TW200901451A - Color photography element and method of manufacturing color photography element - Google Patents

Color photography element and method of manufacturing color photography element Download PDF

Info

Publication number
TW200901451A
TW200901451A TW96123159A TW96123159A TW200901451A TW 200901451 A TW200901451 A TW 200901451A TW 96123159 A TW96123159 A TW 96123159A TW 96123159 A TW96123159 A TW 96123159A TW 200901451 A TW200901451 A TW 200901451A
Authority
TW
Taiwan
Prior art keywords
color
layer
semiconductor substrate
colored
photographic element
Prior art date
Application number
TW96123159A
Other languages
Chinese (zh)
Other versions
TWI341583B (en
Inventor
Kenzo Fukuyoshi
Satoshi Kitamura
Tadashi Ishimatsu
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to TW096123159A priority Critical patent/TWI341583B/en
Publication of TW200901451A publication Critical patent/TW200901451A/en
Application granted granted Critical
Publication of TWI341583B publication Critical patent/TWI341583B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

The color photography element is provided with a semiconductor substrate (10) including a plurality of photoelectric conversion elements (12), and color filters including a plurality of coloring layers (24, 26) installed corresponding to the plurality of photoelectric conversion elements of the semiconductor substrate. Each of coloring layers of the color filter comprises side faces (24b, 26b) standing on the surface of the semiconductor substrate, and inclined faces continues from terminals, positioned at the opposite side to the semiconductor substrate on the side faces, toward terminals (24a, 26a), positioned at the opposite side to the semiconductor substrate on the coloring layers. The plurality of the coloring layers above-mentioned is arranged in the way of contacting with each other without space.

Description

200901451 九、發明說明: 【發明所屬之技術領域】 本發明係有關於彩色攝影元件及彩色攝影元件製造 方法。 【先前技術】 在以往之彩色攝影元件,在被設置於半導體基板之複 數個光電轉換元件上使用光微影技術彼此相鄰且無間隙地 形成複數色之瀘色器。濾色器具有約l/zm之厚度。此外, 濾色器亦包含有無色者。 近年來,攝影元件之高像素化進展,已達數百萬像 素。而且,隨著這種高像素化的進展,在各像素用以使各 像素動作之各種配線或電子電路所佔的面積之比例增加。 結果,現在在各像素中實際上光電轉換元件可用於感光之 面積的比例(開口率)係約20〜40%。這意指攝影元件之光靈 敏度降低。 爲了提高攝影元件之光靈敏度,在特開昭59- 122193 號公報、特開昭60 — 38989號公報、特開昭60 — 5 3073號 公報以及特開2005 - 294467號公報揭示在濾色器上和光電 轉換元件對應地配置微透鏡。 在特開昭5 9 - 1 987 54號公報揭示將半球形之已著色 的微透鏡用作濾色器。 在特開2005 — 2 1 7439號公報或特開2005 — 223084號 公報揭示,在構成攝影、元件之半導體基板中,藉由將光電 轉換元件配置於儘量接近半導體基板之表面的位置,而使 光電轉換元件可接收之光量增加,進而可提高攝影元件的 200901451 靈敏度。 在第8圖中槪略地表示,爲了提高攝影元件的光靈敏 度,而在濾色器上和光電轉換元件對應地配置微透鏡之習 知例。在此習知例中,爲了提高將複數個光電轉換元件52 設置於半導體基板50之攝影元件54的光靈敏度,而在半 導體基板50之表面經由紫外線吸收層56而和複數個光電 轉換元件5 2對應地設置之複數色的瀘色器5 8、60之表面 上,經由透明的平坦化層62進一步配置微透鏡64。 f 可是,在此習知例中,在複數色之濾色器5 8、60的 各個之彼此相鄰且無間隙地接觸之側面的附近之光易發生 混色。即,從斜方向射入接近微透鏡64之濾色器5 8的該 側面之部分的光線66之一部分,通過包含濾色器58之該 側面之部分的角部並進入相鄰之濾色器60中,使該相鄰的 濾色器60之側面附近之光發生混色。 在已發生混色之光電轉換元件5 2(在第8圖中,和以 參照符號60所示之濾色器對應的光電轉換元件)中,發生 I 顏色之重現性的降低或亮度之降低,在攝影元件54的整體 發生顏色不均。 而且,這種來自相鄰之濾色器的光之一部分的進入, 在對光電轉換元件之入射光的入射角愈淺時愈易發生。 在第9圖中,槪略地表示爲了提高光靈敏度而在半導 體基板70中和半導體基板70之表面相鄰地設置複數個光 電轉換元件72的以往之攝影元件74。在此,在半導體基板 70之表面上和光電轉換元件72對應地配置複數色的濾色 器 76 、 78 〇 200901451 在不使用微透鏡的情況,亦和使用微透鏡之上述的情 況一樣,在複數色之濾色器76、78的各個之彼此相鄰且無 間隙地接觸之側面(例如,第9圖之濾色器76的側面),從 斜方向射入接近濾色器之表面的部分之光線8 0的一部 分,可能從相鄰之濾色器(在第9圖中爲濾色器7 8)的側面 進入該相鄰之濾色器。在此情況,使該相鄰之濾色器的側 面之附近的光產生混色,而產生和上述者相同之結果。 在此情況,亦和上述的情況一樣,來自相鄰之濾色器 的光之一部分的進入,在對光電轉換元件之入射光的入射 角愈淺時愈易發生。 爲了防止這種混色,在特開2005— 294467號公報, 記載以濾色器之上部和被放置於濾色器的上面之透明樹脂 構成微透鏡的技術。即,利用被放置於濾色器的上面之透 明樹脂來構成凸形的微透鏡之彎曲的表面之上部,接著利 用以和由透明樹脂所構成之凸形的微透鏡之彎曲表面之上 部的曲率連續之方式所形成的濾色器之上部區域,來構成 微透鏡的下部。 而且,利用使在透明樹脂之表面所形成的透鏡母模作 爲遮罩之乾蝕刻而將透鏡母模的形狀轉印至透明樹脂及濾 色器之該上部區域,藉以形成這種微透鏡。可是,在按照 相同之蝕刻條件將顏色相異的濾色器進行乾蝕刻之情況, 在顏色相異的濾色器彼此之間的蝕刻速度相異。結果,相 鄰之顏色彼此相異的濾色器之各個的該上部區域,在爲了 具有和利用透明樹脂所形成之凸形的微透鏡之彎曲的表面 連續之曲率而利用乾蝕刻形成時,顏色彼此相異的濾色器 200901451 之的該上部區域相互之間的曲率產生差異。此外,藉由乾 蝕刻而在微透鏡之凸形彎曲表面上連續地形成的顏色彼此 相異的濾色器之各個的該上部區域方面,各個之表面的粗 糙程度亦相異。而且,經由複數色的濾色器射入和複數色 之濾色器對應的複數個光電轉換元件之各個的光之顏色的 平衡變差,而在彩色攝影元件之整體發生顏色不均。 在爲了提高攝影元件的光靈敏度,而將半球形之已著 色的微透鏡用作濾色器之習知例,在微透鏡的中央部和周 邊部在射入微透鏡後通過微透鏡之光的光路之長度有差 異。通過濾色器中之光路的長度相異時,在通過各光路之 光線的著色發生差異。結果,在通過微透鏡的中央部和周 邊部之光線在分光特性方面發生大的差異。 在微透鏡中,因爲通過周邊部的光量比通過中央部之 光量多,所以通過爲了兼具濾色器而被著色之微透鏡的光 整體上顏色變淡。這意指爲了兼具濾色器而被著色之微透 鏡的顏色分離性能低。 相對於此,使在爲了兼具濾色器而被著色之微透鏡的 著色變濃時,通過這種微透鏡之光的亮度變低。此外’微 透鏡所含有之著色劑的量變多時,微透鏡之表面的平滑性 受損,而作爲微透鏡之功能降低。 本發明係在上述之情況下開發者’其目的在於提供一 種彩色攝影元件,其係即使在採用提高攝影元件的光靈敏 度之構造的情況,在複數個光電轉換元件中亦不會產生混 對在 器, 色差 濾變 之會 色不 數.衡 複平 和之 入色 射顏 且的 ’ 光 高之 能件 性元 離換 分轉 色電 顏光 » 個 外數 此複 ’的 色應 200901451 彩色攝影元件整體不會產生顏色不均;又其目的在於提供 容易且確實地製造上述之攝影元件的彩色攝影元件製造方 法。 【發明內容】 爲了達成上述之本發明的目的,本發明之彩色攝影元 件具備有:半導體基板,係包含有複數個光電轉換元件; 及濾色器,係包含有對應於半導體基板之複數個光電轉換 元件而設置的複數著色層。而且,其特徵爲:濾色器之複 數著色層各自包含有:側面,係相對於半導體基板之表面 呈豎立;及傾斜面,係從在該側面位於半導體基板之相反 側的端朝向在著色層位於半導體基板之相反側之端部而連 續;該複數著色層係配置成使各自之側面無間隙地接觸。 又’本發明之彩色攝影元件製造方法,具備有:彩色 光阻層形成步驟,係在包含有複數個光電轉換元件之半導 體基板上形成既定的彩色光阻層;及著色層形成步驟,係 藉由將彩色光阻層進行曝光並顯影,而對應於既定的光電 轉換元件,並形成著色層;藉由重複地進行彩色光阻層形 成步驟及該著色層形成步驟多次,而對應於半導體基板之 複數個光電轉換元件並形成包含有彼此相鄰的複數著色層 之濾色器。而且,其特徵爲:在該著色層形成步驟中,著 色層被形成爲包含有:側面,係相對於半導體基板之表面 呈豎立;及傾斜面,係從在該側面位於半導體基板之相反 側的端朝向在著色層位於半導體基板之相反側之端部而連 續;藉由重複地進行該彩色光阻層形成步驟及該著色層形 成步驟多次,而複數著色層各自藉由配置成使各自之側面 200901451 無間隙地接觸而形成濾色器。 在以如上述所示之構造爲特徵的本發明之彩色攝影 元件,爲了增大射入複數個光電轉換元件之各個的光量, 在攝影元件之半導體基板中,作成將光電轉換元件配置成 儘量接近半導體基板的表面之構造,結果,即使在要提高 彩色攝影元件的光靈敏度的情況下,在各個濾色器中從半 導體基板之相反側之端部的外側朝向各個濾色器所射入之 斜光線,係藉由相鄰的濾色器之傾斜面的功效,得以在相 〇 鄰之濾色器中,不通過和半導體基板反側之端部的外周區 域而射入於各個濾色器。因此,該斜光線不會使射入各個 濾色器之光產生混色。當然,在包圍各個濾色器之該端部 的傾斜面對半導體基板之表面大致正交的射入之光線,當 然,因爲原封不動地沿著各個濾色器之垂直的側面僅通過 各個濾色器,而不通過相鄰的濾色器,所以不會使射入各 個濾色器之光產生混色。 此外,複數色之濾色器的各個,具有彼此相鄰,無間 [: 隙地接觸,並相對於半導體基板呈豎立的側面。因此,即 使在爲了增大射入複數個光電轉換元件之各個而在複數色 的濾色器之各個上形成微透鏡的情況下,亦可對各個顏色 之濾色器提供可使從微透鏡的中央部或周邊部進入相異之 光路長的光線足以顏色分離之作爲濾色器的充足厚度。 即,複數色之濾色器之各個可具有高的顏色分離性能。 因此,爲了提高濾色器之顏色分離性能,因爲可不必 使濾色器的著色變濃,所以通過這種微透鏡之光的亮度不 會變低。此外,可消除著色劑之量變多所引起的濾色器之 -10- 200901451 表面的平滑性之降低。結果,不會使複數色之濾色器的彼 此間之顏色的平衡變差,因而在彩色攝影元件之整體不會 產生顏色不均。 又,在以如上述所示之構造爲特徵的本發明之彩色攝 影元件製造方法,可容易且確實地製造根據上述之本發明 的構造之彩色攝影元件。 【實施方式】 [第1實施形態] 以下,參照第1A圖至第2B圖,並詳細說明利用本發 明之第1實施形態的彩色攝影元件之濾色器製造方法將濾 色器形成於攝影元件,並製造本發明之第1實施形態的攝 影元件之狀況。 在第1A圖,表示將複數個CMOS光電轉換元件12設 置於半導體基板10之攝影元件14的槪略縱向剖面圖。此 外,在此實施形態中,雖然光電轉換元件係CMOS光電轉 換元件12,但是若根據本發明之槪念,光電轉換元件亦可 係C CD光電轉換元件。這種攝影元件14之構造係習知, 在此不再詳細說明。 此外,本發明可應用之在平面圖上的像素尺寸係約 lOym〜約lym之範圍,在此實施形態係約2.5/zm〜約2.2 Ai m之範圍。 如第1B圖中所示,在攝影元件14之半導體基板10 中,在複數個光電轉換元件1 2所朝向的表面形成紫外線吸 收層16,又在其上形成所要的顏色之負型彩色光阻層18。 在此實施形態中,紫外線吸收層16的厚度UVH係在約0.1 200901451 /z m和約0.8 M m之間,負型彩色光阻層1 8的厚度RH係在 約0.5/zm和約1.5/zm之間。 負型彩色光阻層1 8例如其係將以分散劑使所要之顏 色的顏料(有機顏料)分散於鹼性可溶性透明樹脂和溶劑的 顏料分散體、光起動劑、光聚合性單體、以及環己烷或 PGMEA等之有機溶劑混合之著色組成物。 負型彩色光阻層18 —般準備綠、藍、紅之3色。 而且,綠色之正型彩色光阻層18,在顏料上例如添 V 加C.I.黃顏料150及C.I.綠顏料36。 又,藍色之負型彩色光阻層18,在顏料上例如添加 C.I.藍顏料15 : 6。 此外,紅色之負型彩色光阻層18,在顏料上例如添 加C.I.紅顏料177、C.I.紅顏料254以及C.I.黃顏料150。 其次,說明負型彩色光阻層18之製造方法例。 以下,術語「部」及「%」意指「重量部」及「重量 %」。 說明構成負型彩色光阻層18之一部分的丙烯酸樹脂 溶液及顏料分散體之調配。 此外,樹脂之分子量係利用GPC(凝膠穿透層析儀)所 量測之聚乙烯換算的重量平均分子量。 1).丙烯酸樹脂溶液之調配 將環己酮8 00部裝入反應容器,一面將氮氣注入反 應容器一面加熱至100 °c,又一面保持此溫度一面花一 小時滴下甲基丙烯酸2 -羥乙酯60.0部、甲基丙烯酸60.0 部、甲基丙烯酸甲酯65.0部、甲基丙烯酸丁酯65.0部、 -12- 200901451 以及偶氮雙異丁腈10.0部之混合物,並進行聚合反應。 該滴下結束後’在保持100°C之溫度下又令進行反應 3小時。接著,將利用環己酮5 0部所溶解之偶氮雙異丁腈 2 · 0部添加於反應容器,藉由在保持1 〇 〇 °c之溫度下又進行 反應1小時,而得到丙烯酸樹脂。丙烯酸樹脂之重量平均 分子量係約40000。 將丙烯酸樹脂溶液冷卻至室溫爲止後,對丙烯酸樹脂 溶液進行取樣約2g ’並將所取樣之丙烯酸樹脂溶液以1 80 ( °C加熱2〇分鐘而使其乾燥,並量測未揮發量。根據此量測 結果’添加環己酮,使如上述所示而得之丙烯酸樹脂溶液 中的未揮發量變成20%,而調配如上述所示而得之丙烯酸 樹脂溶液。 2).顏料分散體之調配: 在如下之第1表,圖示紅色顏料分散體R_l、綠色 顏料分散體G_l、以及藍色顏料分散體b- 1各自所需之 成分的一例。這些顏料分散體R—l、G—1、以及B_1係 、 S _將該各自所需之成分的混合物均勻地攪拌混合,接著 使用各個之直徑爲lmm的複數個玻璃珠,以碾砂機進行分 散5小時’然後,用網孔5 μ m之過濾器過濾,藉以進行調 配。 -13- 200901451 [第i表] 顏料分散體之配方(部) 紅色顏料分散體R-】 綠色顏料分散體G-1 藍色顏料分散體B_1 PR254 9.95 PR177 1.58 PG36 7.82 PB15 : 6 12.00 PY150 0.47 4.18 顏料分散體 2.40 2.40 2.40 丙烯酸樹脂溶液 25.60 25.60 25.60 有機溶液 60.00 60.00 60.00 口日卞 100.00 100.00 100.00 在第1表: f \ PR254係二酮吡咯並吡咯系顏料(C.I.紅顏料254) (汽巴精化公司製「IRGAPHORREDB—CF」); PR177係蒽醌系顏料(C.I.紅顏料177)200901451 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a color photographic element and a method of manufacturing a color photographic element. [Prior Art] In the conventional color image pickup device, a plurality of color-changing elements are provided on the plurality of photoelectric conversion elements provided on the semiconductor substrate, and a plurality of color filters are formed adjacent to each other without gaps. The color filter has a thickness of about 1/zm. In addition, the color filter also contains colorless ones. In recent years, the high pixelation of photographic elements has progressed to millions of pixels. Further, as the progress of such high pixelation progresses, the ratio of the area occupied by various wirings or electronic circuits for operating the respective pixels is increased. As a result, the ratio (opening ratio) of the area in which the photoelectric conversion element can be used for light sensing in each pixel is now about 20 to 40%. This means that the light sensitivity of the photographic element is reduced. In order to improve the light sensitivity of the photographic element, it is disclosed on the color filter in Japanese Patent Laid-Open Publication No. Sho 59-122193, JP-A-60-38989, JP-A-60-305-73, and JP-A-2005-294467. A microlens is disposed corresponding to the photoelectric conversion element. The use of a hemispherical colored microlens as a color filter is disclosed in Japanese Laid-Open Patent Publication No. Hei. In the semiconductor substrate constituting the image or the element, the photoelectric conversion element is placed at a position as close as possible to the surface of the semiconductor substrate, and the photoelectric is disclosed in Japanese Laid-Open Patent Publication No. Hei. No. 2005-223084. The amount of light that the conversion element can receive increases, which in turn increases the sensitivity of the 200901451 of the photographic element. In the eighth drawing, a conventional example in which microlenses are disposed corresponding to the photoelectric conversion elements in the color filter in order to improve the light sensitivity of the image pickup element is schematically shown. In the conventional example, in order to increase the light sensitivity of the plurality of photoelectric conversion elements 52 provided on the imaging element 54 of the semiconductor substrate 50, the surface of the semiconductor substrate 50 is passed through the ultraviolet absorbing layer 56 and the plurality of photoelectric conversion elements 52. The microlenses 64 are further disposed on the surface of the plurality of color filters 55, 60 correspondingly provided via the transparent planarization layer 62. f. However, in this conventional example, light in the vicinity of the side faces of the plurality of color filters 58 and 60 which are adjacent to each other and which are in contact with each other are liable to be mixed. That is, a portion of the light ray 66 that is incident from the oblique direction near a portion of the side surface of the color filter 58 of the microlens 64 passes through a corner portion including a portion of the side surface of the color filter 58 and enters an adjacent color filter. In 60, the light in the vicinity of the side surface of the adjacent color filter 60 is mixed. In the photoelectric conversion element 52 (in the eighth diagram, the photoelectric conversion element corresponding to the color filter shown by reference numeral 60) in which color mixing has occurred, a decrease in reproducibility of I color or a decrease in luminance occurs. Color unevenness occurs in the entirety of the photographic element 54. Moreover, the entry of a portion of the light from the adjacent color filters tends to occur as the incident angle to the incident light of the photoelectric conversion element becomes shallower. In Fig. 9, a conventional imaging element 74 in which a plurality of photoelectric conversion elements 72 are provided adjacent to the surface of the semiconductor substrate 70 in the semiconductor substrate 70 in order to improve the light sensitivity is schematically shown. Here, the color filters 76, 78 〇 200901451 of a plurality of colors are disposed on the surface of the semiconductor substrate 70 corresponding to the photoelectric conversion element 72. In the case where the microlens is not used, as in the case of using the microlens, the plural The sides of the color filters 76, 78 that are adjacent to each other and that are in contact with each other (for example, the side of the color filter 76 of Fig. 9) are incident from the oblique direction to a portion close to the surface of the color filter. A portion of the light 80 may enter the adjacent color filter from the side of an adjacent color filter (color filter 78 in Fig. 9). In this case, the light in the vicinity of the side surface of the adjacent color filter is mixed, and the same result as the above is produced. In this case as well, as in the case described above, the entry of a portion of the light from the adjacent color filter is more likely to occur when the incident angle to the incident light of the photoelectric conversion element is shallower. In order to prevent such color mixing, Japanese Laid-Open Patent Publication No. 2005-294467 discloses a technique of forming a microlens with a transparent resin placed on the upper portion of the color filter and placed on the upper surface of the color filter. That is, the upper surface of the curved surface of the convex microlens is formed by the transparent resin placed on the upper surface of the color filter, and then the curvature of the upper portion of the curved surface of the convex microlens composed of the transparent resin is utilized. The upper portion of the color filter formed in a continuous manner constitutes a lower portion of the microlens. Further, the shape of the lens master is transferred to the upper portion of the transparent resin and the color filter by dry etching using the lens master formed on the surface of the transparent resin as a mask, thereby forming such a microlens. However, in the case where the color filters having different colors are dry-etched in accordance with the same etching conditions, the etching speeds of the color filters having different colors are different from each other. As a result, the upper region of each of the color filters of adjacent colors different from each other is formed by dry etching in order to have a curvature continuous with the curved surface of the convex microlens formed by the transparent resin. The upper regions of the mutually different color filters 200901451 differ in curvature from each other. Further, in the upper region of each of the color filters which are successively formed on the convex curved surface of the microlens by dry etching, the respective surfaces have different degrees of roughness. Further, the color balance of the light of each of the plurality of photoelectric conversion elements corresponding to the color filter of the plurality of color filters is deteriorated, and color unevenness occurs in the entire color imaging element. A conventional example in which a hemispherical colored microlens is used as a color filter in order to improve the light sensitivity of a photographic element, and light passing through the microlens after being incident on the microlens at the central portion and the peripheral portion of the microlens The length of the light path varies. When the lengths of the light paths passing through the color filters are different, the color of the light passing through the respective light paths is different. As a result, a large difference in the spectral characteristics occurs in the light passing through the central portion and the peripheral portion of the microlens. In the microlens, since the amount of light passing through the peripheral portion is larger than the amount of light passing through the central portion, the color of the microlens colored by the color filter is lightened as a whole. This means that the color separation performance of the microlens that is colored in order to have a color filter is low. On the other hand, when the coloration of the microlens colored to have both of the color filters is made thicker, the brightness of the light passing through the microlens is lowered. Further, when the amount of the coloring agent contained in the microlens is increased, the smoothness of the surface of the microlens is impaired, and the function as a microlens is lowered. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a color photographic element which does not cause a mismatch in a plurality of photoelectric conversion elements even when a configuration for improving the light sensitivity of the photographic element is employed. The color difference filter will change color. The balance of the color and the color of the light and the 'light of the energy element of the elemental change of the color of the color of the electric light» The external number of this complex 'color should 200901451 color photography The entire component does not cause color unevenness; and it is an object of the invention to provide a method of manufacturing a color photographic element which can easily and reliably manufacture the above-described photographic element. SUMMARY OF THE INVENTION In order to achieve the above object of the present invention, a color imaging device of the present invention includes: a semiconductor substrate including a plurality of photoelectric conversion elements; and a color filter including a plurality of photoelectrics corresponding to the semiconductor substrate A complex colored layer set by converting components. Further, the plurality of colored layers of the color filter each include: a side surface that is erected with respect to a surface of the semiconductor substrate; and an inclined surface that faces from the end on the opposite side of the semiconductor substrate toward the colored layer The ends of the opposite sides of the semiconductor substrate are continuous; the plurality of colored layers are arranged such that the respective side faces are in contact without a gap. Further, the method for producing a color photographic element according to the present invention includes a color resist layer forming step of forming a predetermined color resist layer on a semiconductor substrate including a plurality of photoelectric conversion elements, and a color layer forming step Exposing and developing the color photoresist layer to correspond to a predetermined photoelectric conversion element, and forming a coloring layer; by repeating the color photoresist layer forming step and the coloring layer forming step a plurality of times, corresponding to the semiconductor substrate The plurality of photoelectric conversion elements form a color filter including a plurality of colored layers adjacent to each other. Further, in the colored layer forming step, the colored layer is formed to include a side surface which is erected with respect to a surface of the semiconductor substrate, and an inclined surface from which the opposite side of the semiconductor substrate is located The end faces are continuous toward the end of the colored layer on the opposite side of the semiconductor substrate; the color resist layer forming step and the colored layer forming step are repeated a plurality of times, and the plurality of colored layers are each configured to be respectively Side 200901451 Contactes without gaps to form a color filter. In the color photographic element of the present invention characterized by the above-described configuration, in order to increase the amount of light incident on each of the plurality of photoelectric conversion elements, the photoelectric conversion element is disposed as close as possible to the semiconductor substrate of the photographic element. As a result of the structure of the surface of the semiconductor substrate, even in the case where the light sensitivity of the color imaging element is to be improved, the oblique direction of each color filter is incident from the outer side of the opposite end portion of the semiconductor substrate in each color filter. The light rays are incident on the respective color filters in the adjacent color filters without passing through the outer peripheral region of the end portion on the opposite side of the semiconductor substrate by the effect of the inclined faces of the adjacent color filters. Therefore, the oblique light does not cause color mixing of the light incident on the respective color filters. Of course, the incident light that is substantially orthogonal to the surface of the semiconductor substrate is inclined at the end portion surrounding each of the color filters, of course, because the respective color filters are passed through the vertical sides of the respective color filters as they are. The device does not pass through adjacent color filters, so it does not cause color mixing of the light incident on the respective color filters. Further, each of the plurality of color filters has adjacent sides which are in contact with each other and are erected with respect to the semiconductor substrate. Therefore, even in the case where microlenses are formed on each of the plurality of color filters in order to increase the incidence of the plurality of photoelectric conversion elements, the color filters of the respective colors can be provided from the microlenses. The light entering the center or the peripheral portion of the different light path is sufficient to separate the color as a sufficient thickness of the color filter. That is, each of the plurality of color filters may have high color separation performance. Therefore, in order to improve the color separation performance of the color filter, since the color of the color filter does not have to be thickened, the brightness of light passing through the microlens does not become low. In addition, it is possible to eliminate the decrease in the smoothness of the surface of the color filter -10-200901451 caused by the increase in the amount of the colorant. As a result, the balance of the colors of the plurality of color filters is not deteriorated, so that color unevenness does not occur in the entire color photographic element. Further, in the method of manufacturing a color photographic element of the present invention characterized by the above-described configuration, the color photographic element according to the above-described configuration of the present invention can be easily and surely manufactured. [Embodiment] [First Embodiment] Hereinafter, a color filter is formed on a photographic element by a method of manufacturing a color filter of a color photographic element according to a first embodiment of the present invention, with reference to FIGS. 1A to 2B. And the state of the imaging element of the first embodiment of the present invention is manufactured. Fig. 1A is a schematic longitudinal cross-sectional view showing a plurality of CMOS photoelectric conversion elements 12 placed on the imaging element 14 of the semiconductor substrate 10. Further, in this embodiment, although the photoelectric conversion element is the CMOS photoelectric conversion element 12, the photoelectric conversion element may be a C CD photoelectric conversion element according to the concept of the present invention. The construction of such a photographic element 14 is conventional and will not be described in detail herein. Further, the present invention can be applied to a pixel size in a plan view ranging from about 10 μm to about lym, and this embodiment is in the range of about 2.5/zm to about 2.2 Ai m. As shown in Fig. 1B, in the semiconductor substrate 10 of the photographic element 14, an ultraviolet absorbing layer 16 is formed on the surface of the plurality of photoelectric conversion elements 12, and a negative color resist of a desired color is formed thereon. Layer 18. In this embodiment, the thickness UVH of the ultraviolet absorbing layer 16 is between about 0.1200901451 /zm and about 0.8 Mm, and the thickness RH of the negative color photoresist layer 18 is about 0.5/zm and about 1.5/zm. between. The negative-type color resist layer 18 is, for example, a pigment dispersion in which a pigment (organic pigment) of a desired color is dispersed as a dispersant in an alkali-soluble transparent resin and a solvent, a photo-starting agent, a photopolymerizable monomer, and A coloring composition in which an organic solvent such as cyclohexane or PGMEA is mixed. The negative-type color resist layer 18 is generally prepared in three colors of green, blue, and red. Further, in the green positive-type color resist layer 18, for example, V plus C.I. yellow pigment 150 and C.I. green pigment 36 are added to the pigment. Further, in the blue negative-type color resist layer 18, for example, C.I. blue pigment 15:6 is added to the pigment. Further, in the red negative-type color resist layer 18, for example, C.I. red pigment 177, C.I. red pigment 254, and C.I. yellow pigment 150 are added to the pigment. Next, an example of a method of manufacturing the negative-type color resist layer 18 will be described. Hereinafter, the terms "part" and "%" mean "weight" and "% by weight". The formulation of the acrylic resin solution and the pigment dispersion constituting a part of the negative-type color resist layer 18 will be described. Further, the molecular weight of the resin is a weight average molecular weight in terms of polyethylene measured by GPC (Gel Penetration Chromatography). 1). Preparation of acrylic resin solution: 800 parts of cyclohexanone was charged into the reaction vessel, and nitrogen gas was injected into the reaction vessel while heating to 100 ° C, and while maintaining the temperature, one hour was taken to drop 2-hydroxyl methacrylate. A mixture of ester 60.0, 60.0 methacrylic acid, 65.0 methyl methacrylate, 65.0 butyl methacrylate, -12-200901451, and 10.0 azobisisobutyronitrile was polymerized. After the completion of the dropping, the reaction was allowed to proceed for another 3 hours while maintaining the temperature at 100 °C. Next, the azobisisobutyronitrile 2·0 portion dissolved in the 50 parts of cyclohexanone was added to the reaction vessel, and the reaction was further carried out for 1 hour while maintaining the temperature of 1 ° C to obtain an acrylic resin. . The weight average molecular weight of the acrylic resin is about 40,000. After the acrylic resin solution was cooled to room temperature, the acrylic resin solution was sampled to about 2 g of ', and the sampled acrylic resin solution was dried by heating at 180 ° C for 2 minutes, and the amount of non-volatile matter was measured. According to the measurement result, 'cyclohexanone was added, and the amount of non-volatiles in the acrylic resin solution obtained as described above was changed to 20%, and the acrylic resin solution obtained as described above was blended. 2). Pigment dispersion Preparation: In the first table below, an example of the components required for each of the red pigment dispersion R_1, the green pigment dispersion G_1, and the blue pigment dispersion b-1 is shown. These pigment dispersions R-1, G-1, and B_1 are sequentially stirred and mixed with the respective desired components, and then a plurality of glass beads each having a diameter of 1 mm are used for the sander. Disperse for 5 hours' Then, filter with a mesh filter of 5 μm for compounding. -13- 200901451 [Table i] Formulation of pigment dispersion (part) Red pigment dispersion R-] Green pigment dispersion G-1 Blue pigment dispersion B_1 PR254 9.95 PR177 1.58 PG36 7.82 PB15 : 6 12.00 PY150 0.47 4.18 Pigment Dispersion 2.40 2.40 2.40 Acrylic Resin Solution 25.60 25.60 25.60 Organic Solution 60.00 60.00 60.00 Stirrup 100.00 100.00 100.00 In Table 1: f \ PR254 is a diketopyrrolopyrrole pigment (CI Red Pigment 254) (Ciba Refined) Company-made "IRGAPHORREDB-CF"); PR177 series lanthanide pigment (CI red pigment 177)

