TW200844120A - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
TW200844120A
TW200844120A TW96148910A TW96148910A TW200844120A TW 200844120 A TW200844120 A TW 200844120A TW 96148910 A TW96148910 A TW 96148910A TW 96148910 A TW96148910 A TW 96148910A TW 200844120 A TW200844120 A TW 200844120A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
composite material
polymer material
fluid
composite
Prior art date
Application number
TW96148910A
Other languages
Chinese (zh)
Inventor
Adam Chaplin
Brian Wilson
Alan Wood
Original Assignee
Victrex Mfg Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victrex Mfg Ltd filed Critical Victrex Mfg Ltd
Publication of TW200844120A publication Critical patent/TW200844120A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Abstract

A process for preparing a composite material which comprises a polymeric material, for example a polyaryletherketone, and nanoparticles, the process comprising dispersing nanoparticles in a fluid to prepare a nanoparticles dispersion in said fluid; contacting the dispersion with one or more monomers to prepare a mixture comprising nanoparticles and one or more monomers; and polymerising the monomers to produce a composite material comprising nanoparticles dispersed in the polymeric material which is formed.

Description

200844120 九、發明說明: 【發明所屬之技術領域2 本發明係有關一種複合材料,特別但非排它地,係有 關一種製備摻混奈米顆粒之複合材料,例如富勒體 5 (fullerenes)且係呈例如奈米管形式之複合材料之方法。 【先前技術3 富勒體為含至少60個碳原子之分子碳物種。富勒體之 實例包括碳奈米管(SWNT)及多壁碳奈米管(mwNT)。 SWNT包括純碳中空分子共同聯結成為六角形聯結網路來 10形成中空圓柱體。碳奈米管為無縫,具有開放端或加帽端。 SWNT之直徑通常係於0·7奈米至2奈米之範圍且典型約為1 奈米。 曾經提示包含熱塑性聚合物及碳奈米管之複合材料。 例如W098/39250於申請專利範圍第丨22項中說明一種包含 15熱塑性聚合物其中埋設碳奈米管材料之複合材料。於12種 聚合物類別之表單中述及聚醚醚酮。但該案未曾含括如何 製備例如聚醚醚酮與碳奈米管之複合物。 SWNT及MWNT (及其它奈米顆粒)經常有高縱橫比, 傾向於彼此沾黏,難以分散於聚醚醚酮及/或難以提供有高 20 載荷量之此等材料之複合材料。 本發明之目的係解決前述問題。 C發明内容3 根據本發明之-第-面向,提供一種製備包含聚合物 料及奈米顆粒之複合材料之方法,其中該聚合物料係屬於 5 200844120 包括下列部分之聚合材料類別: a) 苯基部分; b) 酉同部分及/或礙部分;及 c) 醚部分及/或硫醚部分; 5 該方法包含下列步驟: (1)將奈米·分散於u來製備奈米齡於該流體 之一奈米顆粒分散體; ⑼讓⑴難備之分散體與-種或多種單體接觸,藉此 製備包含奈来顆粒及—種或多種單體之一混合物,其中該 10 一種或多種單體可經聚合來製造該聚合物料; (ηι)χκ &於…)所製備之混合物來製造包含奈米顆粒分 散於該聚合物料之一複合材料。 C實施方式】 奈米顆粒適合為根據PAS71(英國BS][核定)之定義,其 15中說明奈米顆粒為具有一個或多個維度約為100奈米或以 下之一顆粒。如此,此處所述奈米顆粒適合具有小於100奈 米之尺寸。於若干實施例中,奈米顆粒具有小於50奈米或 甚至小於10奈米之尺寸。 该等奈米顆粒可屬於此等顆粒中之任何類型。奈米顆 20粒可為有機、無機、或金屬。奈米顆粒之實例包括VGCF(氣 相生長碳纖維)、矽酸鋅奈米顆粒、奈米鑽石、奈米金屬(例 如金、氧化鐵)、碳奈米管(單壁及多壁)、小富勒體 (Fullente)、富勒體、碳巴克球(Buckyballs)/碳巴克紙 (Buckypaper)、碳奈米環、奈米陶瓷顆粒、二氧化鈦奈米顆 6 200844120 粒太萄勒體包合物、銘氧奈米顆粒、磁性材料諸如鋇鐵氧 體奈米顆粒、聚合奈米顆粒、經填灰石奈米顆粒。 忒複合材料包含界定一基體及額外材料分布於該基體 内部之該聚合材料,其中大部分額外材料係包含該奈米顆 5 粒。 當該奈米顆粒包含富勒體部分時,該富勒體部分適合 包括大部分碳奈米管。該碳奈米管可為SWNT或MWNT。 4田勒體部分較佳包含SWNT,或更佳大致上包含。 除非於此處另行定義,述及一種材料包括「大部分」 10 -種組分時,該特定組分之存在量係占該材料總重之至少 /〇適合至少70 wt%,較佳至少8〇 wt%,更佳至少9〇 wt/°特佳至少95 wt% ;且較佳該材料大致上係由該特定 組分所組成。 於該方法中,至少0.05wt%奈米顆粒,適合至少〇1〇 15 Wt/°’杈佳至少0·15 wt%,更佳至少〇·20 wt%,特佳至少〇·25 wt%奈米雜可分散於該分散體内。該分散體可包括低於2 wt%,適合低於丨wt%,較佳低於〇·6 ,更佳低於〇.4 wt%,特佳為〇.3wt%或以下之奈米顆粒。較佳至少〇15加% 至低於0.4 wt〇/〇之奈米顆粒分散於該分散體。步驟⑴所製備 20之該分散體中,奈米顆粒重量對流體重量之比係於謹15 至0.0035之範圍,特別係於〇 〇〇2至〇〇〇4之範圍。 該流體較佳包含大量有機材料其具有溶點至少為(TC, 適合至少為15t,較佳至少為贼,更佳至少為贼,特佳 至少為i〇〇°c。賴適合低於·。c,較佳低於25(rc,更佳 7 200844120 低於2〇〇〇 ’特佳低於15〇。〇。該有機材料具有沸點低於wo c ’較佳低於400°C。沸點可高於ii〇°C,較佳高於2〇〇°c。 較佳該流體可於該方法之步驟⑴)中作為聚合溶劑,亦 即其中於步驟(ii)所使用之該等一種或多種單體係溶解於 5其中或分散於其中之溶劑。該流體適合占步驟(ii)所使用之 /谷劑之總重量百分比之至少%wt%,較佳至少Μ wt〇/〇,更 佳至少80 wt°/〇,特佳至少95 wt%。於最佳實施例中,於步 驟⑴中奈米顆粒分散於其中之該流體實質上提供全部於步 驟(11)之聚合反應期間所存在之溶劑。 10 γ驟⑴所使用之流體之身分將依據該一種或多種單體 之身分以及依據步驟(iii)之聚合反應之細節決定。較佳該流 體為極性有機溶劑。 較佳,於步驟⑴中,奈米顆粒與該流體接觸,然後分 散。該步驟較佳包括將振盪能源導入流體内部。該步驟較 15佳使用超音波來超音波振盈奈米顆粒於該流體,且將奈米 顆粒刀政於其中。於步驟(0之能量施加時間至少為30分 鐘,較佳至少為1小時,較佳至少為1.5小時。 Y驟(1)可於南於周圍溫度之溫度進行。步驟⑴較佳係 於低於(車乂佳至少低50°c)該流體之沸點之溫度進行,而該流 20體係呈液態。流體可於該溫度至少維持0.5小時,較佳至少 維持1小時。 /、;/、米顆粒已經於步驟⑴所述而分散之後,分散體經 =或雜冷卻,適合冷卻至周圍溫度,俾便固化含有該 八只粒刀政於其中之該流體。如此允許於隨後使用之 200844120 萷,忒分散體谷易儲存。另外,該分散體可於步驟⑴之後, 未經任何中間固化步驟而直接供使用。 除非於本說明書全文中另行陳述,否則任何烷基、烯基 或炔基部分適合含有至多8個,較佳至多6個,更佳至多4個, 5特佳至多2個碳原子,且可為直鏈結構,或可能時為支鏈結 構。通常以甲基及乙基為較佳烷基,且以C2烯基及炔基為佳。 除非本說明書中另行陳述,否則烧基之任選的取代基包 括鹵原子例如氟、氯、溴及碘原子,及硝基、氰基、烷氧基、 羥基、胺基、烷基胺基、亞續醯基、烷基磺醯基、磺醯基、 10烷基磺醯基、醯胺基、烷基醯胺基、烷氧羰基、齒烷氧羰基、 及鹵烷基。較佳視需要可經取代之烷基為未經取代。 較佳,該聚合物料具有下式部分200844120 IX. Description of the invention: [Technical field 2 of the invention] The present invention relates to a composite material, particularly but not exclusively, to a composite material for preparing a nanoparticle, such as fullerenes. A method of forming a composite material in the form of, for example, a nanotube. [Prior Art 3 Fullerene is a molecular carbon species containing at least 60 carbon atoms. Examples of fuller bodies include carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (mwNTs). The SWNTs comprise pure carbon hollow molecules that are joined together to form a hexagonal junction network to form a hollow cylinder. The carbon nanotubes are seamless with open ends or capped ends. The diameter of the SWNT is typically in the range of 0.77 nm to 2 nm and is typically about 1 nm. A composite comprising a thermoplastic polymer and a carbon nanotube has been suggested. For example, W098/39250, in the scope of claim 22, describes a composite comprising 15 thermoplastic polymers in which a carbon nanotube material is embedded. Polyetheretherketone is described in the form of 12 polymer classes. However, the case did not include how to prepare a composite such as polyetheretherketone and carbon nanotubes. SWNTs and MWNTs (and other nanoparticles) often have high aspect ratios, tend to stick to one another, are difficult to disperse in polyetheretherketone and/or are difficult to provide composites with such high loadings of 20 materials. The object of the present invention is to solve the aforementioned problems. C SUMMARY OF THE INVENTION In accordance with the present invention, a method of preparing a composite material comprising a polymer material and nano particles, wherein the polymer material belongs to 5 200844120 includes the following types of polymeric materials: a) phenyl moiety b) the same part and / or the part of the block; and c) the ether part and / or the thioether part; 5 The method comprises the following steps: (1) dispersing the nano-dispersed in u to prepare the nano-age in the fluid a nanoparticle dispersion; (9) contacting (1) a difficult dispersion with one or more monomers, thereby preparing a mixture comprising nai particles and one or more monomers, wherein the one or more monomers The polymer material can be produced by polymerization; a mixture prepared by (ηι) χκ & (...) to produce a composite material comprising nanoparticles dispersed in the polymer material. C Embodiment] The nanoparticle is suitably defined according to PAS71 (British BS) [approved], wherein 15 indicates that the nanoparticle is one particle having one or more dimensions of about 100 nm or less. Thus, the nanoparticles described herein are suitably sized to have a size of less than 100 nanometers. In several embodiments, the nanoparticles have a size of less than 50 nanometers or even less than 10 nanometers. These nanoparticles may belong to any of these types of particles. Nano 20 tablets can be organic, inorganic, or metal. Examples of nanoparticles include VGCF (vapor grown carbon fiber), zinc niobate nanoparticles, nanodiamonds, nanometals (such as gold, iron oxide), carbon nanotubes (single wall and multi-wall), and small rich Fullente, Fullerite, Buckyballs/Buckypaper, Carbon Nanotubes, Nano Ceramic Particles, Titanium Dioxide Nanoparticles 6 200844120 granules, inscriptions Oxygen nanoparticles, magnetic materials such as barium ferrite nanoparticle, polymeric nanoparticle, and aspartite nanoparticle. The tantalum composite comprises a polymeric material defining a matrix and additional material distributed within the matrix, with a majority of the additional material comprising the nanoparticles. When the nanoparticle comprises a fullerite portion, the fullerite portion is adapted to include a majority of the carbon nanotubes. The carbon nanotube can be SWNT or MWNT. The 4-fielder portion preferably comprises a SWNT, or more preferably substantially. Unless otherwise defined herein, when a material is included to include a "majority" of 10 components, the particular component is present in an amount of at least 70% by weight of the total weight of the material, preferably at least 8 Preferably, the wt%, more preferably at least 9 wt/°, at least 95 wt%; and preferably the material consists essentially of the particular component. In the method, at least 0.05 wt% of the nano particles are suitable for at least 〇1〇15 Wt/°′杈 preferably at least 0.15 wt%, more preferably at least 〇20 wt%, particularly preferably at least 〇25 wt% na The rice miscellaneous can be dispersed in the dispersion. The dispersion may comprise less than 2 wt%, suitably less than 丨wt%, preferably less than 〇6, more preferably less than 44 wt%, particularly preferably 3.3 wt% or less of nanoparticles. Preferably, at least 15% by weight to less than 0.4% 〇/〇 of the nanoparticles are dispersed in the dispersion. In the dispersion prepared in the step (1), the ratio of the weight of the nanoparticle to the weight of the fluid is in the range of from 15 to 0.0035, particularly in the range of from 〇〇2 to 〇〇〇4. Preferably, the fluid comprises a plurality of organic materials having a melting point of at least (TC, suitably at least 15 t, preferably at least a thief, more preferably at least a thief, and particularly preferably at least i 〇〇 °c. c, preferably less than 25 (rc, more preferably 7 200844120 is less than 2 〇〇〇 'excellent less than 15 〇. 〇. The organic material has a boiling point lower than wo c ' preferably less than 400 ° C. The boiling point can be Preferably, the fluid is used as a polymerization solvent in the step (1) of the method, that is, the one or more of the ones used in the step (ii). Preferably, the fluid is higher than 2 〇〇 ° C. The single system is dissolved in 5 or a solvent dispersed therein. The fluid is suitable for at least 5% by weight, preferably at least Μwt〇/〇, more preferably at least 总wt〇/〇, of the total weight percent of the granule used in step (ii). 80 wt ° / 〇, particularly preferably at least 95 wt%. In a preferred embodiment, the fluid in which the nanoparticles are dispersed in step (1) substantially provides all of the solvent present during the polymerization of step (11). The identity of the fluid used in the gamma (1) will be based on the identity of the one or more monomers and the aggregation according to step (iii) Preferably, the fluid is a polar organic solvent. Preferably, in step (1), the nanoparticles are contacted with the fluid and then dispersed. This step preferably includes introducing an oscillating energy source into the interior of the fluid. Preferably, the ultrasonic wave is used to ultrasonically vibrate the nanoparticle in the fluid, and the nanoparticle is knife-shaped therein. The energy application time of the step (0 is at least 30 minutes, preferably at least 1 hour, preferably at least 1.5 hours. Y (1) can be carried out at a temperature south of the ambient temperature. Step (1) is preferably carried out at a temperature lower than the boiling point of the fluid (at least 50 ° C lower), and the flow 20 system is The liquid may be maintained at the temperature for at least 0.5 hours, preferably for at least one hour. /,; /, after the rice particles have been dispersed as described in step (1), the dispersion is cooled by the = or heterogeneous, suitable for cooling to ambient temperature, The hydrazone cures the fluid containing the eight granules. This allows for the subsequent use of the 200844120 萷, 忒 dispersion valley for easy storage. Alternatively, the dispersion can be after step (1) without any intermediate curing steps. Directly for use. Unless stated otherwise throughout the specification, any alkyl, alkenyl or alkynyl moiety suitably contains up to 8, preferably up to 6, more preferably up to 4, 5 particularly preferably up to 2 carbon atoms. And may be a linear structure or, if possible, a branched structure. Usually a methyl group and an ethyl group are preferred alkyl groups, and a C2 alkenyl group and an alkynyl group are preferred. Unless otherwise stated in the specification, the alkyl group is used. Optional substituents include halogen atoms such as fluorine, chlorine, bromine and iodine atoms, and nitro, cyano, alkoxy, hydroxy, amine, alkylamino, sulfhydryl, alkylsulfonyl , sulfonyl, 10 alkylsulfonyl, decylamino, alkyl decylamino, alkoxycarbonyl, dentate oxycarbonyl, and haloalkyl. Preferably, the alkyl group which may be substituted as desired is unsubstituted. Preferably, the polymer material has the following formula

