TW200843053A - Composite substrate structure for high heat dissipation - Google Patents

Composite substrate structure for high heat dissipation Download PDF

Info

Publication number
TW200843053A
TW200843053A TW96114580A TW96114580A TW200843053A TW 200843053 A TW200843053 A TW 200843053A TW 96114580 A TW96114580 A TW 96114580A TW 96114580 A TW96114580 A TW 96114580A TW 200843053 A TW200843053 A TW 200843053A
Authority
TW
Taiwan
Prior art keywords
heat dissipation
high heat
composite substrate
substrate
dielectric layer
Prior art date
Application number
TW96114580A
Other languages
Chinese (zh)
Other versions
TWI352407B (en
Inventor
Jen-Dong Hwang
Cheng-Chou Wong
Chih-Jong Chang
Cheng-Chuan Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96114580A priority Critical patent/TWI352407B/en
Publication of TW200843053A publication Critical patent/TW200843053A/en
Application granted granted Critical
Publication of TWI352407B publication Critical patent/TWI352407B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

A composite substrate structure for high heat dissipation comprises a substrate, a dielectric layer and a circuit layer. The substrate comprises metal matrix composite base. The dielectric layer is formed on the substrate. The circuit layer is formed on the dielectric layer. A semiconductor element is thermally connected to the substrate and electrically connected to the circuit layer, whereby heat generated by the semiconductor element is transferred to the outer environment via the substrate.