(汽巴精化公司製「CHROMOPHTHAL RED(Cumba Refinery Co., Ltd. "CHROMOPHTHAL RED"

); PG36係鹵素銅酞菁系顏料(C.I.綠顏料36)); PG36 is a halogen copper phthalocyanine pigment (C.I. green pigment 36)

(東洋油墨製造公司製「LIONOL GREEN ); PB15: 6係ε型銅酞菁系顏料(C.I.藍顔料15: 6) (BSAF 製「HELIOGEN BLUE L - 6700F」); PY150係鎳偶碳錯合物系顏料(C.I.黃顏料150) (LANXESS 公司製「E4GN」);(LIONOL GREEN) manufactured by Toyo Ink Co., Ltd.; PB15: 6-series ε-type copper phthalocyanine pigment (CI Blue Pigment 15: 6) ("ABIO" "HELIOGEN BLUE L - 6700F"); PY150-based nickel-carbon complex Pigment (CI Yellow Pigment 150) ("E4GN" manufactured by LANXESS);

顔料分散劑係日本LUBRIZOL公司製「SOLSPERS -14- 200901451 20000」 丙烯酸樹脂溶液係已先調配的丙烯酸樹脂溶液;而溶 劑係環己酮。 3).負型彩色光阻之調配: 其次,將依此方式所調配之紅色顏料分散體R - 1、 綠色顏料分散體G— 1、以及藍色顏料分散體B— 1各自再 和已先調配的丙烯酸樹脂溶液、光起動劑、光聚合性單體、 以及有機溶劑攪拌混合成變成均勻,然後,藉由用網孔1 ( 之過濾器過濾,而可得到紅色負型彩色光阻、綠色負 型彩色光阻、以及藍色負型彩色光阻。 在此,光起動劑例如包含有:肟酯系光聚合起動劑 1 .2—八聚氯乙烯一 1 — [4 —(苯基硫)一、2 —(0 —苯肟)]、(汽 巴精化公司製「IRGACUREOXE— 01」);及α —胺烷基苯 酮系光起動劑2_(二甲氨)_2 — [(4 一甲苯)甲基]—1— [4 一(4 -嗎福啉基)苯基]—1 一丁酮、(汽巴精化公司製 「IRGACURE 379」)。 k 又,光聚合性單體包含有:例如:三羥甲基丙烷P〇 改質三丙烯酸酯(東亞合成公司製「ARONIX Μ — 310」);及 六丙烯酸酯(東亞合成公司製「ARONIXM— 402」)。 此外,有機溶劑例如係環己酮。 在本實施形態,在紫外線吸收層1 6之上最初所形成 的負型彩色光阻層18之顏色係綠色。 綠色之負型彩色光阻層18的表面係使用半色調遮罩 20將對應於與綠色之著色層對應並欲形成的複數個光電轉 -15- 200901451 換元件12之複數個部分進行圖案曝光22。在半色調遮罩 20方面,具有在綠色的負型彩色光阻層18中已利用半色調 遮罩20而圖案曝光之複數個部分的各個以與顯影後對應 之光電轉換元件1 2之中心爲中心變成凸形之半球形的圖 案之灰階性。 在第2A圖表示所使用之半色調遮罩20的槪略平面 圖。此外,一般半色調遮罩具有實際所形成之圖案尺寸之 4〜5倍的尺寸,在圖案曝光時縮小成1/4~1/5並進行圖案曝 I 光。又,半色調遮罩成同心圓形地改變灰階(g r a y s c a 1 e)。 灰階係例如在縮小成1/5時,藉由在半色調遮罩上調整例 如每單位面積之尺寸小於曝光之光波長之微細黑點(或白 點)的個數而可改變。因而,可使半色調遮罩具有光透過率 成同心圓狀變化的灰階。 在此實施形態所使用之半色調遮罩20,在以光電轉 換元件1 2之中心爲中心的複數個同心圓中,使白點之個數 愈接近中心愈增加,結果愈接近中心則光之透過率成同心 ; 圓地愈增加。 本實施形態之半色調遮罩20係4~5倍光罩,具有尺 寸爲曝光於負型彩色光阻層18之表面的圖案尺寸的4~5倍 之圖案。而且,使用未圖示之步進曝光裝置,將半色調遮 罩20的圖案縮小成1/4〜1/5並曝光於負型彩色光阻層18之 表面。 然後,將負型彩色光阻層18進行顯影時,在負型彩 色光阻層18所曝光之複數個部分,即僅對應於與綠色之著 色層對應並想形成的複數個光電轉換元件12之複數個部 -16- 200901451 分的各個,如第1C圖所示,殘留作爲具有以對應之光電轉 換元件1 2的中心爲中心之半球形的凸形之端部24a的綠色 之第一著色層24。而且,該端部24a的周邊部位成爲在第 一著色層24於從紫外線吸收層1 6大致垂直地上昇之側面 24b具有從和紫外線吸收層1 6相反之側的邊緣朝向該端部 24a之頂連續並朝向和對應的光電轉換元件1 2相反側突出 之曲面形狀的傾斜面。 此時,在本實施形態中,在第一著色層24從紫外線 f 吸收層1 6大致垂直地上昇之側面2 4 b,從紫外線吸收層1 6 至和紫外線吸收層1 6相反之側的邊緣爲止具有約0.7 // m 的高度BH,又半球形的凸形之端部24a從側面24b的該邊 緣至頂點爲止具有約Ο/μιη的高度PH。 最後,將如此所形成之第一著色層24進行硬膜化處 理。 接著,在紫外線吸收層1 6之上在本實施形態中形成 藍色的負型彩色光阻層18。針對此藍色之負型彩色光阻層 / 18,亦在參照第1B圖及第1C圖下重複地進行和上述之從 綠色之負型彩色光阻層1 8形成綠色的第一著色層24時相 同的圖案曝光步驟、顯影步驟、以及硬膜處理步驟。結果, 在藍色的負犁彩色光阻層18中,對應於與藍色之著色層對 應而欲形成的複數個光電轉換元件12之複數個部分的各 個,如第1D圖所示,成爲具有以對應之光電轉換元件12 的中心爲中心之半球形的凸形之端部26a的藍色之第二著 色層26。 然後,在本實施形態中,在紫外線吸收層1 6之上形 -17- 200901451 成紅色的負型彩色光阻層1 8。對此紅色之負型彩色光阻層 18,亦在參照第1B圖及第1C圖下重複地進行和上述之從 綠色之負型彩色光阻層18形成綠色的第一著色層24時相 同的圖案曝光步驟、顯影步驟、以及硬膜處理步驟。結果, 在紅色的負型彩色光阻層1 8中,對應於與紅色之著色層對 應而欲形成的複數個光電轉換元件12之複數個部分的各 個,和第1D圖所示之綠色的第一著色層24或藍色之第二 著色層26相同,成爲具有以對應之光電轉換元件12的中 c 心爲中心之半球形的凸形之端部的紅色之第三著色層。此 外,爲了避免圖面之繁雜性,而省略紅色之第三著色層的 圖示。 如此在攝影元件14的複數個光電轉換元件12上經由 紫外線吸收層1 6按照所要之排列所形成的複數之綠色的 第一著色層2 4、藍色的第二著色層26以及紅色的第三著色 層(未圖示),彼此相鄰且無間隙地接觸各個側面24b、26b, 而構成濾色器。 ί 此外,用以形成顏色相異的第一至第三著色層24、 26、…之各層的負型彩色光阻層1 8各自所含之顏料相異, 結果第一至第三著色層24、26、…所需之3層的負型彩色 光阻層18在曝光時之靈敏度或顯影時的顯影度相異。因 此,爲了從3層的負型彩色光阻層1 8得到第一至第三著色 層24、26、…,而使用3種半色調遮罩20。3種半色調遮 罩20各自之灰階位準當然調整成最適合欲形成的第一至 第三著色層24、26、…之任一層的形成。 如此,爲了從3層的負型彩色光阻層1 8得到第一至 -18- 200901451 第三著色層24、26、…,藉由使用灰階位準相異之3種半 色調遮罩20,而可將第一至第三著色層24、26、…之各層 製造成具有可最佳地發揮各自要求之功能的尺寸。 此外,對負型彩色光阻層18所添加之顏色材料,雖 然染料亦可,但是考慮耐熱性及耐光性時,有機顏料較佳。 又,在對負型彩色光阻添加作爲顏色材料之有機顏料 的情況,若考慮在從負型彩色光阻製造對應之第一至第三 著色層24、26、…的任一層時之各種製程的品質,在負型 f 彩色光阻內之有機顏料的固態比係1〇%~50%較佳,尤其約 20%更佳。固態比低於1 0%時,無法得到對負型彩色光阻之 所要的充分之著色效果。又,固態比超過50%時,加工成 凸形的半球形,即半球形的凸透鏡形狀或對紫外線吸收層 16之第一至第三著色層24、26、…的任一層之密接性降低, 而很容易自紫外線吸收層1 6脫落。此外,以在將3種負型 彩色光阻層18進行圖案曝光及顯影處理後所得之第一至 第三著色層24、26、…的各層所含之對應的顏料爲主體的 殘渣增加。因爲這種殘渣的增加使通過第一至第三著色層 24、26、…之各層的光產生混色,進而成爲使從通過第一 至第三著色層24、26、…之各層的光所射入之光電轉換元 件12產生的影像信號輸出產生雜訊之原因,所以不佳。 在負型彩色光阻中和顏料分散體一起所含之光起動 劑的固態比係7%以下較佳。此固態比爲7%以下時,因爲 靈敏度不足而負型彩色光阻的解析度降低。 在負型彩色光阻中和顏料分散體或光起動劑一起所 含之光聚合性單體的固態比係約20%較佳。此固態在1 5% -19- 200901451 以下時,光聚合性單體之聚合反應性降低,,負型彩色光阻 層1 8無法變成所要的形狀。又,該固態比在25 %以上時, 因圖案曝光而未反應之光聚合性單體的量增加,結果在進 行圖案曝光及顯影處理後所進行之硬膜處理中,因圖案曝 光而未反應之光聚合性單體揮發時,已硬膜處理的表面變 成粗糙。 又,IM比(I係光起動劑;而Μ係光聚合性單體)位於 20%~5 0%之範圍內較佳。ΙΜ比在20%以下時,負型彩色光 f 阻之隨時間的安定性或對紫外線吸收層1 6之第一至第三 著色層24、26、…的密接性降低,而很容易自紫外線吸收 層16脫落。IM比在50%以上時,雖然負型彩色光阻之隨 時間的安定性變成良好,但是因圖案曝光而未反應之光聚 合性單體的量增加,結果在進行圖案曝光及顯影處理後所 進行之硬膜處理中,因圖案曝光而未反應之光聚合性單體 揮發時,已硬膜處理的第一至第三著色層24、26、…之表 面變成粗縫。 I IM量在4%以上較佳。IM量在4%以下時,對紫外線 吸收層1 6之第一至第三著色層24、26、…的密接性降低, 而很容易自紫外線吸收層1 6脫落。 在負型彩色光阻內之有機顏料的固態比係如上述所 示時,爲了得到所要之分光特性而需要的第一至第三著色 層24、26、…各自之最低限度的厚度係約0.4// m。 以往的彩色攝影元件所需之平坦的濾色器之各層的 著色層各自的厚度係約l^m。因此,在本實施形態之彩色 攝影元件中,發揮和以往的彩色攝影元件所需之平坦的濾 -20- 200901451 色器之各層的著色層相同之功能的第一至第三著色層24、 2 6、…之部分(S卩,從紫外線吸收層1 6上昇之側面2 4 b或 26b所包圍的部分)的厚度BH(參照第1C圖)’在負型彩色 光阻內之有機顏料的固態比位於上述之10 %〜50 %的範圍內 之情況,係〇.4//m〜l.Oym之範圍內較佳。 又,在本實施形態之彩色攝影元件中’爲了使第一至 第三著色層24、26、…各自提高對對應的光電轉換元件12 之聚光度,在第一至第三著色層24、26、…之各層,被製 f 成凸形的半球形並用作微透鏡之端部24a、26a、…的高度 PH(參照第1C圖)位於1.8/zm〜O.lym之範圍較佳。 該高度PH :在以往之攝影元件之半導體基板中設置 光電轉換元件的深度係〜6/zm之範圍內;如上述之2 篇文獻(特開2005 — 2 1 7 439號公報及特開2005 — 223084號 公報)的記載所示,在半導體基板中,以儘量接近半導體基 板形成光電轉換元件的情況之在半導體基板的光電轉換元 件之深度係2 # m〜3 a m的範圍內;而,考慮在半導體基板 I 1 0中在光電轉換元件1 2上所形成之紫外線吸收層1 6的厚 度或負型彩色光阻層18之厚度時’係在第一至第三著色層 24、26、…之各層中,使對被製成凸形的半球形並用作微 透鏡之端部24a、26a、…所對應的光電轉換元件12之聚光 度變成最高的値。 [第1實施形態之第1變形例] 在上述之第1實施形態的彩色攝影元件中,在半導體 基板10之表面對應於光電轉換元件12並經由紫外線吸收層 16所設置的第一至第三著色層24、26、…之端部24a、26a、… -21 - 200901451 的各個係被製成如第1 D圖所示之凸形的半球形。可是,這 些端部24a、26a、…的各個在被配置成對應之光電轉換元件 1 2的靈敏度中心偏離對應之像素的中心之情況下,爲了使光 集中於對應之光電轉換元件1 2的靈敏度中心,可作成如第 1D圖中以二點鏈線所示的非對稱之縱向截面形狀。 將第一至第三著色層24、26、…之端部24a、26a、… 的各個作成這種非對稱的縱向截面形狀,可藉由將在從負 型彩色光阻層18製作第一至第三著色層24、26、…凸形之 f 半球形的端部24a、26a、…時使在爲了圖案曝光而使用的 % 半色調遮罩20之黑點(或白點)的分布變成非對稱而可簡單 地達成。 此外,被配置成光電轉換元件1 2的靈敏度中心偏離 對應之像素的中心,係例如爲了在半導體基板1 0補償配置 於半導體基板10的周邊部之光電轉換元件12的光量不 足,或爲了避免和半導體基板10之像素的微細化所伴隨的 在各像素之配線的配置之干涉。 [第1實施形態之第2變形例] 在上述之第1實施形態的彩色攝影元件中,在半導體 基板1 0之表面對應於光電轉換元件1 2並經由紫外線吸收 層16所設置的第一至第三著色層24、26、…係使用負型彩 色光阻製作。可是,第一至第三著色層24、26、…亦可使 用正型彩色光阻製作。用以從正型彩色光阻層製作第一至 第三著色‘層24、26、…之圖案曝光所使用半色調遮罩的黑 白之灰階係和用以從負型彩色光阻層18製作第一至第三著 色層24、26、…之圖案曝光所使用半色調遮罩20的相反。 -22- 200901451 即’愈接近成同心圓之中心愈增加黑點的個數,結果愈接 近中心光之透過率成同心圓地愈降低。 例如在具有約0. 1 # 1X1之厚度UVH的紫外線吸收層1 6 之上形成正型彩色光阻層的情況,正型彩色光阻層之厚度 RH設爲約1.2#m。 正型彩色光阻層係在例如正型感光性樹脂中添加所 需之顏色的顏料,進一步添加環己烷或PGMEA等之有機溶 劑、酸分解性樹脂、光酸產生劑及分散劑而製成。 ( 正型彩色光阻層亦一般準備綠、藍及紅之3色。 而且,綠色之正型彩色光阻層,在顏料上例如添加 C.I.黃顏料150、C.I.綠顏料36以及C.I.綠顏料7。 又,藍色之正型彩色光阻層,在顏料上例如添加C.I. 藍顏料15 : 6及C.I.紫顏料23。 此外,紅色之正型彩色光阻層,在顏料上例如添加 C . I ·紅顏料1 7 7、C . I.紅顏料4 8 : 1以及C. I.黃顏料1 3 9。 正型感光性樹脂例如係酚醛樹脂和苯醌二疊氮化合 物之組合,亦可對此組合再添加鹼性可溶性乙烯聚合物。 作爲正型感光性樹脂,此外亦可係聚乙烯苯酚誘導體 或丙烯酸系。 此外,顏料亦可係上述以外之其他的顏色之有機顏料 或染料。 又’在有機溶液,亦可添加乳酸酯。 酸分解性樹脂係Μ有藉由接觸酸而可轉換成鹼性可 溶性基(例如,羧基或苯酚性氫氧基等)的基之樹脂。 又’光酸產生劑係藉由照射光而產生酸的化合物,可 -23- 200901451 使用這種化合物一種以上。而且’作爲光酸產生劑,例如 可使用鑰之鹵素離子、BF*離子、PF6離子、AsF6離子、SbF6 離子、CF3SCh離子等之鹽、有機鹵素化合物、萘并苯醌二 疊氮磺酸化合物、光磺酸產生化合物等。 綠色正型彩色光阻層、藍色正型彩色光阻層、以及紅 色正型彩色光阻層之各層按照此順序,經由紫外線吸收層 16被塗布於半導體基板10上,並進行圖案曝光、顯影、以 及硬膜化處理,而構成在半導體基板10上之複數個既定位 f 置上經由紫外線吸收層1 6而形成有綠色著色層、藍色著色 層、以及紅色著色層的濾色器。 由綠色正型彩色光阻層、藍色正型彩色光阻層、以及 紅色正型彩色光阻層各自所形成之綠色著色層、藍色著色 層、以及紅色著色層的各層之形狀或尺寸被製成和由在第 1實施形態之綠色負型彩色光阻層18、藍色負型彩色光阻 層18以及紅色負型彩色光阻層各自所形成之綠色著色層 24、藍色著色層26以及紅色著色層(未圖示)的各層相同, r 可發揮相同之功能。 此外,對正型彩色光阻所添加之顏色材料,雖然染料 亦可,但是考慮耐熱性及耐光性時,有機顔料較佳。 又,在對正型彩色光阻添加作爲顏色材料之有機顏料 的情況下,若考慮在從正型彩色光阻層製造著色層時之各 種製程的品質,在正型彩色光阻內之有機顏料的固態比係 30%~50%較佳,尤其約40%較佳。固態比低於30%時,無法 得到對正型彩色光阻之所要的充分之著色效果,固態比超 過50%時,難從正型彩色光阻層加工成凸形的半球形,即 -24- 200901451 凸透鏡形狀。此外,以在從正型彩色光阻層經由圖案曝光 及顯影處理後所製作之著色層所含的以顏料爲主體之殘渣 增加。而且,使通過這種著色層之光線產生混色,進而使 通過這種著色層的光線在光電轉換元件所產生的影像信號 輸出產生雜訊。 而且,係在這種正型彩色光阻內之有機顏料的固態比 時,爲了得到所要之分光特性所需的綠色、藍色、以及紅 色著色層之各自的最低限度之厚度係約0.4 #m。 f 如上述所示,以往的彩色攝影元件所需之平坦的濾色 器之複數著色層各自的厚度係約l^m。因此,在根據使用 正型彩色光阻並形成濾色器之複數著色層的此變形例之彩 色攝影元件,發揮和以往的彩色攝影元件所需之平坦的濾 色器之複數著色層相同之功能的綠色、藍色、以及紅色著 色層各自之部分(即,從紫外線吸收層16上昇之側面24b 或2 6b所包圍的部分)的厚度BH(參照第1C圖),在正型彩 色光阻內之有機顏料的固態比位於上述之30 % ~50%的範圍 內之情況,係0.4 μ m~0.9 # m之範圍內較佳,又係0.5 /z 之範圍內最佳。 又,在根據使用正型彩色光阻並形成濾色器之複數 著色層的此變形例之彩色攝影元件中,亦和使用負型彩色 光阻層18並形成濾色器之複數的著色層24、26、…之第 1實施形態的彩色攝影元件之情況相同,爲了使複數著色 層各自提高對對應的光電轉換元件12之聚光度,在複數 著色層之各層,被製成凸形的半球形狀並用作微透鏡之端 部的高度PH(參照第1C圖)位於1.8em~0.1ym之範圍較 -25- 200901451 佳。 [第2實施形態] 其次’在參照第3A圖〜第4B圖下,詳細說明利用本 發明之第2實施形態的彩色攝影元件之濾色器製造方法將 濾色器形成於攝影元件,並製造本發明之第2實施形態的 攝影元件之狀況。 在第3A圖中,表示將複數個CMOS光電轉換元件112 設置於半導體基板110之攝影元件114的槪略縱向剖面。 Γ: 此外,在此實施形態中,雖然光電轉換元件係CMOS光電 轉換元件1 1 2,但是若根據本發明之槪念,光電轉換元件亦 可係CCD光電轉換元件。這種攝影元件114之構造係眾所 周知,在此,不更詳細說明。此攝影元件1 14之構造,又 和在參照第1A圖至第2B圖下,在本發明之第1實施形態 的彩色攝影元件製造方法所使用之攝影元件14的構造相 同。 此外,本發明可應用之在平面圖上的像素尺寸係約 10/zm〜約l#m之範圍,在此實施形態係約3.0/^111~約1.5 K m之範圍。 其次,如第3B圖中所示,在攝影元件114中,在複 數個光電轉換元件11 2上的表面形成紫外線吸收層11 6,又 在其上形成所要的顏色之負型彩色光阻層11 8。此實施形態 之紫外線吸收層116及負型彩色光阻層Π8係和在上述之 第1實施形態的彩色攝影元件製造方法所使用之攝影元件 1 4的表面上所形成之紫外線吸收層1 6及負型彩色光阻層 1 8相同。 -26- 200901451 負型彩色光阻層1 1 8 —般準備綠、藍、以及紅之3色。 在此實施形態中,在紫外線吸收層11 6上最初所形成 之負型彩色光阻層1 1 8的顏色係綠色。 綠色之負型彩色光阻層1 1 8的表面係使用半色調遮罩 120將對應於與綠色之著色層對應且欲形成的複數個光電 轉換元件112之複數個部分進行曝光122。半色調遮罩120 具有在綠色的負型彩色光阻層118利用半色調遮罩120已 進行圖案曝光之複數個部分的各個,如形成在以顯影後之 :f 光電轉換元件1 1 2爲中心在從半導體基板1 1 〇的表面之紫 外線吸收層1 6成直角地上昇的側面1 1 8 a從位於和半導體 基板1 1 0及紫外線吸收層1 1 6相反之側之端朝向在負型彩 色光阻層1 1 8位於和紫外線吸收層1 1 6相反之側的端部連 續之傾斜面的圖案之灰階性。 在第4A圖表示所使用之半色調遮罩120的槪略平面 圖。此外,一般半色調遮罩具有實際所形成之圖案之4~ 5 倍的尺寸’在圖案曝光時縮小成1/4〜1/5並進行圖案曝光。 i 在此實施形態中,半色調遮罩1 20以光電轉換元件1 1 2的 中心爲中心’具有大圓形之作爲透光部的開口形成部位 120a:及灰階變化部位,使灰階依次成對開口形成部位n〇a 之複數個同心圓形地變化。同心圓形之灰階例如在縮小成 1 /5時’例如係在半色調遮罩上調整變成小於曝光之光波長 的尺寸之微細的黑點(或白點)之每單位面積的個數而形 成。因而’可使半色調遮罩具有光的透過率成成同心圓地 相異之成同心圓的灰階。 在此實施形態所使用之半色調遮罩丨20中,在以光電 -27- 200901451 轉換元件1 1 2之中心爲中心的同心圓狀上,使白點之個數 愈接近中心愈增加,結果愈接近中心之開口形成部位 1 20a,光的透過率成同心圓地愈增加。 本實施形態之半色調遮罩120係4 倍光罩,具有尺 寸爲曝光於負型彩色光阻層18之表面的圖案之尺寸的4~5 倍大小之圖案。而且,使用未圖示之步進曝光裝置,將半 色調遮罩120的圖案縮小成1/4~ 1/5並曝光於負型彩色光阻 層1 18之表面。 f 然後,將負型彩色光阻層118進行顯影時,在負型彩 色光阻層118所曝光之複數個部分,亦即,僅對應於與綠 色之著色層對應且欲形成的複數個光電轉換元件112之部 分係殘留作爲以光電轉換元件丨1 2的中心爲中心之綠色的 第一著色層1 2 4。 在第4B圖表示將利用這種半色調遮罩120已進行圖 案曝光之負型彩色光阻層118顯影所得的著色層124之槪 略側視圖。 ‘ _ 第一著色層124具有翻面的盤形狀,其係包含有:相 對於半導體基板1 10之表面呈垂直的側面124a ;及傾斜面 124c,係在側面124a中從和半導體基板1 10相反之側的端 傾斜成隨著在第一著色層124接近和半導體基板110相反 之側之平坦的端部1 24b而接近第一著色層1 24之平坦的端 部124b之周邊。 此時,從第一著色層1 24之平坦的端部1 24b至在側 面1 24a中和半導體基板1 1 〇相反之側的端爲止之傾斜面 1 2 4 c的深度G D ’在本實施形態係約〇 . 4 /z m,而在側面1 2 4 a -28- 200901451 中和半導體基板1 1 0相反之側的端至紫外線吸收層i丨6爲 止之側面124a的高度SH係約0.5 # m。 最後’將如此所形成之第一著色層1 24進行硬膜化處 理。 接著’在本實施形態中,於紫外線吸收層11 6之上形 成藍色的負型彩色光阻層11 8。對此藍色之負型彩色光阻層 118’亦在參照第3B圖及第3C圖下重複地進行和上述之從 綠色之負型彩色光阻層118形成綠色的第一著色層124時 C 相同的圖案曝光步驟、顯影步驟、以及硬膜處理步驟。結 果,在藍色的負型彩色光阻層118中,對應於與藍色之著 色層對應而想形成的複數個光電轉換元件1 1 2之複數個部 分的各個如第3D圖所示,成爲具有以對應之光電轉換元件 1 1 2的中心爲中心之平坦的端部1 26b的藍色之翻面的盤狀 之藍色的第二著色層126。 第二著色層126亦包含有:相對於半導體基板110之 表面呈垂直的側面126a ;及傾斜面126c,係在側面126a I 中從和半導體基板1 1 0相反之側的端傾斜成隨著在第二著 色層1 26接近和半導體基板1 1 0相反之側之平坦的端部 126b而接近第二著色層126之平坦的端部126b之周邊。 然後,在本實施形態中,於紫外線吸收層1 1 6之上形 成紅色的負型彩色光阻層118。對此紅色之負型彩色光阻層 118,亦在參照第3B圖及第3C圖下重複地進行和上述之從 綠色之負型彩色光阻層118形成綠色的第一著色層124時 相同的圖案曝光步驟、顯影步驟、以及硬膜處理步驟。結 果,在紅色的負型彩色光阻層118中,對應於與紅色之著 -29- 200901451 色層對應而想形成的複數個光電轉換元件1 12之複數個部 分的各個和第3D圖所示之綠色的第一著色層124或藍色之 第二著色層126相同,成爲具有以對應之光電轉換元件112 的中心爲中心之平坦的端部之紅色的第三著色層。此外, 爲了避免圖面之繁雜性,而省略紅色之第三著色層的圖示。 第三著色層亦和上述之第一著色層124或第二著色層 126之各層一樣,包含有:相對於半導體基板110之表面呈 垂直的側面;及傾斜面,係在此側面中從和半導體基板1 1 〇 f 相反之側的端傾斜成隨著在第三著色層接近和半導體基板 1 1 0相反之側之平坦的端部而接近第三著色層之平坦的端 部之周邊。 如此在攝影元件1 1 4的複數個光電轉換元件1 1 2上經 由紫外線吸收層1 1 6按照所要之排列所形成的複數之綠色 的第一著色層124、藍色之第二著色層126以及紅色的第三 著色層(未圖示),彼此相鄰且無間隙地接觸各個側面 124a、126a,而構成濾色器。 此外,綠色之第一著色層124、藍色的第二著色層 126、以及紅色之第三著色層(未圖示)各自的平坦之端部 124b、126b、…的各個和傾斜面124c、126c、…之各個的 交叉部位在顯影步驟中常帶圓角,傾斜面124c、126c、··· 之各個亦成爲朝向和第一著色層124、第二著色層126、以 及第三著色層(未圖示)的各層所對應之光電轉換元件112 的相反側上突出之曲面形狀,但是只要可達成本發明之目 的者皆可。此外,對半導體基板1 1 0之表面的第一著色層 124、第二著色層126、以及第三著色層(未圖示)之各層的 -30- 200901451 側面124a、126a、…之垂直度亦只要可達成本發曰』 當然允許伴隨稍微的傾斜。 此外,用以形成顏色相異的第一至第三著色 126、…之各層的負型彩色光阻層1 18各自所含之 異,結果第一至第三著色層124、126、…所需之 型彩色光阻層118在曝光時之靈敏度或顯影時之 異。因此,爲了從3層的負型彩色光阻層118得 第三著色層124、126、…,而使用3種半色調遮 ^ 種半色調遮罩120各自之灰階位準當然調整成最 成的第一至第三著色層124、126、…之任一層的 如此,爲了從3層的負型彩色光阻層118得 第三著色層124、126、…,藉由使用灰階位準相 半色調遮罩120,而可將第一至第三著色層124、 之各層製造成具有可最佳地發揮各自要求之功能 此外,和上述之第1實施形態的第2變形例 同,在第2實施形態之彩色攝影元件,亦可使用 光阻製作第一至第三著色層124、126、…。 對正型彩色光阻層118所添加之顏色材料, 亦可,但是考慮耐熱性及耐光性時,有機顏料較 又,在對正型彩色光阻層118添加作爲顏色 機顏料的情況下,和上述之第1實施形態的第2 情況一樣,在正型彩色光阻層118內之有機顏料 係30%〜50%較佳,尤其約40%更佳。 而且,係在這種正型彩色光阻層118內之窄 固態比時,爲了得到所要之分光特性而需要的著 Ϊ之目的, i 層 124、 :顏料相 3層的負 顯影度相 到第一至 罩 120 。 3 適合欲形 形成。 到第一至 異之3種 126、… 的尺寸。 丨之情況相 正型彩色 雖然染料 佳。 1材料之有 變形例之 的固態比 『機顏料的 色層124 、 -31 - 200901451 1 26、…各自之最低限度的厚度’和上述之第1實施形態的 第2變形例之情況相同,爲約〇. 4 // m。 如上述所示,以往的彩色攝影元件所需之平坦的濾色 器之複數著色層各自的厚度係約lv m。因此,在使用正型 彩色光阻形成濾色器之複數著色層的情況下,成爲發揮和 以往的彩色攝影元件所需之平坦的濾色器之各層的著色層 相同之功能的綠色、藍色、以及紅色之著色層各自的部分 (即’從紫外線吸收層1 16上昇之側面124a或126a所包圍 Γ 的部分)之厚度SH(參照第3C圖),在正型彩色光阻內之有 機顏料的固態比位於上述之3 0 %〜5 0 %的範圍內之情況,係 0.4/z m~0.9/z m之範圍內較佳,係0.5/z m〜0.7# m之範圍內 最佳。 而且,即使係使用負型彩色光阻及正型彩色光阻之任 一種來形成濾色器的複數之著色層124、126、…的各層之 情況下,亦爲了防止因通過各自相鄰的著色層之光線的一 部分進入而發生混色,相對於著色層124、126、…之側面 4 124a、126a、…的各個而遠離半導體基板100之側上連續 的傾斜面124c、126c、…之各個,距離複數著色層124、 126、…的平坦之端部124a、126a、…的各個之深度係0.6 ym〜O.l^m之範圍內較佳。而且,配合如上述所示之複數 著色層124、126、…各自爲了得到所要之分光特性而需要 的側面124a、126a、…各自之最低限度的厚度〇·4 // m,選 擇複數著色層124、126、…各自之厚度,使其和以往之平 坦的濾色器之厚度的約l#m相等或比其更小。 此外,本實施形態所使用之攝影元件U 4 ’可以是如 -32- 200901451 上述所示以往廣爲使用之包含有CMOS攝影元件或CCD攝 影元件的一般之構造的攝影元件,亦可以是爲了增加射入 光電轉換元件112之光量而在半導體基板11〇中將光電轉 換元件112配置於比以往廣爲使用的一般之構造的攝影元 件更接近半導體基板110之表面的位置之構造的攝影元件。 而且,對此後者之構造的攝影元件之光電轉換元件, 因爲光以比前者之以往廣爲使用的一般之構造的攝影元件 之光電轉換元件更大的廣角射入,所以可更佳地獲得如上 f : 述所示的混色之防止效果,而該混色係由對濾色器之複數 著色層124、126、…的各層,形成在側面124a、126a、… 的各個中從和半導體基板110相反之側之端朝向平坦的端 部124b、126b、…之各個的周邊傾斜之傾斜面124c、126c、… 的各個所引起的。 在如上述所示構成之第3(D)圖中所示的第2實施形 態之彩色攝影元件中,相對於濾色器的複數著色層1 24、 1 26、···之各層而斜射入相鄰的著色層之附近部位的光線 IL,藉由相鄰之著色層124、126、…的傾斜面124c、126c、… 之各個的功效,可不通過相鄰之著色層124、126、…的平 坦之端部124b、126b、…的各個之周邊部並射入各層的著 色層124或126或…。因此,和參照第8圖及第9圖之上 述的以往之彩色攝影元件的情況相異,在射入各層的著色 層124或126或…之光不會發生混色。 [第3實施形態] 其次,在參照第5A圖及第5B圖下,說明在參照第 3A圖〜第4B圖下在利用本發明之第2實施形態的濾色器製 -33- 200901451 造方法所製造之彩色攝影元件的包含有複數之著色層 124、126、…的濾色器上與複數之著色層124、126、…對 應地形成複數個微透鏡的第3實施形態之彩色攝影元件製 造方法。 在此第3實施形態中,如第5A圖中所示,在利用第 1實施形態的瀘色器製造方法所製造之彩色攝影元件的複 數之著色層124、126、…的平坦之端部124b、126b、…上, 利用透明樹脂形成平坦化層1 30。在此實施形態中,平坦化 f、 層1 30具有約1 // m之厚度,例如利用熱硬化型丙烯酸透明 樹脂所形成。此平坦化層1 3 0亦埋設於和複數之著色層 124、126、…的側面124a、126a、…連續之傾斜面124c、 126c、…的彼此之間所產生的槽,而在複數之著色層丨24、 126、…上提供平坦的表面。 在平坦化層1 3 0之平坦的表面上,利用例如旋轉塗布 法等之手段塗布例如具有熱回流性之苯酚樹脂,而形成未 圖示的透鏡母模層。在此實施形態中未圖示之透鏡母模層 具有約0.4vm之厚度。 而且’在此透鏡母模層’藉由根據周知之光微影技術 進行圖案曝光、顯影,而得到既定的圖案。藉由將此既定 的圖案加熱並進行熱回流,而使半球形之透鏡母模132和 複數之著色層124、126、…各自的中心—致,並形成於平 坦化層1 3 0之表面。 接著,利用周知的乾蝕刻裝置,例如蝕刻氣體使用 CF4或C3FS等之氟氯烷系氣體’將透鏡母模132作爲遮罩, 對平坦化層1 3 0進行乾蝕刻。然後’藉由將透鏡母模1 3 2 -34- 200901451 的形狀轉印至平坦化層1 3 0,而對平坦化層1 3 0進行加工, 如第5 Β圖中所示,而形成用以提高對對應於複數之著色層 124、126、…的各個之光電轉換元件12的聚光度之微透鏡 134 ° 在此實施形態中,微透鏡134具有約0.5 # m之高度。 又’針對平坦化層1 3 0之乾蝕刻在到達複數的著色層1 24、 126、…之傾斜面124c、126c、…的各個之前停止,以防止 複數之著色層124、126、…的傾斜面124c、126c、…之各 (; 個因乾蝕刻而變成表面粗糙。, 因而,在側面124a、126a、…中,伴隨和與半導體基 板110相反之側之端連續的傾斜面124c、126c、…之複數 之著色層124、126、…的各個可充分地發揮複數之著色層 124、126、…之各個本來的分光特性。 此外,平坦化層1 30係由以苯環爲骨架之樹脂所形 成,或添加具有苯環的紫外線吸收劑等時,可抑制乾蝕刻 所伴隨之表面粗糙。進而,可更提高從平坦化層1 30利用 ;:: 乾蝕刻所形成之微透鏡134的光學性能。 又,即使根據上述之第3實施形態的製造方法所製造 並如上述所示構成之第5 B圖中所示的彩色攝影元件,相對 於複數著色層124、126、…之各層’斜射入相鄰的著色層 之附近部位的光線IL,亦藉由相鄰之著色層124、126、… 的傾斜面124c、126c、…之各個的功效,可不通過相鄰之 著色層124、126、…的平坦之端部124b、126b、…之周邊 部並射入複數的著色層124、126、…之各個。因此,和參 照第8圖及第9圖之上述的以往之彩色攝影元件的情況相 -35- 200901451 異,在射入複數著色層124或126…之各層的光不會發生混 色。 此外,在此實施形態中,將對應於複數之著色層1 24、 126、…之各個所形成的微透鏡134製成半球形。可是,這 些微透鏡134的各個在對應之光電轉換元件12的靈敏度中 心配置成偏離對應之像素的中心之情況下,爲了將光集中 於對應之光電轉換元件1 2的靈敏度中心,可作成如第5 B 圖中之以二點鏈線所示的非對稱之縱向截面形狀。因而, f 在藉由從在平坦化層130之平坦的表面上所形成之未圖示 的透鏡母模層根據周知之光微影技術進行圖案曝光並顯影 而製作透鏡母模132時,藉由使爲了圖案曝光而使用之未 圖示的半色調遮罩之黑點(或白點)的分布變成非對稱,而 可簡單地達成。依此方式所製作之透鏡母模1 3 2的非對稱 之縱向截面形狀如第5A圖中之二點鏈線所示。透鏡母模 1 32之縱向截面的此形狀係和從透鏡母模1 32所形成之微 透鏡1 34的第5B圖中之以二點鏈線所示的非對稱之縱向截 面形狀相同。 [第4實施形態] 其次,在參照第6A圖至第6C圖下,說明在參照第 3A圖〜第4B圖下在利用本發明之第2實施形態的濾色器製 造方法所製造之彩色攝影元件的複數之著色層124、126、… 的濾色器上與複數之著色層124、126、…對應地形成複數 個微透鏡的第4實施形態之彩色攝影元件製造方法。 在此第4實施形態中,如第6 A圖中所示,在該彩色 攝影元件之濾色器的複數之著色層124、126、…的平坦之 -36- 200901451 端部1 2 4 b、1 2 6 b、…上利用透明樹脂形成平坦化層1 3 0。 在此實施形態中,平坦化層1 3 0具有約1 # m之厚度,例如 利用熱硬化型丙烯酸透明樹脂形成。平坦化層1 3 0亦埋設 於從和在複數之著色層124、126、…的側面124a、126a、… 之半導體基扳1 1 0相反之側的端朝向平坦之端部1 24b、 126b、…的周邊連續之傾斜面124c、126c、…的彼此之間 所產生的槽,而在複數之著色層124、126、…上提供平坦 的表面。 (» 在平坦化層1 3 0之平坦的表面上形成飩刻控制層 140。在此實施形態中,蝕刻控制層140具有約1 v m之厚 度,例如利用感光性的苯酚酚醛清漆樹脂形成。 此外,在平坦化層1 40上,利用例如旋轉塗布法等之 手段來塗布例如具有熱回流性之苯酚樹脂,而形成未圖示 的透鏡母模層。在此實施形態中未圖示之透鏡母模層具有 約0.4 " m之厚度。 而且,在此透鏡母模層,藉由根據周知之光微影技術 進行圖案曝光、顯影,藉以得到既定的圖案。藉由將此既 定的圖案加熱並進行熱回流,而使半球形之透鏡母模1 4 2 和複數之著色層124、126、…各自的中心一致,並形成於 蝕刻控制層1 4 0之表面。 蝕刻控制層1 40利用以苯環爲骨架之樹脂形成,或添 加具有苯環的紫外線吸收劑等時,可抑制乾蝕刻所伴隨之 表面粗糙。又,蝕刻控制層1 4 0亦可利用熱硬化型樹脂或 可鹼性顯影之感光性樹脂形成。 接著,利用周知的乾蝕刻裝置,例如蝕刻氣體使用 -37- 200901451 CF4和C4F8之混合氣體,將透鏡母模142作爲遮罩,對蝕刻 控制層1 40進行乾蝕刻。然後,藉由將透鏡母模1 42的形 狀轉印至蝕刻控制層1 40,而對蝕刻控制層1 40進行加工, 如第6B圖中所示,而將中間透鏡144形成於平坦化層130 之上。 在此實施形態中,將蝕刻控制層1 40之蝕刻速率設爲 比透鏡母模1 42的蝕刻速率慢。因此,延遲對蝕刻控制層 140之乾蝕刻的作用,而可抑制從蝕刻控制層140利用乾蝕 Γ: 刻所形成之中間透鏡1 44的表面粗糙。 其次,將供給周知之乾蝕刻裝置的蝕刻氣體設爲僅 CF4,將中間透鏡144作爲遮罩,對平坦化層130進行乾蝕 刻。然後,藉由將中間透鏡1 44的形狀轉印至平坦化層 130,而對平坦化層130進行加工,如第6C圖中所示,而 形成複數個微透鏡146,用以提高對與複數之著色層124、 126、…對應之複數個光電轉換元件1 12的聚光度。 在此實施形態中,微透鏡146具有約0.5#m之高度。 又,針對平坦化層1 30之乾蝕刻在到達複數的著色層1 24、 126、…之傾斜面124c、126c、…的各個之前停止,以防止 複數之著色層124、126、…的傾斜面124c、126c、…之各 個因乾蝕刻而變成表面粗糙。因而’伴隨傾斜面124c、 12 6c、…之複數的著色層124、126、…可充分地發揮濾色 器本來的分光特性。 此外,平坦化層1 30利用以苯環爲骨架之樹脂形成, 或添加具有苯環的紫外線吸收劑等時’可抑制乾蝕刻所伴 隨之表面粗糙。進而’可更提高從平坦化層1 3 〇利用乾蝕 -38- 200901451 刻所形成之微透鏡1 3 4的光學性能。 在此第4實施形態中,在平坦化層1 30之上形成用以 抑制乾蝕刻所引起的表面粗糙之蝕刻控制層1 40,在蝕刻控 制層1 40的表面形成透鏡母模1 42,然後利用乾蝕刻從透鏡 母模1 4 2將中間透鏡1 4 4精密地轉印至蝕刻控制層1 4 0。此 外,利用乾蝕刻將此中間透鏡1 44的形狀轉印至平坦化層 1 3 0,藉此形成微透鏡146。因此,在第4實施形態之利用 乾蝕刻的微透鏡146之表面粗糙度,遠比在參照第5A圖及 Γ? 第5B圖之上述第3實施形態中利用乾蝕刻將直接形成於平 坦化層1 30之表面的透鏡母模1 32之形狀轉印至平坦化層 130而形成微透鏡134者還要小。 即,在第4實施形態中形成之微透鏡1 46的光學性能 比在第3實施形態所形成之微透鏡1 34的光學性能更佳。 又,即使係根據上述之第4實施形態的製造方法所製 造並如上述所示構成之第6C圖中所示的彩色攝影元件,對 複數著色層124、126、…之各層,斜射入相鄰的著色層之 I 附近部位的光線IL,亦藉由相鄰之著色層124、126、…的 傾斜面124c、126c、…的功效,可不通過相鄰之著色層124、 126、…的平坦之端部124b、126b、…的各個之周邊部並射 入複數的著色層124、126、…之各個。因此’和參照第8 圖或第9圖之上述的以往之彩色攝影元件的情況相異,在 射入各層的著色層124、126…之各個的光不會發生混色。 此外,在此實施形態中’將對應於複數之著色層1 2 4、 126、…之各個所形成的微透鏡146製成半球形。可是,這 些微透鏡146的各個在對應之光電轉換元件112的靈敏度 -39- 200901451 中心配置成偏離對應之像素的中心之情況下,爲了將光集 中於對應之光電轉換元件1 1 2的靈敏度中心,可作成如第 6C圖中之以二點鏈線所示的非對稱之縱向截面形狀。 因而,在藉由從在蝕刻控制層140上之未圖示的透鏡 母模層根據周知之光微影技術進行圖案曝光並顯影而製作 透鏡母模142時,藉由使爲了圖案曝光而使用之未圖示的 半色調遮罩之黑點(或白點)的分布變成非對稱,而可簡單 地達成。依此方式所製作之透鏡母模1 4 2的非對稱之縱向 Γ 截面形狀如第6 A圖中之—點鍵線所不。透鏡母模1 4 2之縱 向截面的此形狀係和從透鏡母模1 4 2經由形成於鈾刻控制 層140的中間透鏡144,再形成於平坦化層130之微透鏡 1 3 4的第6 C圖·中之以二點鏈線所示的非對稱之縱向截面形 狀相同。 [第5實施形態] 其次,在參照第7A圖及第7B圖下,說明在參照第 3 A圖〜第4 B圖下在利用上述本發明之第2實施形態的濾色 器製造方法所製造之彩色攝影元件的濾色器之複數著色層 124、126、…上與複數之著色層124、126、…對應地形成 複數個微透鏡的第5實施形態之彩色攝影元件製造方法。 在此第5實施形態,如第7A圖中所示,在該彩色攝 影元件之濾色器的複數之著色層124、126、…的平坦之端 部124b、126b、…上形成透明的負型彩色光阻層150後, 使用半色調遮罩152,和複數之著色層124、126、…的平 坦之端部124b、126b、…對應並對既定的圖案進行曝光 1 54。該既定的圖案係將和利用該曝光後之顯影處理在負型 -40- 200901451 彩色光阻層150中與複數之著色層124、126、…的平坦之 端部124b、12 6b、…對應的複數個部分之各個,作成和平 坦的端部124b、126b、…之各個的中央,更詳細說明之, 與複數之著色層124、126、…對應的複數個光電轉換元件 1 2之各個的中央爲同心之微透鏡的形狀。 在此所使用之半色調遮罩1 5 2的構造,係和在參照第 3A圖〜第4B圖之上述本發明之第2實施形態的濾色器製造 方法中,爲了從既定之顏色的負型彩色光阻層118利用顯 , 影形成既定之尺寸形狀的著色層24或26或…而對既定之 顏色的負型彩色光阻層118進行圖案曝光時所使用之半色 調遮罩1 20相同,和半色調遮罩1 20相異的僅根據利用顯 影而欲形成之對象物的形狀之差異的圖案形狀。 