layer by firing. Therefore, the patentability of the present invention cannot be denied by the technique disclosed in Patent Document 5. Patent Document 6 discloses a lithium secondary battery using l i 4Si 〇 4 as an option of a solid electrolyte material. The technique disclosed in Patent Document 6 is to form an inorganic solid electrolyte membrane by deplating in a metal which becomes a negative electrode, and a positive electrode formed by coating a mixture of a positive electrode active material and carbon on an aluminum foil, and bonding The electrolyte membrane was produced on the surface because: 'The firing was not performed after the electrode layer and the electrolyte layer were laminated. That is to say, it is not a useful intermediate layer formed by firing. Therefore, the patentability of the invention cannot be achieved by the technique disclosed in Patent Document 6. +Lai [Specific Example of Battery Structure] Figs. 7(a) to 7(e) are cross-sectional views and concentration distribution patterns of an ion secondary battery according to a specific example of the present invention. In FIG. 7(a)', the intermediate layer 24' formed at the interface between the positive electrode layer 21 and the electrolyte layer μ has a positive electrode active material and an electrolyte 'samely' formed on the negative electrode layer 23 and the electrolyte layer in accordance with the concentration distribution of the inclination. The intermediate layer 25, along with the tilting of the agricultural product, and the electrolyte. The presence of the negative electrode active material in the K-knife knives can also be controlled by the control of the positive electrode layer, the thickness of the electrolyte, and the firing conditions in the firing layer and/or the negative electrode layer. -9667-PF; Ahddub 33 200913347 should form a reaction-generating layer as a whole. Even in this state, the positive electrode active material/electrolyte/negative electrode material can be sequentially controlled by the formation of the agriculturality distribution, thereby producing a battery having high joint strength and good internal resistance. Fig. 7 (b) is a cross-sectional view showing a state in which all of the positive electrode layers are formed into a reaction-generating layer by firing. In the reaction-generating layer 29, the composition after firing is responsible for the positive electrode active material. Fig. 7 (c) is a cross-sectional view showing a state in which all of the negative electrode layers are formed into a reaction-generating layer by firing. The composition after firing of the reaction-generating layer 3Q' dominates the negative electrode active material. Fig. 7 (4) is a cross-sectional view showing a state in which all of the electrolyzed f layers are formed into a reaction formation layer by firing. The composition after firing of the reaction-generating layer 3 dominates the electrolyte. Fig. 7 (e) is a cross-sectional view showing a state in which all of the positive electrode layer, the electrolyte layer, and the negative electrode layer are formed into a reaction-generating layer by firing. In the reaction-generating layer, the composition after firing is dominated by the positive electrode active material, and in the reaction-forming layer, the composition of the sound is 纽, and in the reaction-generating layer 34, after firing: the system dominates the negative active material . As described above, the clock secondary ion battery of the present invention is a clock ion secondary battery which comprises a positive electrode active material: a positive electrode layer and a negative electrode layer containing a negative electrode active material are formed by transmitting an electrolyte layer containing a solid electrolyte. A multi-layer all-solid type plasma ion secondary battery comprising a laminate of laminated layers, characterized in that: eight or all of the positive electrode layer are from the beginning (four) of the positive electrode active material and the precursor The sintered body formed by the reaction of the starting material is formed. Solution 2015-9667-PF/Ahddub 200913347 In addition, another specific example of the lithium secondary ^ ^ ^ sub-battery of the present invention is a lithium ion primary battery, which is a negative electrode layer containing a positive electrode active material, which is read and negative. a positive electrode layer and a hemanganese negative secondary battery comprising a laminate comprising a negative Μ-Β through a electrolyte layer comprising a solid electrolyte, wherein the first, the tenth, the έα 1 , a part or all of the polar layer It is composed of a sintered body formed by the initiation reaction of the starting material of the solid electrolyte, such as the negative electrode active material. Further, the clock ion secondary battery of the lithium secondary ion battery of the present invention, the positive electrode layer of the positive electrode active material of #3 /, (4), and the negative electrode of the negative electrode active material, 13 贝, _, s is a multi-layer all-solid-type lithium ion dioxide battery composed of a laminate chamber that is laminated through an electrolyte layer containing a solid electrolyte, and is characterized in that part or all of the front Φ ^ ^ electrolytic shell layer From the beginning of the month, the electrolyte material is produced, and the starting material of the second upper body and the starting material of the negative active material and/or the other positive active material are generated. It

燒結體而構成。 xI 所明燒結體係正如先前 π 元* j所疋義的,藉由在低於熔點之 咖·度,燒成(燒結)固體金、古+ #人 , 體叔末之集合體而形成之緻密物體(固 — 疋、,°後之狀態係可以藉由觀察固體剖面而進 订區別。燒結前之剖面構造係以固體粉末之粒子幾乎均勻 =形狀’來進行分離及集合,但是,在燒結後,⑴在粒子 :’形成頸縮(結合部);(2)成長粒子間之頸縮;⑺觀察 :粒成長。粒子之成長、粒子數之減少)所造成之空隙(氣 之減V緻密化’各個粒子由於燒結之程度而得到各種 形〜、可以藉由觀察粒子之大小、有無空隙而判斷有無 2〇15-9667-PF;Ahddub 35 200913347 燒結、燒結之進行狀況。 此外,燒結體之比例係可以藉由控制燒成條件(燒成溫 度升/jai速度、保持時間、燒成氣氛)而進行控制。特別是 燒成溫度之控制係變得有效。 燒結體之比例係可以藉由(燒結體之密度)成為燒钟 體材料之固有密度之真密度)χ10〇而進行評價。或者是藉 由利用剖面觀察,來評價空隙率,而評價燒結體之比例。 最好是空隙率係在固體電解質,空隙越少而離子越容易通 過’在活性物質’空隙越少而能量密度越高。具體地說, 在固體電解質’空隙率係最好是⑽以上、1G%以下。在活 性物質,空隙率係最好m、10%以下。例如藉由燒 成溫度成為100(TC而得到空隙少之高密度之燒結 實施例 (實施例1 ) 隹以下,使用實施例而詳細地說明本發 表示係並無限定而成為重量份 (正極糊膏之製作) 作為正極活性物質係使用 UMn2〇4。 秸田乂下之方法所製作之 以U2C〇3和獄〇3作為起始材料, Γ比]:4,在以水作為溶媒而藉由球磨機來:行丄莫 」:濕式處合之後’進行脫水乾燥。在8 :丁小 氣中,假燒得到之粉體。在對於 2小時、空 作為溶媒來藉由球磨機 、二⑽達彳了粗粉碎而以水 進仃16小時之濕式混合之後,進 2〇15-9667-PF/.Ahddub 36 200913347 订脫=乾燥而传到正極活性物質粉末。該粉體之廳值係 1 3· 4m /g。使用χ射線繞射裝置而確認製作之粉體之組成 為 L iΜιΐ2〇4 〇 =極糊膏係加人以體積比6g:4g將使用作為金屬粉末 之重量比85/15之Ag/Pd和使用作為正極活性物質粉末之 UMn^以預先混合⑽重量份、作為黏合劑之乙基纖維 素15重量份、以及作為溶媒之二氫葱品醇65重量份,藉 广Φ三條壓輥而進行混練.分散,製作正極糊膏。在此,; ,量比85/15之Α_係使用混合Ag粉末(平均粒徑〇3// m)及Pd粉末(平均粒徑丨_ ο" m)者。 (負極糊膏之製作) 作為負極活性物質係使用藉由以下之方法所製作之It is composed of a sintered body. The sintered system of xI is as defined by the previous π element* j, and is densely formed by firing (sintering) a solid gold, an ancient + #人, a body of a short body at a temperature lower than the melting point. The state of the object (solid-疋, °° can be differentiated by observing the solid profile. The cross-section structure before sintering is separated and aggregated by the particles of the solid powder almost uniform = shape, but after sintering (1) in the particle: 'formation of necking (joining part); (2) necking between growing particles; (7) observation: grain growth, growth of particles, reduction of particle number) caused by voids (gas reduction V densification) 'Each particle has various shapes due to the degree of sintering. It is possible to judge the presence or absence of 2〇15-9667-PF by observing the size of the particles and the presence or absence of voids; and the progress of sintering and sintering of Ahddub 35 200913347. The control can be controlled by controlling the firing conditions (baking temperature rise/jai speed, holding time, firing atmosphere). In particular, the control system of the firing temperature becomes effective. The ratio of the sintered body can be obtained by sintering Body The density was evaluated as the true density of the inherent density of the sintered body material χ10〇. Alternatively, the ratio of the sintered body can be evaluated by evaluating the void ratio by observation of the cross section. It is preferable that the void ratio is in the solid electrolyte, and the smaller the voids, the easier the ions pass through. The smaller the voids in the active material, the higher the energy density. Specifically, the solid electrolyte 'void ratio system is preferably (10) or more and 1 G% or less. In the active material, the void ratio is preferably m or less. For example, a sintering example (Example 1) having a high density with a small number of voids is obtained by the following example, and the present invention is described in detail by way of examples. Manufacture of paste) UMn2〇4 is used as the positive electrode active material. U2C〇3 and prison 〇3 are used as the starting materials by the method of 秸田乂下, Γ ratio]:4, by using water as a solvent. The ball mill comes: "丄 丄 Mo": After the wet-type combination, 'dehydration and drying. In 8: Ding Xiaoqi, the powder obtained by the smoldering. After coarsely pulverizing and wet-mixing with water for 16 hours, 2〇15-9667-PF/.Ahddub 36 200913347 is dispensed and dried and passed to the positive active material powder. The value of the powder is 1 3· 4m / g. The composition of the powder prepared by using the xenon-ray diffraction device is L iΜιΐ2〇4 〇=very paste is added in a volume ratio of 6g: 4g, which is used as a metal powder in a weight ratio of 85/15. /Pd and using UMn^ as a positive electrode active material powder to premix (10) parts by weight 15 parts by weight of ethyl cellulose as a binder and 65 parts by weight of dihydro onionol as a solvent were kneaded by three Φ rolls, and dispersed to prepare a positive electrode paste. Here, the ratio is 85. /15 Α _ use mixed Ag powder (average particle size 〇 3 / / m) and Pd powder (average particle size 丨 _ ο " m). (Preparation of negative electrode paste) used as a negative electrode active material Made by the following methods