Description

200843053 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種高散熱複合基板結構,特別是有 關於一種具有金屬基複合基材的高散熱複合基板結構。 【先前技彳衧】 隨著面功率高亮度發光二極體(HB LED)的發展,LED Γ 應用於顯不器背光源、迷你型投影機、照明及汽車燈源等 市場潛力愈來愈引起注意。但由於目前led的輸入功率只 有15〜20%轉換成光,近8〇〜85%轉換成熱,這些熱如無法 適時排出至環境,將使LED晶片的界面溫度過高而影響其 杂光強度及使用哥命。因此led的熱管理問題愈來愈受到 重視。欲降低LED的界面溫度,必須從LED封裝階段就 要考慮其散熱問題,以降低led模組的熱阻抗,而其中最 重要的就是散熱基板的材料選用及介電層(絕緣層)的熱傳 ί 導改善。 由中華民國及國外專利檢索發現有幾種電子半導體元 件的散熱基板,如中華民國第1239613號專利是以高熱導 和低膨脹係數的粉體混合,然後壓合該混合後之粉體成為 固形體,再以燒結的方法將該固形體燒結成高導熱低膨脹 之散熱基板;或者使該固形體燒結成多孔質的預形體,再 以高導熱的材料(Al,Cu)滲透進該燒結體之孔隙内,以形成 高導熱低膨脹係數之散熱基板。此方法所得到之複合材料 的散熱基板是以粉末冶金的方法所得到的,其工序較長成 0954-A22084TWF(N2);P54950138TW;chentf 5 200843053 本亦較高’同時很難得到真正高熱傳導係數的散熱基板。 中華民國第1246394號專利所揭露的是以電路層、絕 緣層和金屬板三層結構所組成的導熱基板,藉金屬板上加 工之戾槽和其它層接合’此製程所製造出來的導熱基板有 如下的問題’因金屬基板之熱膨脹係數分別為23卯m/K(A1) 及17 ppm/K(Cu)與半導體發光元件的熱膨脹係數(GaN: 5 4 ppm/K ’ InP : 4.6 ppm/K,GaP : 5.3 ppm/K)差異相當大, ^ 在熱循環運作下容易產生熱變形,影響元件使用可^度及 f 壽命,且其使用的絕緣層的熱傳導性不佳,低於丨w/nfK, 所以使製造出來的導熱基板導熱效果大打折扣。 在W02006045267專利揭露直接銅接合基板⑴丨代以 bonding copper),係在陶瓷(AW3、A1N)板與銅箔之間,先 通入氧氣使其與Cu反應而在銅板表面形成cu〇,同時使 純銅的熔點由1083 C降低至l〇65°C的共晶溫度。接著加熱 至局溫使氧化銅(Cu〇)與氧化鋁或氮化鋁(Al2〇3或A1N) 〔 反應形成化合物,而使銅箔與陶瓷介電層緊密接合在一 起,具有很好的界面接合強度。此種具絕緣的陶瓷基板其 且介電層如為a12〇3則其熱傳導率為24 w/m.K,熱膨脹 係數為7.3PPm/K;如為A1N則其熱傳導率為17〇w/m.K, 熱%脹係數為5.6 ppm/K,比較沒有一般金屬基板所存在的 _脹係數與半導體元件不匹酉己之問題,同日㈣合於高溫 %境及高功率或高電流電子半導體裝置之使用。但此案所 使用的方法疋间/JEL熱擴散接合的方法,不但製程時間很 長、溫度高、環境要求又嚴苛,製作成本高且陶究基板的 0954-A22084TWF(N2);P54950138TW;chentf 6 200843053 尺寸限於4.5平方英寸以下,無法用於大面積的基板上。 美國專利US 6.,501,103中揭露有關發光二極體之散熱 構造。其由發光二極體、電路板、和散熱基座所組成,其 中發光二極體元件須經由其所謂的散熱板和散熱基板兩層 結構將熱傳導出去,其中散熱基座為金屬材料所構成,一 般金屬材料之熱傳導高的如鋁或銅其熱膨脹係數相對的也 非常高,因此容易造成和半導體構件無法匹配而破壞,同 時其間之接合係由機械結構所完成,如銷(pin)和焊接的方 ^ 式接合,這不僅容易造成施工時結構體的變形和破壞同時 也容易產生熱阻抗的提升,使半導體元件無法有效率的將 熱傳導出去而造成破壞。 【發明内容】 本發明的主要目的是以金屬基複合材料作為電子半導 體元件的散熱基板,其不但比一般常用的印刷電路板、金 屬基板或陶瓷基板具有極高的熱傳導率及熱擴散率,能使 ί 半導體元件所產生的熱很迅速的擴散和傳遞出去,同時金 屬基複合材料具有可以匹配半導體元件的熱膨脹係數,使 半導體元件不會在操作過程中因熱循環而產生過大的熱應 力和熱變形,造成電路失效及界面脫層等問題,增加半導 體元件的可靠性及使用壽命。 本發明之高散熱複合基板的結構的一實施例包括一基 材、一介電層以及一電路層。基材包括一金屬複合材料 (Metal matrix composite base)。介電層係形成於基材上,電 路層係形成於介電層上。一半導體元件係熱連接於基材且 0954-A22084TWF(N2);P54950138TW;chentf 7 200843053 電性連接於該電路層,萨 材傳遞至外界或散熱裝置0上。’ 牛所產生的熱經由基 在上述實施例中,金屬複合材料 —強;_匕材料1化材料係摻雜於基地材料中材料以及 在上边貫施例中,強化材料可包括 短纖維或長纖維)、石墨粉、天狀、 石墨等,或者是以上材料兩種以上的混或發泡 可包括陶_粒及鑽石粉末,或難材料也 述含碳材料的混合。 β懸及鑽石粉末與上 鈦例中’基地材料可包括銘、銅、辞、鎮、 之間上述實施例更包括—金屬化層,形成於基材與介電層 sn:、上金屬化料^200843053 IX. Description of the Invention: [Technical Field] The present invention relates to a high heat dissipation composite substrate structure, and more particularly to a high heat dissipation composite substrate structure having a metal matrix composite substrate. [Previous Technology] With the development of surface power high-brightness light-emitting diodes (HB LEDs), the market potential of LED Γ for display backlights, mini projectors, lighting and automotive light sources is increasing. note. However, since the input power of LED is only 15~20% converted into light, and nearly 8〇~85% is converted into heat. If the heat is not discharged to the environment in time, the interface temperature of the LED chip will be too high, which will affect its stray light intensity. And use the life. Therefore, the thermal management problem of led has been paid more and more attention. In order to reduce the interface temperature of the LED, it is necessary to consider the heat dissipation problem from the LED packaging stage to reduce the thermal impedance of the LED module, and the most important one is the material selection of the heat dissipation substrate and the heat transfer of the dielectric layer (insulation layer). ί Guide to improvement. A heat-dissipating substrate of several electronic semiconductor components was found by the Republic of China and foreign patent searches. For example, the Republic of China No. 1239613 patent is a mixture of powders with high thermal conductivity and low expansion coefficient, and then the powder is solidified by pressing the mixture. And then sintering the solid body into a heat-dissipating substrate having high thermal conductivity and low expansion by sintering; or sintering the solid body into a porous preform, and then infiltrating the sintered body with a material having high thermal conductivity (Al, Cu) Within the pores to form a heat-dissipating substrate having a high thermal conductivity and a low expansion coefficient. The heat-dissipating substrate of the composite material obtained by the method is obtained by a powder metallurgy method, and the process is long into 0954-A22084TWF (N2); P54950138TW; the chentf 5 200843053 is also high' at the same time, it is difficult to obtain a truly high heat transfer coefficient. Heat sink substrate. The heat-transfer substrate composed of a three-layer structure of a circuit layer, an insulating layer and a metal plate is disclosed in the Patent No. 1,426,394 of the Republic of China, and the heat-conductive substrate manufactured by the process of processing the groove and other layers on the metal plate has The following problems are due to the thermal expansion coefficients of the metal substrate of 