從負型彩色光阻層150利用圖案曝光及顯影所形成之 微透鏡156,和在參照第5A圖及第5B圖之上述本發明的 第3實施形態之濾色器製造方法使用乾蝕刻從利用透明樹 脂之平坦化層130所加工的微透鏡134 ’或在參照第6A圖 ~第6C圖之上述本發明的第4實施形態之濾色器製造方法 中使用乾蝕刻從蝕刻控制層1 40及利用透明樹脂之平坦化 層130所加工的微透鏡146相比,加工步驟更簡單,而且 表面粗糙度和在第4實施形態中形成之微透鏡1 46 —樣地 變小。 即,在第5實施形態中形成之微透鏡1 5 6的光學性能 和在第4實施形態中形成之微透鏡146 —樣’比在第3實 施形態中形成之微透鏡1 34的光學性能更佳。 即使係根據上述之第5實施形態的製造方法所製造 -41 - 200901451 並如上述所示構成之第7B圖中所示的彩色攝影元件,相對 於複數著色層124、126、…之各層,斜射入相鄰的著色層 之附近部位的光線IL,亦藉由相鄰之著色層124、126、… 的傾斜面124c、126c、…的功效,可不通過相鄰之著色層 124、126、…的平坦之端部124b、126b、…的周邊部而射 入複數的著色層1 24、1 26、…之各個。因此,和參照第8 圖或第9圖之上述的以往之彩色攝影元件的情況相異,在 射入複數著色層124、126…之各個的光不會發生混色。 f ": 此外,即使在此實施形態中,亦將對應於複數之著色 層124、126、…之各個所形成的微透鏡156製成半球形。 可是,這些微透鏡156的各個在對應之光電轉換元件112 的靈敏度中心配置成偏離對應之像素的中心之情況下,爲 了將光集中於對應之光電轉換元件1 1 2的靈敏度中心,可 作成如第7B圖中之以二點鏈線所示的非對稱之縱向截面 形狀。因而,在從負型彩色光阻層1 50利用圖案曝光及顯 影製作微透鏡1 5 6時所使用之未圖示的半色調遮罩之黑點 (或白點)的分布變成非對稱,而可簡單地達成。 又,在根據上述之第.5實施形態的彩色攝影元件中, 與複數之著色層124、126、…的各個對應而形成之微透鏡 1 5 6係使用負型彩色光阻製作。可是,微透鏡1 5 6亦可使用 正型彩色光阻製作。 [產業上之可利用性] 彩色攝影元件係用以將光學上的像變換成電氣上的 像’並產生與光學上的像對應之電氣信號,用於例如電視 相機或視訊相機或電子靜態相機等。 -42- 200901451 【圖式簡單說明】 第1 A圖係利用本發明之第1實施形態的彩色攝影元 件製造方法形成濾色器前之具備包含有複數個光電轉換元 件的半導體基板之攝影元件的槪略縱向剖面圖。 第1 B圖係槪略表示在本發明之第1實施形態的彩色 攝影元件製造方法中,在第1A圖之攝影元件的半導體基板 上形成紫外線吸收層及第一負型彩色光阻層,再使用半色 調遮罩進行曝光處理的狀況之縱向剖面圖。 f 第1 C圖係槪略表示將在第丨b圖中進行曝光處理後之 第一負型彩色光阻層進行顯影處理,再進行硬膜化處理, 而形成所要的截面形狀之第一著色層的狀況之縱向剖面 圖。 第1D圖係槪略表示在第1C圖所得之伴隨有第一著色 層的半導體基板上,設置顏色和第1B圖中的第一負型彩色 光阻層不同之第二負型彩色光阻層,再藉由在參照第1B圖 及第1C圖下將上述之曝光處理、顯影處理、以及硬膜處理 應用於該不同的顏色之第二負型彩色光阻層,而和第一著 色層相鄰地形成和第一著色層一樣的第二著色層之狀況的 縱向剖面圖。 第2A圖係在第1B圖所使用之半色調遮罩的示意平面 圖。 第2B圖係把在第1B圖使用第2A圖所示之半色調遮 罩將紫外線吸收層上的負型彩色光阻層之表面進行圖案曝 光後,將負型彩色光阻層進行顯影處理,再進行硬膜處理 而得到之凸形的半球形之著色層和紫外線吸收層一起放大 -43- 200901451 並表示的側視圖。 第3 A圖係利用本發明之第2實施形態的彩色攝影元 件製造方法中,形成濾色器前之攝影元件的槪略縱向剖面 圖。 第3B圖係槪略表示在本發明之第2實施形態的彩色 攝影元件製造方法中,在第3A圖之攝影元件的半導體基板 上形成紫外線吸收層及第一負型彩色光阻層,再使用半色 調遮罩進行曝光處理的狀況之縱向剖面圖。 f 第3C圖係槪略表示將在第3B圖進行曝光處理後之第 一負型彩色光阻層進行顯影處理,再進行硬膜處理,而形 成所要的截面形狀之第一著色層的狀況之縱向剖面圖。 第3D圖係槪略表示在第3C圖所得之伴隨有第一著色 層的半導體基板上,設置顏色和第3B圖中的第一負型彩色 光阻層不同之第二負型彩色光阻層,再藉由在參照第3B圖 及第3C圖下將上述之曝光處理、顯影處理、以及硬膜處理 應用於該不同的顏色之第二負型彩色光阻層,而和第一著 色層相鄰地形成和第一著色層一樣的第二著色層之狀況的 縱向剖面圖。 第4A圖係在第3B圖所使用之半色調遮罩的示意平面 圖。 第4B圖係把在第3B圖使用第4A圖所示之半色調遮 罩將紫外線吸收層上的負型彩色光阻層之表面進行圖案曝 光後,將負型彩色光阻層進行顯影處理,再進行硬膜處理 而得到之凸形的半球形之著色層和紫外線吸收層一起放大 並表示的側視圖。 -44 - 200901451 第5A圖係槪略地表示在參照第3A圖至; 利用上述之本發明的第2實施形態之彩色攝影 法所製造的彩色攝影元件之濾色器上再形成微 明之第3實施形態的彩色攝影元件製造方法的 準備步驟之縱向剖面圖。 第5B圖係槪略表示在本發明之第3實施 攝影元件製造方法中,在參照第3A圖至第4B 上述之本發明的第2實施形態之彩色攝影元件 f 製造的彩色攝影元件之瀘色器上,接著第5A圖 成準備步驟,再形成微透鏡之狀況的縱向剖面 第6A圖係槪略表示在參照第3A圖至第 用上述之本發明的第2實施形態之彩色攝影元 所製造的彩色攝影元件之濾色器上再形成微透 之第4實施形態的彩色攝影元件製造方法之微 備步驟的縱向剖面圖。 第6B圖係槪略表示在本發明之第4實施 I : 攝影元件製造方法之接著第6A圖所示的微透; 步驟而進行之微透鏡形成中間步驟的縱向剖面 第6C圖係槪略表示經由第6A圖之微透錶 驟及第6B圖的微透鏡形成中間步驟,在參照; 4 B圖下在利用上述之本發明的第2實施形態之 件製造方法所製造的彩色攝影元件之濾色器上 鏡的狀況之縱向剖面圖。 第7A圖係槪略表示在參照第3A圖至第 用上述之本發明的第2實施形態之彩色攝影元 g 4B圖下在 元件製造方 透鏡的本發 微透鏡形成 形態的彩色 圖下在利用 製造方法所 的微透鏡形 圖。 4B圖下在利 件製造方法 鏡的本發明 透鏡形成準 形態的彩色 鏡形成準備 圖。 〖形成準備步 赛3Α圖至第 :彩色攝影元 再形成微透 4 Β圖下在利 件製造方法 -45- 200901451 所製造的彩色攝影元件之濾色器上再形成微透鏡的本發明 之第5實施形態的彩色攝影元件製造方法之微透鏡形成準 備步驟的縱向剖面圖。 第7B圖係槪略表示在本發明之第5實施形態的彩色 攝影元件製造方法,在參照第3A圖至第4B圖下在利用上 述之本發明的第2實施形態之彩色攝影元件製造方法所製 造的彩色攝影元件之濾色器上接著第7A圖的微透鏡形成 準備步驟,再形成微透鏡之狀況的縱向剖面圖。 f 弟8圖係爲了提筒攝影兀件的光靈敏度,而對應於光 電轉換元件’將微透鏡配置於濾色器上之以往的彩色攝影 元件之槪略的縱向剖面圖。 第9圖係爲了提高攝影元件的光靈敏度,而將電轉換 元件配置於攝影元件的半導體基板中儘量接近半導體基板 之表面的位置之以往的彩色攝影元件之槪略的縱向剖面圖。 【主要元件符號說明】 10 半 導 體 基 板 12 光 電 轉 換 元 件 14 攝 影 元 件 16 紫 外 線 吸 收 層 18 負 型 彩 色 光 阻層 20 半 色 調 遮 罩 24 第 一 著 色 層 24a、 2 6 a端 部 24b ' 26b .側 面 26 第 二 著 色 層 -46 -The pigment dispersant is "SOLSPERS -14- 200901451 20000" manufactured by LUBRIZOL Co., Ltd. The acrylic resin solution is a previously prepared acrylic resin solution; and the solvent is cyclohexanone. 3). The formulation of the negative color resist: secondly, the red pigment dispersion R-1, the green pigment dispersion G-1, and the blue pigment dispersion B-1 which are formulated in this way are each reconciled with the previously formulated acrylic The resin solution, the photoinitiator, the photopolymerizable monomer, and the organic solvent are stirred and mixed to become uniform, and then, by filtering through the mesh 1, a red negative color resist and a green negative color can be obtained. The photoresist and the blue negative-type color resist. Here, the photo-starting agent includes, for example, an oxime-based photopolymerization initiator. 2- octavinyl chloride-1 - [4-(phenylthio)-, 2-(0-benzoquinone)], ("GAGACUREOXE-01" manufactured by Ciba Specialty Chemicals Co., Ltd.); and α-aminoalkylbenzene Ketone light starter 2_(dimethylamino)_2 — [(4-toluene)methyl]-1—[4-(4-norfosyl)phenyl]-1 butanone, (Ciba refined) Company-made "IRGACURE 379"). Further, the photopolymerizable monomer includes, for example, trimethylolpropane P〇 modified triacrylate ("ARONIX Μ-310" manufactured by Toagosei Co., Ltd.); and hexaacrylate ("ARONIXM" manufactured by Toagosei Co., Ltd. 402"). Further, the organic solvent is, for example, cyclohexanone. In the present embodiment, the color of the negative-type color resist layer 18 formed first on the ultraviolet absorbing layer 16 is green. The surface of the green negative-type color resist layer 18 is patterned by using a halftone mask 20 to form a plurality of portions corresponding to the plurality of photo-transfer -15-200901451 replacement elements 12 corresponding to the green color-colored layer. . In the case of the halftone mask 20, each of the plurality of portions which have been patterned by the halftone mask 20 in the green negative-type color resist layer 18 is centered on the photoelectric conversion element 12 corresponding to the development. The center becomes the gray scale of the convex hemispherical pattern. Fig. 2A shows a schematic plan view of the halftone mask 20 used. Further, the general halftone mask has a size of 4 to 5 times the size of the actually formed pattern, and is reduced to 1/4 to 1/5 when the pattern is exposed, and the pattern is exposed to light. Also, the halftone mask changes the gray scale (g r a y s c a 1 e) concentrically. The gray scale can be changed, for example, by reducing the number of fine black dots (or white dots) per unit area smaller than the wavelength of the exposed light on the halftone mask, when reduced to 1/5. Therefore, the halftone mask can be made to have a gray scale whose light transmittance changes concentrically. In the halftone mask 20 used in this embodiment, in the plurality of concentric circles centering on the center of the photoelectric conversion element 12, the number of white dots is increased closer to the center, and the closer to the center, the light is closer. The transmittance is concentric; the round is increasing. The halftone mask 20 of the present embodiment is a 4 to 5 times photomask having a pattern of 4 to 5 times the size of the pattern exposed on the surface of the negative color resist layer 18. Further, the pattern of the halftone mask 20 is reduced to 1/4 to 1/5 and exposed on the surface of the negative-type color resist layer 18 by using a step exposure apparatus (not shown). Then, when the negative-type color resist layer 18 is developed, a plurality of portions exposed by the negative-type color resist layer 18, that is, only a plurality of photoelectric conversion elements 12 corresponding to the green color-colored layer and intended to be formed are formed. Each of the plurality of sections -16,01,051,451, as shown in FIG. 1C, remains as a green first colored layer having a convex end portion 24a having a hemispherical shape centering on the center of the corresponding photoelectric conversion element 12 twenty four. Further, the peripheral portion of the end portion 24a has a side on the side opposite to the ultraviolet absorbing layer 16 from the side of the first colored layer 24 which rises substantially perpendicularly from the ultraviolet absorbing layer 16 toward the top of the end portion 24a. An inclined surface of a curved shape that is continuous and directed toward the opposite side of the corresponding photoelectric conversion element 1 2 . At this time, in the present embodiment, the side surface 2 4 b of the first colored layer 24 which rises substantially perpendicularly from the ultraviolet ray absorbing layer 16 is from the edge of the ultraviolet absorbing layer 16 to the side opposite to the ultraviolet absorbing layer 16 So far has about 0. The height BH of 7 // m, and the hemispherical convex end portion 24a has a height PH of about Ο / μηη from the edge to the vertex of the side surface 24b. Finally, the first colored layer 24 thus formed is subjected to a hardening treatment. Next, in the present embodiment, a blue negative-type color resist layer 18 is formed on the ultraviolet absorbing layer 16. For the blue negative-type color resist layer / 18, the first colored layer 24 which is green from the green negative-type color resist layer 18 is also repeatedly and repeatedly described with reference to FIGS. 1B and 1C. The same pattern exposure step, development step, and hard film treatment step. As a result, in the blue negative plough color resist layer 18, each of the plurality of portions of the plurality of photoelectric conversion elements 12 to be formed corresponding to the blue coloring layer is provided as shown in FIG. 1D. The second colored layer 26 of blue, which is a hemispherical convex end portion 26a centered on the center of the corresponding photoelectric conversion element 12. Then, in the present embodiment, a red negative-type color resist layer 18 of -17-200901451 is formed on the ultraviolet absorbing layer 16 . The red negative-type color resist layer 18 is also repeatedly subjected to the same manner as described above with reference to FIGS. 1B and 1C in the case of forming the green first colored layer 24 from the green negative-type color resist layer 18. A pattern exposure step, a development step, and a hard film treatment step. As a result, in the red negative-type color resist layer 18, each of the plurality of portions of the plurality of photoelectric conversion elements 12 to be formed corresponding to the red coloring layer, and the green portion shown in FIG. The colored layer 24 or the second colored layer 26 of blue is the same, and is a red colored layer having a convex portion at the end of the hemispherical shape centering on the center c of the corresponding photoelectric conversion element 12. Further, in order to avoid the complexity of the drawing, the illustration of the third colored layer of red is omitted. Thus, a plurality of green first colored layers 24, blue second colored layers 26, and red thirds formed on the plurality of photoelectric conversion elements 12 of the photographic element 14 via the ultraviolet absorbing layer 16 in accordance with the desired arrangement A colored layer (not shown) is adjacent to each other and contacts the respective side faces 24b, 26b without a gap to constitute a color filter. Further, the pigments contained in the negative-type color resist layers 18 for forming the respective layers of the first to third colored layers 24, 26, which are different in color are different, and as a result, the first to third colored layers 24 are obtained. The three-layer negative-type color resist layer 18 required for 26, ... is different in sensitivity at the time of exposure or development at the time of development. Therefore, in order to obtain the first to third colored layers 24, 26, ... from the three-layer negative-type color resist layer 18, three kinds of halftone masks 20 are used. The gray scales of the three halftone masks 20 are respectively used. The level is of course adjusted to be most suitable for the formation of any of the first to third colored layers 24, 26, ... to be formed. Thus, in order to obtain the first to -18-200901451 third colored layers 24, 26, ... from the three-layer negative-type color resist layer 18, three kinds of halftone masks 20 having gray-level levels are different. Further, each of the first to third colored layers 24, 26, ... can be manufactured to have a size that can optimally perform the functions required by the respective ones. Further, although the color material added to the negative-type color resist layer 18 may be a dye, an organic pigment is preferable in consideration of heat resistance and light resistance. Further, in the case of adding an organic pigment as a color material to a negative-type color resist, various processes in the case of manufacturing any one of the first to third colored layers 24, 26, ... from the negative-type color resist are considered. The quality of the organic pigment in the negative-type f color resist is preferably from 1% to 50%, especially about 20%. When the solid ratio is less than 10%, a sufficient coloring effect for the negative color resist cannot be obtained. Further, when the solid ratio exceeds 50%, the hemispherical shape processed into a convex shape, that is, the shape of a hemispherical convex lens or the adhesion to any one of the first to third colored layers 24, 26, ... of the ultraviolet absorbing layer 16 is lowered. It is easy to fall off from the UV absorbing layer 16. Further, the residue corresponding to the pigment contained in each of the first to third colored layers 24, 26, ... obtained by performing pattern exposure and development processing on the three types of negative-type color resist layers 18 is increased as a main component. The increase in the residue causes the light passing through the respective layers of the first to third colored layers 24, 26, ... to be mixed, thereby causing the light passing through the respective layers of the first to third colored layers 24, 26, ... to be emitted. The image signal generated by the photoelectric conversion element 12 is outputted to cause noise, which is not preferable. The solid ratio of the photoinitiator contained in the negative color resist to the pigment dispersion is preferably 7% or less. When the solid state ratio is 7% or less, the resolution of the negative color resist is lowered because of insufficient sensitivity. The solid-state ratio of the photopolymerizable monomer contained in the negative-type color resist together with the pigment dispersion or the photo-starting agent is preferably about 20%. When the solid state is at most 5% -19 to 200901451, the polymerization reactivity of the photopolymerizable monomer is lowered, and the negative-type color resist layer 18 cannot be formed into a desired shape. Further, when the solid state ratio is 25% or more, the amount of the photopolymerizable monomer which is unreacted by the pattern exposure increases, and as a result, in the hard film treatment performed after the pattern exposure and the development treatment, the film is not reacted due to the pattern exposure. When the photopolymerizable monomer is volatilized, the surface treated with the hard coat becomes rough. Further, the IM ratio (I-based photoinitiator; and the fluorene-based photopolymerizable monomer) is preferably in the range of 20% to 50%. When the ΙΜ ratio is less than 20%, the stability of the negative-type color light f resistance with time or the adhesion to the first to third colored layers 24, 26, ... of the ultraviolet absorbing layer 16 is lowered, and it is easy to self-UV The absorbing layer 16 falls off. When the IM ratio is 50% or more, although the stability of the negative-type color resist with time becomes good, the amount of the photopolymerizable monomer which is unreacted by the pattern exposure increases, and as a result, after pattern exposure and development processing In the hard coat treatment performed, when the photopolymerizable monomer which is unreacted by the pattern exposure is volatilized, the surfaces of the first to third colored layers 24, 26, ... which have been subjected to the hard coat treatment become coarse slits. The amount of I IM is preferably 4% or more. When the amount of IM is 4% or less, the adhesion to the first to third colored layers 24, 26, ... of the ultraviolet absorbing layer 16 is lowered, and it is easy to fall off from the ultraviolet absorbing layer 16. When the solid-state ratio of the organic pigment in the negative-type color resist is as described above, the minimum thickness of each of the first to third colored layers 24, 26, ... required to obtain the desired spectral characteristics is about 0. . 4// m. The thickness of each of the colored layers of the respective flat color filters required for the conventional color photographic elements is about 1 m. Therefore, in the color imaging element of the present embodiment, the first to third colored layers 24 and 2 which have the same functions as the colored layers of the respective layers of the flat color filter elements required for the conventional color imaging elements are used. The thickness BH of the portion (ie, the portion surrounded by the side surface 2 4 b or 26b rising from the ultraviolet absorbing layer 16) (see Fig. 1C) 'solid state of the organic pigment in the negative color resist It is more than 10%~50% in the above range. 4//m~l. It is preferred within the scope of Oym. Further, in the color imaging element of the present embodiment, in order to increase the condensing degree of each of the first to third colored layers 24, 26, ... to the corresponding photoelectric conversion element 12, the first to third colored layers 24, 26 are provided. The layers of the ..., which are made into a convex hemisphere and used as the heights PH of the end portions 24a, 26a, ... of the microlenses (refer to Fig. 1C) are located at 1. 