Li 4/3Ti 5/3〇4 〇 以Li2C〇3和Ti〇2作為起始材料,祥量這些而成為莫爾 數比2: 5,在以水作為溶媒而藉由球磨機來進行16小時 ί;之濕式混合之後’進行脫水乾燥。在8〇吖、2小時 '空氣 中,假燒得到之粉體。在對於値煻σ ' τ歹、做麂進行粗粉碎而以水作 為溶媒來藉由球磨機而進行]丨吐 仃丨6小時之濕式混合之後,進行 脫水乾燥而得到負極活性物暫去、士 初買叔末。該粉體之BET值係 6. 3mVg。使用X射線繞射裝罟而过 裝置而確涊製作之粉體之組成為Li 4/3Ti 5/3〇4 〇 uses Li2C〇3 and Ti〇2 as starting materials, and these are Moiré ratios of 2:5, which are 16 hours by ball mill using water as a solvent. After the wet mixing, 'dehydration drying'. In 8 〇吖, 2 hours 'air, the powder obtained by the fake burning. After 粗σ 'τ歹, 麂 is coarsely pulverized, and water is used as a solvent, the ball mill is used to perform wet mixing for 6 hours, and then dehydrated and dried to obtain a negative electrode active material. I bought the uncle at first. The BET value of the powder was 6.3 mVg. The composition of the powder prepared by using the X-ray diffraction device and the device is

Li4/3Ti5/3〇4。 負極糊貧係加入以體積比 將使用作為金屬粉末 之重置比85/15之Ag/Pd和使用作或&此 便用作為負極活性物質粉末之Li4/3Ti5/3〇4. The negative electrode paste is added in a volume ratio of Ag/Pd which is used as a metal powder at a reset ratio of 85/15 and used or & as a negative electrode active material powder.

Li4/3Ti5/304予以預先混合1GD重量份、作為黏合劑之乙基 2015-9667-PF/Ahddub 37 200913347 f維素15重量份、以及作為溶媒之二氫葱品醇π重量份, 藉:三條壓輥而進行混練.分散,製作負極糊膏。在此, 85/1 5之Ag/Pd係使用混合Ag粉末(平均粒徑〇· 3 仁m)及Pcj粉末(平均粒徑L …者。 (固體電解質板之製作) 作為固體電解質係使用藉由以下之方法所製作之 Li3.5Si〇.5p0 5〇4。 以Ll2C〇3、Si〇2和Li3P〇4作為起始材料,秤Li4/3Ti5/304 is premixed with 1GD parts by weight, ethyl 2015-9667-PF/Ahddub 37 200913347 favidin as a binder, and 15 parts by weight of dihydro onionol as a solvent. The roll was kneaded and dispersed to prepare a negative electrode paste. Here, the Ag/Pd of 85/1 5 is a mixture of Ag powder (average particle diameter 〇·3 min) and Pcj powder (average particle diameter L... (manufactured by solid electrolyte sheet). Li3.5Si〇.5p0 5〇4 produced by the following method. Using Ll2C〇3, Si〇2 and Li3P〇4 as starting materials, scale