其中於單元I、II及HI中之苯基部分分別視需要可經取 代且視需要可經交聯;以及其中m、r、s、t、v、w及z各自 9 200844120 =別表示零或正整數,删,分別表示氧原子或硫原子或直 接鍵聯’ G表示氧原子或硫原子、直接鍵聯或-O-Ph-O-部 分,此處Ph表示苯基及選自於下列部分中之一者, (1)、(1)**、⑴至(χ)係透過其苯基部分中之一者或多者而鍵 結至相鄰部分。Wherein the phenyl moieties in units I, II and HI are each optionally substituted and crosslinkable as needed; and wherein m, r, s, t, v, w and z are each 9 200844120 = not zero or A positive integer, deleted, respectively, indicating an oxygen atom or a sulfur atom or a direct bond 'G' represents an oxygen atom or a sulfur atom, a direct bond or a -O-Ph-O- moiety, where Ph represents a phenyl group and is selected from the following One of them, (1), (1)**, (1) to (χ) is bonded to an adjacent portion through one or more of its phenyl moieties.

10 200844120 除非於本說明書中另行陳述,否則烷基部分具有丨,4_ 或1,3-特別為1,4-鍵聯至與其鍵結之部分。 於⑴*中,中間苯基可為1,4_經取代或ι,3-經取代。 該聚合物料可包括多於一種不同型重複式I單元;多於 5 —型不同重複式II單元;及多於一型不同重複式in單元。但 較佳只提供一型式I、II及/或III重複單元。 該等部分I、II及III為適當重複單元。於聚合物料中, 皁元I、II及/或III適合彼此鍵結,亦即並無任何其它原子或 基團鍵結於單元I、II及III間。 〇 當單元I、II或III中之苯基部分視需要可經取代時,該 本基部分視需要可經以一個或多個_原子,特別為氣原子 及氯原子或烧基、環烧基或苯基取代。較佳烷基為C1⑴烧 基,特別為Ci_4烧基。較佳環烧基包括環己基及多環基,例 如金剛烧基。 ’單元I、II或III中苯基部分之另一組任選的取代基包括 烧基、鹵素、CyF2y+1此處y為大於〇之整數、0_Rq(此處以〇!係 k自於由烧基、全氟烧基及芳基所組成之組群)、cf=cf2、 CN N〇2、及OH。於某些情況下以三氟甲基化苯基部分為 佳。 1 較佳該苯基部分並未如所述視需要可經取代。 當該聚合物料經交聯時,適合經交聯來改良其性質。 任一種適當手段皆可用來執行交聯。例如當E表示硫原子 f,聚合物鏈間之交聯可透過個別鏈上之硫原子執行。較 佳該聚合物料並未如所述視需要可經交聯。 11 200844120 當W及/或Z係大於〇時,個別伸烷基部分分別有丨,4_鍵聯 或1,3-鍵聯至式II及/或式ΠΙ重複單元中之其它部分。較佳該 伸烧基部分具有1,4-鍵聯。 較佳該聚合物料之聚合鏈並未包括部分。較佳G表 -5 示直接鍵聯。 較佳「a」表示於該聚合物料中之式丨單元之莫耳百分 比,較佳其中各個單元I為相同;「b」表示於該聚合物料中 之式II單元之莫耳百分比,較佳其中各個單元11為相同;及 「c」表示於該聚合物料中之式ΠΙ單元之莫耳百分比,較佳 10其中各個單元III為相同。較佳,a係於45-100之範圍,更佳 係於45-55之範圍,特佳於48-52之範圍。較佳1)與(:之和係於 0-55之範圍,更佳於45_55之範圍,特佳於牝_52之範圍。較 佳’ a對b與c之和之比係於〇9至丨丨之範圍,更佳約為卜適 合a、b及c之和至少為9〇,較佳至少為95,更佳至少為99,10 200844120 Unless otherwise stated in this specification, the alkyl moiety has a hydrazone, 4 or 1,3-, especially a 1,4-linkage to the moiety to which it is bonded. In (1)*, the intermediate phenyl group may be 1,4_substituted or ι,3-substituted. The polymeric material can include more than one different type of repeating I unit; more than 5 - different repeating type II units; and more than one type of different repeating in units. Preferably, however, only one type of repeating unit of I, II and/or III is provided. These parts I, II and III are suitable repeating units. In the polymer material, the soap elements I, II and/or III are suitable for bonding to each other, i.e., no other atoms or groups are bonded between the units I, II and III. When the phenyl moiety of the unit I, II or III may be optionally substituted, the base moiety may optionally have one or more _ atoms, particularly a gas atom and a chlorine atom or a burnt group or a cycloalkyl group. Or phenyl substituted. Preferably, the alkyl group is a C1(1) alkyl group, especially a Ci_4 alkyl group. Preferred cycloalkyl groups include cyclohexyl and polycyclic groups such as adamantyl. Another group of optional substituents of the phenyl moiety in unit I, II or III includes alkyl, halogen, CyF2y+1 where y is an integer greater than 〇, 0_Rq (here, 〇! a group consisting of a perfluoroalkyl group and an aryl group), cf=cf2, CN N〇2, and OH. In some cases it is preferred to have a trifluoromethylated phenyl moiety. Preferably, the phenyl moiety is not substituted as desired. When the polymer material is crosslinked, it is suitable to be crosslinked to improve its properties. Any suitable means can be used to perform the crosslinking. For example, when E represents a sulfur atom f, crosslinking between polymer chains can be carried out through sulfur atoms on individual chains. Preferably, the polymeric material is not crosslinkable as desired. 11 200844120 When the W and/or Z series is greater than 〇, the individual alkyl groups are respectively 丨, 4_ linkage or 1,3- linkage to the other part of the formula II and/or the repeat unit of the formula. Preferably, the stretch-forming moiety has a 1,4-linkage. Preferably, the polymeric chain of the polymeric material does not include a portion. Preferably, the G table -5 shows a direct bond. Preferably, "a" represents the percentage of moles of the unit of the formula in the polymer material, preferably wherein each unit I is the same; "b" represents the percentage of moles of the unit of formula II in the polymer material, preferably wherein Each unit 11 is the same; and "c" represents the percentage of moles of the unit of the formula in the polymer material, preferably 10 wherein each unit III is the same. Preferably, a is in the range of 45-100, more preferably in the range of 45-55, particularly preferably in the range of 48-52. Preferably, the sum of 1) and (: is in the range of 0-55, more preferably in the range of 45-55, particularly preferably in the range of 牝_52. Preferably, the ratio of a to b to the sum of c is 〇9 to Preferably, the range of 丨丨 is suitable for a sum of a, b and c of at least 9 〇, preferably at least 95, more preferably at least 99.