8/zm~O. The range of lym is better. The height PH is set in the range of the depth of the photoelectric conversion element in the semiconductor substrate of the conventional photographic element, which is in the range of ~6/zm; as described in the above two documents (Japanese Unexamined Patent Publication No. Hei. In the semiconductor substrate, as shown in the case of forming a photoelectric conversion element as close as possible to the semiconductor substrate, the depth of the photoelectric conversion element of the semiconductor substrate is in the range of 2 #m to 3 am; In the semiconductor substrate 110, the thickness of the ultraviolet absorbing layer 16 formed on the photoelectric conversion element 12 or the thickness of the negative color resist layer 18 is 'in the first to third colored layers 24, 26, ... In each of the layers, the luminosity of the photoelectric conversion element 12 corresponding to the end portions 24a, 26a, ... which are formed into a convex hemispherical shape and used as the microlenses becomes the highest enthalpy. [First Modification of First Embodiment] In the color imaging element according to the first embodiment described above, first to third surfaces are provided on the surface of the semiconductor substrate 10 corresponding to the photoelectric conversion element 12 via the ultraviolet absorbing layer 16. The respective ends of the colored portions 24, 26, ..., 24a, 26a, ... -21 - 200901451 are formed into a convex hemisphere as shown in Fig. 1D. However, in the case where each of the end portions 24a, 26a, ... is arranged such that the sensitivity center of the corresponding photoelectric conversion element 12 deviates from the center of the corresponding pixel, in order to concentrate the light on the sensitivity of the corresponding photoelectric conversion element 12 The center can be formed into an asymmetrical longitudinal cross-sectional shape as shown by the two-dot chain line in Fig. 1D. Each of the end portions 24a, 26a, ... of the first to third colored layers 24, 26, ... is formed into such an asymmetrical longitudinal cross-sectional shape, which can be made first from the negative-type color resist layer 18 to The third colored layers 24, 26, ... the convex f-hemispherical ends 24a, 26a, ... cause the distribution of the black dots (or white dots) of the % halftone mask 20 used for pattern exposure to become non- Symmetrical and simple to achieve. Further, the center of the sensitivity of the photoelectric conversion element 12 is deviated from the center of the corresponding pixel, for example, in order to compensate for the insufficient amount of light of the photoelectric conversion element 12 disposed at the peripheral portion of the semiconductor substrate 10 at the semiconductor substrate 10, or to avoid The interference of the arrangement of the wirings of the respective pixels accompanying the miniaturization of the pixels of the semiconductor substrate 10. [Second Modification of the First Embodiment] In the color imaging element according to the first embodiment described above, the first surface to the surface of the semiconductor substrate 10 corresponding to the photoelectric conversion element 12 via the ultraviolet absorbing layer 16 is provided. The third colored layers 24, 26, ... are fabricated using a negative color resist. However, the first to third colored layers 24, 26, ... may also be fabricated using a positive color resist. a black-and-white gray-scale system for using a halftone mask for pattern exposure of the first to third colored 'layers 24, 26, ... from the positive-type color photoresist layer and for fabricating from the negative-type color photoresist layer 18 The pattern of the first to third colored layers 24, 26, ... is exposed to the opposite of the halftone mask 20 used. -22- 200901451 That is, the closer to the center of the concentric circle, the more the number of black spots increases. As a result, the transmittance closer to the center light becomes concentric. For example, it has about 0.  1 # 1X1 The thickness of the UVH ultraviolet absorbing layer 16 is formed on the positive color photoresist layer. The thickness of the positive color photoresist layer RH is set to about 1. 2#m. The positive color resist layer is formed by adding a pigment of a desired color to, for example, a positive photosensitive resin, and further adding an organic solvent such as cyclohexane or PGMEA, an acid-decomposable resin, a photoacid generator, and a dispersing agent. . (The positive-type color resist layer is also generally prepared in three colors of green, blue, and red. Moreover, the green positive-type color resist layer is added to the pigment, for example, C. I. Yellow pigment 150, C. I. Green pigment 36 and C. I. Green pigment 7. Moreover, a blue positive-type color photoresist layer, for example, adding C to the pigment. I.  Blue pigment 15 : 6 and C. I. Purple pigment 23. In addition, a red positive color photoresist layer, for example, C is added to the pigment.  I · Red pigment 1 7 7 , C .  I. Red pigment 4 8 : 1 and C.  I. Yellow pigment 1 3 9. The positive photosensitive resin is, for example, a combination of a phenol resin and a benzoquinonediazide compound, and an alkali-soluble ethylene polymer may be further added to the combination. The positive photosensitive resin may be a polyvinylphenol inducer or an acrylic. Further, the pigment may be an organic pigment or dye of a color other than the above. Further, in the organic solution, lactate may be added. The acid-decomposable resin is a resin which can be converted into a base of a basic soluble group (e.g., a carboxyl group or a phenolic hydroxyl group) by contact with an acid. Further, the photoacid generator is a compound which generates an acid by irradiation with light, and one or more of such compounds can be used in -23-200901451. Further, 'as a photoacid generator, for example, a salt such as a halogen ion, a BF* ion, a PF6 ion, an AsF6 ion, an SbF6 ion, a CF3SCh ion, an organic halogen compound, a naphthacenequinonediazidesulfonic acid compound, or the like may be used. The photosulfonic acid produces a compound or the like. The layers of the green positive-type color resist layer, the blue positive-type color resist layer, and the red positive-type color resist layer are applied to the semiconductor substrate 10 via the ultraviolet absorbing layer 16 in this order, and subjected to pattern exposure and development. And a color filter which forms a green colored layer, a blue colored layer, and a red colored layer formed on the semiconductor substrate 10 via the ultraviolet absorbing layer 16 in a plurality of positions on the semiconductor substrate 10. The shape or size of each of the green colored layer, the blue colored layer, and the red colored layer formed by each of the green positive color resist layer, the blue positive color resist layer, and the red positive color resist layer is The green colored layer 24 and the blue colored layer 26 each formed of the green negative-type color resist layer 18, the blue negative-type color resist layer 18, and the red negative-type color resist layer of the first embodiment are formed. And the layers of the red colored layer (not shown) are the same, and r can perform the same function. Further, although the color material added to the positive color resist may be a dye, an organic pigment is preferable in consideration of heat resistance and light resistance. Further, in the case where an organic pigment as a color material is added to a positive color resist, an organic pigment in a positive color resist is considered in consideration of various processes in the production of a colored layer from a positive color resist layer. The solid state ratio is preferably from 30% to 50%, especially about 40%. When the solid-state ratio is less than 30%, the sufficient coloring effect for the positive-type color resist cannot be obtained. When the solid-state ratio exceeds 50%, it is difficult to process the positive-shaped color resist layer into a convex hemisphere, that is, -24 - 200901451 Convex lens shape. Further, the pigment-based residue contained in the coloring layer produced by pattern exposure and development processing from the positive-type color resist layer is increased. Further, the light passing through the coloring layer is mixed, and the light passing through the coloring layer is outputted by the image signal generated by the photoelectric conversion element to generate noise. Further, in the solid-state ratio of the organic pigment in the positive-type color resist, the minimum thickness of each of the green, blue, and red colored layers required to obtain the desired spectral characteristics is about 0. 4 #m. f As described above, the thickness of each of the plurality of colored layers of the flat color filter required for the conventional color photographic element is about 1 m. Therefore, the color photographic element of this modification according to the plural colored layer in which the positive color resist is used and the color filter is formed has the same function as the plural colored layer of the flat color filter required for the conventional color photographic element. The thickness BH of each of the green, blue, and red colored layers (ie, the portion surrounded by the side 24b or 26b rising from the ultraviolet absorbing layer 16) (see FIG. 1C), within the positive color resist The solid state ratio of the organic pigment is in the range of 30% to 50% as described above, and is 0. 4 μ m~0. 9 # m is better in the range, and is 0. The best in the range of 5 / z. Further, in the color photographic element of this modification based on the use of the positive color resist and the formation of the plurality of colored layers of the color filter, the coloring layer 24 of the color filter is also formed using the negative color resist layer 18. In the case of the color imaging element of the first embodiment of the first embodiment, in order to increase the condensing power of the corresponding photoelectric conversion element 12 in each of the plurality of colored layers, a convex hemispherical shape is formed in each of the plurality of colored layers. And the height PH (see Fig. 1C) used as the end of the microlens is located at 1. 8em~0. The range of 1ym is better than -25- 200901451. [Second Embodiment] Next, a color filter formed by a color filter of a color imaging element according to a second embodiment of the present invention will be described in detail with reference to FIGS. 3A to 4B. The state of the imaging element of the second embodiment of the present invention. In Fig. 3A, a schematic longitudinal cross section of the imaging element 114 in which a plurality of CMOS photoelectric conversion elements 112 are provided on the semiconductor substrate 110 is shown. Further, in this embodiment, although the photoelectric conversion element is a CMOS photoelectric conversion element 112, the photoelectric conversion element may be a CCD photoelectric conversion element according to the concept of the present invention. The construction of such photographic elements 114 is well known and will not be described in greater detail herein. The structure of the imaging element 1 14 is the same as that of the imaging element 14 used in the method of manufacturing a color imaging element according to the first embodiment of the present invention, with reference to Figs. 1A to 2B. In addition, the pixel size in the plan view applicable to the present invention is in the range of about 10/zm to about l#m, and the embodiment is about 3. 0/^111~ about 1. 5 K m range. Next, as shown in Fig. 3B, in the photographic element 114, an ultraviolet absorbing layer 161 is formed on the surface of the plurality of photoelectric conversion elements 11 2, and a negative color resist layer 11 of a desired color is formed thereon. 8. The ultraviolet absorbing layer 116 and the negative color resist layer 8 of the embodiment and the ultraviolet absorbing layer 16 formed on the surface of the photographic element 14 used in the method for producing a color photographic element according to the first embodiment described above and The negative-type color resist layer 18 is the same. -26- 200901451 Negative color resist layer 1 1 8 is generally prepared in three colors of green, blue, and red. In this embodiment, the color of the negative-type color resist layer 1 18 initially formed on the ultraviolet absorbing layer 166 is green. The surface of the green negative-type color resist layer 181 is exposed 122 by a plurality of portions of the plurality of photoelectric conversion elements 112 corresponding to the green coloring layer and using the halftone mask 120. The halftone mask 120 has a plurality of portions in which the green negative-type color resist layer 118 has been subjected to pattern exposure using the halftone mask 120, as formed around the developed: f photoelectric conversion element 1 1 2 The side surface 1 18 a rising at right angles from the ultraviolet absorbing layer 16 on the surface of the semiconductor substrate 1 1 朝向 is directed from the end opposite to the side of the semiconductor substrate 1 10 and the ultraviolet absorbing layer 1 16 toward the negative color. The gray scale of the pattern of the inclined surface of the photoresist layer 1 18 located at the end opposite to the side of the ultraviolet absorbing layer 1 16 is gray. Fig. 4A shows a schematic plan view of the halftone mask 120 used. Further, in general, the halftone mask has a size of 4 to 5 times that of the actually formed pattern, and is reduced to 1/4 to 1/5 at the time of pattern exposure, and pattern exposure is performed. In the embodiment, the halftone mask 126 is an opening forming portion 120a having a large circular shape as a light transmitting portion centering on the center of the photoelectric conversion element 1 1 2: and a gray scale changing portion, so that the gray scale is sequentially The plurality of concentric openings forming portions n〇a vary concentrically. The gray scale of the concentric circle is, for example, reduced to 1 /5, for example, by adjusting the number of per unit areas of the fine black dots (or white dots) which are smaller than the size of the wavelength of the light to be exposed on the halftone mask. form. Therefore, the halftone mask having the light transmittance can be made into a concentric circle of concentric circles. In the halftone mask 20 used in this embodiment, the concentric shape centering on the center of the photoelectric element -27-200901451 conversion element 1 1 2 increases the number of white dots closer to the center, resulting in an increase in the number of white dots. The closer to the center opening forming portion 1 20a, the more the light transmittance increases concentrically. The halftone mask 120 of the present embodiment is a four-fold photomask having a size of 4 to 5 times the size of the pattern exposed on the surface of the negative-type color resist layer 18. Further, the pattern of the halftone mask 120 is reduced to 1/4 to 1/5 and exposed on the surface of the negative-type color resist layer 1 18 by using a step exposure apparatus (not shown). f, then, when developing the negative-type color resist layer 118, the plurality of portions exposed by the negative-type color resist layer 118, that is, only corresponding to the plurality of photoelectric conversions corresponding to the green colored layer and to be formed Part of the element 112 remains as the first colored layer 1 2 4 which is green centered on the center of the photoelectric conversion element 丨12. Fig. 4B shows a schematic side view of the coloring layer 124 obtained by developing the negative-type color resist layer 118 which has been subjected to pattern exposure by the halftone mask 120. The first colored layer 124 has a turned-up disk shape including: a side surface 124a perpendicular to the surface of the semiconductor substrate 110; and an inclined surface 124c which is opposite to the semiconductor substrate 1 10 in the side surface 124a The side of the side is inclined to approach the periphery of the flat end portion 124b of the first colored layer 146 as the first colored layer 124 approaches the flat end portion 14b on the side opposite to the semiconductor substrate 110. At this time, the depth GD ' of the inclined surface 1 2 4 c from the flat end portion 1 24b of the first colored layer 1 24 to the end on the side opposite to the side of the semiconductor substrate 1 1 侧面 in the side surface 1 24a is in this embodiment Department of appointment.  4 / z m, and the height SH of the side surface 124a of the side opposite to the side of the semiconductor substrate 110 from the side of the side surface 1 2 4 a -28- 200901451 to the ultraviolet absorbing layer i 丨 6 is about 0. 