成為莫爾數比2. 1:卜在以水作為溶媒而藉由球磨機來 進订16小時之濕式混合之後,進行脫水乾燥。在的代、 2、小時、空氣中’假燒得到之粉體。在對於假燒品進行相 奋碎而以水作為溶媒來藉由球磨機而進行! 6小時之濕式 :合;之後’進行脫水乾燥而得到㈣子傳導性無機物質、勒 末°该粉體之BET值# nm2/rr m g。使用X射線繞射裝置而 確涊製作之粉體之組成為LiuSiuP。』" 接著,在該粉末100重量份,加入乙醇1〇〇重量份、 甲本200重量份’藉由球磨機而進行濕式混合,然後, 投入聚乙稀基丁縮㈣黏合劑16重量份和苯:曱美 丁酉旨4.8重量份,進行混合,調製鐘離子 土 糊膏。以PET薄膜作為美#拉i , ,、機物質 傳導性無機物質糊膏,進行板成形,得到厚度= 離子傳導性無機物質板。 41 (拉出電極糊膏之製作) 混合Ag粉末1〇0重量份和玻璃熟料5重量份,加入作 2015-9667-PF;Ahddub 38 200913347 為黏合劑之乙基纖維素10重量份以及作為溶媒之二氯贫 品醇重量份’藉由三條壓親而進行混練.分散,製作: 出電極糊膏。 (正極單元之製作) 在相反於前述厚度13^之鐘離子傳導性無機物質板 之PET薄膜之相反面,藉由網版印刷而以厚度來印 刷正極糊膏。接著’在80〜10(rc ’乾燥印刷之正極糊膏5 〜10分鐘。像這樣,在鐘離子傳導性無機物質板上,得到 印刷正極糊膏之正極單元板。 (負極單元之製作) 在相反於前述厚度之鐘離子傳導性無機物質板 之PET薄膜之相反面,藉由網版印刷而以厚度來印 刷負極糊膏。像這樣,在鐘離子傳導性無機物質板上,得 到印刷負極糊膏之負極單元板。 于 (層積體之製作) 在由正極單元和負極單元來分別剝離PET薄膜之後 分別交互地重疊2個單元而介在㈣子傳導性無機物質。’ 在此時’呈偏離地重疊正極單元和負極單元而使得正極集 電體僅延出於某-端面,負極集電體僅延出於其他面。然 後’在溫度8(TC’以壓力來成形這個,接著: 進行切斷而製作層積塊件。然後,燒成層積塊件而得到層 積體。燒成係在空氣中’以升溫速度2〇(rc /小時,來升溫 至1 0 00:C為止,在該溫度’保持2小時,於燒成後,進: 自然冷卻。像這樣得到之燒結後之各個鐘離子傳導性無機 2015-9667-PF;Ahddub 39 200913347 物質之厚度係,正極 早位之厚度係負極單位之 厚度係6以m。此外,層蘇雜 > 伽i β 。 積體之縱向、橫向、高度係分別為 οππηχ8ππηχ〇· lmm 0 (拉出電極之形成) 在層積體之端面,塗佈拉出電極糊膏,燒成於⑽吖, 形成一對拉出電極,得到全固體型㈣子二次電池。 (實施例2)The Mohr number ratio was 2. 1: After the wet mixing was carried out by a ball mill for 16 hours using water as a solvent, dehydration drying was carried out. In the generation, 2 hours, in the air, the powder obtained by the fake burning. It is carried out by crushing the fake products and using water as a solvent by a ball mill! 6 hours of wet type: combined; then 'dehydration drying to obtain (four) sub-conductive inorganic substance, and finally the BET value of the powder # nm2 / rr m g. The composition of the powder prepared by using an X-ray diffraction device is LiuSiuP. 』" Next, 100 parts by weight of the powder, 1 part by weight of ethanol, 200 parts by weight of 'benz,' were wet-mixed by a ball mill, and then, 16 parts by weight of a polyethylene butyl (4) binder was charged. And benzene: 4.8 parts by weight of 曱美丁酉, mixed, and prepared a clock ion paste. A PET film was used as a film of a conductive inorganic substance paste, and a plate was formed to obtain a thickness = ion conductive inorganic material plate. 41 (Production of pull-out electrode paste) 1 part by weight of Ag powder and 5 parts by weight of glass clinker were added as 2015-9667-PF; Ahddub 38 200913347 was 10 parts by weight of ethyl cellulose as a binder and as The weight fraction of the solvent of the dichloro-poor alcohol of the solvent is kneaded by three press-families. Dispersion, production: electrode paste. (Production of positive electrode unit) The positive electrode paste was printed by screen printing on the opposite side of the PET film opposite to the thickness of the ion conductive inorganic material plate. Then, in the 80~10 (rc' dry printed positive paste for 5 to 10 minutes. In this way, on the ion-conductive inorganic material plate, the positive electrode plate of the printed positive electrode paste is obtained. (Preparation of the negative electrode unit) On the opposite side of the PET film of the above-mentioned thickness ion-conductive inorganic material plate, the negative electrode paste is printed by screen printing by thickness. Thus, on the ion-conductive inorganic material plate, the printed negative electrode paste is obtained. The negative electrode unit plate of the paste. (Production of the laminate) After the PET film is peeled off by the positive electrode unit and the negative electrode unit, respectively, two units are alternately overlapped to each other and interposed in the (IV) sub-conductive inorganic substance. The positive electrode unit and the negative electrode unit are overlapped so that the positive electrode current collector extends only to a certain end face, and the negative electrode current collector extends only to other faces. Then, 'the temperature is formed at a temperature of 8 (TC', then: cut The laminated block is produced by breaking. Then, the laminated body is fired to obtain a laminate. The firing is performed in the air at a temperature increase rate of 2 〇 (rc / hour, and the temperature is raised to 1 00:C, The temperature' Hold for 2 hours, after firing, into: natural cooling. The thus obtained each ion-conductive inorganic 2015-9667-PF after sintering; Ahddub 39 200913347 The thickness of the substance, the thickness of the positive electrode is the negative unit The thickness is 6 m. In addition, the layer is sulphide > gamma β. The longitudinal, lateral, and height of the integrated body are respectively οππηχ8ππηχ〇·lmm 0 (formation of the pull-out electrode) at the end face of the laminate, coating The electrode paste was fired at (10) 吖 to form a pair of pull-out electrodes to obtain an all-solid type (four) sub-battery. (Example 2)

使用XRD分析而進扞藉ώα A 藉由&成所造成之固體電解質和 正極活性物質及負極活性物 笋定。 負又夂應調查、反應生成物之 圖3係調查固體電解皙分赶1、丈 詷杳眘一 電解質材枓和活性物質材料之反應之 調查實驗之作業流程圖。 調查方法係藉由以下表示之程序而進行。 ⑴藉由研鉢而混合固體電解質和正 極活性物質。 ,柳貝汉貝 ⑵藉由模具而成形混合之粉末,製作碟片。 (3)以升溫速度2〇(rc/ ^ ^ & ^ 了木开皿I作之碟片至設定 /皿度為止,在保持2小時之後 6〇〇 , 7nn 〇nn 後進仃放冷。設定溫度係500、 7°0、8°0、9°〇、_、1_及1〇5〇1 (=藉由研銶而粉碎燒成之碟片者,來作為試料。 错由XRD而進行物質鏗定。 圖4係在混合固體雷解暂The solid electrolyte and the positive electrode active material and the negative electrode active material which are caused by & are prepared by XRD analysis. Negative and 夂 should investigate and react with the product. Figure 3 is a flow chart of the investigation of the investigation of the reaction of solid electrolytes, 丈 詷杳 一 , electrolyte materials and active materials. The survey method was carried out by the procedure indicated below. (1) A solid electrolyte and a positive electrode active material are mixed by a mortar. , Liu Bei Han Bei (2) The mixed powder is formed by a mold to make a disc. (3) At a temperature increase rate of 2 〇 (rc/ ^ ^ & ^, the disc made by the wooden dish I is set to the degree of the dish, and after 6 hours of holding, 6 〇〇, 7 nn 〇 nn, then 仃 仃 。. Temperature system 500, 7°0, 8°0, 9°〇, _, 1_, and 1〇5〇1 (=When the disc is pulverized by grinding, it is used as a sample. The error is performed by XRD. Material determination. Figure 4 is the temporary release of mixed solids.