15特佳至少為100。較佳該聚合物料主要係由部分I、II及/或III 所組成。 該聚合物料可為具有如下通式之重複單元之一種均聚物15 specials are at least 100. Preferably, the polymeric material consists essentially of parts I, II and/or III. The polymer material may be a homopolymer having a repeating unit of the following formula

或具有如下通式重複單元之一種均聚物Or a homopolymer having a repeating unit of the formula

或為至少兩種不同IV及/或V單元之隨機共聚物或嵌段共聚物 其中A、B、C及D各自分別表示0或1及E、E,、G、Ar、 12 200844120 m、r、s、t、v、w及z係如此處任何陳述戶斤述。 至於前文討論之包含單元IV及/或單元V之聚合物料之 替代之道,該聚合物料可為具有如下通式之重複單元之一 種均聚物Or a random copolymer or block copolymer of at least two different IV and/or V units wherein A, B, C and D each represent 0 or 1 and E, E, G, Ar, 12 200844120 m, r, respectively , s, t, v, w, and z are as stated in any statement herein. As an alternative to the polymer material comprising unit IV and/or unit V discussed above, the polymer material may be a homopolymer of a repeating unit having the following general formula

或具有如下通式重複單元之一種均聚物Or a homopolymer having a repeating unit of the formula

或為至少兩種不同IV*及/或V*單元之隨機共聚物或嵌段共 聚物,其中A、B、C及D各自分別表示0或1及E、E’、G、 10 Ar、m、r、s、t、v、w及z係如此處任何陳述戶斤述。 較佳m係於0-3之範圍,更佳0-2之範圍,特佳0-1之範 圍。較佳r係於0-3之範圍,更佳0-2之範圍,特佳0-1之範圍。 較佳t係於0-3之範圍,更佳0-2之範圍,特佳0-1之範圍。較 佳s為0或1。較佳v為0或1。較佳w為0或1。較佳z為0或1。 15 較佳該聚合物料為具有通式IV重複單元之均聚物。 較佳Ar係選自於下列部分(xi)*、(xi)**、(xi)至(xxi):Or a random copolymer or block copolymer of at least two different IV* and/or V* units, wherein A, B, C and D each represent 0 or 1 and E, E', G, 10 Ar, m, respectively , r, s, t, v, w, and z are as stated in any statement herein. Preferably, m is in the range of 0-3, more preferably in the range of 0-2, and particularly preferably in the range of 0-1. Preferably, r is in the range of 0-3, more preferably in the range of 0-2, and particularly preferably in the range of 0-1. Preferably, t is in the range of 0-3, more preferably in the range of 0-2, and particularly preferably in the range of 0-1. Preferably, s is 0 or 1. Preferably v is 0 or 1. Preferably w is 0 or 1. Preferably z is 0 or 1. Preferably, the polymeric material is a homopolymer having repeating units of formula IV. Preferably, the Ar is selected from the following parts (xi)*, (xi)**, (xi) to (xxi):

(xi)** 13 200844120 (χιΓ(xi)** 13 200844120 (χιΓ

於(xi)*中,中間苯基可經1,4-取代或經1,3-取代。 較佳(xv)係選自於1,2-、1,3·、或1,5-部分;(xvi)係選自 於1,6_、2,3-、2,6-、或2,7-部分;及(\¥叩係選自於1,2-、1,4·、 14 200844120 1,5-、1,8-、或2,6-部分。 較佳一類聚合物料不包括任何細部分,反而適合只 包括式1及/或II部分。當該聚合物料為如所述之均聚物或隨 機共聚物絲段共聚物時,該均聚物或共聚物適合包括通 5式IV重複年兀。於若干實施例中,該聚合物料可未包括任 何通式V重複單元。 適當部分^為部分⑴*、(i)、⑻、㈣及(iv),其中以 部万(1) (1)及(IV)為佳。其它較佳部分^為部分㈣*、 ㈣、㈣、㈣及(xiv) ’其中以部分(X1卜⑽及㈣為 10 特佳。 特佳聚合物料類別為主要由笨基部分結合酮部分及/ 或醚部分所組成之聚合物(或共聚物)。換言之,於較佳 中,聚合物料未包括包含-s-、-so2-或苯基以外之芳香族基 團之重複單元。較佳所述聚合物料類別包括· 土 15⑻主要由式^單摘組成之聚合物,其中Ar表示部分 (iv),E及E’表示氧原子,m表示〇,u,主一 表示1,G表示直接鍵 聯,s表示〇,及A及B表示1(亦即聚__酉同) (b)主要由式1V單摘組成之聚合物,其中味示氧原 子,E,表示直接鍵聯,Ar表示結構式(i)部分,m表示〇,A 20 表示1,B表不〇(亦即聚同)。 ⑷主要由式IV單元所組成之聚合物,其中£表示氧原 子’Ar表示部分⑴*’m表示0,E’表示直接鍵聯,A表示卜 B表示〇(亦即聚醚醚酮)。 ⑷主要由式IV單元離狀聚合物,其中Ar表示部分 15 200844120 (i),E及E,表示氧原子,G表示直接鍵聯,m表示〇,〜表示1, r表示0,s表示1,及A及B表示1(亦即聚醚醚顚)酮)。 (e) 主要由式IV單元所組成之聚合物,其中八!》表示部分 (iv),E及E’表示氧原子,G表示直接鍵聯,m表示〇,…表示 5 0,s、r、A及B表示1(亦即聚醚醚酮酮)。 (f) 主要由式IV單元所組成之聚合物,其中E表示氧原 子,E’表示直接鍵聯,Ar表示結構式(ii)部分,m表示〇,A 表示1,B表示0(亦即聚醚颯)。 (g) 主要由式V單元所組成之聚合物,其中E及E,表示氧 10 原子,Ar表示部分(xi)**,m表示0,Z表示1,G表示直接 鍵聯,v表示0,C及D表示1(亦即聚砜)。 該聚合物料較佳為半晶性。聚合物中之結晶度含量及 程度較佳係藉寬角X光繞射測定(也稱作為寬角X光繞射或 WAXS),例如由Blundell及Osborn所述(聚合物丛,953, 15 ^83)。另外,結晶度可藉差動掃描量熱術psC)評估。 聚合物料中之結晶度含量至少為1%,適合至少為3%, 較佳至少為5%及更佳至少為丨〇%。於特佳實施例中,結晶 度可大於30%,更佳40%,特佳45%。 聚合物料之玻璃轉換溫度(Tg)至少為140°C。 20 該聚合物料具有特性黏度(IV)至少為0.1,適合至少為 〇·3,較佳至少為〇·4,更佳至少為〇·6,特佳至少為0·7(係與 比濃黏度(RV)至少為0·8相對應),其中RV係於25°C對聚合 物於密度1·84克/立方厘米之濃硫酸之溶液測定,該溶液每 100立方厘米含1克聚合物。IV係於25°C對聚合物於密度 16 200844120 克/立方厘米之濃硫酸之溶液測定,該溶液每⑽立方厘 米含〇.1克聚合物。 RV及iv二者之測定皆適合使用具有溶劑流動時間於2 分鐘之黏度計進行。 5 1 亥聚合物料(若為結晶性)之炫解吸熱主峰(Tm)至少為 300〇C 〇 於較佳實施例中,該聚合物料係選自於聚醚醚酮及聚 〃 醚酮。於特佳實施例中,該聚合物料為聚醚醚酮。 該一種或多種單體適合透過親電子方法或親和方法製 10造聚合物料。親電子方法之實例係說明於EP1170318 (Gharda),前述文件有關聚合物製法所述内容以引用方式併 入此處。前述文件說明單一單體之自行縮合反應。 親和方法之實例係說明於EP1879 (ICI),前述文件有關 該方法之内容係以引用方式併入此處。 15 步驟(i)所使用之流體可為芳香族礙、視需要可經取代 之烧續酸或芳基磺酸、氟化氫、氟礙溶劑或四亞甲礙。該 i 芳香族砜具有化學式In (xi)*, the intermediate phenyl group may be substituted by 1,4- or by 1,3-. Preferably, (xv) is selected from 1,2-, 1,3, or 1,5-part; (xvi) is selected from 1,6-, 2,3-, 2,6-, or 2, 7-part; and (\¥叩 is selected from 1,2-, 1,4, 14, 200844120 1,5-, 1,8-, or 2,6-part. Preferred type of polymer material does not include any The fine portion, instead, is suitable to include only the portion of Formula 1 and/or II. When the polymeric material is a homopolymer or random copolymer filament copolymer as described, the homopolymer or copolymer is suitably comprised of Formula 5 Repeated years. In some embodiments, the polymer material may not include any repeating unit of the formula V. The appropriate portion ^ is part (1)*, (i), (8), (4), and (iv), of which the portion is (1) (1) and (IV) are preferred. Other preferred parts are parts (4)*, (4), (4), (4) and (xiv) 'where the part (X1 (10) and (4) is 10 is particularly good. a polymer (or copolymer) mainly composed of a ketone moiety and/or an ether moiety. In other words, the polymer material does not include an aromatic group other than -s-, -so2- or phenyl. a repeating unit of a group. Preferably, the polymer material Others include: · 15(8) is a polymer consisting mainly of the formula: where Ar represents part (iv), E and E' represent oxygen atoms, m represents 〇, u, and main one represents 1, G represents direct linkage, s Represents 〇, and A and B represent 1 (ie, poly __ )) (b) a polymer consisting mainly of a single exfoliation of Formula 1V, wherein the taste is an oxygen atom, E is a direct bond, and Ar is a structural formula ( i) part, m denotes 〇, A 20 denotes 1, and B denotes 〇 (ie, merging). (4) A polymer mainly composed of a unit of formula IV, wherein £ represents an oxygen atom 'Ar represents a part (1)*'m represents 0, E' denotes a direct bond, A denotes a B denotes 〇 (ie polyetheretherketone). (4) A core polymer of the formula IV, wherein Ar represents a moiety 15 200844120 (i), E and E, An oxygen atom, G represents a direct bond, m represents 〇, 〜 represents 1, r represents 0, s represents 1, and A and B represent 1 (ie, polyetherether oxime) ketone. (e) Mainly by unit of formula IV The polymer composed, wherein VIII! represents part (iv), E and E' represent oxygen atoms, G represents direct linkage, m represents 〇, ... represents 50, s, r, A and B represent 1 (also Polyetheretherketone Ketone. (f) A polymer consisting mainly of units of formula IV, wherein E represents an oxygen atom, E' represents a direct bond, Ar represents a moiety of formula (ii), m represents 〇, A represents 1, and B represents 0. (i.e., polyether oxime). (g) A polymer mainly composed of a unit of the formula V, wherein E and E represent oxygen 10 atoms, Ar represents a moiety (xi)**, m represents 0, and Z represents 1, G Indicates direct linkage, v means 0, C and D means 1 (also known as polysulfone). The polymer material is preferably semicrystalline. The crystallinity content and extent of the polymer are preferably determined by wide-angle X-ray diffraction (also known as wide-angle X-ray diffraction or WAXS), as described, for example, by Blundell and Osborn (Polymer Cluster, 953, 15 ^) 83). In addition, crystallinity can be assessed by differential scanning calorimetry (PSC). The polymer material has a crystallinity content of at least 1%, suitably at least 3%, preferably at least 5% and more preferably at least 丨〇%. In a particularly preferred embodiment, the degree of crystallinity can be greater than 30%, more preferably 40%, and particularly preferably 45%. The glass transition temperature (Tg) of the polymeric material is at least 140 °C. 20 The polymer material has an intrinsic viscosity (IV) of at least 0.1, suitably at least 〇·3, preferably at least 〇·4, more preferably at least 〇·6, and particularly preferably at least 0.7·(consistent viscosity. (RV) corresponds to at least 0.88, wherein RV is determined at 25 ° C for a solution of the polymer in concentrated sulfuric acid having a density of 1.84 g/cc, which contains 1 gram of polymer per 100 cubic centimeters. The IV system was measured at 25 ° C for a solution of the polymer in concentrated sulfuric acid having a density of 16 200844120 g/cm 3 , which contained 0.1 g of polymer per (10) cubic centimeter. Both RV and iv measurements are suitable for use with a viscometer with a solvent flow time of 2 minutes. The primary endothermic peak (Tm) of the polymer material (if crystalline) is at least 300 ° C. In a preferred embodiment, the polymer material is selected from the group consisting of polyetheretherketone and poly(ether ether ketone). In a particularly preferred embodiment, the polymeric material is polyetheretherketone. The one or more monomers are suitable for the production of polymeric materials by electrophilic or affinity methods. An example of an electrophilic method is described in EP 1170318 (Gharda), the disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety. The foregoing documents describe the self-condensation of a single monomer. An example of an affinity method is described in EP 1879 (ICI), the contents of which are incorporated herein by reference. 15 The fluid used in step (i) may be an aromatic, or a substituted, calcined acid or arylsulfonic acid, hydrogen fluoride, fluorine solvent or tetramer. The i aromatic sulfone has a chemical formula

其中R51為直接鍵聯、氧原子或兩個氫原子(附接至各個 2〇苯環)及R5G及R52分別為氫原子或苯基。礙之實例包括二苯 颯、二氧化二苯并噻吩、二氧化啡噚噻畊、及4-苯基磺醯 17 200844120 基聯苯。以二苯颯為佳。該烷磺酸或芳基磺酸可為視需要 可經取代之Cm磺酸或視需要可經取代之苯磺酸。該視需要 可經取代之酸可經鹵化,特別以氯原子或氟原子函化。前 述化合物之實例包括甲磺酸、三氟甲磺酸及三氣甲磺酸。 該流體較佳係選自於芳香族颯,特別為二苯颯及視需 要可經氟化或氯化之甲磺酸,以未經取代之甲磺酸為佳。 較佳該芳香族颯係用作為親和方法中之溶劑,該甲磺酸係 用於親電子方法。 具有單元I、II、III、IV、IV*、V及/或V*之聚合物可 10 經由下述方法製備: (a)如下通式化合物自身縮聚合Wherein R51 is a direct bond, an oxygen atom or two hydrogen atoms (attached to each of the 2 fluorene rings) and R5G and R52 are each a hydrogen atom or a phenyl group. Examples of barriers include diphenyl hydrazine, dibenzothiophene benzoate, bismuth oxidized quinone, and 4-phenylsulfonium hydride 17 200844120 phenyl. Diphenyl hydrazine is preferred. The alkanesulfonic acid or arylsulfonic acid may be a Cm sulfonic acid which may be optionally substituted or a benzenesulfonic acid which may be optionally substituted. The acid which may be substituted as needed may be halogenated, in particular, a chlorine atom or a fluorine atom. Examples of the aforementioned compounds include methanesulfonic acid, trifluoromethanesulfonic acid, and tri-gas methanesulfonic acid. Preferably, the fluid is selected from the group consisting of aromatic hydrazines, particularly diphenyl hydrazine and, if desired, fluorinated or chlorinated methanesulfonic acid, with unsubstituted methanesulfonic acid being preferred. Preferably, the aromatic oxime is used as a solvent in an affinity method for use in an electrophilic method. A polymer having units I, II, III, IV, IV*, V and/or V* can be prepared by the following method: (a) Self-condensation of a compound of the following formula

VI 其中Y1表示鹵原子或基團-EH及Y2表示鹵原子或若Y1 表示鹵原子時Y2表示基團E’H;或 15 (b)如下通式化合物 %Wherein Y1 represents a halogen atom or a group -EH and Y2 represents a halogen atom or if Y1 represents a halogen atom, Y2 represents a group E'H; or 15 (b) a compound of the following formula %

VI 與下式化合物縮聚合VI and the following compound condensation polymerization

及/或與下式化合物縮聚合And/or polycondensation with a compound of the formula

VII X1-VII X1-

VIII 18 20 200844120 其中γ1表示鹵原子或基團_EH(或若屬適當表示基團 -ΕΉ)及X1表示鹵原子或基團_EH(或若屬適當_ΕΉ)中之另 一者;以及Y2表示鹵原子或基團_Ε,Η&χ2表示鹵原子或基 團-ΕΉ(或若屬適當-ΕΗ)中之另一者; 5 (c)任選地,將如(a)段所述方法產物與如(b)段所述方法 產物共聚合; 其中單元VI、VII及/或VIII之苯基部分視需要可經取代 以及Ar、m、w、r、s、z、t、v、G、E及E,係如前文說明, 但E及E’不可表示直接鍵聯; 10 該方法也包含交聯於⑻、(b)及/或⑷段所述之反應產 物來製備該聚合物。 較佳,當Y1、Y2、X1及/或X2表示鹵原子且特別為氟原 子時,活化基團特別為羰基或颯基可配置於鹵原子之鄰位 或對位。 15 較佳鹵原子為氟原子及氣原子,以氟原子為特佳。較 佳鹵原子係相對於活化基團特別為羰基之間位或對位配 置。 其中進行(a)段所述方法,較佳Y1及Y2中之一者表示氣 原子,而另一者表示羥基。更佳於此種情況下,Y1表示氣 20原子及Y2表示羥基。較佳,當Ar表示結構式⑴部分及历表 示1時,可使用(a)段所述方法。 當進行(b)段所述方法時,較佳Y1及Y2各自表示羥基。 較佳X1及X2各自表不鹵原子’適合為同一個鹵原子。 通式VI、VII及VI11化合物為市面上可得(例如得自英國 19 200844120 亞利敘(Aldrich))及/或可藉標準技術製備,標準技術通常係 涉及富烈德-克拉福特(Friedel-Crafts)反應,接著為官能基 之妥善衍生。此處所述若干單體之製備係說明於p ΜVIII 18 20 200844120 wherein γ1 represents a halogen atom or group _EH (or, if appropriate, a group -ΕΉ), and X1 represents the other of the halogen atom or group _EH (or, if appropriate, ΕΉ); Y2 represents a halogen atom or a group _Ε, Η&χ2 represents the other of the halogen atom or the group -ΕΉ (or, if appropriate, -ΕΗ); 5 (c) optionally, as in paragraph (a) The product of the process is copolymerized with the product of the process as described in paragraph (b); wherein the phenyl moiety of units VI, VII and/or VIII can be substituted as desired and Ar, m, w, r, s, z, t, v , G, E and E, as explained above, but E and E' are not indicative of direct bonding; 10 the method also comprises crosslinking the reaction product described in paragraphs (8), (b) and/or (4) to prepare the polymerization. Things. Preferably, when Y1, Y2, X1 and/or X2 represents a halogen atom and particularly a fluorine atom, the activating group, particularly a carbonyl group or a fluorenyl group, may be disposed ortho or para to the halogen atom. 15 Preferred halogen atoms are fluorine atoms and gas atoms, and fluorine atoms are particularly preferred. Preferably, the preferred halogen atom system is in a meta or para configuration with respect to the activating group, particularly the carbonyl group. Wherein the method described in paragraph (a) is carried out, preferably one of Y1 and Y2 represents a gas atom and the other represents a hydroxyl group. More preferably, Y1 represents a gas of 20 atoms and Y2 represents a hydroxyl group. Preferably, when Ar represents a portion of the structural formula (1) and a calendar of 1, the method described in the paragraph (a) can be used. When the method described in the paragraph (b) is carried out, it is preferred that each of Y1 and Y2 represents a hydroxyl group. Preferably, each of X1 and X2 represents a halogen atom and is suitably a same halogen atom. The compounds of the formulae VI, VII and VI11 are commercially available (for example from the UK 19 200844120 Aldrich) and/or can be prepared by standard techniques, the standard technique usually involving Friedel-Crafts (Friedel- Crafts) reaction followed by proper derivatization of functional groups. The preparation of several monomers described herein is illustrated in p Μ

Hergenrother、B J Jensen 及 S J Havens,聚合物 2£, 5 358(1988) ’ H R Kricheldorf 及 U Delius,巨分子 22, 517(1989);及 P A Staniland,Bull,Soc,Chem,Belg·, 2i(9-10),667(1989)。 於該聚合物製備之後,適合經分離及去除縮聚合反應 所使用之溶劑,讓此等溶劑之含量低於5wt%,較佳係低於 10 細t合反應期間之溶劑含量之1 wt%。 車父佳於步驟(ii)中,製備該聚合物料所需之全部單體係 於步驟⑴所製備之分散體於一容器内接觸。雖然可添加額 外/谷劑來協助聚合反應,但較佳於聚合反應中所使用之溶 劑總量中之大部分係由步驟(i)中所製備之分散體中存在的 15溶劑來提供。於步驟(出),混合物之聚合可於升高溫度,適 合以授動進行。 於較佳實施例中,該方法之步驟(ii)涉及步驟⑴所製備 之刀政體與至少一種雙紛(例如氫g昆)、至少一種芳香族二鹵 化物(例如4,4 -二氟二苯甲_),適合於鹼金屬碳酸鹽或重碳 2〇酸鹽存在下,於溶劑存在下接觸,該溶劑適合由製備該分 散體所使用之大部分流體所組成。 於該聚合結束時,所製備之複合材料可藉標準技術分 離。可被成形為粉末或顆粒。 該複合材料包含至少o.lwt%,較佳至少〇.2wt%,更佳 20 200844120 至少0.3wt%奈米顆粒,例如富勒體部分,尤其為SWNT。 較佳,該第一面相之方法可用來製造含有至多20wt%奈米 顆粒,例如lwt%至20wt%,較佳2wt%至5wt%奈米顆粒之複 合材料。 5 於一個實施例中,該複合材料包含大部分單一聚合物 料,全部皆適合於步驟(ii)製備。於另一個實施例中,該複 合材料包含於步驟(ii)製備之聚合物料及於另一個步驟被 導入複合材料中之其它聚合物料。如此,該第一面相方法 包括任選的接觸步驟,於步驟(ii)之一額外步驟中,額外聚 10 合物料與該奈米顆粒接觸來形成複合材料。於該任選的步 驟中,該另一種材料可與步驟(ii)所製備之聚合物料相同或 相異。較佳,複合材料中之大部分聚合物料包含於步驟(ii) 所製備之該聚合物料。 根據本發明之第二面相,提供一種製備一第二複合材 15 料之方法,該第二複合材料包含一第一聚合物料及xwt%奈 米顆粒(例如奈米管),其中xwt%係指奈米顆粒於該第二複 合材料中之該wt%,該方法包含: i) 選擇一第一複合材料,其包含該第一聚合物料及y wt%奈米顆粒,其中y係指奈米顆粒於該第一複合材料中之 20 該wt%,以及其中y係大於X ; ii) 該第一複合材料與額外聚合物料接觸來製備該第二 複合材料。 該第一聚合物料可為根據第一面相所述之聚合物料中 之任一者。該第一聚合物料較佳為可溶體加工。其分解溫 21 200844120 。二適Ϊ =其炼點(適合高達至少g,較佳高達至少2。 芳基著分解。該第—聚合物料較佳為聚 基,、聚芳 合物料為㈣_。諷於取佳實_中,該第-聚 料中之任-卜Iσ物料可為根據第一面相所述之該等聚合物Hergenrother, BJ Jensen and SJ Havens, Polymers 2 £, 5 358 (1988) 'HR Kricheldorf and U Delius, Giants 22, 517 (1989); and PA Staniland, Bull, Soc, Chem, Belg·, 2i (9) -10), 667 (1989). After the preparation of the polymer, it is suitable to separate and remove the solvent used in the polycondensation reaction so that the content of such solvents is less than 5% by weight, preferably less than 1% by weight of the solvent content during the 10 fine t-reaction. Preferably, in step (ii), all of the individual systems required to prepare the polymeric material are contacted in a vessel prepared in step (1). Although an additional/grain may be added to assist the polymerization, it is preferred that most of the total amount of solvent used in the polymerization is provided by the 15 solvent present in the dispersion prepared in step (i). In the step (out), the polymerization of the mixture can be carried out at elevated temperature, suitable for actuation. In a preferred embodiment, step (ii) of the method involves the procedural body prepared in step (1) and at least one compound (for example, hydrogen g) and at least one aromatic dihalide (for example, 4,4-difluoro). Benzene _), suitable for use in the presence of an alkali metal carbonate or heavy carbon bismuth citrate, is contacted in the presence of a solvent which is suitable for the majority of the fluids used in the preparation of the dispersion. At the end of the polymerization, the composites prepared can be separated by standard techniques. It can be formed into a powder or granules. The composite comprises at least 0.1% by weight, preferably at least 0.2% by weight, more preferably 20 200844120 At least 0.3% by weight of nanoparticle, such as a fullerene moiety, especially SWNT. Preferably, the first face phase process can be used to make a composite material containing up to 20% by weight of nanoparticles, for example from 1% by weight to 20% by weight, preferably from 2% by weight to 5% by weight of nanoparticles. In one embodiment, the composite comprises a majority of a single polymer, all of which are suitable for the preparation of step (ii). In another embodiment, the composite comprises the polymeric material prepared in step (ii) and the other polymeric material introduced into the composite in another step. Thus, the first face phase process includes an optional contacting step in which an additional polymer material is contacted with the nanoparticle to form a composite material in an additional step of step (ii). In this optional step, the other material may be the same or different from the polymer material prepared in step (ii). Preferably, a majority of the polymeric material in the composite comprises the polymeric material prepared in step (ii). According to a second aspect of the present invention, there is provided a method of preparing a second composite material comprising a first polymeric material and xwt% nanoparticle (e.g., a nanotube), wherein xwt% is The wt% of the nanoparticle in the second composite, the method comprising: i) selecting a first composite comprising the first polymeric material and y wt% nanoparticle, wherein y is a nanoparticle 20% by weight of the first composite, and wherein y is greater than X; ii) the first composite is contacted with an additional polymeric material to prepare the second composite. The first polymeric material can be any of the polymeric materials described in terms of the first facing phase. The first polymeric material is preferably soluble. Its decomposition temperature is 21 200844120. Two suitable Ϊ = its refining point (suitable up to at least g, preferably up to at least 2. The aryl group is decomposed. The first polymer material is preferably a poly-base, and the poly-arylene material is (iv) _. Any of the materials in the first aggregate may be the polymers according to the first phase

解溫声該額外聚合物料較佳為可熔體加工。其分 又、u π於赌點(適合高達至少⑽,較 20 C),故可經播趟 達至V 10 15 聚芳著分解。該額外聚合物料可選自 、氟方基醚颯類、聚醚醯亞胺類及PBI,但限 1條件為所選用之材料為可溶體加工。 只知例中,s亥第-聚合物料及該額外聚合物料 目同例如,二者可為聚醚醚酮。於此種情況下,第二 ^目之方法可用來將該第i合材料中之奈米顆粒含賴 正至期望的含量。於另一個實施例中,該第一聚合物料及 _外聚合物料可相異。例如該第一聚合物料可為聚芳基 _ ’特別為聚_酮’而該額外聚合物料可為聚 胺。 。該第二複合材料可經由於30(TC至々⑽它範圍較佳34〇 C至鐵範圍,更佳赋至赋範圍之溫度將該第_聚 合物料與該第二聚合物料熔體加工製備。 y與X間之差異至少為2wt%,更佳至少為3 wt%,特佳 至少為4 Wt%。y之值可小於i 〇 wt〇/(),較佳小於8 wt%,更佳 小於6 wt%,特佳小於5.5wt%。 22 200844120 X可於0.05 wt%至1 wt%,較佳為(U wt%至〇·5 wt%之範 圍。 於該第二面相之方法中,第一複合材料重量對步驟(ii) 中所接觸之額外聚合物料之重量之比適合小於卜較佳小於 5 〇·75,及更佳小於0·5。該比值可為至少0.05,較佳至少為 0.1。 於步驟(ii)中,該第一複合材料與該額外聚合物料較佳 係於升溫接觸,該升溫適合為高於50°c,較佳高於100。(:, 更佳问於200 C,特佳面於3〇〇。〇。於步驟⑻期間,溫度較 1〇佳不超過500°c,更佳不超過450°C。 較佳步驟⑼包括使用擠塑機,例如雙螺桿擠塑機。如 匕v驟(11)較佳涉及該第一複合材料及該額外聚合物料置 於升溫及高剪之下。 、,第面相之方法涉及將一種或多種填充劑與該聚合物 料U。填充劑之實例包括含纖維填充劑,諸如無機含纖 ^料諸如玻璃纖維、石綿纖維、石夕氧纖維、!呂氧纖維、 ^氧、截維、氮化蝴纖維、I化魏維、賴維、及碳酸钟 ,、隹及同財機含纖維材料諸如聚醯胺、氟碳樹脂、聚醋 系樹脂。其它填充劑可為非含纖維填充劑諸 20 如雲母、石夕 、 卜 ’月石、礬土、高嶺土、硫酸#5、石炭酸約、 氧化鈦、鐵氧轉、& , 、 ^ 黏土、玻璃粉、氧化鋅、碳酸鎳、氧化 、,、 英粕末、乂酸鎂、及硫酸鋇。非含纖維填充劑通常 係呈粉末或片狀顆粒形式。 較佳第二面相之方法不包括換混填充劑。 23 200844120 本發明可擴充至於第一面相或第二面相之方法中所製 備之複合材料。 本發明可延伸至包含聚醚及至少wt%奈米顆 粒,例如富勒體部分之複合材料。 該複合材料包括至少0_5 wt%,較佳至少1 wt%,更佳i wt%至20 wt%,特別1 wt%至5 wt%奈米顆粒。 本發明擴充至一種複合材料,其包含第一聚合物料(適 合為如前文說明,較佳為聚醚醚酮)、額外聚合物料(適合如 前文說明,較佳為聚醚醯亞胺)及奈米顆粒。 10 15 20 此處所述複合材料可用於製造具有改良熱特性、電氣 特性及磨減性之材料。可用來製造具有改良機械性質、 表面光整、較低擴散速率及改良循環能力之材料。 此處所述若干複合材料(例如包括富勒體部分)可用於 靜電放電⑽戦料抗靜電_。本發明可擴充至此處所 述複合材料用於靜電放電或抗靜制途。本發明可擴充至 ㈣管或励該例如料料誠料印表機;日日日圓栽呈 例如用於石夕晶圓载具;晶片載具托盤,例如石夕晶片载具乾 盤;或測試套筒,例如用於:目々曰 、 ㈣測抑晶片之測試套筒De-warming the additional polymeric material is preferably melt processable. The fraction is again, u π is at the gambling point (suitable for at least (10), more than 20 C), so it can be degraded by the sowing to V 10 15 . The additional polymeric material may be selected from the group consisting of, fluoroaryl ether oximes, polyether oximines, and PBI, with the proviso that the selected material is a soluble process. For example, the sigma-polymer material and the additional polymer material are, for example, both of which may be polyetheretherketone. In this case, the second method can be used to neutralize the nanoparticles in the i-th material to the desired level. In another embodiment, the first polymeric material and the outer polymeric material can be different. For example, the first polymeric material can be a polyaryl _ ', particularly a poly ketone' and the additional polymeric material can be a polyamine. . The second composite material can be prepared by melt processing the first polymer material and the second polymer material at a temperature ranging from 30 (TC to 々 (10), preferably ranging from 34 〇C to the iron range, and more preferably to a range of temperatures. The difference between y and X is at least 2 wt%, more preferably at least 3 wt%, particularly preferably at least 4 Wt%. The value of y may be less than i 〇 wt 〇 / (), preferably less than 8 wt %, more preferably less than 6 wt%, particularly preferably less than 5.5 wt%. 22 200844120 X may be in the range of 0.05 wt% to 1 wt%, preferably (U wt% to 〇·5 wt%. In the method of the second phase, The ratio of the weight of a composite material to the weight of the additional polymeric material contacted in step (ii) is suitably less than preferably less than 5 〇·75, and more preferably less than 0.5. The ratio may be at least 0.05, preferably at least 0.1. In step (ii), the first composite material and the additional polymer material are preferably in contact with the temperature, and the temperature rise is suitably higher than 50 ° C, preferably higher than 100. (:, better than 200 C, particularly good at 3 〇〇. 〇. During the step (8), the temperature is preferably less than 500 ° C, more preferably not more than 450 ° C. The preferred step (9) includes the use of an extruder, such as a double The rod extruder (11) preferably relates to the first composite material and the additional polymer material being placed under elevated temperature and high shear. The method of the first phase involves the polymerization of one or more fillers with the polymer. Material U. Examples of the filler include fiber-containing fillers, such as inorganic fiber-containing materials such as glass fiber, asbestos fiber, stone oxide fiber, lyophilized fiber, oxygen, cut-off, nitriding fiber, I-wei Wei, Laiwei, and carbonated clocks, 隹 and the same machine fiber-containing materials such as polyamide, fluorocarbon resin, polyester resin. Other fillers can be non-fiber fillers such as mica, Shi Xi,卜 'moon stone, bauxite, kaolin, sulfuric acid #5, carbolic acid, titanium oxide, ferrite, &, ^, clay, glass powder, zinc oxide, nickel carbonate, oxidation,, 粕, 乂Magnesium and barium sulfate. Non-fibrous fillers are usually in the form of powder or flaky particles. The preferred second phase method does not include a refill filler. 23 200844120 The invention can be extended to the first or second phase The composite material prepared in the method. The invention may be extended to a composite comprising a polyether and at least wt% nanoparticle, such as a fullerene moiety. The composite comprises at least 0-5 wt%, preferably at least 1 wt%, more preferably from i wt% to 20 wt%, In particular, from 1 wt% to 5 wt% of nanoparticle. The invention is extended to a composite comprising a first polymeric material (suitable as described above, preferably polyetheretherketone), an additional polymeric material (suitable as described above) Preferably, the polyether quinone imine) and the nanoparticle. 10 15 20 The composite material described herein can be used to make materials having improved thermal, electrical and abrasive properties. It can be used to make materials with improved mechanical properties, surface finish, lower diffusion rates, and improved cycleability. Several composite materials (e.g., including fullerite portions) as described herein can be used for electrostatic discharge (10) antistatic products. The invention can be extended to the composite materials described herein for electrostatic discharge or antistatic processes. The invention can be extended to (4) a tube or an excitation device such as a material; the Japanese yen plant is used, for example, for a Shixi wafer carrier; the wafer carrier tray, such as a Shixi wafer carrier dry disk; or a test Sleeve, for example: for witnessing, (iv) testing the test sleeve of the wafer

入此處所述之複合材料。 7 W 此處所述之任發明或實施例之任何面相之任 可與經適當修正與經適㈣更之歧所述 ^ 實施例之任何面相之任何_組合。 〃 β明或 本發明之特定實施例舉例說明如下。 下列縮寫用於後文: 24 200844120 SWNT-係指得自美國休士頓碳奈米技術公司(Carb〇n Nanotechnologies Inc (CNI))之「單壁奈来管。 MWNT-係指得自美國劍橋海派靈催化劑公司 (Huperion Catalysis)之「多壁碳奈米管」。 5 BDF-係指4,4’-二氣二苯甲_。 除非另行陳述,否則全部材料皆可得自英國亞利敘公 司及/或以所接收之形式使用。 25 200844120 合物於120C之通風烤爐中乾燥,製造含有〇·5 wt% SWNT 於複合物之灰色粉末。聚合物於4〇〇°c、1000秒·1具有熔體 黏度為 0.50 kNsm-2。 f例3-聚醚酮及SWNT之複金物之製備 5 重複實例1之程序,除了二苯砜/SWNT其餘皆不允許冷 卻,但反應器係配備有攪拌器/攪拌器導件、氮氣進氣口及 出氣口且進給4,4’-二氟一笨甲_(22.26克,〇.1〇2莫耳),4,4,-二羥基二苯甲酮(21.42克,0.1莫耳),且使用氮氣掃除丨小時 以上。然後内容物於氮氣氣氛下加熱至14〇。〇至15〇。〇間來 10形成近無色、/谷液。維持氮氣氣氛,添加無水碳酸納(10.81 克,0.102莫耳)。溫度以2小時時間徐緩升高至31yc然後維 持1小時。Into the composite materials described herein. 7 W Any aspect of any invention or embodiment described herein may be combined with any of the aspects of any of the embodiments described above with appropriate modifications and adaptations. Specific embodiments of the invention are exemplified below. The following abbreviations are used in the following: 24 200844120 SWNT- refers to the "single-walled Neil tube" obtained from Carb〇n Nanotechnologies Inc (CNI). MWNT- refers to Cambridge, USA "Multi-wall carbon nanotubes" from Huperion Catalysis. 5 BDF- means 4,4'-dichabicone. All materials may be obtained from the British company and/or in the form received, unless otherwise stated. 25 200844120 The compound was dried in a 120C ventilated oven to produce a gray powder containing 〇·5 wt% of SWNT in the composite. The polymer had a melt viscosity of 0.50 kNsm-2 at 4 ° C and 1000 sec. f Example 3 - Preparation of polyether ketone and SWNT complex gold 5 Repeat the procedure of Example 1, except that the rest of the diphenyl sulfone / SWNT is not allowed to cool, but the reactor is equipped with a stirrer / stirrer guide, nitrogen gas inlet Mouth and gas outlet and feed 4,4'-difluoro-abbreviated _ (22.26 g, 〇.1 〇 2 mol), 4,4,-dihydroxybenzophenone (21.42 g, 0.1 mol) And use nitrogen to sweep for more than 丨 hours. The contents were then heated to 14 Torr under a nitrogen atmosphere. 〇 to 15〇. In the meantime, 10 forms a colorless, / valley liquid. A nitrogen atmosphere was maintained and anhydrous sodium carbonate (10.81 g, 0.102 mol) was added. The temperature was slowly increased to 31 yc over 2 hours and then maintained for 1 hour.

讓反應混合物冷卻、磨粉及以丙酮及水洗滌。所得聚 合物於120C之通風烤爐中乾燥,製造含有0.5 wt% SWNT 15於複合物之灰色粉末。聚合物於400°C、1000秒-1具有溶體 黏度為0.54 kNsm·2。 實例4_聚酸楓及SWNT之禎合物夕臀備 配備有經研磨玻璃葵可菲蓋、攪拌器/攪拌器導件、氮 氣進氣口及出氣口之250毫升有凸緣燒瓶内進給4,4,_二氣 20 二苯颯(29.54克,0.102莫耳),4,4,-二羥基二苯颯(25.03克, 0.10莫耳)及得自實例1之固體二苯颯/SWNT分散體,且使用 氮氣掃除1小時以上。然後内容物於氮氣氣氛下加熱至14〇 °(:至150°(:間來形成近無色溶液。維持氮氣氣氛,添加無水 碳酸鉀(13.99克,0.102莫耳)。溫度升高至18(rc,維持〇·5 26 200844120 小時,升高至205°C,維持1小時,升高至225°C,維持2小 時,升高至265°C,維持〇_5小時,升高至280°C及維持2小 時。 讓反應混合物冷卻、磨粉及以丙酮/甲醇(30/70)及水洗 5 滌。所得聚合物於120°C之通風烤爐中乾燥,製造含有 0.5wt% SWNT之灰色粉末。 實例5-聚醚醚酮/SWNT複合物使用額外聚醚醚酮再處理 重複實例1及實例2之程序,規模大小可製造200克含5 wt% SWNT之聚醚醚酮化合物。使用ZSK25 WLE雙螺桿擠 10 塑機具有工具缸溫度由200°C至390°C,將各1〇〇克聚醚醚酮 /SWNT化合物試樣與聚醚醚酮(PEEK 450P,維萃斯公司 (Victrex pic))(分別為900克及1900克)摻混,來製造分別含 有 0.5 wt% SWNT與0·25 wt% SWNT之複合物。 實例6-聚醚醚酮/SWNT複合物使用聚醚醯亞胺及聚醚醚酮 15 再處理 重複實例1及實例2之程序,規模大小可製造200克含5 wt% SWNT之聚醚醚酮化合物。使用ZSK25 WLE雙螺桿擠 塑機,將聚醚醚酮/SWNT化合物與聚醚醚酮(PEEK 450P, 維萃斯公司)(1200克)及聚醚醯亞胺(奥騰(Ultem)lOOO得自 20 奇異電氣公司(General Electric Company)) (600克)來製造 含有0.5 wt% SWNT之化合物。 實例7-二笨颯/MWNT分散體之製備 重複實例1之程序,但SWNT (0.144克)以MWNT (0.144 克)置換來製造二苯颯/MWNT分散體。 27 200844120 實例8_聚醚醚酮及MWNT之複合物之製備- 重複實例2之程序,但實例1所製備之固體二苯颯 /SWNT分散體以實例7所製備之固體二苯颯/MWNT分散體 置換。 5 所得聚醚醚酮/MWNT化合物於120 °C之通風烤爐乾 燥,製造含有0.5 wt% MWNT之灰色粉末。化合物具有於400 °C、1000秒-1之熔體黏度為〇.47kNsm·2。 經由類似前述實例之方法,可製備包含其它類別奈米 顆粒之複合材料。 10 本發明並未限於前述實施例之各項細節。本發明可擴 充至本說明書(包括任何隨附之申請專利範圍、摘要及圖式) 所揭示之特徵之任一種新穎特徵或任一種新穎特徵之組 合,或擴充至如此揭示之任何方法或處理程序步驟之任一 新穎步驟或任一種新|員步驟之組合。 15 【圖簡曰月】 益 【主要元件符號說明】 益 28The reaction mixture was allowed to cool, triturated and washed with acetone and water. The obtained polymer was dried in a 120 C ventilated oven to produce a gray powder containing 0.5 wt% of SWNT 15 in the composite. The polymer had a solution viscosity of 0.54 kNsm·2 at 400 ° C for 1000 sec-1. Example 4_Polyacid Maple and SWNT Composites are equipped with a 250 ml flanged flask for the grinding of the ground glass, the stirrer/mixer guide, the nitrogen inlet and the outlet. 4,4,_digas 20 diphenyl hydrazine (29.54 g, 0.102 mol), 4,4,-dihydroxydiphenyl hydrazine (25.03 g, 0.10 mol) and solid diphenyl hydrazine/SWNT from Example 1. The dispersion was purged with nitrogen for more than 1 hour. The contents were then heated to 14 〇 (: to 150 ° under a nitrogen atmosphere to form a nearly colorless solution. Maintain a nitrogen atmosphere, add anhydrous potassium carbonate (13.99 g, 0.102 mol). The temperature was raised to 18 (rc) Maintain 〇·5 26 200844120 hours, increase to 205 ° C, maintain for 1 hour, increase to 225 ° C, maintain for 2 hours, increase to 265 ° C, maintain 〇 _ 5 hours, increase to 280 ° C And maintained for 2 hours. The reaction mixture was cooled, ground, and washed with acetone/methanol (30/70) and water. The obtained polymer was dried in a ventilated oven at 120 ° C to produce a gray powder containing 0.5 wt% of SWNT. Example 5 - Polyetheretherketone/SWNT Complex Reprocessed using additional polyetheretherketone The procedure of Examples 1 and 2 was repeated to produce 200 grams of polyetheretherketone compound containing 5 wt% SWNT. Using ZSK25 WLE Twin-screw extrusion 10 with a tool cylinder temperature from 200 ° C to 390 ° C, each 1 gram of polyetheretherketone / SWNT compound sample and polyetheretherketone (PEEK 450P, Victrex pic )) (900 g and 1900 g, respectively) blended to produce a composite containing 0.5 wt% SWNT and 0·25 wt% SWNT, respectively Example 6 - Polyetheretherketone/SWNT Composite Using Polyether Yenimine and Polyetheretherketone 15 Reprocessing The procedure of Example 1 and Example 2 was repeated to produce 200 grams of polyether ether containing 5 wt% SWNT. Ketone compound. Polyetheretherketone/SWNT compound with polyetheretherketone (PEEK 450P, Victrex) (1200 g) and polyetherimide (Ultem) using ZSK25 WLE twin-screw extruder lOOO was obtained from 20 General Electric Company (600 g) to make a compound containing 0.5 wt% SWNT. Example 7 - Preparation of a second awkward/MWNT dispersion The procedure of Example 1 was repeated, but SWNT (0.144 g) Preparation of a diphenyl hydrazine/MWNT dispersion by displacement of MWNT (0.144 g). 27 200844120 Example 8 - Preparation of a complex of polyetheretherketone and MWNT - The procedure of Example 2 was repeated, but the solid diphenyl prepared in Example 1 The 飒/SWNT dispersion was replaced with the solid diphenyl hydrazine/MWNT dispersion prepared in Example 7. 5 The resulting polyetheretherketone/MWNT compound was dried in a ventilated oven at 120 ° C to produce a gray powder containing 0.5 wt% MWNT. The compound has a melt viscosity of 〇.47 kNsm·2 at 400 ° C and 1000 sec-1. Composite materials comprising other classes of nanoparticles can be prepared via methods analogous to the foregoing examples.10 The invention is not limited to the details of the foregoing examples. The invention may be extended to any novel feature or combination of any of the novel features disclosed in the specification (including any accompanying claims, abstract and drawings), or to any method or process disclosed herein. Any novel step of the step or a combination of any of the new steps. 15 【图简曰月】 Benefits 【Main component symbol description】 Benefit 28

Claims (1)

200844120 十、申請專利範圍: 1. 一種製備包含聚合物料及奈米顆粒之複合材料之方 法,其中該聚合物料係屬於包括下列部分之聚合材料類 別: a) 苯基部分; b) 酮部分及/或颯部分;及 c) 醚部分及/或硫醚部分; 該方法包含下列步驟: (i) 將奈米顆粒分散於一流體來製備奈米顆粒於該 流體之一奈米顆粒分散體; (ii) 讓⑴所製備之分散體與一種或多種單體接觸, 藉此製備包含奈米顆粒及一種或多種單體之一混合 物,其中該一種或多種單體可經聚合來製造該聚合物 料; (iii) 聚合於(ii)所製備之混合物來製造包含奈米顆 粒分散於該聚合物料之一複合材料。 2. 如申請專利範圍第1項之方法,其中該複合材料包含界 定一基體及額外材料分布於該基體内部之該聚合材 料,其中大部分額外材料係包含該奈米顆粒。 3. 如申請專利範圍第1或2項之方法,其中至少0.05wt%至 低於2wt%之奈米顆粒提供於該分散體。 4. 如前述申請專利範圍各項中任一項之方法,其中該流體 包含大部分具有熔點至少〇°C至低於500°C之有機材料。 5. 如前述申請專利範圍各項中任一項之方法,其中該流體 29 200844120 係於該方法步驟(ii)作為聚合溶劑。 6. 如前述申請專利範圍各項中任一項之方法,其中該流體 係占步驟(ii)所使用之溶劑之總wt%之至少50wt%。 7. 如前述申請專利範圍各項中任一項之方法,其中於步驟 (ii)中,奈米顆粒係與該流體接觸,且經由導引振盪能 源至流體而分散。 8. 如前述申請專利範圍各項中任一項之方法,其中該聚合 物料為具有下式重複單元之一均聚物200844120 X. Patent Application Range: 1. A method for preparing a composite material comprising a polymer material and nano particles, wherein the polymer material belongs to the class of polymeric materials comprising the following: a) a phenyl moiety; b) a ketone moiety and/or Or a portion of the oxime; and c) an ether moiety and/or a thioether moiety; the method comprising the steps of: (i) dispersing the nanoparticle in a fluid to prepare a nanoparticle dispersion of the nanoparticle in the fluid; Ii) contacting the dispersion prepared in (1) with one or more monomers, thereby preparing a mixture comprising nanoparticle and one or more monomers, wherein the one or more monomers can be polymerized to produce the polymer material; (iii) polymerizing the mixture prepared in (ii) to produce a composite comprising nanoparticles dispersed in the polymer material. 2. The method of claim 1, wherein the composite material comprises a polymeric material defining a matrix and additional material distributed within the matrix, wherein a majority of the additional material comprises the nanoparticle. 3. The method of claim 1 or 2, wherein at least 0.05 wt% to less than 2 wt% of nanoparticles are provided in the dispersion. 4. The method of any of the preceding claims, wherein the fluid comprises a majority of organic material having a melting point of at least 〇 ° C to less than 500 ° C. 5. The method of any of the preceding claims, wherein the fluid 29 200844120 is in the method step (ii) as a polymerization solvent. 6. The method of any of the preceding claims, wherein the fluid comprises at least 50% by weight of the total wt% of the solvent used in step (ii). 7. The method of any of the preceding claims, wherein in step (ii), the nanoparticle is in contact with the fluid and is dispersed by directing the oscillating energy to the fluid. 8. The method of any of the preceding claims, wherein the polymeric material is a homopolymer having one of the repeating units of the formula 或具有下式重複單元之一均聚物Or one of the repeating units of the following formula 或具有下式重複單元之一均聚物Or one of the repeating units of the following formula 或具有下式重複單元之一均聚物Or one of the repeating units of the following formula 或至少兩個不同IV及/或V單元;或至少兩個不同 IV*及/或V*單元之隨機共聚物或嵌段共聚物;其中A、 B、C、D分別表示0或1以及其中m、r、s、t、v、w及z 各自分別表示零或正整數,E及E’分別表示氧原子或硫 原子或直接鍵聯,G表示氧原子或硫原子、直接鍵聯或 30 200844120 -O-Ph-O-部分’此處Ph表不苯基及Ar係選自於下列部分 中之一者,(i)*、(i)**、(i)至(X)係透過其苯基部分中之 一者或多者而鍵結至相鄰部分Or at least two different IV and/or V units; or at least two random copolymers or block copolymers of different IV* and/or V* units; wherein A, B, C, D represent 0 or 1 and m, r, s, t, v, w, and z each represent a zero or a positive integer, respectively, and E and E' respectively represent an oxygen atom or a sulfur atom or a direct bond, and G represents an oxygen atom or a sulfur atom, a direct bond or 30. 200844120 -O-Ph-O-portion where P is not a phenyl group and Ar is selected from one of the following parts: (i)*, (i)**, (i) to (X) One or more of its phenyl moieties bonded to adjacent moieties 9. 如前述申請專利範圍各項中任一項之方法,其中該聚合 物料係選自聚醚醚酮、聚醚酮、聚醚酮酮、聚醚酮醚酮 酮、聚醚醚酮酮、聚醚颯及聚颯。 10. 如前述申請專利範圍各項中任一項之方法,其中該聚合 物料包含聚醚醚酮。 31 200844120 11. 如前述申請專利範圍各項中任一項之方法,其中該複合 材料包括lwt%至20wt%奈米顆粒。 12. 如前述申請專利範圍各項中任一項之方法,其中該複合 材料大部分包含單一聚合物料,其全部皆係於步驟(ii) 中製備。 13. —種製備一第二複合材料之方法,該第二複合材料包含 一第一聚合物料及X wt%奈米顆粒,其中X wt%係指奈米 顆粒於該第二複合材料中之該wt%,該方法包含: i) 選擇一第一複合材料,其包含該第一聚合物料及y wt%奈米顆粒,其中y係指奈米顆粒於該第一複合材料 中之該wt%,以及其中y係大於X ; ii) 該第一複合材料與額外聚合物料接觸來製備該 第二複合材料。 14. 如申請專利範圍第13項之方法,其中該第一聚合物料包 含聚芳基醚酮、聚芳基醚颯或聚颯;以及該額外聚合物 料包含聚芳基醚酮、聚芳基醚颯、聚醚醯亞胺或PEI。 15. —種複合材料,包含聚醚醚酮及至少0.lwt%奈米顆粒。 16. —種複合材料,包含聚合物料、額外聚合物料及奈米顆 粒0 32 200844120 七、指定代表圖: (一) 本案指定代表圖為:第( )圖。(無) (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:9. The method of any one of the preceding claims, wherein the polymer material is selected from the group consisting of polyetheretherketone, polyetherketone, polyetherketoneketone, polyetherketoneetherketoneketone, polyetheretherketoneketone, Polyether oxime and polyfluorene. The method of any of the preceding claims, wherein the polymeric material comprises polyetheretherketone. The method of any of the preceding claims, wherein the composite material comprises from 1 wt% to 20 wt% of nanoparticle. 12. The method of any of the preceding claims, wherein the composite material comprises a majority of a single polymeric material, all of which are prepared in step (ii). 13. A method of preparing a second composite material comprising a first polymer material and X wt% nanoparticle, wherein X wt% means that the nanoparticle is in the second composite material Wt%, the method comprises: i) selecting a first composite material comprising the first polymer material and y wt% nanoparticle, wherein y is the wt% of the nanoparticle in the first composite material, And wherein the y system is greater than X; ii) the first composite material is contacted with an additional polymeric material to prepare the second composite material. 14. The method of claim 13, wherein the first polymer material comprises a polyaryl ether ketone, a polyaryl ether oxime or a polyfluorene; and the additional polymer material comprises a polyaryl ether ketone, a polyaryl ether Bismuth, polyether oxime or PEI. 15. A composite material comprising polyetheretherketone and at least 0.1% by weight of nanoparticle. 16. A composite material comprising a polymer material, an additional polymer material and a nano particle. 0 32 200844120 VII. Designated representative figure: (1) The representative figure of the case is: ( ). (None) (2) A brief description of the symbol of the representative figure: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96148910A 2006-12-21 2007-12-20 Composite material TW200844120A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0625484A GB0625484D0 (en) 2006-12-21 2006-12-21 Composite material

Publications (1)

Publication Number Publication Date
TW200844120A true TW200844120A (en) 2008-11-16

Family

ID=37734576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96148910A TW200844120A (en) 2006-12-21 2007-12-20 Composite material

Country Status (3)

Country Link
GB (1) GB0625484D0 (en)
TW (1) TW200844120A (en)
WO (1) WO2008075009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658578B2 (en) 2010-12-29 2014-02-25 Industrial Technology Research Institute Lubricating oil composition and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735859B1 (en) 2009-07-09 2017-05-15 다이셀에보닉 주식회사 Thermoplastic resin composition and molded article of same
CN103665368B (en) * 2013-11-28 2017-01-11 张家港祥成医用材料科技有限公司 Method for low-temperature synthesis of polyaryletherketone resin on nanometer/micrometer-scale inorganic seedbed
CN113913016B (en) * 2021-09-29 2023-10-03 金发科技股份有限公司 Polyarylethersulfone composition and preparation method and application thereof
CN113831535B (en) * 2021-09-29 2023-05-16 金发科技股份有限公司 Preparation method of polyarylethersulfone resin, obtained polyarylethersulfone resin and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003047A (en) * 2001-06-26 2003-01-08 Jsr Corp Film-forming composition, method for forming film and organic film
US7588699B2 (en) * 2001-11-02 2009-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
US7250477B2 (en) * 2002-12-20 2007-07-31 General Electric Company Thermoset composite composition, method, and article
KR100534012B1 (en) * 2003-05-26 2005-12-07 한국화학연구원 Polysulfone's based nanocomposites having improved gas barrier properties
US7026432B2 (en) * 2003-08-12 2006-04-11 General Electric Company Electrically conductive compositions and method of manufacture thereof
JP2005133047A (en) * 2003-10-30 2005-05-26 Nippon Kokusai Kogyo Kk Composite resin of aromatic polyetheretherketoneketone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658578B2 (en) 2010-12-29 2014-02-25 Industrial Technology Research Institute Lubricating oil composition and method for manufacturing the same

Also Published As

Publication number Publication date
WO2008075009A1 (en) 2008-06-26
GB0625484D0 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US7906043B2 (en) Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
Kuo et al. POSS related polymer nanocomposites
TWI308584B (en)
Gu et al. Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin
Surnova et al. Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties
TWI548698B (en) Thermoset resin compositions with increased toughness
Chang et al. Poly (trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology (I)
Yang et al. Polybenzoxazine-core shell rubber–carbon nanotube nanocomposites
Liang et al. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification
Wang et al. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane
EP2041225B1 (en) Polymer composition suitable for electrostatic discharge applications
TW200838934A (en) Electroconductive thermoplastic resin composition and plastic article
TW200844120A (en) Composite material
TW200844155A (en) Composite material
Garate et al. Surfactant-aided dispersion of polystyrene-functionalized carbon nanotubes in a nanostructured poly (styrene-b-isoprene-b-styrene) block copolymer
Wang et al. Facile method to functionalize graphene oxide nanoribbons and its application to Poly (p-phenylene benzobisoxazole) composite
Dencheva et al. Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM
Yoo et al. Effect of interaction between poly (ethylene terephthalate) and carbon nanotubes on the morphology and properties of their nanocomposites
Gunasekaran et al. Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites
US20220135740A1 (en) Poly(aryl ether ketone) compositions containing carbon-based nanomaterials
Rakesh et al. Monomer self assembly and organo-gelation as a route to fabricate cyanate ester resins and their nanocomposites with carbon nanotubes
Ning et al. Thermally stable and deformation-reversible eugenol-derived bismaleimide resin: Synthesis and structure-property relationships
Pongsa et al. Direct functionalization with 3, 5‐substituted benzoic acids of multiwalled carbon nanotube/epoxy composites
Kelar et al. Properties of anionic polymerized ε‐caprolactam in the presence of carbon nanotubes
TW200844149A (en) Composite material