5 # m. Finally, the first colored layer 1 24 thus formed is subjected to a hard coat treatment. Next, in the present embodiment, a blue negative-type color resist layer 11 8 is formed on the ultraviolet absorbing layer 116. The blue negative-type color resist layer 118' is also repeatedly formed with reference to FIGS. 3B and 3C, and when the green first colored layer 124 is formed from the green negative-type color resist layer 118. The same pattern exposure step, development step, and hard film treatment step. As a result, in the blue negative-type color resist layer 118, each of the plurality of portions of the plurality of photoelectric conversion elements 1 1 2 that are formed corresponding to the blue coloring layer is formed as shown in FIG. 3D. A disk-shaped blue second colored layer 126 having a blue curved surface of a flat end portion 1 26b centered on the center of the corresponding photoelectric conversion element 112. The second colored layer 126 also includes: a side surface 126a perpendicular to the surface of the semiconductor substrate 110; and an inclined surface 126c which is inclined in the side surface 126a I from the side opposite to the side of the semiconductor substrate 110 The second colored layer 1 26 is adjacent to the flat end 126b on the side opposite to the semiconductor substrate 110 and is adjacent to the periphery of the flat end 126b of the second colored layer 126. Then, in the present embodiment, a red negative-type color resist layer 118 is formed on the ultraviolet absorbing layer 1 16 . The red negative-type color resist layer 118 is also repeatedly subjected to the same manner as in the case of forming the green first colored layer 124 from the green negative-type color resist layer 118 as described above with reference to FIGS. 3B and 3C. A pattern exposure step, a development step, and a hard film treatment step. As a result, in the red negative-type color resist layer 118, each of the plurality of portions of the plurality of photoelectric conversion elements 1 12 which are formed corresponding to the red layer -29-200901451 color layer and the third DD are shown. The green first colored layer 124 or the blue second colored layer 126 is the same, and is a red colored layer having a flat end portion centered on the center of the photoelectric conversion element 112. Further, in order to avoid the complexity of the drawing, the illustration of the third colored layer of red is omitted. The third colored layer, like the respective layers of the first colored layer 124 or the second colored layer 126, includes: a side surface perpendicular to the surface of the semiconductor substrate 110; and an inclined surface in which the semiconductor and the semiconductor are The end of the opposite side of the substrate 1 1 〇f is inclined to approach the periphery of the flat end of the third colored layer as the third colored layer approaches the flat end on the side opposite to the semiconductor substrate 110. Thus, a plurality of green first colored layers 124, blue second colored layers 126, and a plurality of blue colored layers 126 formed on the plurality of photoelectric conversion elements 112 of the photographic elements 141 via the ultraviolet absorbing layer 1 16 are arranged in a desired arrangement. A red third colored layer (not shown) is adjacent to each other and contacts the respective side faces 124a, 126a without a gap to constitute a color filter. Further, each of the flat first ends 124b, 126b, ... of the green first colored layer 124, the blue second colored layer 126, and the red third colored layer (not shown) and the inclined faces 124c, 126c The intersections of the ... are often rounded in the development step, and each of the inclined surfaces 124c, 126c, ... is also oriented toward the first colored layer 124, the second colored layer 126, and the third colored layer (not shown). The curved shape of the photoelectric conversion element 112 corresponding to each layer corresponding to each layer is curved, but it can be used for the purpose of the invention. Further, the perpendicularity of the -30-200901451 side faces 124a, 126a, ... of the first colored layer 124, the second colored layer 126, and the third colored layer (not shown) of the surface of the semiconductor substrate 110 is also As long as the cost of access is high, it is of course allowed to accompany a slight tilt. Further, each of the negative-type color resist layers 1 18 for forming the respective layers of the first to third colorings 126, which are different in color, is different, and as a result, the first to third colored layers 124, 126, ... are required. The color resist layer 118 of the type is different in sensitivity or development time during exposure. Therefore, in order to obtain the third colored layers 124, 126, ... from the three-layer negative-type color resist layer 118, the gray scale levels of the three halftone masks of the halftone masks 120 are naturally adjusted to the maximum. In any of the first to third colored layers 124, 126, ..., in order to obtain the third colored layer 124, 126, ... from the three-layer negative-type color resist layer 118, by using a gray-scale level In the halftone mask 120, the first to third colored layers 124 and the respective layers can be manufactured to have the function of optimally exhibiting the respective requirements. Further, in the second modification of the first embodiment described above, In the color imaging element of the embodiment, the first to third colored layers 124, 126, ... may be formed using photoresist. The color material added to the positive-type color resist layer 118 may be, but in consideration of heat resistance and light resistance, the organic pigment is further added as a color machine pigment in the alignment type color photoresist layer 118, and In the second embodiment of the first embodiment described above, the organic pigment in the positive color resist layer 118 is preferably 30% to 50%, more preferably about 40%. Moreover, in the narrow solid-state ratio in the positive-type color resist layer 118, the negative development degree of the i-layer 124, the pigment phase 3 layer is the same as that required for obtaining the desired spectral characteristics. One to the cover 120. 3 Suitable for shape formation. To the size of the first three different types 126, .... The situation is the positive color, although the dye is good. The solid state of the modified material of the first embodiment is the same as the case of the second modified example of the first embodiment, which is the same as the second modified example of the first embodiment. Joel.  4 // m. As described above, the thickness of each of the plurality of colored layers of the flat color filter required for the conventional color image pickup device is about lv m. Therefore, when a plurality of colored layers of a color filter are formed using a positive color resist, green and blue functions similar to those of the color layers of the respective flat color filters required for conventional color imaging elements are used. And the thickness SH of each part of the red color layer (ie, the portion surrounded by the side 124a or 126a rising from the ultraviolet absorbing layer 116) (refer to FIG. 3C), the organic pigment in the positive color resist The solid state ratio is in the range of 30% to 50% above, which is 0. 4/z m~0. 9/z m is preferred, and is 0. 5/z m~0. The best in the range of 7# m. Further, even in the case where each of the plurality of color layers 124, 126, ... of the color filter is formed using any one of a negative color resist and a positive color resist, it is also prevented from passing through adjacent adjacent colors. A part of the light of the layer enters to form a color mixture, and each of the side faces 4 124a, 126a, ... of the colored layers 124, 126, ... is away from the continuous inclined faces 124c, 126c, ... on the side of the semiconductor substrate 100, the distance The depths of the flat end portions 124a, 126a, ... of the plurality of colored layers 124, 126, ... are 0. 6 ym~O. It is better in the range of l^m. Further, a plurality of colored layers 124 are selected in accordance with the minimum thickness 〇·4 // m of each of the side faces 124a, 126a, ... which are required to obtain the desired spectral characteristics as described above. The thickness of each of 126, ... is equal to or smaller than the thickness of the conventional flat color filter of about l#m. Further, the imaging element U 4 ′ used in the present embodiment may be a photographic element having a general structure including a CMOS imaging element or a CCD imaging element which has been widely used as described above in the above-mentioned -32-200901451, and may be added The imaging element having a structure in which the amount of light of the photoelectric conversion element 112 is incident on the semiconductor substrate 11A and the photoelectric conversion element 112 is disposed closer to the surface of the semiconductor substrate 110 than the imaging element of the general structure that has been conventionally used. Further, in the photoelectric conversion element of the photographic element of the latter structure, since the light is incident at a wider angle than the photoelectric conversion element of the photographic element of the general structure which is widely used in the past, the above can be more preferably obtained. f: the prevention effect of the color mixture described above, which is formed by the respective layers of the plurality of colored layers 124, 126, ... of the color filter formed in the side faces 124a, 126a, ... from the semiconductor substrate 110 The end of the side is caused by each of the inclined surfaces 124c, 126c, ... which are inclined toward the periphery of each of the flat end portions 124b, 126b, .... In the color imaging element of the second embodiment shown in the third (D) diagram of the above-described configuration, the coloring elements of the plurality of colored layers 1 24, 1 26, ... are obliquely incident on the color filter. The light ray IL in the vicinity of the adjacent coloring layer may not pass through the adjacent coloring layers 124, 126, ... by the respective effects of the inclined surfaces 124c, 126c, ... of the adjacent coloring layers 124, 126, ... The peripheral portions of the flat end portions 124b, 126b, ... are incident on the coloring layer 124 or 126 or ... of each layer. Therefore, unlike the case of the conventional color image pickup device described above with reference to Figs. 8 and 9, the color of the coloring layer 124, 126 or ... incident on each layer does not cause color mixing. [Third Embodiment] Next, a method of manufacturing a color filter made of the second embodiment of the present invention by using the color filter of the second embodiment of the present invention will be described with reference to FIGS. 5A and 5B. Manufacture of a color photographic element of a third embodiment in which a plurality of lenticular layers 124, 126, ... are formed in a color filter including a plurality of color layers 124, 126, ... method. In the third embodiment, as shown in Fig. 5A, the flat end portion 124b of the plurality of color layers 124, 126, ... of the color imaging element manufactured by the color former manufacturing method of the first embodiment is used. On the 126b, ..., the planarization layer 130 is formed using a transparent resin. In this embodiment, the flattening f, the layer 1 30 has a thickness of about 1 // m, for example, formed by a thermosetting acrylic transparent resin. The planarization layer 130 is also embedded in a groove formed between the inclined faces 124c, 126c, ... of the side faces 124a, 126a, ... of the plurality of color layers 124, 126, ..., and in the plural color A flat surface is provided on the layers 24, 126, . On the flat surface of the planarizing layer 130, for example, a phenol resin having a heat reflow property is applied by a means such as a spin coating method to form a lens master layer (not shown). The lens master layer (not shown) in this embodiment has about 0. 4vm thickness. Further, the lens master layer is subjected to pattern exposure and development according to a well-known photolithography technique to obtain a predetermined pattern. By heating the predetermined pattern and performing thermal reflow, the center of each of the hemispherical lens master 132 and the plurality of color layers 124, 126, ... is formed and formed on the surface of the flattening layer 130. Next, the planarizing layer 130 is dry-etched by using a well-known dry etching apparatus, for example, an etching gas using a fluorocarbon gas such as CF4 or C3FS as a mask. Then, by transferring the shape of the lens master 1 3 2 -34- 200901451 to the planarization layer 130, the planarization layer 130 is processed, as shown in Fig. 5, for formation. In order to increase the concentration of the microlens 134 of the photoelectric conversion element 12 corresponding to each of the plurality of color layers 124, 126, ..., in this embodiment, the microlens 134 has about 0. 5 # m height. Further, the dry etching for the planarization layer 130 stops before reaching each of the inclined faces 124c, 126c, ... of the plurality of color-developing layers 1 24, 126, ... to prevent the tilt of the plurality of color layers 124, 126, ... Each of the faces 124c, 126c, ... becomes a rough surface due to dry etching. Therefore, in the side faces 124a, 126a, ..., the inclined faces 124c, 126c which are continuous with the end opposite to the semiconductor substrate 110, Each of the plurality of color layers 124, 126, ... can sufficiently exhibit the respective spectral characteristics of the plurality of color layers 124, 126, .... Further, the planarization layer 130 is made of a resin having a benzene ring as a skeleton. When the ultraviolet absorber having a benzene ring or the like is formed or the like, the surface roughness accompanying the dry etching can be suppressed. Further, the optical properties of the microlens 134 formed by the planarization layer 130 can be further improved by: dry etching. Further, even in the color photographic element shown in Fig. 5B which is manufactured by the manufacturing method of the third embodiment described above and configured as described above, the respective layers of the plurality of colored layers 124, 126, ... are obliquely incident. phase The light IL in the vicinity of the colored layer can also be flattened by the adjacent colored layers 124, 126, ... by the respective effects of the inclined faces 124c, 126c, ... of the adjacent colored layers 124, 126, ... The peripheral portions of the end portions 124b, 126b, ... are incident on each of the plurality of coloring layers 124, 126, .... Therefore, as in the case of the above-described conventional color imaging elements of Figs. 8 and 9 - 35 - 200901451, the light incident on each layer of the plurality of colored layers 124 or 126... does not cause color mixing. Further, in this embodiment, the micro-forms corresponding to the respective color layers 1 24, 126, ... are formed. The lens 134 is formed in a hemispherical shape. However, in the case where the sensitivity centers of the corresponding photoelectric conversion elements 12 are arranged to deviate from the center of the corresponding pixel, the respective lenses 134 are concentrated in the corresponding photoelectric conversion elements 1 2 . The sensitivity center can be formed into an asymmetrical longitudinal cross-sectional shape as shown by the two-dot chain line in Fig. 5B. Therefore, f is formed by not being formed from the flat surface of the planarization layer 130. Lens master When the lens master 132 is formed by pattern exposure and development according to a known photolithography technique, the distribution of black dots (or white dots) of a halftone mask (not shown) used for pattern exposure is made asymmetric. However, it can be easily achieved. The asymmetric longitudinal cross-sectional shape of the lens master 1 2 2 produced in this manner is shown by the two-dot chain line in Fig. 5A. This shape of the longitudinal section of the lens master 1 32 In the fifth drawing of the microlens 134 formed from the lens master 1 32, the asymmetrical longitudinal cross-sectional shape indicated by the two-dot chain line is the same. [Fourth Embodiment] Next, referring to FIG. 6A In the case of FIG. 6C, the coloring layers 124, 126, ... of the color imaging elements manufactured by the color filter manufacturing method according to the second embodiment of the present invention will be described with reference to FIGS. 3A to 4B. A method of manufacturing a color imaging element according to a fourth embodiment in which a plurality of microlenses are formed in a plurality of microlenses in correspondence with a plurality of color layers 124, 126, . In the fourth embodiment, as shown in Fig. 6A, the flat portion of the color layers 124, 126, ... of the color filter of the color photographic element is flat - 36 - 200901451 end portion 1 2 4 b, The planarization layer 1 30 is formed of a transparent resin on 1 2 6 b, . In this embodiment, the planarizing layer 130 has a thickness of about 1 #m, for example, formed of a thermosetting acrylic transparent resin. The planarization layer 130 is also embedded in the end opposite to the semiconductor base 110 of the side faces 124a, 126a, ... of the plurality of color layers 124, 126, ... toward the flat ends 1 24b, 126b, A groove formed between the continuous inclined faces 124c, 126c, ... of the periphery, and a flat surface provided on the plurality of color layers 124, 126, .... (» The engraving control layer 140 is formed on the flat surface of the planarization layer 130. In this embodiment, the etching control layer 140 has a thickness of about 1 vm, for example, formed using a photosensitive phenol novolak resin. On the flattening layer 140, for example, a phenol resin having a heat reflow property is applied by a means such as a spin coating method to form a lens mother mold layer (not shown). In this embodiment, a lens mother (not shown) is used. The mold layer has about 0. 4 " thickness of m. Further, in this lens mother mold layer, pattern exposure and development are carried out according to well-known photolithography techniques, whereby a predetermined pattern is obtained. By heating the predetermined pattern and performing thermal reflow, the centers of the hemispherical lens masters 142 and the plurality of color layers 124, 126, ... are coincident and formed on the surface of the etch control layer 140. . When the etching control layer 140 is formed of a resin having a benzene ring as a skeleton or an ultraviolet absorber having a benzene ring or the like is added, surface roughness accompanying dry etching can be suppressed. Further, the etching control layer 140 may be formed of a thermosetting resin or an alkali developable photosensitive resin. Next, the etching control layer 140 is dry etched using a well-known dry etching apparatus, for example, a mixed gas of -37-200901451 CF4 and C4F8 using an etching gas as a mask. Then, the etching control layer 140 is processed by transferring the shape of the lens master 1 42 to the etching control layer 140, as shown in FIG. 6B, and the intermediate lens 144 is formed on the planarization layer 130. Above. In this embodiment, the etching rate of the etching control layer 140 is set to be slower than the etching rate of the lens master 142. Therefore, the effect of the dry etching on the etching control layer 140 is delayed, and the surface roughness of the intermediate lens 1 44 formed by the dry etching from the etching control layer 140 can be suppressed. Next, the etching gas supplied to the well-known dry etching apparatus is made only of CF4, and the intermediate lens 144 is used as a mask to dry-etch the planarization layer 130. Then, the planarization layer 130 is processed by transferring the shape of the intermediate lens 144 to the planarization layer 130, as shown in FIG. 6C, to form a plurality of microlenses 146 for improving the pair and the complex number. The condensing power of the plurality of photoelectric conversion elements 1 12 corresponding to the color layers 124, 126, . In this embodiment, the microlens 146 has about 0. 