Am 和正極活性物質後而進行燒 成之試料之XRD圖幸。 延仃^ 神如咖 茶 知在燒成前以及500°c之煻#The XRD pattern of the sample which was fired after Am and the positive electrode active material was fortunate.延仃^ 神如咖茶 Know before burning and 500°c煻#

僅觀察到使用作為正極活性物質< π M ,嗯頁之之波峰,相對 2015-9667-PF;Ahddub 4〇 200913347 地’在600 t:以上之燒成,翻兹★ 規察到成為反應生成物之Only observed as a positive active material < π M, the peak of the page, relative to 2015-9667-PF; Ahddub 4〇200913347 ground 'in 600 t: above, burned, turned into a ★ reaction to become a reaction Object

LiMn〇2、Li2Mn〇3 及 LiuMnKAt 波峰。 圖5係在混合固體電解質知 、 _和負極活性物質後而進行燒 成之試料之XRJ)圖案。得知在 仕堤成前以及50(TC之燒成, 僅觀察到使用作為負極活性物質 貝< Ll4/3Tl5/3〇4之波峰,相 對地,在600 °C以上之燒成,翻^處止 規察到成為反應生成物之LiMn〇2, Li2Mn〇3 and LiuMnKAt peaks. Fig. 5 is an XRJ) pattern of a sample which is fired after mixing the solid electrolyte with the _ and the negative electrode active material. It was found that before the completion of the Shiti and 50 (the firing of TC, only the peak of the negative electrode active material < Ll4/3Tl5/3〇4 was observed, and the firing was performed at 600 °C or higher. Stop the inspection and become a reaction product

LiTi〇2& Li2Ti〇3 之波峰。 (實施例3) 藉由相同於實施例2之同樣方法而進行XRD分析,進 行藉由燒成所造成之固體電解質和活性物質之反應調查、 反應生成物之鏗定。 圖10係在混合固體電解質Li3.5SiD.5Pe.5〇4和活性物質 LiM^Cn後而進行燒成之試料之湯圖案。得知在燒 成則以及600 C之燒成,僅觀察到固體電解質 Li35Si°D5P°.504和活性物質LiMn“C〇e.5〇4之波峰,相對地, 在?〇〇C以上之燒成,觀察到成為反應生成物之LiMnCo〇4 之波峰。UMnC〇〇4 <系發揮作為活性物質之功能之物質。 .圖11係在混合固體電解質Lh5Si„_5P().5〇4和活性物質The peak of LiTi〇2& Li2Ti〇3. (Example 3) XRD analysis was carried out in the same manner as in Example 2, and investigation of the reaction between the solid electrolyte and the active material by firing and determination of the reaction product were carried out. Fig. 10 is a soup pattern of a sample which is fired after mixing the solid electrolyte Li3.5SiD.5Pe.5〇4 and the active material LiM^Cn. It was found that only the solid electrolyte Li35Si°D5P°.504 and the active material LiMn “C〇e.5〇4 peak” were observed during the firing and the firing at 600 C, and the burning was performed at a temperature above 〇〇C. In the formation, a peak of LiMnCo〇4 which is a reaction product is observed. UMnC〇〇4 < is a substance which functions as an active material. Fig. 11 is a mixed solid electrolyte Lh5Si „5P().5〇4 and activity substance

Utl5Ni°.5Q4後而進行燒成之試料之XRD圖案。得知在燒 成引以及600 C、7〇〇它之燒成,僅觀察到固體電解質 L i 3 . 5 S i。. 5 P。. 5 0 4 和活性私J 陆 τ · „ , 注物質LiMnuNio.sO4之波峰,相對地, 在8〇〇以上之捧士、 &成’觀察到成為反應生成物之 L iMm. 82n i 〇. 18〇4 之波峰。T . M y .The XRD pattern of the fired sample was carried out after Utl5Ni°.5Q4. It was found that only the solid electrolyte L i 3 . 5 S i was observed at the firing lead and at 600 C, 7 烧. . 5 P. 5 0 4 and active private J 陆 τ · „ , the peak of the injecting substance LiMnuNio.sO4, relatively, in the case of more than 8 捧, & into 'L iMm. 82n i 成为 become a reaction product The peak of 18〇4. T. M y .

LiMm.wNio.uO4係發揮作為活性物 質之功能之物質。 2〇15-9667-PF;Ahddub 41 200913347 【產業上之可利用性】 正如以上,本發明之鋰離子二次 在鐘離子二次電池之内部電阻池及其“方法係 改盖a ^ ^ 降低及充放電循環特性之 改善,具有效果。错由提供 ^ «,! 4- ^ 能小型大容量之電池而 特別大幅度地貝獻於電子領域。 【圖式簡單說明】 明之具體例之燒成前及燒成 圖1(a)及圖1(b)係本發 後之經離子二次電池之剖面圖 Ν叫;f目片 。 圖3係調查電解質材料和活性物質材料之反應之調杳 實驗之作業流程圖。 圖4係在混合固體雷姐暂τ > 冤解質和正極活性物質後而進行燒 成之試料之XRD圖案。LiMm.wNio.uO4 is a substance that functions as an active substance. 2〇15-9667-PF; Ahddub 41 200913347 [Industrial Applicability] As described above, the internal resistance pool of the lithium ion secondary in the clock ion secondary battery of the present invention and the method thereof are reduced by a ^ ^ And the improvement of the charge-discharge cycle characteristics has an effect. The fault is provided by ^ «, ! 4- ^ The battery can be small and large-capacity, and it is especially large in the field of electronics. [Simplified description of the figure] Fig. 1(a) and Fig. 1(b) are cross-sectional views of the ion secondary battery after the present invention; Fig. 3 is a survey of the reaction between the electrolyte material and the active material. The flow chart of the experiment is shown in Fig. 4. Fig. 4 is an XRD pattern of a sample which is fired after mixing the solid solution and the positive electrode active material.

圖5係在混合固體電解質和負極活性物質後而進行燒 成之試料之XRD圖案。 圖6係石夕填酸兹之離子傳導率之電解質材料組成依附 性之圖形。 圖7(a)至(e)係本發明之具體例之鋰離子二次電池之 剖面圖及濃度分布之圖形。 圖8係導電率、放電容量之正極活性物質體積比例依 附性之圖形。 圖9係導電率、放電容量之負極活性物質體積比例依 2015-9667-PF;Ahddub 42 200913347 附性之圖形。 圖1 〇係在混合固體電解質和活性物質後而 之試料之XRD圖案。 進行燒成 圖11係在混合固體電解質和活性物質後而進行燒成 之試料之XRD圖案。 12係 子二次電池之剖面圖。 【主要元件符號說明】 1〜 正極層; 2〜電解質層; 3〜 負極層; 6〜電解質層; 7〜 中間層; 8〜負極層; 9〜 電解質層; 10〜中間層; 11, -負極層; 21〜正極層; 22〜電解質層; 23〜負極層; 28- 一負極活性物質濃度; 1 01〜金屬層; 102 〜正極層; 103〜電解質層; 29〜發揮作為正極功能之反應生成層; 30發揮作為負極功能之反應生成層; 32〜發揮作為正極功能之反應生成層; 34〜發揮作為負極功能之反應生成層; 31〜發揮作為電解質功能之反應生成層; 33〜發揮作為電解質功能之反應生成層; 4〜形成於正極層/電解質層界面之中間層; 5〜形成於負極層/電解質層界面之中間層; 2015-9667-PF;Ahddub 43 200913347 26〜正極活性物質濃度;27〜電解質濃度; 24〜形成於正極層/電解質層界面之中間層; 25〜形成於負極層/電解質層界面之中間層。 2015-9667-PF;Ahddub 44Fig. 5 is an XRD pattern of a sample which is fired after mixing a solid electrolyte and a negative electrode active material. Fig. 6 is a graph showing the dependency of the electrolyte material composition of the ionic conductivity of Shixi. Fig. 7 (a) to (e) are cross-sectional views and concentration distribution patterns of a lithium ion secondary battery of a specific example of the present invention. Fig. 8 is a graph showing the dependence of the volume ratio of the positive electrode active material on the electrical conductivity and the discharge capacity. Fig. 9 is a graph showing the volume ratio of the negative active material of conductivity and discharge capacity according to the attached diagram of 2015-9667-PF; Ahddub 42 200913347. Figure 1 shows the XRD pattern of the sample after mixing the solid electrolyte and the active material. Firing is carried out. Fig. 11 shows an XRD pattern of a sample which is fired after mixing a solid electrolyte and an active material. A cross-sectional view of a 12-series secondary battery. [Description of main component symbols] 1~ positive electrode layer; 2~electrolyte layer; 3~ negative electrode layer; 6~electrolyte layer; 7~ intermediate layer; 8~ negative electrode layer; 9~ electrolyte layer; 10~ intermediate layer; Layer; 21~ positive electrode layer; 22~ electrolyte layer; 23~ negative electrode layer; 28- a negative electrode active material concentration; 1 01~ metal layer; 102~ positive electrode layer; 103~ electrolyte layer; 29~ function as a positive electrode reaction Layer 30 exhibits a reaction-generating layer as a negative electrode function; 32 to exhibit a reaction-generating layer as a positive electrode function; 34 to exhibit a reaction-generating layer as a negative electrode function; 31 to exhibit a reaction-generating layer as an electrolyte function; a functional reaction generating layer; 4~ an intermediate layer formed at the interface of the positive electrode layer/electrolyte layer; 5~ an intermediate layer formed at the interface of the negative electrode layer/electrolyte layer; 2015-9667-PF; Ahddub 43 200913347 26~ concentration of the positive active material; 27~electrolyte concentration; 24~ an intermediate layer formed at the interface of the positive electrode layer/electrolyte layer; 25~ an intermediate layer formed at the interface of the negative electrode layer/electrolyte layer. 2015-9667-PF; Ahddub 44

Claims (1)

200913347 十、申請專利範固·· 1. 一種鋰離子二次 、 層和包含負極活性物電池係包含正極活性物質之正極 質之電解質層而進行之負極層成為由透過包含固體電解 的鐘離子二次電池仃層積之層積體所構成之多層全固體型 其特徵在於: 述負極層和 質或電解質 月IJ述電解質層之界 之功能之物質所組 在前述正極層及/或前 面,具有由發揮作為活性物 成之中間層。 2.如申請專利範 ’其中, 所組成之 刖 導 圍第1項之鋰離子二次電池 ’L玉層及/或前述負極層係在由導電性物質 電性基體載持活性物質之構造。 i如申請專利範圍第2項之鐘離子二次電池,盆中, 前述正極層及/或前述負極層之剖面之前述正極活性物質 及/或前述負極活性物質和前述導電性物質之面積比係在 20 : 80乃至65 : 35之範圍内。 .如申請專利範圍第1 i 3項中任_項之轉子二次 電池’其中’前述中間層係前述正極活性物質及/或前述負 極活性物質和前述固體電解質發生反應所形成之層。 5.-種鋰離子二次電池’係包含正極活性物質之正極 層和包含負極活性物質之負極層成為由透過包含固體電解 質之電解質層而進行層積之層積體所構成之多層全固體型 的鐘離子二次電池, 其特徵在於: 45 2015-9667-pF;Ahddub 200913347 月;j述正極層之—部 起始材料和前述固體電=王部係由前述正極活性物質之 燒結體而構成。 之起始材料發生反應所生成之 6.—種鋰離子二次雪 層和包含負極活性物質之咨’係包含正極活性物質之正極 質之電解質層而進 、極層成為由透過包含固體電解 的鋰離子二次電池,%之層積體所構成之多層全固體型 f 其特徵在於.· 刖述負極層之—部八+ ^ ^ ^ Μ 刀或全部係由前述負極活性物質之 ,始材枓和前述固體電解質之起 二質之 燒結體而構成。 反應所生成之 7·—種鍾離子二次雷 層和包含負柘壬 ”匕3正極活性物質之正極 含負極活性物質之負極層 質之電解質層而進行 心3固體電解 的鐘離子二次電池, 層全固體型 其特徵在於: 前述電解質層之一部分或 起始材料和m _转質物質之 活性物質之起始材料發 次則述正極 發1反應所生成之燒結體而構成。 .如申請專利範圍第5至7項中任一項之鋰離子二& 電池,其中,前述正極層及/或前述負極層係在由導電性: 質所組成之導電性基體載持活性物質之構造。 、…9.如申請專利範圍第8項之鋰離子二次電 前述正極層及/或前述負極層之 ' <别迷正極活性物質 2015-9667-PF;Ahddub 4g 200913347 及/或前述負極活性物質和 2〇: 80乃至65: 35 導電性物質之面積比係在 ϋ 0 <耗圍内。 10.如申请專利範圍第1 電池,其中’前述正極層 :中任-項之鐘離子二次 係由前述正極活性物質之起:材負:層及/或前述電解質層 質之起始材料和前述固體電解:二及/或前述負極活性物 成且發揮作為活性物質或電解質之^材料發生反應所形 u.如申請專利範圍第i至:來構成。 次電池,其中,在構成前述 一壬-項之鐘離子二 將不包含鋰之氧化物予以不含0有。或前述燒結體之物質中, 12. 如巾請專利範圍第項中任—項之㈣子二 :池,其中,前述固體電解質之起始材料係至少包含經 和第IV族元素之複合氧化物。 13. 如申請專利範圍第!至12項中任—項之鐘離子二 次電池’其中’前述固體電解質之起始材料係至少包含矽 酸鋰。 14·如申請專利範圍第u 13項中心項之鐘離子二 次電池’其中,前述固體電解質之起始材料係至少包含石夕 酸鋰和雄酸鋰。 15. 如申請專利範圍第14項之鋰離子二次電池,其 中,前述矽酸鋰和前述磷酸鋰之混合比係在4 : 6乃至6 : 4之範圍内。 16. 如申請專利範圍第1至15項中任一項之鋰離子二 次電池’其中,前述電解質層之厚度係3〇//m以下。 2015-9667-PF;Ahddub 200913347 17.如申睛專利範圍第1 5 Sr+> 至16項中任一項之鋰離子二 二人電池,其中,前述正極活 丨王物質或剛述負極活性物皙 起始材料係包含由鐘疑氧^卜从 錳氧化物、鋰鎳氧化物、鋰銘氧 鋰飢氧化物、鐘欽氧化物、 氧化物 ^ , . . ^ —乳化錳、虱化鈦、氧化鈮、 虱化釩和軋化鎢之物皙链 質。 物質群而選擇出之-種或複數種之物 r y 如中請專利範圍第17項之鐘離子二次電池,兑 述正極活性物質之起始材料係包含絲氧化物。、 19.如申請專利範圍第18之_子二次電池,盆中, 前述正極活性物質之起始㈣係、包含U氣〇如卜2 =1〜2、Z=2 〜4)。 一如申叫專利範圍第17項之鋰離子二次電池,其 中月1J述負極/舌性物質之起始材料係包含鐘鈦氧化物。 21. 如申請專利範 、 乐zu項之鐘離子二次電池 中’前述正極活性物併 /、 貝之起始材料係包含UxTiy〇z(x:=工〜 2、y= 1 〜5/3、2〜4)。 22. —種鍾離子_ a 一 _人電池之製造方法,其特徵在於:至 少由透過電解質層用a 王 生胚薄片而交互地層積正極層用生胚 薄片和負極層用生肢镇 ,、 '來形成層積體之層積製程以及蛐 括地燒成前述層積^ 積體而形成燒結層積體之燒成製程所構 成,刚述電解質層之如 再 之始材料係至少包含鋰和第IV族元辛 之複合氧化物。 戈 23. —種鐘離子_ 〜久電池之製造方法,其特徵在於: 少由固體電解質材料八 至 刀散於黏合劑和溶媒而形成固體電解 2015-9667-PF;Ahddub 48 200913347 質層用糊膏之製程、塗佈及 而形成固體電解質層用生胚,”」述固體電解質層用糊膏 導電性物質而分散於黏::之製程、混合活性物質和 /或負極層用糊膏之製程、塗㈣成正極層用糊膏及 /或負極層用糊膏而形成正心=前述正極層用糊膏及 生胚薄片之製程、透過勹、十、/ 胚薄片及’或負極層用 過别速固體電解質層用 互地層積前述正極層用生 、 胚溥片而交 增用生胚薄片和前述負極 來形成層積體之層積製# 、 胚溥片 ^ 及總括地燒成前述層穑夢而取 成燒結層積體之燒成製程 形 料係至少包含師,^轉質層之起始材 乂包含師第^族元素之複合氧化物。 24·如申請專利範圍第23項之鐘離子二次電池之製造 方法’其中’混合前述活性物質和前述導電性物質之混人 比係以體積比而成為20:8。乃至65:35之範圍内, 25.如申請專利範圍第22至24項中任-項之鐘離子二 次電池之製造方法,其中,诰、+、、法;、制 、 〗述燒成氣私之燒成溫度係600 °C以上、ll〇〇°C以下。 22至24項中任一項之鋰離子二 前述燒成製程之燒成溫度係800 次 °c 26.如申請專利範圍第 電池之製造方法,其中, 以上、1 0 5 0 °C以下。 2015-9667-PF;Ahddub 49200913347 X. Application for patents Fan·· 1. A lithium ion secondary layer, a battery containing a negative electrode active material, and a positive electrode electrolyte layer containing a positive electrode active material, and the negative electrode layer is made to pass through a plasma ion containing solid electrolysis. The multi-layer all-solid type formed by the laminate of the secondary battery layer is characterized in that: the substance of the function of the boundary between the negative electrode layer and the electrolyte or the electrolyte layer is formed on the positive electrode layer and/or the front side. It functions as an intermediate layer formed as an active material. 2. The patented invention wherein the lithium ion secondary battery yL layer and/or the negative electrode layer of the first aspect is configured to carry an active material from an electrically conductive substrate. i. The clock ion secondary battery of claim 2, wherein the positive electrode active material and/or the area ratio of the negative electrode active material and the conductive material in the cross section of the positive electrode layer and/or the negative electrode layer are In the range of 20: 80 or 65: 35. The rotor secondary battery according to any one of the above claims, wherein the intermediate layer is a layer formed by reacting the positive electrode active material and/or the negative electrode active material with the solid electrolyte. 5. A lithium ion secondary battery' is a multilayer solid-state type comprising a positive electrode layer containing a positive electrode active material and a negative electrode layer containing a negative electrode active material as a laminate which is laminated by an electrolyte layer containing a solid electrolyte. The clock ion secondary battery is characterized in that: 45 2015-9667-pF; Ahddub 200913347; the starting material of the positive electrode layer and the solid electricity = the king portion are composed of the sintered body of the positive electrode active material described above . 6. The lithium ion secondary snow layer and the negative electrode active material are formed by the reaction of the starting material, and the electrolyte layer of the positive electrode material of the positive electrode active material is contained, and the electrode layer is formed by permeation containing solid electrolysis. A lithium ion secondary battery, a multilayer all-solid type f composed of a laminate of %, is characterized in that: - a portion of the negative electrode layer - a ^ ^ ^ ^ Μ knife or all of the negative electrode active material, the starting material The crucible is composed of a sintered body of the above solid electrolyte. a clock ion secondary battery produced by the reaction, which is formed by the reaction of the secondary ion layer and the negative electrode layer containing the anode layer of the positive electrode containing the negative electrode active material The layer-all solid type is characterized in that: one part of the electrolyte layer or a starting material of the starting material and the active material of the m-transfer substance is formed by a sintered body formed by the reaction of the positive electrode 1 . The lithium ion di-amplifier according to any one of the items 5 to 7, wherein the positive electrode layer and/or the negative electrode layer has a structure in which an active material is supported by a conductive substrate composed of a conductive material. 