23 卯m/K (A1) and 17 ppm/K (Cu) and the thermal expansion coefficient of the semiconductor light-emitting device (GaN: 5 4 ppm/K ' InP : 4.6 ppm/K , GaP: 5.3 ppm/K) is quite different, ^ It is prone to thermal deformation under thermal cycling, affecting the use of components and f life, and the thermal conductivity of the insulating layer used is not good, lower than 丨w/ nfK, so the thermal conductivity of the manufactured thermal substrate is greatly reduced. In the WO2006045267 patent, a direct copper bonded substrate (1) is bonded to a copper foil between a ceramic (AW3, A1N) plate and a copper foil, and oxygen is first introduced to react with Cu to form cu〇 on the surface of the copper plate, and at the same time The melting point of pure copper is lowered from 1083 C to a eutectic temperature of l〇65 °C. Then, it is heated to a local temperature to make copper oxide (Cu〇) and aluminum oxide or aluminum nitride (Al2〇3 or A1N) [react to form a compound, and the copper foil and the ceramic dielectric layer are tightly bonded together, and have a good interface. Bonding strength. The insulating ceramic substrate has a thermal conductivity of 24 w/mK and a thermal expansion coefficient of 7.3 ppm/K, and a thermal conductivity of 17 〇w/mK, such as A1N. The % expansion coefficient is 5.6 ppm/K, which is compared with the problem that the expansion factor of the general metal substrate does not match the semiconductor component, and the same day (4) is used in the high-temperature and high-power or high-current electronic semiconductor device. However, the method used in this case is the method of inter-day/JEL thermal diffusion bonding, which not only has a long process time, high temperature, strict environmental requirements, high production cost, and the substrate is 0854-A22084TWF(N2); P54950138TW;chentf 6 200843053 Size is limited to 4.5 square inches and cannot be used on large-area substrates. A heat dissipating structure for a light-emitting diode is disclosed in U.S. Patent No. 6,501,103. The light-emitting diode component is composed of a light-emitting diode, a circuit board, and a heat-dissipating base. The light-emitting diode component is required to conduct heat through a two-layer structure of a so-called heat dissipation plate and a heat dissipation substrate, wherein the heat dissipation base is made of a metal material. Generally, the high thermal conductivity of metal materials such as aluminum or copper is also relatively high in thermal expansion coefficient, so that it is easy to cause damage to the semiconductor components, and the joint between them is completed by mechanical structures such as pins and solders. The joint is not only easy to cause deformation and damage of the structure during construction, but also easy to increase the thermal resistance, so that the semiconductor element cannot efficiently conduct heat and cause damage. SUMMARY OF THE INVENTION The main object of the present invention is to use a metal-based composite material as a heat-dissipating substrate of an electronic semiconductor component, which has high thermal conductivity and thermal diffusivity not only than a commonly used printed circuit board, metal substrate or ceramic substrate, but also The heat generated by the semiconductor component is rapidly diffused and transmitted, and the metal matrix composite has a thermal expansion coefficient that can match the semiconductor component, so that the semiconductor component does not generate excessive thermal stress and heat due to thermal cycling during operation. Deformation causes problems such as circuit failure and interface delamination, increasing the reliability and service life of semiconductor components. An embodiment of the structure of the high heat dissipation composite substrate of the present invention comprises a substrate, a dielectric layer and a circuit layer. The substrate comprises a metal matrix composite base. A dielectric layer is formed on the substrate, and a circuit layer is formed on the dielectric layer. A semiconductor component is thermally connected to the substrate and 0954-A22084TWF(N2); P54950138TW; chentf 7 200843053 is electrically connected to the circuit layer, and the material is transferred to the outside or the heat sink 0. 'The heat generated by the cow is based on the above-mentioned embodiment, the metal composite material is strong; the material of the material is doped in the material of the base material, and in the above embodiment, the reinforcing material may include short fibers or long Fiber), graphite powder, weather, graphite, etc., or a mixture of two or more of the above materials may include a mixture of ceramics and diamond powder, or a mixture of difficult materials and carbonaceous materials. In the case of β-suspension and diamond powder and the upper titanium, the base material may include the following examples: the metallization layer is formed on the substrate and the dielectric layer sn: the upper metallization material. ^

Cr、Cu、Ti、Ag 或 Au。 二述==:電層包括高分子基絕緣材料μ 材料中。“姻為導熱粉體,並摻雜於高分子基絕緣 、—上返貫施例更包括至少一通孔,f穿介電層而❹ 半導體兀件係設於通孔中並與基材保持熱連接。'。 在另一貫施例中,半導體元件係設置於 藉由介電層熱連接於基材。 $層上,並 明顯=讓本發明之上述和其他目的、特徵、和優點能更 ,、、、、重,下文特舉一較佳實施例,並配合所附圖示作 0954-A22084TWF(N2);P54950138TW;chentf 8 200843053 詳細說明如下: 【實施方式】 本木电明之電子半導體發光元件用的高散熱複合基板 二金屬基複合材料的基材、-高導熱的介 象層)及—電路層。其中該金屬基複合材料的基 材為一石墨強化或碳纖維強化的金屬基複合材料所f成, =絕高的熱傳導率(200w/m.K)及低熱膨^係數 匕力大對電子半導體的散熱性及降低異質材料之 接口銅泊基板。同時能在高散熱複 接 電層(絕緣層)’主要目的在提供半導體-層介 南介電性’提供給半導體裝置作為電 口土材之間的 本發明之高散熱複合基板結構:之用。 係包括一基材10、一介電層丨 弟1圖所示,主要 Μ形成於該基材1G上,路層介電層 在介電層14上形成多數個通孔17=〜電層Η上’ 14 ’半導體元件20係設置於通孔17^子17貫穿介電層 10,另外半導體元件2〇係以導^ ’亚熱接觸於基材 其中基材U)包括一基地材料 2接於電路層16。 料係摻雜於基地材料中。強化材料—強化材料’強化材 纖維、長纖維·..)、石墨粉、鱗狀石墨:義維(粉末、短 末等,而基地材料則包括鋁、銅、鉾2 石墨或鑽石粉 而復上一介電層14以便製作電路屏 、甩因此 "16,此介電層14可以 0954-A22084T\A/F(N2);P54950138TW;chentf 9 200843053 是高分子基絕緣膠材或陶瓷材料(如Al2〇3、Si〇2、Ti〇2、 MgO、AIN、BN、Si3N4、SiC··等單體或雨種以上混合物), 其厚度由ΙΟμηι到150μηι不等。介電層的母材(matrix)—般 是以能耐高溫特性的環氧樹酯(ep〇xy)及聚酿亞胺 (polyimid)為主’而為提高母材的熱傳導率會再添加陶莞粉 體(導熱粉體),如Al2〇3、si〇2、sic、BN等,目前使 用絕緣膠材的熱傳導率約在1〜5 W/m.K之間。 ^ 在接合半導體元件20處的介電層14上留有通孔17是 i 因一般使用的介電層14的材料係以高分子基材為主,再添 加絕緣導熱的陶瓷粉末來提高其熱傳導率,但其熱傳導率 一般均在1〜3W/m.K左右,即使用陶瓷絕緣材料,其熱傳 導率亦低於25W/m.K,對黏著在其上面的半導體元件而 吕’其熱仍不易傳遞至下面的高導熱複合材料10上,因此 可以在介電層14直接留出通孔17,使半導體發光元件可 以直接黏著在高導熱的基材1〇上。此種做法基本上就是提 《 供可以Chip on Board或Matrix arrays的散熱基板,一方面 ^ 縮短熱傳路徑大大降低封裝層级的熱阻抗,另方面因半導 體元件與複合基板的熱膨脹係數相匹配,亦能降低熱應力 及熱變形之發生而提高元件的可靠度及壽命。 本發明之另一實施例,如第2圖所示,高導熱複合基 板結構包括一金屬基複合材料的基材1〇、一金屬化層12、 一介電層14及一電路層16所構成。本實施例與第1圖的 貝%例的差異在於本貫施例多了一金屬化層12,金屬化声 12係包圍基材1〇而形成。 0954-A22084TWF(N2);P54950138TW;chentf 10 200843053 在接合半導體元件20處的介電層14上則同樣留有通 孔17,通孔17主要目的在使半導體元件20直接接觸到金 屬化層12,縮短熱傳路徑,避開導熱性較差的介電層14。 由於上述所提之金屬基複合材料與其它異質材料不易直接 接合,因此在金屬基複合材料的基材10的表面上先進行金 屬化,如鍍上Ni、Cu、Ti、Cr、Ag或Cu等金屬層12以 利異質材料接合,如與散熱片、熱管、熱電元件、半導體 元件等之錫焊接合,另方面也可以改善表面粗糙度及防止 ^ 複材表面脫碳之問題。 第3圖為本發明之高導熱複合基板結構的另一實施例 的示意圖。在本實施例中,半導體元件20係直接設置於介 電層14上,不具備前二實施例之通孔17,並以導線18電 性連接至電路層16。 第4圖為本發明之高導熱複合基板結構的另一實施例 的示意圖。在本實施例中,除了半導體元件20直接設置於 介電層14上之外,與第2圖所示的實施例一樣,在基材Cr, Cu, Ti, Ag or Au. Second ==: The electrical layer consists of a polymer-based insulating material μ material. "The marriage is a thermal conductive powder and is doped with a polymer-based insulation. The upper retentive embodiment further includes at least one via hole, and the semiconductor device is disposed in the via hole and is kept hot with the substrate. In another embodiment, the semiconductor component is disposed in thermal connection to the substrate by a dielectric layer. On the layer, and obviously = the above and other objects, features, and advantages of the present invention are made. The following is a preferred embodiment, and is accompanied by the accompanying drawings as 0954-A22084TWF (N2); P54950138TW; chentf 8 200843053. The following is a detailed description of the following: [Embodiment] The electronic semiconductor light-emitting device of the present invention A substrate for a high heat-dissipating composite substrate, a metal-based composite material, a high-thermal-conducting dielectric layer, and a circuit layer, wherein the substrate of the metal-based composite material is a graphite-reinforced or carbon-fiber-reinforced metal-based composite material. f,, = high thermal conductivity (200w / mK) and low thermal expansion coefficient, the heat dissipation of the electronic semiconductor and the interface of the copper material on the interface of the heterogeneous material. )'the main purpose Providing a semiconductor-layer dielectric-substance-providing to a semiconductor device as a high-heat-dissipating composite substrate structure of the present invention between electrical and earth materials: comprising a substrate 10 and a dielectric layer It is shown that the main germanium is formed on the substrate 1G, and the via dielectric layer forms a plurality of via holes 17 on the dielectric layer 14=~the electrical layer is on the '14' semiconductor element 20 is disposed in the via hole 17^17 Through the dielectric layer 10, the semiconductor element 2 is further connected to the substrate, wherein the substrate U) comprises a base material 2 connected to the circuit layer 16. The material is doped in the base material. Reinforced materials 'reinforced fiber, long fiber ·..), graphite powder, scaly graphite: Yiwei (powder, short powder, etc., while the base material includes aluminum, copper, bismuth 2 graphite or diamond powder The electric layer 14 is used to make a circuit screen, and thus, the dielectric layer 14 can be 0854-A22084T\A/F(N2); P54950138TW; chentf 9 200843053 is a polymer-based insulating rubber or ceramic material (such as Al2〇). 3. Si〇2, Ti〇2, MgO, AIN, BN, Si3N4, SiC··, etc., or a mixture of rain and above) The thickness varies from ΙΟμηι to 150μηι. The matrix of the dielectric layer is generally based on epoxy resin (ep〇xy) and polyimid which are resistant to high temperature. The thermal conductivity of the base metal will be added to the pottery powder (thermal powder), such as Al2〇3, si〇2, sic, BN, etc. The thermal conductivity of the insulating rubber is currently between 1~5 W/mK. ^ The through hole 17 is left in the dielectric layer 14 at the bonding semiconductor element 20. Since the material of the dielectric layer 14 which is generally used is mainly a polymer substrate, an insulating and thermally conductive ceramic powder is added to enhance the material. Thermal conductivity, but its thermal conductivity is generally around 1~3W/mK, that is, using ceramic insulating material, its thermal conductivity is also lower than 25W/mK, and the heat is still difficult to transmit to the semiconductor component adhered thereto. On the lower high thermal conductive composite material 10, the through holes 17 can be directly left in the dielectric layer 14, so that the semiconductor light emitting element can be directly adhered to the highly thermally conductive substrate 1?. This approach is basically to provide a heat sink substrate for Chip on Board or Matrix arrays. On the one hand, shortening the heat transfer path greatly reduces the thermal impedance of the package level, and in other respect, the thermal expansion coefficient of the semiconductor component matches the composite substrate. It can also reduce the occurrence of thermal stress and thermal deformation to improve the reliability and life of the component. According to another embodiment of the present invention, as shown in FIG. 2, the high thermal conductive composite substrate structure comprises a base material 1 of a metal matrix composite material, a metallization layer 12, a dielectric layer 14, and a circuit layer 16. . The difference between this embodiment and the example of the first embodiment is that the metallization layer 12 is formed by the present embodiment, and the metallized sound 12 is formed by surrounding the substrate. 0954-A22084TWF(N2); P54950138TW;chentf 10 200843053 A via hole 17 is also left on the dielectric layer 14 at the bonding semiconductor element 20, and the via hole 17 is mainly intended to directly contact the semiconductor element 20 to the metallization layer 12, The heat transfer path is shortened, and the dielectric layer 14 having poor thermal conductivity is avoided. Since the metal matrix composite material mentioned above is not easily directly bonded to other heterogeneous materials, metallization is first performed on the surface of the substrate 10 of the metal matrix composite material, such as Ni, Cu, Ti, Cr, Ag or Cu plating. The metal layer 12 is joined by a heterogeneous material, such as a solder joint with a heat sink, a heat pipe, a thermoelectric element, a semiconductor element, etc., and can also improve surface roughness and prevent decarburization of the surface of the composite material. Fig. 3 is a schematic view showing another embodiment of the structure of the highly thermally conductive composite substrate of the present invention. In the present embodiment, the semiconductor device 20 is directly disposed on the dielectric layer 14, does not have the via hole 17 of the first embodiment, and is electrically connected to the circuit layer 16 by the wire 18. Fig. 4 is a schematic view showing another embodiment of the structure of the highly thermally conductive composite substrate of the present invention. In the present embodiment, in addition to the semiconductor element 20 being directly disposed on the dielectric layer 14, as in the embodiment shown in Fig. 2, in the substrate

C 10的外圍形成金屬化層12。 發明之效果 本發明之高散熱複合基板結構以高導熱金屬基複合材 料作為電子半導體元件的散熱基材,同時搭配金屬化和介 電層的設計,使電路和散熱基板可以結合在一起。電子半 導體元件可以直接接合於散熱基板上,讓電子半導體元件 所產生的熱大部份可以直接經過金屬化層或金屬基複合材 料將熱傳遞出去,減少傳熱路徑,有效降低封裝層級的熱 0954-A22084TWF(N2);P54950138TW;chentf 11 200843053 阻。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0954-A22084TWF(N2);P54950138TW;chentf 200843053 【圖式簡單說明】 第1圖為本發明之高散熱複合基板結構的一實施例的 示意圖。 第2圖為本發明之高散熱複合基板結構的另一實施例 的示意圖。 第3圖為本發明之高散熱複合基被結構的另一實施例 的示意圖。 第4圖為本發明之高散熱複合基板結構的另一實施例 的不意圖。 【主要元件符號說明】 10〜基材; 12〜金屬化層; 14〜絕緣層; 16〜電路層; 17〜通孔; 18〜導線, 20〜半導體元件。 0954-A22084TWF(N2);P54950138TW;chentf 13A metallization layer 12 is formed on the periphery of C10. EFFECTS OF THE INVENTION The high heat-dissipating composite substrate structure of the present invention uses a highly thermally conductive metal-based composite material as a heat-dissipating substrate for an electronic semiconductor component, and is also provided with a metallization and dielectric layer design so that the circuit and the heat-dissipating substrate can be combined. The electronic semiconductor component can be directly bonded to the heat dissipation substrate, so that most of the heat generated by the electronic semiconductor component can directly transfer heat through the metallization layer or the metal matrix composite material, thereby reducing the heat transfer path and effectively reducing the heat of the package level 0954. -A22084TWF(N2); P54950138TW;chentf 11 200843053 Resistance. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. [9545] A. Fig. 2 is a schematic view showing another embodiment of the structure of the high heat dissipation composite substrate of the present invention. Fig. 3 is a schematic view showing another embodiment of the high heat dissipation composite base structure of the present invention. Fig. 4 is a schematic view showing another embodiment of the structure of the high heat dissipation composite substrate of the present invention. [Main component symbol description] 10~substrate; 12~metallization layer; 14~insulation layer; 16~circuit layer; 17~via; 18~ wire, 20~semiconductor component. 0954-A22084TWF(N2); P54950138TW;chentf 13

Claims (1)

200843053 十、申請專利範圍: 1. 一種高散熱複合基板結構,用於一半導體元件,包 括·· 一基材,包括一金屬複合材料; 一介電層,形成於該基材上;以及 一電路層,形成於該介電層上,其中該半導體元件係 熱連接於該基材且電性連接於該電路層,藉此該半導體元 件所產生的熱係經由該基材傳遞至外界或其他的散熱裝置 Γ 上。 2. 如申請專利範圍的第1項所述之高散熱複合基板結 構,其中該金屬複合材料包括一基地材料以及一強化材 料,該強化材料係摻雜於該基地材料中。 3. 如申請專利範圍的第2項所述之高散熱複合基板結 構,其中該強化材料包括碳纖維、石墨粉、天然石墨、鱗 狀石墨或發泡石墨等,或者是碳纖維、石墨粉、天然石墨、 鱗狀石墨或發泡石墨中兩種以上的混合。 % 4.如申請專利範圍的第3項所述之高散熱複合基板結 構,其中該礙纖維為粉末狀、短纖維或長纖維。 5. 如申請專利範圍的第3項所述之高散熱複合基板結 構,其中該強化材料更包括陶瓷顆粒及鑽石粉末。 6. 如申請專利範圍的第2項所述之高散熱複合基板結 構,其中該強化材料包括陶瓷顆粒及鑽石粉末。 7. 如申請專利範圍第2項所述之高散熱複合基板結 構,其中該基地材料包括銘、銅、鋅、鎂、鈦、銀及其合 0954-A22084TWF(N2);P54950138TW;chentf 14 200843053 金 構,其2:!:耗圍第1項所述之高散熱複合基板結 構 鈷 構 構 胺 屬化層’形成於該基材與該介電層之間。 利範圍第8項所述之高散熱複合基板結 ^久中^屬化層為鎳、鎳冬鎳务錫、錫 鉻、銅、鈦、銀或金。 圍第1項所述之高散熱複合基板結 其中邊介電層包括高分子基絕緣材料。 其iq項所述之高散熱複合基板結 ’刀子基、^緣材料的基材為環氧樹酯或聚酸亞 12·如申請專利範圍第 構,其+ = 請奴高散減合基板結 缘材料中= 加材料’摻雜於高分子基絕 、、彖材枓中,該添加材料為導熱粉體。 構 1中耗圍第12項所述之高散熱複合基板結 其中该導熱粉體為陶£氧化物。 構 Α中第1項所述之高散熱複合基板結 其中騎電層包括-複合物材料。 構 其〜1111第14項所述之高散熱複合基板結 或是帶狀。禮口勿材料在形成該介電層前之狀態,為勝態 構,圍第1項所述之高散熱複合基板結 ’、Μ ;丨兔層為一陶瓷絕緣層。 17·如申請專利範圍第16項所述之高散熱複合基板結 *P54950138TW;chentf 0954-A22084TWF(N2) 15 200843053 構,其中該介電層包括A1N,Si02, Al2〇3, Zr〇2, Ti〇2, MgO, Be〇或其中兩種以上組成的混合物。 18. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該電路層係藉由熱壓合銅箔再蝕刻成電路或直接 用網印方式獲得。 19. 如申請專利範圍第1項所述之高散熱複合基板結 構,其更包括至少一通孔,貫穿該介電層而形成,該半導 體元件係設於該通孔中並與該基材保持熱連接。 20. 如申請專利範圍第19項所述之高散熱複合基板結 構,其中該通孔係利用機械鑽孔、雷射鑽孔或直接作成圖 案以網印方式形成。 21. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該半導體元件係設置於該介電層上,並藉由該介 電層熱連接於該基材。200843053 X. Patent application scope: 1. A high heat dissipation composite substrate structure for a semiconductor component, comprising: a substrate comprising a metal composite material; a dielectric layer formed on the substrate; and a circuit a layer formed on the dielectric layer, wherein the semiconductor component is thermally connected to the substrate and electrically connected to the circuit layer, whereby heat generated by the semiconductor component is transmitted to the outside or other via the substrate The heat sink is on the top. 2. The high heat dissipation composite substrate structure of claim 1, wherein the metal composite material comprises a base material and a reinforced material, the reinforcement material being doped in the base material. 3. The high heat dissipation composite substrate structure according to the second aspect of the patent application, wherein the reinforcing material comprises carbon fiber, graphite powder, natural graphite, scaly graphite or foamed graphite, or carbon fiber, graphite powder or natural graphite. , a mixture of two or more of scaly graphite or expanded graphite. The high heat dissipation composite substrate structure according to item 3 of the patent application, wherein the fiber is powdery, short fiber or long fiber. 5. The high heat dissipation composite substrate structure of claim 3, wherein the reinforcing material further comprises ceramic particles and diamond powder. 6. The high heat dissipation composite substrate structure of claim 2, wherein the reinforcing material comprises ceramic particles and diamond powder. 7. The high heat dissipation composite substrate structure according to claim 2, wherein the base material comprises ingot, copper, zinc, magnesium, titanium, silver and its combination 0954-A22084TWF (N2); P54950138TW; chentf 14 200843053 gold 2:!: The high heat dissipation composite substrate structure of the high heat dissipation composite substrate structure described in item 1 is formed between the substrate and the dielectric layer. The high heat-dissipating composite substrate described in item 8 of the benefit range is a nickel, nickel winter nickel tin, tin chromium, copper, titanium, silver or gold. The high heat dissipation composite substrate according to Item 1 wherein the dielectric layer comprises a polymer based insulating material. The substrate of the high-heat-dissipating composite substrate as described in the item iq, the substrate of the knife base and the edge material is epoxy resin or polyacid sub-12. As claimed in the patent scope, the + = please remove the substrate In the edge material = the additive material is doped in the polymer base, and the material is a heat conductive powder. The high-heat-dissipation composite substrate according to Item 12 is the structure of the heat-dissipating powder. The high heat dissipation composite substrate according to Item 1, wherein the riding layer comprises a composite material. The high heat dissipation composite substrate junction or strip shape described in item 1411. The material of the gift is not in the state before the formation of the dielectric layer, and is a structure of the high heat-dissipating composite substrate ’, Μ; the rabbit layer is a ceramic insulating layer. 17. The high heat dissipation composite substrate junction *P54950138TW according to claim 16 of the patent application scope; chentf 0954-A22084TWF(N2) 15 200843053, wherein the dielectric layer comprises A1N, SiO 2 , Al 2 〇 3, Zr 〇 2, Ti 〇2, MgO, Be〇 or a mixture of two or more thereof. 18. The high heat dissipation composite substrate structure of claim 1, wherein the circuit layer is etched into a circuit by thermocompression bonding copper foil or directly obtained by screen printing. 19. The high heat dissipation composite substrate structure of claim 1, further comprising at least one via formed through the dielectric layer, the semiconductor component being disposed in the via and maintaining heat with the substrate connection. 20. The high heat dissipation composite substrate structure of claim 19, wherein the through hole is formed by screen printing by mechanical drilling, laser drilling or directly forming a pattern. 21. The high heat dissipation composite substrate structure of claim 1, wherein the semiconductor component is disposed on the dielectric layer and thermally coupled to the substrate by the dielectric layer. 0954-A22084TWF(N2);P54950138TW;chentf0954-A22084TWF(N2); P54950138TW;chentf
TW96114580A 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip TWI352407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Publications (2)

Publication Number Publication Date
TW200843053A true TW200843053A (en) 2008-11-01
TWI352407B TWI352407B (en) 2011-11-11

Family

ID=44822200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Country Status (1)

Country Link
TW (1) TWI352407B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489059B (en) * 2012-03-30 2015-06-21 Advanced Optoelectronic Tech Led light bar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623074B (en) 2013-12-27 2018-05-01 財團法人工業技術研究院 Electric conductive heat dissipation substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489059B (en) * 2012-03-30 2015-06-21 Advanced Optoelectronic Tech Led light bar

Also Published As

Publication number Publication date
TWI352407B (en) 2011-11-11

Similar Documents

Publication Publication Date Title
TWI381564B (en) Light emitting diode
KR100866436B1 (en) Method of manufacturing electronic device
US7408204B2 (en) Flip-chip packaging structure for light emitting diode and method thereof
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
TWI651874B (en) Light-emitting device and manufacturing method thereof
TW201019500A (en) A ceramic packaging substrate for the high power LED
TWI463710B (en) Mrthod for bonding heat-conducting substraye and metal layer
WO2017051798A1 (en) Light-emitting module substrate, light-emitting module, substrate for light-emitting module having cooler, and production method for light-emitting module substrate
TW200843053A (en) Composite substrate structure for high heat dissipation
JP2008199057A (en) Electronic equipment and method of manufacturing the same
US20210050276A1 (en) Heat dissipation substrate and manufacturing method thereof
JP2005005528A (en) Module for mounting semiconductor element
CN103887396A (en) A light-emitting assembly in which an LED chip is directly welded to the surface of a copper heat sink and a preparation method thereof
TW201212306A (en) LED heat-conduction substrate and heat-dissipation module structure
KR101418008B1 (en) Substrate for LED and LED heat-sink structure
TWI450425B (en) Die structure, manufacture method thereof and substrate structure thereof
KR101557431B1 (en) Semiconductor unit with submount for semiconductor device
CN213242534U (en) AlSiC heat dissipation and insulation integrated substrate for heat dissipation packaging of power device
JP2003068954A (en) Package for housing semiconductor element
JP2006270062A (en) Insulating heat-transfer structure and substrate for power module
JP2007123939A (en) Light emitting device
CN101794847B (en) Solid-state light source packaging structure with lower thermal impedance and manufacturing method thereof
JP3285763B2 (en) Semiconductor device
TWI481085B (en) A laminated heat dissipating plate and an electronic assembly structure using the same
KR20110003379U (en) Molecular replacement aluminum duplicate metal structure