5#m height. Further, the dry etching for the planarization layer 130 is stopped before reaching each of the inclined faces 124c, 126c, ... of the plurality of color-developing layers 1 24, 126, ... to prevent the inclined faces of the plurality of color layers 124, 126, ... Each of 124c, 126c, ... becomes rough due to dry etching. Therefore, the coloring layers 124, 126, ... of the plurality of inclined surfaces 124c, 12 6c, ... can sufficiently exhibit the original spectral characteristics of the color filter. Further, the planarizing layer 130 is formed by using a resin having a benzene ring as a skeleton, or when an ultraviolet absorber having a benzene ring or the like is added, and the surface roughness accompanying dry etching can be suppressed. Further, the optical performance of the microlens 134 formed by the dry etching -38 - 200901451 from the planarization layer 13 can be further improved. In the fourth embodiment, an etching control layer 140 for suppressing surface roughness caused by dry etching is formed on the planarization layer 130, and a lens master is formed on the surface of the etching control layer 140. The intermediate lens 14 4 is precisely transferred from the lens master 142 to the etch control layer 1 400 by dry etching. Further, the shape of the intermediate lens 1 44 is transferred to the planarization layer 130 by dry etching, whereby the microlens 146 is formed. Therefore, the surface roughness of the microlens 146 by dry etching in the fourth embodiment is much more directly formed on the planarization layer by dry etching than in the third embodiment described with reference to Fig. 5A and Fig. 5B. The shape of the lens master 1 32 of the surface of 1 30 is transferred to the planarization layer 130 to form the microlens 134. That is, the optical performance of the microlens 146 formed in the fourth embodiment is better than that of the microlens 134 formed in the third embodiment. Further, even in the color photographic element shown in Fig. 6C, which is manufactured according to the manufacturing method of the fourth embodiment described above and configured as described above, the layers of the plurality of colored layers 124, 126, ... are obliquely incident adjacent to each other. The light IL of the vicinity of the coloring layer I can also pass through the flat surfaces of the adjacent coloring layers 124, 126, ... by the effects of the inclined surfaces 124c, 126c, ... of the adjacent coloring layers 124, 126, .... The peripheral portions of the end portions 124b, 126b, ... are incident on each of the plurality of coloring layers 124, 126, .... Therefore, unlike the case of the above-described conventional color imaging element of Fig. 8 or Fig. 9, the light incident on each of the coloring layers 124, 126, ... of each layer does not cause color mixing. Further, in this embodiment, the microlenses 146 formed corresponding to the respective color layers 1 2 4, 126, ... are made hemispherical. However, each of the microlenses 146 is concentrated in the center of sensitivity of the corresponding photoelectric conversion element 1 1 2 in the case where the center of the sensitivity -39 - 200901451 of the corresponding photoelectric conversion element 112 is disposed to deviate from the center of the corresponding pixel. It can be made into an asymmetrical longitudinal cross-sectional shape as shown by the two-dot chain line in Fig. 6C. Therefore, when the lens master 142 is formed by pattern exposure and development from a lens master layer (not shown) on the etching control layer 140 according to a known photolithography technique, it is used for pattern exposure. The distribution of black dots (or white dots) of a halftone mask (not shown) becomes asymmetrical, and can be easily achieved. The asymmetrical longitudinal Γ cross-sectional shape of the lens master mold 142 produced in this manner is as shown in Fig. 6A. This shape of the longitudinal section of the lens master 142 is the sixth of the microlenses 134 formed on the planarization layer 130 via the lens master 142 via the intermediate lens 144 formed on the uranium engraving control layer 140. In the C diagram, the asymmetrical longitudinal cross-sectional shape shown by the two-dot chain line is the same. [Fifth Embodiment] Next, referring to Figs. 7A and 7B, a description will be given of a method of manufacturing a color filter according to a second embodiment of the present invention described above with reference to Figs. 3A to 4B. A method of manufacturing a color imaging element according to a fifth embodiment in which a plurality of microlenses are formed on a plurality of colored layers 124, 126, ... of a color filter of a color imaging element. In the fifth embodiment, as shown in Fig. 7A, a transparent negative type is formed on the flat end portions 124b, 126b, ... of the plurality of color layers 124, 126, ... of the color filter of the color image sensor. After the color resist layer 150, a halftone mask 152 is used, and the flat ends 124b, 126b, ... of the plurality of color layers 124, 126, ... are correspondingly exposed to a predetermined pattern. The predetermined pattern corresponds to the flat ends 124b, 12 6b, ... of the plurality of color layers 124, 126, ... in the negative -40 - 200901451 color photoresist layer 150 by the development processing after the exposure. Each of the plurality of portions is formed at the center of each of the flat end portions 124b, 126b, ..., and more specifically, the center of each of the plurality of photoelectric conversion elements 12 corresponding to the plurality of color layers 124, 126, ... The shape of the concentric microlens. The structure of the halftone mask 152 used here is a negative color of a predetermined color in the color filter manufacturing method according to the second embodiment of the present invention described above with reference to FIGS. 3A to 4B. The color resist layer 118 is formed by the coloring layer 24 or 26 or the like which is formed to form a predetermined size and is the same as the halftone mask 1 20 used for pattern exposure of the negative color resist layer 118 of a predetermined color. A pattern shape which differs from the halftone mask 1 20 only in accordance with the difference in the shape of the object to be formed by development. The microlens 156 formed by pattern exposure and development from the negative-type color resist layer 150 and the color filter manufacturing method according to the third embodiment of the present invention described above with reference to FIGS. 5A and 5B are dry-etched from use. The microlens 134' processed by the transparent resin flattening layer 130 or the color filter manufacturing method of the fourth embodiment of the present invention described above with reference to FIGS. 6A to 6C is dry etching using the etching control layer 140 and The processing step is simpler than that of the microlens 146 processed by the planarizing layer 130 of the transparent resin, and the surface roughness is as small as that of the microlens 1 46 formed in the fourth embodiment. That is, the optical performance of the microlens 156 formed in the fifth embodiment is much better than that of the microlens 146 formed in the fourth embodiment than the optical performance of the microlens 134 formed in the third embodiment. good. Even in the color photographic element shown in Fig. 7B, which is manufactured as described above and manufactured as described above in the manufacturing method of the fifth embodiment, obliquely with respect to each of the plurality of colored layers 124, 126, ... The light ray IL entering the vicinity of the adjacent coloring layer can also pass through the adjacent coloring layers 124, 126, ... by the effect of the inclined surfaces 124c, 126c, ... of the adjacent coloring layers 124, 126, ... The peripheral portions of the flat end portions 124b, 126b, ... are incident on each of the plurality of coloring layers 1 24, 1 26, .... Therefore, unlike the case of the above-described conventional color imaging element of Fig. 8 or Fig. 9, the light incident on each of the plurality of colored layers 124, 126, ... does not cause color mixing. f ": Further, even in this embodiment, the microlenses 156 formed corresponding to the respective color layers 124, 126, ... are made hemispherical. However, in the case where each of the microlenses 156 is disposed at a center of sensitivity of the corresponding photoelectric conversion element 112 to deviate from the center of the corresponding pixel, in order to concentrate the light on the sensitivity center of the corresponding photoelectric conversion element 1 1 2, The asymmetric longitudinal cross-sectional shape shown by the two-dot chain line in Fig. 7B. Therefore, the distribution of the black dots (or white dots) of the halftone mask (not shown) used when the microlens 1 6 6 is formed by pattern exposure and development from the negative-type color resist layer 150 becomes asymmetrical, and Can be achieved simply. Also, in accordance with the above. In the color imaging element of the embodiment, the microlens 156 formed in correspondence with each of the plurality of color layers 124, 126, ... is produced using a negative color resist. However, the microlens 156 can also be fabricated using a positive color resist. [Industrial Applicability] A color photographic element is used to convert an optical image into an electrical image and generate an electrical signal corresponding to an optical image for use in, for example, a television camera or a video camera or an electronic still camera. Wait. -42-200901451 [Brief Description of the Drawings] FIG. 1A is a view showing a photographic element including a semiconductor substrate including a plurality of photoelectric conversion elements before the color filter is formed by the color imaging element manufacturing method according to the first embodiment of the present invention. A longitudinal profile view. In the method of manufacturing a color imaging element according to the first embodiment of the present invention, the ultraviolet absorbing layer and the first negative-type color resist layer are formed on the semiconductor substrate of the imaging element of the first embodiment. A longitudinal sectional view of a condition in which exposure processing is performed using a halftone mask. f The first C diagram schematically shows that the first negative-type color resist layer subjected to the exposure processing in the second drawing is subjected to development processing, and then subjected to a hardening treatment to form a first coloring of a desired sectional shape. A longitudinal section of the condition of the layer. 1D is a schematic view showing a second negative-type color photoresist layer having a color different from that of the first negative-type color photoresist layer in FIG. 1B on the semiconductor substrate with the first colored layer obtained in FIG. 1C. And applying the above-mentioned exposure processing, development processing, and hard coating treatment to the second negative-type color photoresist layer of the different colors with reference to FIGS. 1B and 1C, and the first colored layer A longitudinal cross-sectional view of the condition in which the second colored layer is formed in the same manner as the first colored layer. Fig. 2A is a schematic plan view of the halftone mask used in Fig. 1B. 2B is a pattern in which the surface of the negative-type color resist layer on the ultraviolet absorbing layer is patterned by using the halftone mask shown in FIG. 2A in FIG. 1B, and then the negative-type color resist layer is developed. The convex hemispherical coloring layer and the ultraviolet absorbing layer obtained by the hard film treatment are enlarged together with a side view of -43-200901451. Fig. 3A is a schematic longitudinal cross-sectional view showing a photographic element before the color filter is formed by the method of manufacturing a color photographic element according to the second embodiment of the present invention. 3B is a schematic diagram showing a method of manufacturing a color imaging element according to a second embodiment of the present invention, in which an ultraviolet absorbing layer and a first negative-type color resist layer are formed on a semiconductor substrate of a photographic element of FIG. A longitudinal cross-sectional view of the condition in which the halftone mask is subjected to exposure processing. f 3C is a schematic view showing a state in which the first negative-type color resist layer subjected to the exposure processing in FIG. 3B is subjected to development processing, and then subjected to a hard film treatment to form a first colored layer having a desired cross-sectional shape. Longitudinal section view. 3D is a schematic view showing a second negative-type color photoresist layer having a color different from that of the first negative-type color photoresist layer in FIG. 3B on the semiconductor substrate with the first colored layer obtained in FIG. 3C. And applying the above-mentioned exposure processing, development processing, and hard coating treatment to the second negative-type color photoresist layer of the different colors with reference to FIGS. 3B and 3C, and the first colored layer A longitudinal cross-sectional view of the condition in which the second colored layer is formed in the same manner as the first colored layer. Fig. 4A is a schematic plan view of the halftone mask used in Fig. 3B. 4B is a pattern of the negative color photoresist layer on the ultraviolet absorbing layer after pattern exposure using the halftone mask shown in FIG. 4A in FIG. 3A, and then developing the negative color photoresist layer. A side view of the convex hemispherical coloring layer and the ultraviolet absorbing layer which are obtained by the hard film treatment are enlarged and shown. -44 - 200901451 Figure 5A is a schematic representation of the third embodiment of the color photographic element produced by the color photographic method of the second embodiment of the present invention. A longitudinal cross-sectional view of a preparation step of a method of manufacturing a color imaging element according to an embodiment. Fig. 5B is a view showing the color of the color photographic element produced by the color photographic element f of the second embodiment of the present invention described above with reference to Figs. 3A to 4B in the third embodiment of the photographic element manufacturing method of the present invention. 5A is a preparation step, and a longitudinal section of the state in which the microlens is formed. FIG. 6A is a schematic view showing a color photography unit according to the second embodiment of the present invention with reference to the third embodiment. A longitudinal cross-sectional view of a micro-preparation step of the color imaging element manufacturing method according to the fourth embodiment is further formed on the color filter of the color imaging element. Fig. 6B is a schematic view showing a fourth embodiment of the present invention: a microscopic process shown in Fig. 6A of the photographic element manufacturing method, and a longitudinal section of the intermediate step of the microlens forming step 6C. The intermediate step of forming the microlens of FIG. 6A and the microlens of FIG. 6B, and the filtering of the color photographic element manufactured by the method for manufacturing the second embodiment of the present invention described above with reference to FIG. A longitudinal section of the condition of the mirror on the color. Fig. 7A is a schematic diagram showing the use of the color photographing element g 4B of the second embodiment of the present invention with reference to the third embodiment to the color map of the form of the present invention. A microlens pattern of the manufacturing method. In the 4B drawing, the lens of the present invention forms a quasi-morphological color mirror formation preparation map. 〖Formation preparation step 3 至 to the first: color photography element to form a micro-transmission 4 Β 在 在 在 在 在 在 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 5 is a longitudinal cross-sectional view of a microlens formation preparation step of the color imaging element manufacturing method of the embodiment. FIG. 7B is a view showing a method of manufacturing a color imaging element according to a fifth embodiment of the present invention, and a method of manufacturing a color imaging element according to a second embodiment of the present invention described above with reference to FIGS. 3A to 4B. The color filter of the manufactured color photographic element is followed by a microlens formation preparation step of Fig. 7A, and a longitudinal sectional view of the state of the microlens is formed. The figure 8 is a schematic longitudinal cross-sectional view of a conventional color photographic element in which a microlens is placed on a color filter in order to extract the light sensitivity of the photographic element. Fig. 9 is a schematic longitudinal cross-sectional view showing a conventional color imaging element in which the electric conversion element is placed on the semiconductor substrate of the imaging element as close as possible to the surface of the semiconductor substrate in order to improve the light sensitivity of the imaging element. [Main component symbol description] 10 semi-conductor base plate 12 optical and electrical conversion element 14 photo element 16 ultraviolet line absorption layer 18 negative color color photoresist layer 20 half color tone mask 24 first color layer 24a , 2 6 a end 24b ' 26b . Side 26 second color layer -46 -