9. The lithium ion secondary electric power of the above-mentioned positive electrode layer and/or the foregoing negative electrode layer of the above-mentioned patent range No. 8 < the other positive electrode active material 2015-9667-PF; Ahddub 4g 200913347 and/or the aforementioned negative electrode activity Substance and 2〇: 80 or even 65: 35 The area ratio of the conductive material is within the range of ϋ 0 < consumption. 10. The battery of the first scope of the patent application, wherein 'the aforementioned positive electrode layer: the middle-item of the clock ion II Starting from the positive electrode active material: a material negative: a layer and/or a starting material of the electrolyte layer and the solid electrolyte: the second and/or the foregoing negative electrode active material and reacting as a material of the active material or the electrolyte The shape of the invention is as follows: i. The sub-battery, wherein, in the case of the above-mentioned one-item, the ion II will not contain the oxide of lithium, and the substance of the sintered body is not included. In the case of the fourth paragraph of the patent scope, the second embodiment of the invention relates to the invention, wherein the starting material of the solid electrolyte comprises at least a composite oxide of a group IV element. The clock ion secondary battery of the above-mentioned item - wherein the 'starting material of the solid electrolyte contains at least lithium niobate. 14 · The clock ion of the central item of the u-third item of the patent application scope The lithium ion secondary battery of the above-mentioned solid electrolyte, wherein the lithium niobate and the foregoing phosphorus are contained in the lithium ion secondary battery. The lithium ion secondary battery of any one of the above claims 1 to 15 wherein the thickness of the electrolyte layer is 3 〇 / The lithium ion dioxide battery of any one of the above-mentioned positive electrode active materials, or the above-mentioned positive electrode active king material or The anode material of the negative electrode active material is composed of manganese oxide, lithium nickel oxide, lithium oxynitride oxide, zhongqin oxide, oxide oxide, and manganese oxide. The tantalum chain of titanium, niobium oxide, vanadium telluride and rolled tungsten. A species or a plurality of species selected from the group of substances. r y The ion secondary battery of the seventh aspect of the patent application, the starting material for the positive electrode active material contains a wire oxide. 19. In the secondary battery of claim 18, in the basin, the starting (four) of the positive active material includes U gas such as 1-2 2, 2 = Z 4 to 4). As for the lithium ion secondary battery of claim 17, the starting material of the negative electrode/tongue substance contains the titanium oxide. 21. In the case of applying for a patent, Fan Zhongzhi's ion secondary battery, 'the positive electrode active material and /, the starting material of the shell contains UxTiy〇z (x:=gong~2, y=1~5/3) 2~4). 22. A method for producing a seed cell, characterized in that at least a raw material sheet for a positive electrode layer and a raw material layer for a negative electrode layer are alternately laminated by using a green raw sheet through a electrolyte layer, a composition process for forming a laminate and a firing process for firing the laminate to form a sintered laminate, and the material of the electrolyte layer is at least lithium and Compound oxide of Group IV Yuanxin.戈23.---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The process of the paste, the coating and the formation of the green embryo for the solid electrolyte layer," the process of dispersing the conductive electrolyte of the solid electrolyte layer with the paste: the process of mixing the active material and/or the paste for the negative electrode layer And (4) forming a paste for a positive electrode layer and/or a paste for a negative electrode layer to form a center of the heart = a process for the paste for a positive electrode layer and a green sheet, a pass through a crucible, a ten, a / a piece, and a negative electrode layer The fast-acting solid electrolyte layer is formed by laminating the raw material layer of the positive electrode layer and the raw metal piece and the negative electrode to form a laminate of the laminated body, the embryonic sheet, and the above-mentioned layer. In the nightmare, the firing process of the sintered laminate is at least included in the division, and the starting material of the transformation layer contains the composite oxide of the element of the group. [24] A method of producing a clock ion secondary battery according to claim 23, wherein the mixing ratio of the active material and the conductive material is 20:8 by volume ratio. And in the range of 65:35, 25. The method for manufacturing a clock ion secondary battery according to any one of the items 22 to 24 of the patent application, wherein: 诰, +, ,,; The private firing temperature is 600 ° C or higher and ll 〇〇 ° C or lower. Lithium ion two according to any one of items 22 to 24, wherein the firing temperature of the above-mentioned baking process is 800 times °c 26. The method for producing a battery according to the patent application, wherein the above is 10.5 ° C or lower. 2015-9667-PF; Ahddub 49
TW097117387A 2007-05-11 2008-05-12 Lithium ion secondary battery and manufacturing method thereof TWI527289B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007127443 2007-05-11
JP2007127444 2007-05-11

Publications (2)

Publication Number Publication Date
TW200913347A true TW200913347A (en) 2009-03-16
TWI527289B TWI527289B (en) 2016-03-21

Family

ID=40031737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097117387A TWI527289B (en) 2007-05-11 2008-05-12 Lithium ion secondary battery and manufacturing method thereof

Country Status (6)

Country Link
US (2) US20100216032A1 (en)
JP (1) JP4797105B2 (en)
KR (1) KR101506045B1 (en)
CN (1) CN101675553B (en)
TW (1) TWI527289B (en)
WO (1) WO2008143027A1 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181876A (en) * 2008-01-31 2009-08-13 Ohara Inc Method of manufacturing laminate for lithium ion secondary battery
JP4728385B2 (en) * 2008-12-10 2011-07-20 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
JP5333184B2 (en) * 2009-03-16 2013-11-06 トヨタ自動車株式会社 All solid state secondary battery
JP5508833B2 (en) * 2009-12-21 2014-06-04 ナミックス株式会社 Lithium ion secondary battery
JP5484928B2 (en) * 2010-01-19 2014-05-07 株式会社オハラ All solid battery
JP5519356B2 (en) * 2010-03-23 2014-06-11 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
DE102011075202B4 (en) * 2011-05-04 2021-09-02 Robert Bosch Gmbh Layer arrangement
DE102011076177A1 (en) * 2011-05-20 2012-11-22 Robert Bosch Gmbh Layer arrangement, energy storage and method for producing an energy storage device
FR2982086B1 (en) * 2011-11-02 2013-11-22 Fabien Gaben METHOD FOR MANUFACTURING MICRO-BATTERIES IN THIN LITHIUM ION LAYERS, AND MICRO-BATTERIES OBTAINED THEREBY
FR2982082B1 (en) * 2011-11-02 2013-11-22 Fabien Gaben PROCESS FOR PRODUCING THIN-FILT THIN-FILTER BATTERIES
FR2982083B1 (en) * 2011-11-02 2014-06-27 Fabien Gaben METHOD FOR PRODUCING SOLID ELECTROLYTE THIN FILMS FOR LITHIUM ION BATTERIES
JP2015099632A (en) * 2012-03-07 2015-05-28 株式会社村田製作所 All-solid battery
JP2014110149A (en) * 2012-11-30 2014-06-12 Murata Mfg Co Ltd Multilayer structure for all-solid type battery
FR3000616B1 (en) * 2012-12-31 2015-01-02 I Ten PROCESS FOR MANUFACTURING SOLID BATTERIES IN MULTILAYER STRUCTURE
FR3002695B1 (en) * 2013-02-28 2021-04-02 I Ten PROCESS FOR MANUFACTURING AN ENTIRELY SOLID MONOLITHIC BATTERY
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
KR101497330B1 (en) * 2013-06-03 2015-03-02 주식회사 엘지화학 Electrode Assembly for Sulfur-Lithium Ion Battery and Sulfur-Lithium Ion Battery Comprising The Same
US20150243974A1 (en) * 2014-02-25 2015-08-27 Quantumscape Corporation Hybrid electrodes with both intercalation and conversion materials
JP6213340B2 (en) * 2014-03-27 2017-10-18 株式会社村田製作所 Solid electrolyte and all-solid battery
JP6455807B2 (en) * 2014-05-19 2019-01-23 Tdk株式会社 Lithium ion secondary battery
CN106471654A (en) * 2014-07-04 2017-03-01 Jsr株式会社 Electric energy storage device adhesive composition
KR102382292B1 (en) * 2014-07-22 2022-04-04 주식회사 리크릭스 Silicon secondary battery
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
JP2016051614A (en) * 2014-08-29 2016-04-11 日東電工株式会社 Lithium metal secondary battery
JP2016072077A (en) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 Electrode complex, method for manufacturing electrode complex, and lithium battery
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same
JP6847667B2 (en) * 2015-01-28 2021-03-24 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN104681797B (en) * 2015-02-09 2018-01-05 江苏中兴派能电池有限公司 A kind of preparation method of silicon-carbon composite cathode electrode, lithium ion battery
JP6681603B2 (en) * 2015-05-26 2020-04-15 パナソニックIpマネジメント株式会社 All-solid-state lithium-ion secondary battery and method for manufacturing the same
JP6554978B2 (en) * 2015-07-30 2019-08-07 株式会社村田製作所 Batteries, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
KR102475888B1 (en) * 2015-08-13 2022-12-08 삼성전자주식회사 Metal oxide composite, and Preparation method of metal oxide composite
JP6761992B2 (en) * 2015-12-11 2020-09-30 国立大学法人豊橋技術科学大学 Electrodes and their manufacturing methods and all-solid-state lithium-ion batteries
JP6710554B2 (en) 2016-03-17 2020-06-17 株式会社東芝 Non-aqueous electrolyte battery, battery pack and vehicle
CN105826601B (en) * 2016-05-06 2018-05-01 上海交通大学 Li4SiO4-Li3PO4-LiBO2Solid solution ceramic lithium ion conductor
DE102016212047A1 (en) * 2016-07-01 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of making an electrochemical cell and an electrochemical cell made by the method
US11349146B2 (en) 2016-09-29 2022-05-31 Tdk Corporation All-solid lithium ion secondary battery
JP6919657B2 (en) * 2016-09-29 2021-08-18 Tdk株式会社 All-solid-state lithium-ion secondary battery
DE112017004899T5 (en) 2016-09-29 2019-06-13 Tdk Corporation SOLID STATE LITHIUM SECONDARY BATTERY ION
DE102016219661A1 (en) * 2016-10-11 2018-04-12 Continental Automotive Gmbh Method for producing a galvanic lithium-ion cell and galvanic lithium-ion cell
DE102016015191B3 (en) * 2016-12-21 2018-06-14 Forschungszentrum Jülich GmbH Lithium-ion solid-state accumulator and method for producing the same
BR102017019293A2 (en) * 2017-03-24 2018-10-30 Toshiba Kk electrode group, secondary battery, battery pack and vehicle
KR102431358B1 (en) * 2017-11-02 2022-08-11 한국전기연구원 Solid Electrolyte with Li Containing Interlayer and All-Solid-State Battery comprising The Same
CN108110324A (en) * 2017-11-17 2018-06-01 中国科学院深圳先进技术研究院 A kind of preparation method of solid lithium ion battery
CN112292742A (en) * 2018-02-13 2021-01-29 菲斯克股份有限公司 Low tortuosity electrodes and electrolytes and methods of making the same
WO2019161301A1 (en) 2018-02-15 2019-08-22 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same
US11881561B2 (en) * 2018-03-29 2024-01-23 Tdk Corporation All-solid-state secondary battery
FR3080957B1 (en) 2018-05-07 2020-07-10 I-Ten MESOPOROUS ELECTRODES FOR THIN FILM ELECTROCHEMICAL DEVICES
DE102018219508A1 (en) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Electrode stack and method for its production and its use
JPWO2020111127A1 (en) * 2018-11-30 2021-10-28 Tdk株式会社 All-solid-state secondary battery
JP7224170B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 LISICON type crystal particles for solid electrolyte of lithium ion secondary battery and method for producing the same
JP7165048B2 (en) * 2018-12-21 2022-11-02 太平洋セメント株式会社 METHOD FOR MANUFACTURING LISICON-TYPE CRYSTAL PARTICLES FOR SOLID ELECTROLYTE FOR LITHIUM-ION SECONDARY BATTERY
US10938063B2 (en) 2019-01-31 2021-03-02 University Of Maryland, College Park Lithium silicate compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
JP7159924B2 (en) * 2019-03-11 2022-10-25 Tdk株式会社 All-solid battery
CN109768318A (en) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 A kind of mixing solid-liquid electrolyte lithium battery
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
JP7290978B2 (en) * 2019-03-28 2023-06-14 太陽誘電株式会社 All-solid battery
TWI738280B (en) * 2019-04-12 2021-09-01 康那香企業股份有限公司 Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof
CN111313101B (en) * 2019-10-25 2022-11-29 浙江锋锂新能源科技有限公司 Low-internal-resistance solid sulfide electrolyte lithium battery cell, battery and preparation method thereof
CN111276736B (en) * 2020-02-06 2022-08-02 哈尔滨工业大学 Method for co-sintering positive electrode, electrolyte and inorganic lithium salt
JP2021144923A (en) * 2020-03-13 2021-09-24 本田技研工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery containing negative electrode material, and nonaqueous electrolyte secondary battery having negative electrode
AT526483A2 (en) * 2021-06-30 2024-02-15 Nippon Chemical Ind Lithium silicophosphate powder and its production process
WO2023162315A1 (en) * 2022-02-28 2023-08-31 Tdk株式会社 All-solid-state battery
JP2024034244A (en) * 2022-08-31 2024-03-13 Jx金属株式会社 All-solid-state lithium-ion battery
JP2024034250A (en) * 2022-08-31 2024-03-13 Jx金属株式会社 Evaluation method for all-solid-state lithium-ion batteries

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069141B2 (en) 1982-10-12 1994-02-02 三洋電機株式会社 Method for manufacturing sealed solid electrolyte battery
JP2000164252A (en) 1998-11-27 2000-06-16 Kyocera Corp Solid electrolyte battery
JP2000251938A (en) * 1999-02-25 2000-09-14 Kyocera Corp Manufacture of all solid lithium battery
JP2001126758A (en) * 1999-10-28 2001-05-11 Kyocera Corp Lithium battery
JP2001210360A (en) 2000-01-26 2001-08-03 Kyocera Corp Manufacturing method of all-solid secondary battery
JP2001243984A (en) * 2000-02-28 2001-09-07 Kyocera Corp Solid electrolyte battery and its manufacturing method
JP4604306B2 (en) * 2000-03-10 2011-01-05 ソニー株式会社 Solid electrolyte battery and manufacturing method thereof
JP4626013B2 (en) 2000-06-08 2011-02-02 住友電気工業株式会社 Lithium secondary battery negative electrode
JP4043296B2 (en) * 2002-06-13 2008-02-06 松下電器産業株式会社 All solid battery
JP2004281316A (en) 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Solid electrolyte battery
WO2004093099A1 (en) 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby
CN100502102C (en) * 2004-07-15 2009-06-17 松下电器产业株式会社 Process of preparing coating for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP2006032129A (en) * 2004-07-16 2006-02-02 Kyoto Univ Lithium battery
JP4381273B2 (en) * 2004-10-01 2009-12-09 株式会社東芝 Secondary battery and method for manufacturing secondary battery
JP4784085B2 (en) * 2004-12-10 2011-09-28 新神戸電機株式会社 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5165843B2 (en) * 2004-12-13 2013-03-21 パナソニック株式会社 Laminated body including active material layer and solid electrolyte layer, and all-solid lithium secondary battery using the same
KR101150069B1 (en) * 2004-12-13 2012-06-01 파나소닉 주식회사 Multilayer body containing active material layer and solid electrolyte layer, and all-solid lithium secondary battery using same
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP2007273123A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2007329107A (en) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd Lithium ion secondary battery

Also Published As

Publication number Publication date
CN101675553A (en) 2010-03-17
WO2008143027A1 (en) 2008-11-27
JPWO2008143027A1 (en) 2010-08-05
KR20100032356A (en) 2010-03-25
CN101675553B (en) 2012-10-10
US20100216032A1 (en) 2010-08-26
US9457512B2 (en) 2016-10-04
KR101506045B1 (en) 2015-03-25
JP4797105B2 (en) 2011-10-19
US20140015173A1 (en) 2014-01-16
TWI527289B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
TW200913347A (en) Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP5519356B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4762353B1 (en) Lithium ion secondary battery and manufacturing method thereof
TW201131867A (en) Lithium ion secondary battery
TWI453973B (en) Lithium ion secondary battery and manufacturing method thereof
JP4728385B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5918019B2 (en) All solid state secondary battery
WO2014208133A1 (en) All-solid secondary battery and method for manufacturing same
TW201205934A (en) Lithium ion secondary battery
JPWO2008099508A1 (en) Lithium ion secondary battery and manufacturing method thereof
CN105719723A (en) Electrode material, fuel cell comprising the same, and method for manufacturing the same
CN110462914A (en) All-solid-state lithium-ion secondary battery
WO2019009072A1 (en) Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
CN109792080A (en) All-solid-state lithium-ion secondary battery
CN102201579B (en) Electrode material, fuel-cell single-cell containing this electrode material and manufacture method thereof
JP6275561B2 (en) BODY, BODY MANUFACTURING METHOD, SOLID OXIDE FUEL CELL, AND WATER ELECTROLYTIC DEVICE
JP2009081140A (en) Secondary battery, and manufacturing method of secondary battery
JP6897760B2 (en) All solid state battery
JP5602541B2 (en) All-solid-state lithium ion battery
JP2006244738A (en) Lamination material and flat type fuel battery using this
JP7393203B2 (en) all solid state battery
JP2018085310A (en) Positive electrode for all-solid battery, and all-solid battery
JP2001093535A (en) Solid electrolyte cell
JP2007019037A (en) Solid electrolyte type fuel cell
JP2023168868A (en) All-solid secondary battery