Claims (1)

200901451 十、申請專利範圍: 1. 一種彩色攝影元件,係具備··半導體基板(10、110),其 包含有複數個光電轉換元件(12、112);及濾色器,其包 含對應於半導體基板之複數個光電轉換元件而設置的複 數著色層(24、26、124、126); 該彩色攝影元件之特徵爲: 濾色器之複數著色層(24、26、124、126)各自包含:側 面(24b、26b、124a、126a),係相對於半導體基板(10、1 10) / 之表面而呈豎立;及傾斜面(1 24c、1 26c) ’係從在該側面 位於和半導體基板相反之側的端朝向在著色層中位於和 半導體基板相反之側之端部(24a、26a、124b、126b)而連 續; 該複數著色層(24、26、124、126)係配置成使各自之側 面(24b、26b、124a、126a)無間隙地接觸。 2. 如申請專利範圍第1項之彩色攝影元件,其中該著色層 (24、26)的該端部(24a、26a)係具有朝向和對應之該光電 轉換元件(1 2)相反之側突出的曲面形狀。 3. 如申請專利範圍第2項之彩色攝影元件,其中該複數著 色層(24、26)係包含具有非對稱的縱向截面形狀之至少一 層的著色層。 4. 如申請專利範圍第2項之彩色攝影元件,其中該著色層 (2 4、2 6)的該傾斜面係具有朝向和對應之該光電轉換元件 (1 2)相反之側突出的曲面形狀。 5. 如申請專利範圍第2項之彩色攝影元件’其中該著色層 (24、26)的該側面(24b、26b)係具有0.4 # m〜0.9 # m之範 -47- 200901451 圍的高度,而且,將從在該側面(24b、26b)中位於和半導 體基板(1 0)相反之側的該端至在著色層位於和半導體基 板反側之該端部(24 a、26 a)爲止的高度設定成1.8/zm〜0.1 /t m之範圍。 6. 如申請專利範圍第1項之彩色攝影元件,其中該著色層 (24、26、124、126)係藉由將彩色光阻層(18、1 18)進行曝 光並顯影而形成。 7. 如申請專利範圍第6項之彩色攝影元件,其中該彩色光 f 阻層(18、118)係正型彩色光阻層。 8. 如申請專利範圍第1項之彩色攝影元件,其中紫外線吸 收層(16、116)位於該半導體基板(10、110)和該濾色器之 間。 9. 如申請專利範圍第1項之彩色攝影元件,其中該著色層 (124、126)之該端部(124b、126b)係包含和該傾斜面 (124c、126c)交叉的平坦面。 1 0 .如申請專利範圍第9項之彩色攝影元件,其中該著色層 (124、126)之該傾斜面(124c、126c)係具有朝向和對應之 ¢. 該光電轉換元件(1 12)相反之側突出的曲面形狀。 11. 如申請專利範圍第9項之彩色攝影元件,其中微透鏡 (134、146、156)係疊層於該著色層(124、126)之該端部 (124b,126b)的該平坦面。 12. 如申請專利範圍第11項之彩色攝影元件,其中在該著 色層(124、126)之該端部(124b、126b)的該平坦面上形成 透明樹脂之平坦化層(30),該微透鏡(134、146)係藉由將 該平坦化層(30)進行加工而形成。 -48- 200901451 13.如申請專利範圍第11項之彩色攝影元件’其中於該著 色層(124、126)之該端部(124b、126b)的該平坦面上疊層 的複數個微透鏡(1 34、146)係包含具有非對稱的縱向截 面形狀之至少一個的微透鏡。 1 4 .如申請專利範圍第9項之彩色攝影元件’其中該著色層 (124、126)的該側面(124a、126a)具有 〇.4;am~0.9/zm 之 範圍的高度,而且,將從在該側面位於和半導體基板(1 10) 相反之側的該端至在著色層位於和半導體基板相反之側 之該端部(12 413、12 61))爲止的高度設定成0.6#111~0.1// m之範圍。 15.—種彩色攝影元件製造方法,其係具備有: 彩色光阻層形成步驟,其在包含有複數個光電轉換元 件(12、1 12)之半導體基板(10、1 10)上形成既定的彩色光 阻層(1 8、1 1 8):及 著色層形成步驟,其將彩色光阻層(18、118)進行曝光 並顯影,藉以對應既定的光電轉換元件(12、1 12)而形成 著色層(24 、 26 、 124 、 126); 藉由重複地進行彩色光阻層形成步驟及該著色層形 成步驟多次,而對應於半導體基板(10、110)之複數個光 電轉換元件(12、112)並形成包含彼此相鄰的複數著色層 (24、26、124、126)之濾色器, 該彩色攝影元件製造方法之特徵爲: 在該著色層形成步驟中,著色層(24、26、124、126) 被形成爲包含:側面(24b、26b、124a、126a),其相對於 半導體基板之表面而呈豎立;及傾斜面(124c、126c), -49- 200901451 其從在該側面位於和半導體基板(10、1 10)反側的端朝向 在著色層中位於和半導體基板反側之端部(丨24b、i26b) 而連續; 藉由重複地進行該彩色光阻層形成步驟及該著色層 形成步驟多次,而複數著色層(24、26、124、126)各自 係配製成使各自之側面(24b、26b、124a、126a)無間隙地 接觸,藉以形成濾色器。 16. 如申請專利範圍第15項之彩色攝影元件製造方法,其 f 中, 又具備有紫外線吸收膜層形成步驟,其在包含複數個 光電轉換元件(12、11 2)之半導體基板(10、110)上形成紫 外線吸收膜層(16、1 16); 該彩色光阻層形成步驟及該著色層形成步驟係在利用 該紫外線吸收膜層形成步驟而形成於半導體基板(1 〇、 110)上之該紫外線吸收膜層(16、116)上進行。 17. 如申請專利範圍第15項之彩色攝影元件製造方法,其 [,.; 中該彩色光阻層(1 8 ' 11 8)之彩色光阻係負型彩色光阻 層’其將使有機顏料分散於透明樹脂和溶劑的顏料分散 體、光起動劑、光聚合性單體、以及混合溶劑之著色組 成物’其有機顏料濃度係重量固態比爲1 〇 ~ 5 0 %,且光起 動劑和光聚合性單體之比係〇.2 ~0.5。 1 8 .如申請專利範圍第1 5項之彩色攝影元件製造方法,其 中又具備有: 平坦化層形成步驟,其利用透明樹脂將平坦化層(1 30) 形成於該濾色器上;及 -50- 200901451 微透鏡形成步驟,其將平坦化層(130)進行加工,對應 該濾色器之複數著色層(124、126)而形成微透鏡(134、 146) ° 19.如申請專利範圍第u項之彩色攝影元件製造方法,其 中微透鏡形成步驟具備有: 微透鏡母模形成步驟,其將微透鏡母模(132)形成於該 平坦化層(130)上;及 乾蝕刻步驟,其將微透鏡母模U32)作爲遮罩並進行乾 蝕刻,將微透鏡母模(132)的形狀轉印於平坦化層U30) ,藉以從平坦化層形成微透鏡(134) ° -51-200901451 X. Patent Application Range: 1. A color photographic element comprising: a semiconductor substrate (10, 110) comprising a plurality of photoelectric conversion elements (12, 112); and a color filter comprising a semiconductor corresponding to a plurality of colored layers (24, 26, 124, 126) provided by a plurality of photoelectric conversion elements of the substrate; the color photographic elements are characterized by: a plurality of colored layers (24, 26, 124, 126) of the color filter each comprising: The side faces (24b, 26b, 124a, 126a) are erected with respect to the surface of the semiconductor substrate (10, 10 10) /; and the inclined faces (1 24c, 1 26c) ' are located opposite to the semiconductor substrate from the side faces The side of the side is continuous toward the end portions (24a, 26a, 124b, 126b) on the side opposite to the semiconductor substrate in the colored layer; the plurality of colored layers (24, 26, 124, 126) are configured such that their respective The side faces (24b, 26b, 124a, 126a) are in contact without a gap. 2. The color photographic element of claim 1, wherein the end portion (24a, 26a) of the colored layer (24, 26) has a side opposite to the corresponding side of the photoelectric conversion element (12). Surface shape. 3. The color photographic element of claim 2, wherein the plurality of color layers (24, 26) comprise a coloring layer having at least one layer having an asymmetric longitudinal cross-sectional shape. 4. The color photographic element of claim 2, wherein the inclined surface of the colored layer (2 4, 26) has a curved shape that protrudes toward a side opposite to the opposite side of the photoelectric conversion element (12). . 5. The color photographic element of claim 2, wherein the side (24b, 26b) of the colored layer (24, 26) has a height of 0.4 #m~0.9#m-47-200901451, Further, from the end on the side opposite to the semiconductor substrate (10) in the side faces (24b, 26b) to the end portion (24a, 26a) on the opposite side of the semiconductor substrate from the colored layer. The height is set to a range of 1.8/zm to 0.1 /tm. 6. The color photographic element of claim 1, wherein the colored layer (24, 26, 124, 126) is formed by exposing and developing the color photoresist layer (18, 186). 7. The color photographic element of claim 6 wherein the colored light resist layer (18, 118) is a positive color photoresist layer. 8. The color photographic element of claim 1, wherein the ultraviolet absorbing layer (16, 116) is located between the semiconductor substrate (10, 110) and the color filter. 9. The color photographic element of claim 1, wherein the end portions (124b, 126b) of the colored layer (124, 126) comprise flat faces that intersect the inclined faces (124c, 126c). 10. The color photographic element of claim 9, wherein the inclined faces (124c, 126c) of the colored layer (124, 126) have an orientation and a corresponding orientation. The photoelectric conversion element (1 12) is opposite The curved shape that protrudes from the side. 11. The color photographic element of claim 9, wherein the microlens (134, 146, 156) is laminated on the flat surface of the end portion (124b, 126b) of the colored layer (124, 126). 12. The color photographic element of claim 11, wherein a planarization layer (30) of a transparent resin is formed on the flat surface of the end portion (124b, 126b) of the colored layer (124, 126), The microlenses (134, 146) are formed by processing the planarization layer (30). -48- 200901451 13. A color photographic element as claimed in claim 11 wherein a plurality of microlenses are laminated on the flat surface of the end portions (124b, 126b) of the colored layer (124, 126) 1 34, 146) is a microlens comprising at least one of asymmetrical longitudinal cross-sectional shapes. 1 4 . The color photographic element of claim 9 wherein the side (124a, 126a) of the colored layer (124, 126) has a height in the range of 〇.4; am~0.9/zm, and The height from the end on the side opposite to the semiconductor substrate (1 10) on the side to the end (12 413, 12 61) on the side opposite to the semiconductor substrate is set to 0.6 #111~ A range of 0.1//m. 15. A method of manufacturing a color photographic element, comprising: a color photoresist layer forming step of forming a predetermined semiconductor substrate (10, 1 10) including a plurality of photoelectric conversion elements (12, 1 12) a color photoresist layer (18, 1 18): and a coloring layer forming step of exposing and developing the color photoresist layer (18, 118) to form a corresponding photoelectric conversion element (12, 1 12) a colored layer (24, 26, 124, 126); a plurality of photoelectric conversion elements corresponding to the semiconductor substrate (10, 110) by repeating the color photoresist layer forming step and the colored layer forming step a plurality of times And 112) and forming a color filter including a plurality of colored layers (24, 26, 124, 126) adjacent to each other, the color photographic element manufacturing method characterized by: in the colored layer forming step, the colored layer (24, 26, 124, 126) are formed to include: side faces (24b, 26b, 124a, 126a) erected with respect to the surface of the semiconductor substrate; and inclined faces (124c, 126c), -49-200901451 The side is located on the semiconductor substrate (10, 1 10) The side end faces are continuous in the colored layer at the ends opposite to the semiconductor substrate (丨24b, i26b); by repeating the color photoresist layer forming step and the colored layer forming step a plurality of times, the plurality of coloring The layers (24, 26, 124, 126) are each configured such that the respective sides (24b, 26b, 124a, 126a) are contacted without a gap, thereby forming a color filter. 16. The method of manufacturing a color photographic element according to claim 15, wherein the ultraviolet absorbing film layer forming step is further provided on a semiconductor substrate including a plurality of photoelectric conversion elements (12, 11 2). 110) forming an ultraviolet absorbing film layer (16, 16); the color resist layer forming step and the coloring layer forming step are formed on the semiconductor substrate (1 〇, 110) by using the ultraviolet absorbing film layer forming step The ultraviolet absorbing film layer (16, 116) is carried out. 17. The method of manufacturing a color photographic element according to claim 15 of the patent application, wherein the color photoresist layer (1 8 '11 8) of the color photoresist is a negative color photoresist layer A coloring composition in which a pigment is dispersed in a pigment dispersion of a transparent resin and a solvent, a photoinitiator, a photopolymerizable monomer, and a mixed solvent, and the organic pigment concentration is a solid-state ratio of 1 〇 to 50%, and a photoinitiator The ratio to the photopolymerizable monomer is 〇.2 ~ 0.5. The method of manufacturing a color photographic element according to the fifteenth aspect of the invention, further comprising: a planarization layer forming step of forming a planarization layer (1 30) on the color filter using a transparent resin; -50- 200901451 a microlens forming step of processing the planarization layer (130) to form a microlens (134, 146) corresponding to the plurality of colored layers (124, 126) of the color filter. The method of manufacturing a color photographic element according to item [5], wherein the microlens forming step is provided with: a microlens master forming step of forming a microlens master (132) on the planarization layer (130); and a dry etching step, The microlens master U32 is used as a mask and dry etched, and the shape of the microlens master (132) is transferred to the planarization layer U30), thereby forming a microlens from the planarization layer (134) ° -51-
TW096123159A 2007-06-27 2007-06-27 Color photography element and method of manufacturing color photography element TWI341583B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096123159A TWI341583B (en) 2007-06-27 2007-06-27 Color photography element and method of manufacturing color photography element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096123159A TWI341583B (en) 2007-06-27 2007-06-27 Color photography element and method of manufacturing color photography element

Publications (2)

Publication Number Publication Date
TW200901451A true TW200901451A (en) 2009-01-01
TWI341583B TWI341583B (en) 2011-05-01

Family

ID=44721663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096123159A TWI341583B (en) 2007-06-27 2007-06-27 Color photography element and method of manufacturing color photography element

Country Status (1)

Country Link
TW (1) TWI341583B (en)

Also Published As

Publication number Publication date
TWI341583B (en) 2011-05-01

Similar Documents

Publication Publication Date Title
TWI316636B (en) Solid-state image pick-up device
JP4857569B2 (en) Solid-state imaging device and manufacturing method thereof
TWI278991B (en) Solid image-pickup device and method of manufacturing the same
KR101114608B1 (en) Color image sensor and method for fabricating color image sensor
JP4710693B2 (en) Color image sensor and color image sensor manufacturing method
KR960016178B1 (en) Solid-state imaging device and method of manufacturing the same
JP2007316153A (en) Method of manufacturing microlens for color imaging element and microlens array for color imaging element
JP4984400B2 (en) Solid-state imaging device and manufacturing method thereof
JP4810812B2 (en) Color solid-state image sensor
KR102471568B1 (en) Solid-state imaging device and manufacturing method therefor
JP2005079344A (en) Solid state imaging apparatus and its manufacturing method
KR20190139196A (en) Solid-state image sensor and manufacturing method of a solid-state image sensor
JP4821415B2 (en) Color image sensor manufacturing method
TW200901451A (en) Color photography element and method of manufacturing color photography element
JP2009152315A (en) Image sensor and its manufacturing method
JP2008153331A (en) Color solid-state imaging element, and manufacturing method thereof
JP2008283115A (en) Manufacturing method for solid-state image pickup device
JP6536005B2 (en) Method of manufacturing color filter and color filter
JP2005197392A (en) Solid-state imaging device and its manufacturing method
JP6838394B2 (en) Solid-state image sensor and its manufacturing method
JP2005189710A (en) Method for manufacturing color filter, solid-state imaging apparatus, and camera
JP2008034509A (en) Method for manufacturing color solid-state imaging element
JP2002107534A (en) Method for manufacturing color imaging device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees