TW200832743A - Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same - Google Patents

Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same Download PDF

Info

Publication number
TW200832743A
TW200832743A TW96102786A TW96102786A TW200832743A TW 200832743 A TW200832743 A TW 200832743A TW 96102786 A TW96102786 A TW 96102786A TW 96102786 A TW96102786 A TW 96102786A TW 200832743 A TW200832743 A TW 200832743A
Authority
TW
Taiwan
Prior art keywords
type
substrate
micro
light
indium
Prior art date
Application number
TW96102786A
Other languages
Chinese (zh)
Other versions
TWI343660B (en
Inventor
Chung-Hua Li
jian-qing Chen
Original Assignee
Chung-Hua Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung-Hua Li filed Critical Chung-Hua Li
Priority to TW96102786A priority Critical patent/TW200832743A/en
Publication of TW200832743A publication Critical patent/TW200832743A/en
Application granted granted Critical
Publication of TWI343660B publication Critical patent/TWI343660B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention relates to a method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same. In particular, the invention is a method of forming on the surface of a substrate the sequential nano-grade micro-optical structure. The disclosed method includes the following steps: (A) providing a substrate and a plurality of nano balls, and the nano balls are stacked up onto the surface of the substrate; (B) forming a film-forming film layer onto part of substrate surface and in between the gaps of nano balls; (C) thermally treating the substrate, the non balls and the film-forming film layer to form a hard mold casting; and (D) impressing the hard mold casting onto the surface of a soft matrix, and separating the hard casting and the soft matrix to form the disclosed layered micro-optical structure.

Description

200832743 九、發明說明:【發明所屬之技術領域】 本發明係關於形成_層狀微光學結構的方法___ 此層狀微光學結構的微朵風 /、有 傅妁被先學基板及一具有此 構的發光二極體。 狀攸尤予心200832743 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for forming a layered micro-optical structure ___ a micro-wind of a layered micro-optical structure/, having a substrate and a The light-emitting diode of this structure. Especially

10 【先前技術】 圖1係白知之發光二極體的示意圖,此習知之發光二極 體1係配合—外部㈣(圖中未示WX將來自外界環境的電 能轉換為光能輸出。此發光二極體1包括-基板u、一位於 此基板u之表面的第—半導體層12、—位於此第—半導體 層12之表面的發光層13、—位於此發光層η之表面的第二 半導體層14、一電連接於此基板η的第-電接觸部15以及 -包連接於此第二半導體層14的第二電接觸部16。 15 20 而當此習知之發光二極體丨運作時,來自外界環境的電 能分別經由第-電接觸部15與第二電接觸部16而到達第一 半導體層12與第二半導體層14,使得第—半導體層12與第 二半導體層14分別產生電子及電洞。此時,發光心便受 到這些電子及電洞的激發而產生光線,而這些產生的便經 過介於發光層13與第二半導體層14之間的「平滑介面」而 入射至第二半導體層14,再從第二半導體層14到達外界環 境。但是’由於此-「平滑介面」很容易引發「全反射效 應」,即那些入射角大於「臨界角」之光線會此一平滑介 面被反射回發光層13中’而無法入射至第二半導體層14。 5 200832743 因此’當習知之發光二極體1運作時,有-部分由發光層13 所產生的光線會被褐限於發光層13内,而無法順利地到達 第二半導體層,更別論外界環境。也就是說,由於習知 之發光二極體1所具有的「平滑介面」,其發光層之「取 光率」並無法進-步提升,進而使得此f知之發光二極體】 的二發光效率」及「發光亮度」也受到不小的限制。因此, 目別白知之發光二極體的發光亮度並無法與傳統照明燈具 匹敵’且若要產生相同的亮度,習知之發光二極體反而需 要消耗較多的能源’而無法發揮其節省能源的優點,且造 成習知之發光二極體的使用壽命縮短。 „。因此,為了符合近來之省能照明的趨勢並以程序簡 早、、所需材料取得容易之方法以大量生產,業界亟需一種 播成’狀U光學結構的方法、一種具有此層狀微光學結 15 構的微光學基板以及—種具有此層狀微光學結構的發光二 極體。 【發明内容】 本發明之形成一層狀微光學結構的方法,係包括下列 二驟(A)提(、_基板及複數個奈米球,且此等奈米球係堆 之表面;(B)形成一光學膜層於此基板之部分表 ί 球之間隙;以及(〇移除此等奈米球,形成- 層狀微光學結構於此基板之表面。 本發明之形成—層狀微光學結構的方法,係包括下列 步驟:(Α)提供-基板及複數個奈米球,且此等奈米球係雄 20 200832743 疊於此基板之表面;(B)形成一成模膜層於此基板之部分表 面及此等奈米球之間隙;(C)熱處理此基板、此等奈米球及 此成模膜層,以形成一硬質母模;以及(D)將此硬質母模壓 印於一軟質基材之表面,再將此硬質母模與此軟質基材互 5 相脫離,以形成此層狀微光學結構。 本發明之具有一層狀微光學結構之微光學基板,係適 用於一發光二極體,包括:一基板;以及一層狀微光學結 構’係位於此基板之表面並具有複數個微凹穴。 本發明之具有一層狀微光學結構之發光二極體,係包 10 括:一基板;一第一半導體層,係位於此基板之表面;一 發光層,係位於此第一半導體層之表面並具有複數個微凹 穴;一第二半導體層,係位於此發光層之表面;一第一電 接觸部,係電連接於此基板;以及一第二電接觸部,係電 連接於此第二半導體層。 15 本發明之具有一層狀微光學結構之發光二極體,係包 括.一基板;一第一半導體層,係位於此基板之表面;一 發光層,係位於此第—半導體層之表面;一第二半導體層, 係位於此發光層之表面;一層狀微光學結構,係位於此第 二半導體層之表面並具有複數個微凹穴;一第一電接觸 20部’係電連接於此基板;以及一第二電接觸部,係電連接 於此第二半導體層。 斤口此本發明之形成一層狀微光學結構的方法不僅程 序2單其所而之材料也非常容易取得,所以此方法相當 適合大篁生產所需。此外,本發明之形成一層狀微光學結 200832743 構的方法可藉由選擇不同直徑的奈米球,輕易地形成一具 有任何直徑大小之微凹穴的層狀微光學結構,以分別適用 於不同工作波長的發光二極體内,提升其「發光效率」及 發光壳度」。另一方面,由於本發明之形成一層狀微光 5 學結構的方法係利用奈米球的「自組裝」特性,即這些奈 米球會自動且有序地排列於一基板的表面,本發明之形成 一層狀微光學結構的方法可輕易地形成一具有奈米級粗糙 度的介面於一層狀微光學結構的表面,且此層狀微光學結 構可位於一微光學基板或一發光二極體中。另一方面,由 10於本發明之具有一層狀微光學結構之發光二極體具有一奈 米級粗糙度的介面,所以此發光二極體所產生的光線可輕 易地通過此一介面而不會被全反射回原先的介質,如此發 光二極體的發光層或半導體層,進一步提升此發光二極體 的發光效率」及「發光亮度」,使得發光二極體可在各 15 種不同的應用領域中取代傳統照明燈具,如陰極螢光燈管 等’進一步省下人們花費於照明目的之能源。 本發明之形成一層狀微光學結構的方法可利用任何方 法將此等奈歩球堆疊於此基板之表面,其較佳使用一包括 下列步驟的方法:(A1)提供此基板及一位於一容器内之膠 20 體溶液,且此膠體溶液具有此等奈米球及一介面活性劑: (A2)放置此基板於此容器中,且此膠體溶液覆蓋於此基板 之表面;以及(A3)加入一具揮發性之溶液於此容器中,移 除此介面活性劑並於此基板之表面堆疊形成此簟半 本發明之形成-層狀微光學結構的方法可光 8 200832743 學結構於一任何材暂+甘』 石夕、N型單日_ / 基板之材f較佳為P型單曰 1 早曰曰矽、p型多晶矽、N型多晶矽、P型非曰石々> 型非晶矽、p型砷卟松u ,丄 1非日日石夕、ί 銦、_磷化2 鎵、ρ型磷化10、 5 15 化鎵銦、Ν型磷 切 銦銅。本發明之采# a 玉®化銦銅或N型硒化 以所* 成一層狀微光學結構的方法可使用任你 ,貝之示㈣’此等奈米球之材f較佳 : 物或塑膠。本發明之形成-層狀微光學結構二=匕 米球之間隙,其較佳:用::”板之部分表面及此等奈 氣相沈積法。 肖化于乳相沈積法、賤鐘法或物理 質之数光學結構的方法可使用任何材 _、陶二結構,其材質較佳為介 構的方法所形成之光#成—層狀微光學結 小於此等奈米球之直徑,私度較佳 的二分之__太^ /、犀度取佳為此等奈米球之直徑 用之夺乎球可且層狀微光學結構的方法所使 發明trn 大部分之奈米球具有相近的直徑。本 此等奈米球,此等夺乎社㈣ 用任何方法移除 卡球較佳利用濕蝕刻方式移除或先以 兹刻方式移除此等奈米球的剩餘t;:卡球的一部分,再以濕 本發明之形成1狀微光學結構的方法可形成一 之成模膜層於此基板之部分表面及此等奈米球之間 20 200832743 隙,此成模膜層的材質較佳為陶:是、單晶石夕、多晶石夕、非 晶石夕、石申化鎵、鱗化麵、磷化鎵銦或石西化銦銅。本發明之 形成-層狀微光學結構的方法所形成之成模膜層可具有任 何厚度’其厚度較佳小於此等奈求球之直徑,其厚度最佳 5為此等奈米球之直徑的二分之一。本發明之形成一層狀微 光學結構的方法可使用任何材質之軟質基材,其材質較佳 為塑膠或樹脂。本發明之形成一層狀微光學結構的方法可 • ❹任何方法對此基板、此等奈米球及此成模膜層進行執 處理以形成此硬質母模,此熱處理較佳為對此基板、此等 10 奈米球及此成模膜層進行退火處理。 本發明之具有-層狀微光學結構之微光學基板的基板 可由任何材質構成’其較佳為?型單晶梦、N型單晶石夕、p 型多晶石夕、N型多晶石夕、P型非晶石夕、N型非晶石夕、p型石申化 鎵、N型石申化鎵、P型磷化銦、N型鱗化銦、p型魏嫁鋼、 N型鱗化鎵銦、p型砸化銦銅或N型砸化銦銅。本發明之具 層狀微光學結構之微光學基板可具有任何材質之層狀 光學結構於其表面,其材f較佳為介電材質、陶^質 或金屬。本發明之具有一層狀微光學結構之微光學基板的 基板可為任何類型之梦基板,其較佳為基板或N型石夕 20基板。本發明之具有一層狀微光學結構之微光學基板的層 狀微光學結構可具有任何形狀之微凹穴,此等微凹穴之^ 狀,佳為半球狀或杯狀。本發明之具有一層狀微光學結構 之微光學基板的層狀微光學結構可具有任何大小之微凹 穴,此等微凹穴之直徑較佳介於1〇〇 nm 上 ι // m之 ίο 200832743 間。本發明之具有一層狀微光學結構之微光學基板的層狀 微光學結構可具有任何類型排列之微凹穴,此等微凹穴較 佳呈陣列狀排列。 本發明之具有一層狀微光學結構之發光二極體可具有 5 任何材質之基板,其材質較佳為P型單晶矽、N型單晶矽、P 型多晶矽、N型多晶矽、P型非晶矽、N型非晶矽、P型砷化 鎵、N型砷化鎵、P型磷化銦、N型磷化銦、P型磷化鎵銦、 N型磷化鎵銦、P型硒化錮銅或N型硒化銦銅。位於本發明 之具有一層狀微光學結構之發光二極體之發光層的微凹穴 10 可形成有任何類型之反射層於其表面,其較佳半透式反射 層或全反射式反射層。本發明之具有一層狀微光學結構之 發光二極體之基板可為任何類型之矽基板,其較佳為P型矽 基板或N型矽基板。本發明之具有一層狀微光學結構之發光 二極體之層狀微光學結構可具有任何形狀之微凹穴,此等 15 微凹穴之形狀較佳為半球狀或杯狀。本發明之具有一層狀 微光學結構之發光二極體之層狀微光學結構可具有任何大 小之微凹穴,此等微凹穴之直徑較佳介於100 nm至 1.2 //m之間。本發明之具有一層狀微光學結構之發光二極體 之層狀微光學結構所具之微凹穴可具有任何類型之排列, 20 此等微凹穴較佳呈陣列狀排列。本發明之具有一層狀微光 學結構之發光二極體可具有任何材質之層狀微光學結構於 其第二半導體層的表面,其材質較佳為介電材質、陶瓷材 質或金屬。 11 200832743 【實施方式】 請參閱圖2,其係本發明第一較佳實施例之形成一層狀 微光學結構之方法的示意圖。此方法係包括下列步驟: 首先,步驟(A)係提供一基板21及複數個奈米球22,且 5 這些奈米球22係堆疊於此基板21之表面211,至於將這些奈 米球22有序地堆疊於此基板21之表面211的步驟則將詳述 於後。在本較佳實施例中,這些奈米球22的材質係為氧化 矽(SiOx),它們直徑均介於100nm至1.2 /z m之間,且絕 大部分的奈米球22具有相近的直徑。 10 接著,步驟(B)係利用化學氣相沈積法將一光學膜層23 形成於此基板21之部分表面211與這些奈米球22的間隙。其 中,此光學膜層23較佳由介電材質、陶瓷材質或金屬材質 構成,且此光學膜層23的厚度小於這些奈米球22的直徑。 最後,步驟(C)係利用濕蝕刻方式移除這些奈米球22, 15 即將前述之具有光學膜層23及複數個奈米球22的基板21浸 入一氫氟酸溶液(圖中未示)中,以移除這些奈米球22並形成 一具有複數個微凹穴241之層狀微光學結構24於此基板21 的表面211,且這些微凹穴241之形狀係為半球狀。此外, 步驟(C)亦可先以乾蝕刻的方式,如雷射或電漿,移除這些 20 奈米球22的一部分’然後再以濕姓刻方式移除這些奈米球 22的剩餘部分。而此一移除這些奈米球22的方法,將另敘 述於後。 此外,雖然在本較佳實施例中,前述之奈米球22的材 質係為氧化矽,但是在不同的應用場合中,這些奈米球22 12 200832743 的材質亦可為陶瓷、金屬氧化物或塑膠,且它們的尺寸也 不僅限於前述之範圍。但是,需注意的是,若使用不同材 質的奈米球,則前述之步驟(c)則需使用不同的溶液才能將 這些奈米球自基板移除。舉例來說,若使用聚甲基丙烯酸 5 曱酯(PMMA)材質的奈米球,步驟(C)所使用之移除溶液係 為甲酸(formic acid);若使用聚苯乙烯(PS)材質的奈米球, 步驟(C)所使用之移除溶液則為四氫绋喃(THF)或甲苯。此 外,雖然在本較佳實施例中,步驟(A)所使用之基板21係為 _ P型矽基板,但在不同的應用場合中,此基板21之材質亦可 10 為P型單晶矽、N型單晶矽、P型多晶矽、N型多晶矽、P型 非晶石夕、N型非晶石夕、P型神化鎵、N型坤化鎵、P型磷化銦、 N型磷化銦、P型磷化鎵銦、N型磷化鎵銦、P型硒化銦銅或 N型砸化銦銅。 如前所述,本發明第一較佳實施例之形成一層狀微光 15 學結構之方法的步驟(A)係提供一具有複數個奈米球22有 序地堆疊於其表面的基板21,而此步驟則進一步包括下列 φ 三個子步驟,分別如圖3A及圖3B所示: 首先,步驟(A1)係提供一基板21及一位於一容器26中 之膠體溶液25,其中此膠體溶液25係由複數個奈米球(圖中 20 未示)及一介面活性劑(圖中未示)混合而成。接著,步驟(A2) 係將此基板21放置於容器26中並使得基板21完全浸入於膠 體溶液25中。在靜置數分鐘以後,前述之奈米球22便逐漸 有序地堆積於基板21的表面211,即形成所謂的「奈米模 板」。最後,步驟(A3)係將一揮發性溶液27倒入容器26中, 13 200832743 以將前述之膠體溶液25揮發掉。等到前述之膠體溶液25完 全被揮發後,便將基板21從容器26中取出並得到一具有複 數個奈米球22有序地堆疊於其表面的基板21。 圖4A及圖4B係本發明第二較佳實施例之形成一層狀 5 微光學結構之方法的示意圖,此方法與本發明第一較佳實 施例之形成一層狀微光學結構之方法大致相同,兩者之差 異僅在於自基板移除奈米球的方法,即步驟(C)。請參閱圖 4 A及圖4B,本方法係包括下列步驟: 首先,步驟(A)係提供一基板41及複數個奈米球42,且 10 這些奈米球42係堆疊於此基板41之表面411。在本較佳實施 例中,這些奈米球42的材質係為氧化矽(SiOx),它們直徑均 介於100 nm至1.2 /zm之間,且絕大部分的奈米球42具 有相近的直徑。 接著,步驟(B)係利用化學氣相沈積法將一光學膜層43 15 形成於此基板41之部分表面411與這些奈米球42的間隙。其 中,此光學膜層43較佳由介電材質、陶瓷材質或金屬材質 構成,且此光學膜層43的厚度小於這些奈米球42的直徑。 其次,步驟(C)係將前述之具有光學膜層43及複數個奈 米球42的基板41先進行「乾蝕刻」處理,如利用雷射或電 20 漿對光學膜層43及這些奈米球42進行蝕刻,以一部分一部 分地去除光學膜層43及這些奈米球42,直到這些奈米球42 剩下的部分約為原先的一半為止。最後,再將經過「乾蝕 刻」處理之基板41浸入一氫氟酸溶液(圖中未示)中,以移除 剩餘的奈米球42並形成一具有複數個微凹穴441之層狀微 14 200832743 光學結構44於此基板41的表面411,且這些微凹穴441之形 狀係為半球狀。 同樣地,如前所述,雖然在本較佳實施例中,前述之 奈米球42的材質係為氧化矽,但是在不同的應用場合中, 5 這些奈米球42的材質亦可為陶瓷金屬氧化物或塑膠,且它 們的尺寸也不僅限於前述之範圍。但是,需注意的是,若 使用不同材質的奈米球,則前述之步驟(C)則需使用不同的 溶液才能將這些奈米球自基板移除。舉例來說,若使用聚 甲基丙烯酸甲酯(PMMA)材質的奈米球,步驟(C)所使用之 10 移除溶液係為甲酸(formic acid);若使用聚苯乙烯(PS)材質 的奈米球,步驟(C)所使用之移除溶液則為四氫绋喃(THF) 或曱苯。此外,雖然在本較佳實施例中,步驟(A)所使用之 基板41係為P型矽基板,但在不同的應用場合中,此基板41 之材質亦可為P型單晶矽、N型單晶矽、P型多晶矽、N型多 15 晶矽、P型非晶矽、N型非晶矽、P型砷化鎵、N型砷化鎵、 P型磷化銦、N型磷化銦、P型磷化鎵銦、N型磷化鎵銦、P 型石西化銦銅或N型砸化銦銅。 圖5A及圖5B係本發明第三較佳實施例之形成一層狀 微光學結構之方法的示意圖。此方法係包括下列步驟: 20 首先,步驟(A)係提供一基板51及複數個奈米球52,且 這些奈米球52係堆疊於此基板51之表面511。在本較佳實施 例中,這些奈米球52的材質係為氧化矽(SiOx),它們直徑均 介於100 nm至1.2 /z m之間,且絕大部分的奈米球52具 有相近的直徑。 15 200832743 接著,步驟(B)係利用化學氣相沈積法將一成模膜層53 形成於此基板51之部分表面511與這些奈米球52的間隙。其 中,此成模膜層53較佳亦由氧化矽(SiOx)構成,且此成模膜 層53的厚度小於這些奈米球52的直徑。 5 其次,步驟(C)係將前述之具有成模膜層53及複數個奈 米球52的基板51進行熱處理,即將此基板51以300°C至900 °C進行退火處理,以使前述之具有成模膜層53及複數個奈 米球52的基板51形成一硬質母模54。 最後,步驟(D)係將此硬質母模54壓印於一軟質基材55 10 之表面,再將此硬質母模54與此已被壓印之軟質基材55互 相脫離,以形成一層狀微光學結構56。其中,此層狀微光 學結構56具有複數個微凹穴561,且這些微凹穴561之形狀 係為半球狀。 另一方面,雖然在本較佳實施例中,前述之奈米球5 2 15 的材質係為氧化石夕,但是在不同的應用場合中,這些奈米 球52的材質亦可為其他陶瓷材料,且它們的尺寸也不僅限 於前述之範圍。但是,需注意的是,這些材質必須能夠承 受熱處理程序的高温環境而不致造成這些奈米球發生變 形,且這些材質必須使這些奈米球在經過熱處理程序後能 20 與成模膜層及基板結合為一體,以形成步驟(C)所欲形成之 硬質母模。此外,雖然在本較佳實施例中,步驟(A)所使用 之基板51係為P型矽基板,但在不同的應用場合中,此基板 51之材質亦可為P型單晶矽、N型單晶矽、P型多晶矽、N型 多晶矽、P型非晶矽、N型非晶矽、P型砷化鎵、N型砷化鎵、 16 200832743 p型填化銦、顧氣銦、P_化鎵銦、N型磷化嫁姻、p 型硒化銦銅或N型硒化錮銅。另一方面,步驟(D)所使用之 幸人貝基材55之材質較佳為塑膠或樹脂,以經由壓印程序而 形成層狀微光學結構56。 5 圖6係本發明第四較佳實施例之具有一層狀微光學結 構之微光學基板的示意圖,其係適用於一發光二極體。此 微光學基板係應用本發明第一較佳實施例之方法而形成, 其包括一基板61 ;以及一層狀微光學結構62。其中,此層 狀微光學結構62較佳由介電材質、陶瓷材質或金屬材質構 10成,其係位於此基板61之表面並具有複數個微凹穴62卜如 圖6所示,這些微凹穴621之形狀均為半球狀,且它們的直 徑大致相同,均介於100 nm至12 之間。此外,這 些微凹穴621係呈陣列狀排列,即它們有序地排列於此層狀 微光學結構62,並非雜亂無章地排列此層狀微光學結構 15 62。在本較佳實施例中,基板61係為P型矽基板,但在不同 的應用場合中,此基板61之材質亦可為p型單晶矽、n型單 晶矽、P型多晶矽、N型多晶矽、p型非晶矽、N型非晶矽、 P型砷化鎵、N型砷化鎵、P型磷化銦、N型磷化銦、p型磷 化鎵銦、N型磷化鎵銦、p型硒化銦銅或N型硒化銦銅。 20 谓7係本發明第五較佳實施例之具有一層狀微光學結 構之發光二極體的示意圖,此發光二極體7係配合一外部迴 路(圖中未示),以將來自外界環境的電能轉換為光能輪出。 在此較佳實施例中,此發光二極體7包括一基板71、一位於 此基板71之表面的第一半導體層72、一位於此第一半導體 17 200832743 層72之表面的發光層73、一位於此發光層73之表面的第二 半導體層74、一電連接於此基板71的第一電接觸部75以及 一電連接於此第二半導體層74的第二電接觸部76。其中, 此發光層73係使用前述之本發明第一較佳實施例或第二較 5 佳實施例之形成一層狀微光學結構的方法形成。如圖7所 示,此發光層73係具有複數個微凹穴731,且它們的形狀均 為半球狀,它們的直徑也大致相同,均介於1〇〇 nm至12 μ m之間。另一方面,這些這些微凹穴73丨係呈陣列狀排 列,即匕們有序地排列於此發光層73,並非雜亂無章地排 10列此發光層73。這些微凹穴731更形成有一反射層(圖中未 示)如半透式反射層或全反射式反射層,以進一步將這些 光線反射至第二半導體層74。此外,雖然在本較佳實施例 中,基板71係為P型矽基板,但在不同的應用場合中,此基 板71之材質亦可為P型單晶矽、N型單晶矽、?型多晶矽 15型多晶矽、p型非晶矽、N型非晶矽、P型砷化鎵、N型砷化 鎵、P型磷化錮、N型磷化銦、P型磷化鎵銦、N型磷化鎵銦、 P型硒化銦銅或N型硒化銦銅。 一而當此發光二極體7運作時,來自外界環境的電能分別 經由第一電接觸部75與第二電接觸部76而到達第一半導體 20層72與第二半導體層74,使得第—半導體層72與第二半導 體層74刀別產生電子及電洞。此時,發光層便受到這些 電子及電洞的激氧而產生光線。接著,這些產生的光線^ 過有序地排列於此發光層73之微凹六731的折射,即通過此 具有均句化之奈米級粗糙度的介面(介於此發光層乃盘此 18 200832743 弟二半導體層74之間)而順利地入射至第二半導體層μ,而 不會被此一介面反射回此發光層73。最後,這些順利到達 此第二半導體層74的光線再從第二半導體層74入射至外界 土兄。也就疋#兄’猎由這些微凹穴7 31,此發光層7 3的「取 5 光率」可顯著地提升,且可克服習知之發光二極體具有之 平滑介面(介於其發光層與其半導體之間)所引發之「全反射 效應」對於習知之發光一極體之發光層之「發光效率」的 不良影響。因此,本較佳實施例之具有一層狀微光學結構 之發光二極體的「發光效率」及「發光亮度」均可進一步 10 ^升,使付此發光二極體可在各種不同的應用領域中取代 傳統照明燈具,如陰極螢光燈管等,進一步省下人們花費 於照明目的之能源。 圖8係本發明第六較佳實施例之具有一層狀微光學結 構之發光二極體的示意圖,此發光二極體8係配合一外部迴 15 路(圖中未示),以將來自外界環境的電能轉換為光能輸出。 在此較佳實施例中,此發光二極體8包括一基板81、一位於 此基板81之表面的第一半導體層82、一位於此第一半導體 層82之表面的發光層83、一位於此發光層83之表面的第二 半導體層84、一位於此第二半導體層84之表面的層狀微光 20 學結構85、一電連接於此基板81的第一電接觸部86以及一 電連接於此苐二半導體層84的第二電接觸部g7。其中,此 層狀微光學結構85較佳由介電材質、陶瓷材質或金屬材質 構成,且其係使用前述之本發明第三較佳實施例之形成一 層狀微光學結構的方法形成。如圖8所示,此層狀微光學結 19 200832743 構85係具有複數個微凹穴851,且它們的形狀均為半球狀, 它們的直徑也大致相同,均介K1〇〇nm至12以爪之間。 另一方面,這些這些微凹穴851係呈陣列狀排列,即它們有 序地排列於此層狀微光學結構85,並非雜亂無章地排列此 5層狀微光學結構85。此外,雖然在本較佳實施例中,基板 81係為P型矽基板,但在不同的應用場合中,此基板^之材 質亦可為P型單晶矽、N型單晶矽、P型多晶矽、N型多晶矽、 p型非晶矽、N型非晶矽、p型砷化鎵、N型砷化鎵、P型磷 讎 化銦、N型填化銦、P型磷化鎵錮、N型碟化鎵銦、㈣石西化 10 銦銅或N型砸化銦銅。 而當此發光二極體8運作時,來自外界環境的電能分別 經由第一電接觸部86與第二電接觸部87而到達第一半導體 層82與第二半導體層84,使得第一半導體層82與第二半導 體層84分別產生電子及電洞。此時,發光層83因受到這些 15電子及電洞的激發而產生光線。接著,這些產生的光線通 過第二半導體層84而到達層狀微光學結構85。此時,這些 • 光線經過有序地排列於此層狀微光學結構85之微凹穴851 的折射,即通過此具有均勻化之奈米級粗糙度的介面(介於 此層狀微光學結構85與外界環境之間),這些光線均可順利 20地入射至外界環境而不會被此一介面反射回此層狀微光學 結構85。也就是說,藉由這些微凹穴851,此層狀微光學= 構85的「取光率」可顯著提升,且可克服習知之發光二極 體具有平滑介面(介於其「半導體層」與外界環境之間)所引 發之「全反射效應」對於習知之發光二極體之「發光效率 20 200832743 的不良影響。因此,本較佳實施例之具有一層狀微光學社 構之發光二極體的「發光效率」及「發光亮度」均可進一 步提升,使得此發光二極體可在各種不同的應用領域中取 代傳統照明燈具,如陰極螢光燈管等,進一步省下人們花 5 費於照明目的之能源。 b 綜上所述,本發明之形成一層狀微光學結構的方法不 僅程序簡單,其所需之材料也非常容易取得,所以此方法 相當適合大量生產所需。此外,本發明之形成—層狀微光 學結構的方法可藉由選擇不同直徑的奈米球,輕易地形成 10 一具有任何直徑大小之微凹穴的層狀微光學結構,以分別 適用於不同工作波長的發光二極體内,提升其「發光效率」 及「發光亮度」。另一方面,由於本發明之形成一層狀微 光學結構的方法係利用奈米球的「自組裝」特性,即這些 奈米球會自動且有序地排列於一基板的表面,本發明之形 成層狀被光學結構的方法可輕易地形成一具有奈米級粗 糙度的介面於一層狀微光學結構的表面,且此層狀微光學 結構可位於一微光學基板或一發光二極體中。另一方面, 由於本發明之具有一層狀微光學結構之發光二極體具有一 奈米級粗糙度的介面,所以此發光二極體所產生的光線可 20輕易地通過此—介面而不會被全反射回原先的介質,如此 發光二極體的發光層或半導體層,進一步提升此發光二極 體的备光政率」及「發光亮度」,使得發光二極體可在 各種不同的應用領域中取代傳統照明燈具,如陰極螢光燈 官等,進一步省下人們花費於照明目的之能源。 21 200832743 上述實施例僅係為了方便說明而舉例而已 主張之權利範圍自應以申請專利範圍所述為;月: 於上述實施例。 非僅限 【圖式簡單說明】 圖1係習知之發光二極體的示意圖。 =:第一較佳實施例之形成-層狀微光學結構之 15 20 意:成—具有複數個叫 ==第二較佳實施例之形成-層狀微光 ==第,實施例之形成-層狀微光 =實㈣之具# -層狀齡學結構之 圖7係本發明第五較佳奋 發光二極體的示意圖/ 、有—層狀微光學結構之 圖8係本發明第六較佳者 發光二極體的示意s / 八有—層狀微光學結構之 【主要元件符號說明 1發光二極體 11基板 u第一半導體層 22 200832743 13發光層 14 第二半導體層 15第一電接觸部 16第二電接觸部21 基板 211表面 22奈米球 23 光學膜層 24層狀微光學結構 241微凹穴 25 膠體溶液 26容器 27揮發性溶液 41 基板 411表面 42奈米球 43 光學膜層 44層狀微光學結構 441微凹穴 51 基板 511表面 52奈米球 53 成模膜層 54硬質母模 55軟質基材 56 層狀微光學結構 561微凹穴 61基板 62 層狀微光學結構 621微凹穴 7發光二極體 71 基板 72第一半導體層 73發光層 731 微凹穴 74第二半導體層 75第一電接觸部 76 第二電接觸部 8發光二極體 81基板 82 第一半導體層 83發光層 84第二半導體層 85 層狀微光學結構 851微凹穴 86第一電接觸部87 第二電接觸部 2310 [Prior Art] Fig. 1 is a schematic diagram of a light-emitting diode of Baizhi. This conventional light-emitting diode 1 is matched with an external (four) (WX is not shown to convert electrical energy from the external environment into light energy output. The diode 1 includes a substrate u, a first semiconductor layer 12 on the surface of the substrate u, a light-emitting layer 13 on the surface of the first semiconductor layer 12, and a second semiconductor on the surface of the light-emitting layer η. a layer 14, a first electrical contact 15 electrically connected to the substrate η and a second electrical contact 16 connected to the second semiconductor layer 14. 15 20 and when the conventional LED is operated The electric energy from the external environment reaches the first semiconductor layer 12 and the second semiconductor layer 14 via the first electrical contact portion 15 and the second electrical contact portion 16, respectively, so that the first semiconductor layer 12 and the second semiconductor layer 14 respectively generate electrons. And the hole. At this time, the illuminating core is excited by the electrons and the holes to generate light, and the generated light enters the first through the "smooth interface" between the luminescent layer 13 and the second semiconductor layer 14. Two semiconductor layers 14, and then The second semiconductor layer 14 reaches the external environment. However, because of this, the "smooth interface" easily induces a "total reflection effect", that is, those rays whose incident angle is larger than the "critical angle" are reflected back into the light-emitting layer 13 by this smooth interface. 'It is impossible to enter the second semiconductor layer 14. 5 200832743 Therefore, when the conventional light-emitting diode 1 operates, the light generated by the light-emitting layer 13 is partially limited to the light-emitting layer 13 and cannot be smoothly performed. Arriving at the second semiconductor layer, let alone the external environment. That is to say, due to the "smooth interface" of the conventional light-emitting diode 1, the "light-receiving rate" of the light-emitting layer cannot be further improved, thereby making this The light-emitting efficiency and the "light-emitting brightness" of the light-emitting diodes are not limited. Therefore, the brightness of the light-emitting diodes cannot be compared with the traditional lighting fixtures. The brightness of the conventional light-emitting diodes requires more energy to be consumed, and the advantages of energy saving are not realized, and the service life of the conventional light-emitting diodes is shortened. „ . Therefore, in order to comply with the recent trend of energy-saving lighting and to mass production in a short program and easy to obtain materials, there is a need in the industry for a method of broadcasting a U-shaped optical structure, one having this layer A micro-optical substrate having a micro-optical structure and a light-emitting diode having the layered micro-optical structure. [Invention] The method for forming a layered micro-optical structure of the present invention includes the following two steps (A) Lifting (, _ substrate and a plurality of nanospheres, and the surface of the nanospheres pile; (B) forming an optical film layer on the surface of the substrate ί ball gap; and (〇 removing this Rice balls, forming - a layered micro-optical structure on the surface of the substrate. The method of forming a layered micro-optical structure of the present invention comprises the steps of: providing a substrate and a plurality of nanospheres, and such Nanospheres 20 200832743 stacked on the surface of the substrate; (B) forming a mold layer on a portion of the surface of the substrate and the gap between the nanospheres; (C) heat treating the substrate, the nanospheres And forming a film layer to form a hard Mold; and (D) of this rigid female embossing on the surface of a soft base material, then this rigid female mold with the soft base material 5 is disengaged from the cross, to form a layer of this micro-optical structures. The micro-optical substrate having a layered micro-optical structure is applied to a light-emitting diode, comprising: a substrate; and a layered micro-optical structure is located on the surface of the substrate and has a plurality of micro-pits . The light emitting diode having a layered micro-optical structure of the present invention comprises: a substrate; a first semiconductor layer on the surface of the substrate; and a light emitting layer on the surface of the first semiconductor layer And a plurality of micro-pits; a second semiconductor layer is located on the surface of the light-emitting layer; a first electrical contact portion is electrically connected to the substrate; and a second electrical contact portion is electrically connected thereto Two semiconductor layers. The light-emitting diode of the present invention having a layered micro-optical structure comprises: a substrate; a first semiconductor layer on the surface of the substrate; and a light-emitting layer on the surface of the first semiconductor layer; a second semiconductor layer is disposed on the surface of the light-emitting layer; a layered micro-optical structure is located on the surface of the second semiconductor layer and has a plurality of micro-pits; a first electrical contact 20 is electrically connected to The substrate; and a second electrical contact electrically connected to the second semiconductor layer. The method of forming a layered micro-optical structure of the present invention is not only easy to obtain because of the material of the procedure 2, so this method is quite suitable for the production of large rafts. In addition, the method for forming a layered micro-optical junction 200832743 of the present invention can easily form a layered micro-optical structure having micro-cavities of any diameter by selecting nanospheres of different diameters, respectively, for respectively applying to In the light-emitting diodes of different working wavelengths, the "light-emitting efficiency" and the light-emitting shell are improved. On the other hand, the method for forming a layered low-light scholastic structure according to the present invention utilizes the "self-assembly" characteristics of the nanospheres, that is, the nanospheres are automatically and orderly arranged on the surface of a substrate, The method for forming a layered micro-optical structure of the invention can easily form a surface having a nano-roughness interface on a surface of a layered micro-optical structure, and the layered micro-optical structure can be located on a micro-optical substrate or a luminescence In the diode. On the other hand, the light-emitting diode having the layered micro-optical structure of the present invention has an interface of a nanometer-scale roughness, so that the light generated by the light-emitting diode can easily pass through the interface. It will not be totally reflected back to the original medium, so that the light-emitting layer or the semiconductor layer of the light-emitting diode can further improve the luminous efficiency and the "light-emitting brightness" of the light-emitting diode, so that the light-emitting diode can be different in each of 15 different types. The replacement of traditional lighting fixtures in the field of application, such as cathode fluorescent tubes, further saves energy that people spend on lighting purposes. The method for forming a layered micro-optical structure of the present invention can stack the nanospheres on the surface of the substrate by any method, and preferably uses a method comprising the following steps: (A1) providing the substrate and one in a container a 20-body solution of the gel, and the colloidal solution has the nanospheres and a surfactant: (A2) the substrate is placed in the container, and the colloidal solution covers the surface of the substrate; and (A3) is added A volatile solution in the container, removing the surfactant and stacking the surface of the substrate to form the half-layered micro-optical structure of the present invention can be used in a material Temporary + Gan 』 Shi Xi, N type single day _ / substrate material f is preferably P type single 曰 1 early p, p type polycrystalline N, N type polycrystalline 矽, P type non 曰 々 々 型 型 型 型 矽, p-type arsenic arson, u 非 1 non-Japanese stone eve, ί indium, _ phosphating 2 gallium, p-type phosphating 10, 5 15 gallium indium, bismuth phosphorus indium copper. The method of the present invention can be used in the form of a layered micro-optical structure, and the method of the nano-spheres is preferred. plastic. The formation of the present invention - the layered micro-optical structure 2 = the gap of the glutinous rice balls, which is preferably: ": part of the surface of the plate and the vapor deposition method of the naphthalene. Or the physical quality of the optical structure method can use any material _, pottery two structure, the material is preferably formed by the method of mediation - the layered micro-optical knot is smaller than the diameter of the nanospheres, private The better half of the __ too ^ /, the rhythm is better for the diameter of the nanosphere to use the ball and the layered micro-optical structure to make the invention trn most of the nanospheres have similar The diameter of the nanospheres, such a ball, (4) remove the card by any means, preferably by wet etching or first remove the remaining t of the nanosphere in a timely manner; Part of the ball, and then wet forming the monolithic micro-optical structure of the present invention, can form a film layer on a portion of the surface of the substrate and between the nanospheres 20 200832743 gap, the film-forming layer The material is preferably ceramic: is, single crystal stone, polycrystalline stone eve, amorphous stone eve, stone Shenhua gallium, scaled , gallium phosphide indium or indium phosphide. The film forming layer formed by the method of forming a layered micro-optical structure of the present invention may have any thickness 'the thickness thereof is preferably smaller than the diameter of the ball, the thickness thereof Preferably, the diameter of the nanosphere is one-half of the diameter of the nanosphere. The method for forming a layered micro-optical structure of the present invention may use a soft substrate of any material, preferably made of plastic or resin. The method of forming a layered micro-optical structure can be performed by any method for forming the substrate, the nanospheres, and the mold layer to form the hard master mold. The heat treatment is preferably for the substrate, and the like. 10 nanospheres and the mold layer are annealed. The substrate of the micro-optical substrate having the layered micro-optical structure of the present invention may be composed of any material, which is preferably a single crystal dream, N-type single crystal stone. Xi, p-type polycrystalline stone, N-type polycrystalline stone, P-type amorphous stone, N-type amorphous stone, p-type stone, gallium, N-type gallium, P-type indium phosphide, N-type indium telluride, p-type Wei married steel, N-type indium gallium indium, p-type indium antimonide copper or N-type indium antimonide copper. The micro-optical substrate with the layered micro-optical structure of the present invention may have a layered optical structure of any material on the surface thereof, and the material f is preferably a dielectric material, a ceramic material or a metal. The substrate of the micro-optical substrate of the optical structure may be any type of dream substrate, which is preferably a substrate or an N-type 夕20 substrate. The layered micro-optical structure of the micro-optical substrate having a layered micro-optical structure of the present invention may be Micro-cavities having any shape, such as micro-cavities, preferably hemispherical or cup-shaped. The layered micro-optical structure of the micro-optical substrate having a layered micro-optical structure of the present invention may have any size The micro-cavities, the diameters of the micro-pits are preferably between 1 〇〇 nm and ι // m ο ο 200832743. The layered micro-optical structure of the micro-optical substrate having a layered micro-optical structure of the present invention may have Any type of micro-pits, such micro-pits are preferably arranged in an array. The light-emitting diode of the present invention having a layered micro-optical structure may have a substrate of any material, and the material thereof is preferably a P-type single crystal germanium, an N-type single crystal germanium, a P-type polycrystalline germanium, an N-type polycrystalline germanium, a P-type. Amorphous germanium, N-type amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type indium phosphide, N-type indium phosphide, P-type gallium indium arsenide, N-type gallium indium phosphide, P-type Bismuth selenide or N-type indium copper selenide. The micro-pit 10 located in the light-emitting layer of the light-emitting diode of the present invention having a layered micro-optical structure may be formed with a reflective layer of any type on its surface, preferably a semi-transparent reflective layer or a totally reflective reflective layer. . The substrate of the light-emitting diode of the present invention having a layered micro-optical structure may be any type of germanium substrate, which is preferably a P-type germanium substrate or an N-type germanium substrate. The layered micro-optical structure of the light-emitting diode of the present invention having a layered micro-optical structure may have micro-pits of any shape, and the shape of the 15 micro-pits is preferably hemispherical or cup-shaped. The layered micro-optical structure of the light-emitting diode of the present invention having a layered micro-optical structure may have micro-pits of any size, and the diameter of the micro-pits is preferably between 100 nm and 1.2 //m. The layered micro-optical structure of the light-emitting diode of the present invention having a layered micro-optical structure may have any type of arrangement, and the micro-pits are preferably arranged in an array. The light-emitting diode of the present invention having a layered micro-optical structure may have a layered micro-optical structure of any material on the surface of the second semiconductor layer, and the material thereof is preferably a dielectric material, a ceramic material or a metal. [Embodiment] Please refer to Fig. 2, which is a schematic view showing a method of forming a layered micro-optical structure according to a first preferred embodiment of the present invention. The method comprises the following steps: First, step (A) provides a substrate 21 and a plurality of nanospheres 22, and 5 of the nanospheres 22 are stacked on the surface 211 of the substrate 21, so that the nanospheres 22 are The steps of sequentially stacking the surface 211 of the substrate 21 will be described later. In the preferred embodiment, the materials of the nanospheres 22 are yttrium oxide (SiOx), which are between 100 nm and 1.2 /z m in diameter, and most of the nanospheres 22 have similar diameters. 10 Next, in step (B), an optical film layer 23 is formed by chemical vapor deposition to form a gap between a portion of the surface 211 of the substrate 21 and the nanospheres 22. The optical film layer 23 is preferably made of a dielectric material, a ceramic material or a metal material, and the thickness of the optical film layer 23 is smaller than the diameter of the nanospheres 22. Finally, step (C) removes the nanospheres 22 by wet etching, and immerses the substrate 21 having the optical film layer 23 and the plurality of nanospheres 22 into a hydrofluoric acid solution (not shown). In order to remove the nanospheres 22 and form a layered micro-optical structure 24 having a plurality of micro-pits 241 on the surface 211 of the substrate 21, the micro-pits 241 are hemispherical in shape. In addition, step (C) may first remove a portion of the 20 nanospheres 22 by dry etching, such as laser or plasma, and then remove the remaining portions of the nanospheres 22 by wet etching. . The method of removing these nanospheres 22 will be described later. In addition, in the preferred embodiment, the material of the nanosphere 22 is yttrium oxide, but in different applications, the material of the nanosphere 22 12 200832743 may also be ceramic, metal oxide or Plastics, and their size is not limited to the foregoing range. However, it should be noted that if nanospheres of different materials are used, the above step (c) requires different solutions to remove the nanospheres from the substrate. For example, if a nanosphere of poly(methyl methacrylate) (PMMA) is used, the removal solution used in the step (C) is formic acid; if polystyrene (PS) is used The nanosphere, the removal solution used in the step (C) is tetrahydrofuran (THF) or toluene. In addition, in the preferred embodiment, the substrate 21 used in the step (A) is a _P-type 矽 substrate, but in different applications, the material of the substrate 21 may also be a P-type single crystal 矽. , N-type single crystal germanium, P-type polycrystalline germanium, N-type polycrystalline germanium, P-type amorphous stone, N-type amorphous stone, P-type gallium, N-type gallium, P-type indium phosphide, N-type phosphating Indium, P-type gallium indium phosphide, N-type gallium indium phosphide, P-type indium selenide copper or N-type indium antimonide copper. As described above, the step (A) of the method of forming the layered low-light 15 structure of the first preferred embodiment of the present invention provides a substrate 21 having a plurality of nanospheres 22 sequentially stacked on the surface thereof. And the step further comprises the following three sub-steps of φ, as shown in FIG. 3A and FIG. 3B respectively: First, step (A1) provides a substrate 21 and a colloidal solution 25 in a container 26, wherein the colloidal solution The 25 series is a mixture of a plurality of nanospheres (not shown in the figure) and a surfactant (not shown). Next, in the step (A2), the substrate 21 is placed in the container 26 and the substrate 21 is completely immersed in the colloidal solution 25. After a few minutes of standing, the aforementioned nanospheres 22 are gradually deposited on the surface 211 of the substrate 21 in an orderly manner, i.e., a so-called "nano template" is formed. Finally, step (A3) pours a volatile solution 27 into vessel 26, 13 200832743 to volatilize the aforementioned colloidal solution 25. After the aforementioned colloidal solution 25 is completely volatilized, the substrate 21 is taken out from the container 26 and a substrate 21 having a plurality of nanospheres 22 stacked on its surface in an orderly manner is obtained. 4A and 4B are schematic views showing a method of forming a layered 5 micro-optical structure according to a second preferred embodiment of the present invention, which is substantially similar to the method of forming a layered micro-optical structure according to the first preferred embodiment of the present invention. Similarly, the only difference between the two is the method of removing the nanosphere from the substrate, step (C). Referring to FIG. 4A and FIG. 4B, the method includes the following steps: First, step (A) provides a substrate 41 and a plurality of nanospheres 42, and 10 of the nanospheres 42 are stacked on the surface of the substrate 41. 411. In the preferred embodiment, the materials of the nanospheres 42 are yttrium oxide (SiOx), and the diameters thereof are all between 100 nm and 1.2 /zm, and most of the nanospheres 42 have similar diameters. . Next, in step (B), an optical film layer 43 15 is formed by chemical vapor deposition to form a gap between a portion of the surface 411 of the substrate 41 and the nanospheres 42. The optical film layer 43 is preferably made of a dielectric material, a ceramic material or a metal material, and the thickness of the optical film layer 43 is smaller than the diameter of the nanospheres 42. Next, in the step (C), the substrate 41 having the optical film layer 43 and the plurality of nanospheres 42 is subjected to a "dry etching" process, such as laser or electric plasma to the optical film layer 43 and the nano film. The ball 42 is etched to partially remove the optical film layer 43 and the nanospheres 42 until the remaining portion of the nanospheres 42 is about half of the original. Finally, the substrate 41 subjected to the "dry etching" treatment is immersed in a hydrofluoric acid solution (not shown) to remove the remaining nanospheres 42 and form a layered micro-layer having a plurality of micro-pits 441. 14 200832743 The optical structure 44 is on the surface 411 of the substrate 41, and the micro-pits 441 are in the shape of a hemisphere. Similarly, as described above, in the preferred embodiment, the material of the nanosphere 42 is yttrium oxide, but in different applications, the material of the nanosphere 42 may also be ceramic. Metal oxides or plastics, and their sizes are not limited to the foregoing ranges. However, it should be noted that if different materials of nanospheres are used, the above step (C) requires different solutions to remove these nanospheres from the substrate. For example, if a nanosphere of polymethyl methacrylate (PMMA) is used, the 10 removal solution used in step (C) is formic acid; if polystyrene (PS) is used For the nanosphere, the removal solution used in the step (C) is tetrahydrofuran (THF) or toluene. In addition, in the preferred embodiment, the substrate 41 used in the step (A) is a P-type germanium substrate, but in different applications, the material of the substrate 41 may also be a P-type single crystal germanium, N. Single crystal germanium, P-type polycrystalline germanium, N-type polymorphic germanium, P-type amorphous germanium, N-type amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type indium phosphide, N-type phosphating Indium, P-type gallium indium phosphide, N-type gallium indium phosphide, P-type indium bi-phosphide or N-type indium antimonide copper. 5A and 5B are schematic views showing a method of forming a layered micro-optical structure according to a third preferred embodiment of the present invention. The method comprises the following steps: 20 First, step (A) provides a substrate 51 and a plurality of nanospheres 52, and the nanospheres 52 are stacked on the surface 511 of the substrate 51. In the preferred embodiment, the materials of the nanospheres 52 are yttrium oxide (SiOx), and the diameters thereof are all between 100 nm and 1.2 /zm, and most of the nanospheres 52 have similar diameters. . 15 200832743 Next, the step (B) forms a film layer 53 formed by a chemical vapor deposition method on a portion of the surface 511 of the substrate 51 and the gap between the nanospheres 52. Preferably, the mold layer 53 is also composed of yttrium oxide (SiOx), and the thickness of the mold layer 53 is smaller than the diameter of the nanospheres 52. 5 Next, in the step (C), the substrate 51 having the molding film layer 53 and the plurality of nanospheres 52 is heat-treated, that is, the substrate 51 is annealed at 300 ° C to 900 ° C to make the foregoing The substrate 51 having the mold layer 53 and the plurality of nanospheres 52 forms a hard master mold 54. Finally, in step (D), the hard master mold 54 is imprinted on the surface of a soft substrate 55 10, and the hard master mold 54 and the embossed soft substrate 55 are separated from each other to form a layer. Micro-optical structure 56. Wherein, the layered micro-optical structure 56 has a plurality of micro-pits 561, and the micro-pits 561 are formed in a hemispherical shape. On the other hand, in the preferred embodiment, the material of the nanosphere 5 2 15 is made of oxidized stone, but in different applications, the material of the nanosphere 52 may be other ceramic materials. And their size is not limited to the aforementioned range. However, it should be noted that these materials must be able to withstand the high temperature environment of the heat treatment process without causing deformation of these nanospheres, and these materials must enable these nanospheres to pass through the heat treatment process with the mold layer and substrate. The combination is integrated to form a hard master mold to be formed in the step (C). In addition, in the preferred embodiment, the substrate 51 used in the step (A) is a P-type germanium substrate, but in different applications, the material of the substrate 51 may also be a P-type single crystal germanium, N. Single crystal germanium, P-type polycrystalline germanium, N-type polycrystalline germanium, P-type amorphous germanium, N-type amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, 16 200832743 p-type filled indium, gas-indium, P _ gallium indium, N-type phosphating marry, p-type indium selenide copper or N-type selenium bismuth copper. On the other hand, the material of the fortunate shell substrate 55 used in the step (D) is preferably plastic or resin to form the layered micro-optical structure 56 via an imprint process. Fig. 6 is a schematic view showing a micro-optical substrate having a layered micro-optical structure according to a fourth preferred embodiment of the present invention, which is applied to a light-emitting diode. The micro-optical substrate is formed by applying the method of the first preferred embodiment of the present invention, comprising a substrate 61; and a layered micro-optical structure 62. The layered micro-optical structure 62 is preferably made of a dielectric material, a ceramic material or a metal material, and is located on the surface of the substrate 61 and has a plurality of micro-pits 62 as shown in FIG. The pockets 621 are all hemispherical in shape and have substantially the same diameter, ranging from 100 nm to 12. Moreover, the micro-pits 621 are arranged in an array, i.e., they are sequentially arranged in the layered micro-optical structure 62, and the layered micro-optical structures 15 62 are not arranged in a disorderly manner. In the preferred embodiment, the substrate 61 is a P-type germanium substrate. However, in different applications, the substrate 61 may be made of a p-type single crystal germanium, an n-type single crystal germanium, a p-type polycrystalline germanium, or a N. Polycrystalline germanium, p-type amorphous germanium, N-type amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type indium phosphide, N-type indium phosphide, p-type gallium phosphide indium, N-type phosphating Gallium indium, p-type indium selenide copper or N-type indium selenide copper. 20 is a schematic diagram of a light-emitting diode having a layered micro-optical structure according to a fifth preferred embodiment of the present invention, the light-emitting diode 7 is coupled with an external circuit (not shown) to be externally The electrical energy of the environment is converted into light energy. In the preferred embodiment, the light-emitting diode 7 includes a substrate 71, a first semiconductor layer 72 on the surface of the substrate 71, and a light-emitting layer 73 on the surface of the first semiconductor 17 200832743 layer 72. A second semiconductor layer 74 on the surface of the light-emitting layer 73, a first electrical contact portion 75 electrically connected to the substrate 71, and a second electrical contact portion 76 electrically connected to the second semiconductor layer 74. The luminescent layer 73 is formed by the method of forming a layered micro-optical structure according to the first preferred embodiment of the present invention or the second preferred embodiment. As shown in Fig. 7, the light-emitting layer 73 has a plurality of micro-pits 731, and their shapes are hemispherical, and their diameters are also substantially the same, ranging from 1 〇〇 nm to 12 μm. On the other hand, these micro-pits 73 are arranged in an array, that is, they are arranged in this order in the light-emitting layer 73, and the light-emitting layers 73 are not arranged in a disorderly manner. These micro-pits 731 are further formed with a reflective layer (not shown) such as a transflective reflective layer or a totally reflective reflective layer to further reflect these light rays to the second semiconductor layer 74. In addition, in the preferred embodiment, the substrate 71 is a P-type germanium substrate. However, in different applications, the material of the substrate 71 may be a P-type single crystal germanium or an N-type single crystal germanium. Polycrystalline germanium type 15 polycrystalline germanium, p-type amorphous germanium, N-type amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type phosphide, N-type indium phosphide, P-type gallium indium phosphide, N Type gallium indium phosphide, P-type indium selenide copper or N-type indium selenide copper. When the light-emitting diode 7 is in operation, the electrical energy from the external environment reaches the first semiconductor 20 layer 72 and the second semiconductor layer 74 via the first electrical contact portion 75 and the second electrical contact portion 76, respectively, so that the first The semiconductor layer 72 and the second semiconductor layer 74 generate electrons and holes. At this time, the luminescent layer is exposed to the oxygen generated by these electrons and holes to generate light. Then, the generated light rays are arranged in an orderly arrangement on the refraction of the dimples 731 of the luminescent layer 73, that is, through the interface having the uniformity of the nano-roughness (between the luminescent layers and the enamel layer 18) 200832743 between the semiconductor layers 74 and smoothly incident on the second semiconductor layer μ without being reflected back to the light-emitting layer 73 by the interface. Finally, the light rays that have successfully reached the second semiconductor layer 74 are incident from the second semiconductor layer 74 to the outside. In other words, the brothers are hunted by these micro-pits 7 31. The "5-light rate" of the light-emitting layer 7 3 can be significantly improved, and the smooth interface of the conventional light-emitting diode can be overcome (between the light The "total reflection effect" caused by the layer and its semiconductor has an adverse effect on the "luminous efficiency" of the light-emitting layer of the conventional light-emitting one. Therefore, the "light-emitting efficiency" and the "light-emitting brightness" of the light-emitting diode having the layered micro-optical structure of the preferred embodiment can be further 10 liters, so that the light-emitting diode can be used in various applications. The replacement of traditional lighting fixtures in the field, such as cathode fluorescent tubes, further saves energy that people spend on lighting purposes. FIG. 8 is a schematic diagram of a light-emitting diode having a layered micro-optical structure according to a sixth preferred embodiment of the present invention. The light-emitting diode 8 is coupled with an external return path 15 (not shown) to The electrical energy of the external environment is converted into light energy output. In the preferred embodiment, the LED 8 includes a substrate 81, a first semiconductor layer 82 on the surface of the substrate 81, and a light-emitting layer 83 on the surface of the first semiconductor layer 82. a second semiconductor layer 84 on the surface of the light-emitting layer 83, a layered low-light structure 85 on the surface of the second semiconductor layer 84, a first electrical contact portion 86 electrically connected to the substrate 81, and an electric The second electrical contact g7 is connected to the second semiconductor layer 84. The layered micro-optical structure 85 is preferably made of a dielectric material, a ceramic material or a metal material, and is formed by the method of forming a layered micro-optical structure according to the third preferred embodiment of the present invention. As shown in FIG. 8, the layered micro-optical junction 19 200832743 has a plurality of micro-pits 851, and their shapes are hemispherical, and their diameters are also substantially the same, both of which are K1 〇〇 nm to 12 Between the claws. On the other hand, these micro-pits 851 are arranged in an array, i.e., they are sequentially arranged in the layered micro-optical structure 85, and the 5-layered micro-optical structure 85 is not arranged in a disorderly manner. In addition, in the preferred embodiment, the substrate 81 is a P-type germanium substrate, but in different applications, the material of the substrate may be a P-type single crystal germanium, an N-type single crystal germanium, or a P-type. Polycrystalline germanium, N-type polycrystalline germanium, p-type amorphous germanium, N-type amorphous germanium, p-type gallium arsenide, N-type gallium arsenide, P-type indium antimonide, N-type indium filling, P-type gallium phosphide, N-type plated gallium indium, (4) stone westernized 10 indium copper or N-type indium antimonide copper. When the LED 8 is in operation, the electric energy from the external environment reaches the first semiconductor layer 82 and the second semiconductor layer 84 via the first electrical contact portion 86 and the second electrical contact portion 87, respectively, so that the first semiconductor layer 82 and the second semiconductor layer 84 respectively generate electrons and holes. At this time, the light-emitting layer 83 generates light by being excited by these 15 electrons and holes. These resulting rays then pass through the second semiconductor layer 84 to the layered micro-optical structure 85. At this time, the light rays are sequentially arranged to be refracted by the micro-pits 851 of the layered micro-optical structure 85, that is, through the interface having the uniformized nano-roughness (between the layered micro-optical structures) Between 85 and the external environment, the light can be smoothly incident on the external environment 20 without being reflected back to the layered micro-optical structure 85 by the interface. That is to say, with these micro-pits 851, the "light-receiving rate" of the layered micro-optics = structure 85 can be significantly improved, and the conventional light-emitting diode can be overcome with a smooth interface (between the "semiconductor layer" The "total reflection effect" caused by the relationship with the external environment has an adverse effect on the luminous efficiency of the conventional light-emitting diode 20 200832743. Therefore, the light-emitting structure of the preferred embodiment has a layered micro-optical structure. The "luminous efficiency" and "lighting brightness" of the polar body can be further improved, so that the light-emitting diode can replace the traditional lighting fixtures in various application fields, such as cathode fluorescent tubes, etc., further saving people's flowers 5 Energy for lighting purposes. b In summary, the method of forming a layered micro-optical structure of the present invention is not only simple in procedure, but also requires materials which are very easy to obtain, so this method is quite suitable for mass production. In addition, the method for forming a layered micro-optical structure of the present invention can easily form a layered micro-optical structure having micro-cavities of any diameter by selecting nanospheres of different diameters to be respectively adapted to different In the light-emitting diode of the working wavelength, the "light-emitting efficiency" and "light-emitting brightness" are improved. On the other hand, since the method for forming a layered micro-optical structure of the present invention utilizes the "self-assembly" property of the nanospheres, that is, the nanospheres are automatically and orderly arranged on the surface of a substrate, the present invention Forming a layered optical structure can easily form a surface having a nano-roughness interface on a layered micro-optical structure, and the layered micro-optical structure can be located on a micro-optical substrate or a light-emitting diode in. On the other hand, since the light-emitting diode having the layered micro-optical structure of the present invention has a nanometer-level roughness interface, the light generated by the light-emitting diode can easily pass through the interface without It will be totally reflected back to the original medium, so that the light-emitting layer or the semiconductor layer of the light-emitting diode can further enhance the light-emitting rate and the "light-emitting brightness" of the light-emitting diode, so that the light-emitting diode can be used in various applications. The replacement of traditional lighting fixtures in the field, such as cathode fluorescent lamps, further saves energy that people spend on lighting purposes. 21 200832743 The above-described embodiments are merely exemplified for convenience of explanation, and the scope of the claims is as described in the scope of the patent application; Month: The above embodiment. Not limited to [Simplified description of the drawings] Fig. 1 is a schematic view of a conventional light-emitting diode. =: The formation of the first preferred embodiment - the layered micro-optical structure 15 20 means: having - a plurality of formations = = formation of the second preferred embodiment - layered low light = = first, the formation of the embodiment - Layered gleam = 实(四)之具# - Layered chronological structure Fig. 7 is a schematic diagram of a fifth preferred luminescent diode of the present invention, and Fig. 8 having a layered microoptical structure is the invention Illustrated s / eight-layered micro-optical structure of six preferred light-emitting diodes [main element symbol description 1 light-emitting diode 11 substrate u first semiconductor layer 22 200832743 13 light-emitting layer 14 second semiconductor layer 15 An electrical contact portion 16 second electrical contact portion 21 substrate 211 surface 22 nanosphere 23 optical film layer 24 layered micro-optical structure 241 micro-pit 25 colloidal solution 26 container 27 volatile solution 41 substrate 411 surface 42 nanosphere 43 Optical film layer 44 layered micro-optical structure 441 micro-pit 51 substrate 511 surface 52 nanosphere 53 mold layer 54 hard master mold 55 soft substrate 56 layered micro-optical structure 561 micro-pit 61 substrate 62 layered micro Optical structure 621 micro-pit 7 light-emitting diode 71 substrate 72 first semiconductor 73 light-emitting layer 731 micro-cavity 74 second semiconductor layer 75 first electrical contact portion 76 second electrical contact portion 8 light-emitting diode 81 substrate 82 first semiconductor layer 83 light-emitting layer 84 second semiconductor layer 85 layered micro-optical structure 851 micro-cavity 86 first electrical contact portion 87 second electrical contact portion 23

Claims (1)

200832743 十、申請專利範圍: 1 · 一種形成一層狀微光學結構的方法,係包括下列步 驟: (A) 提供一基板及複數個奈米球,且該等奈米球係堆疊 5 於該基板之表面; (B) 形成一光學膜層於該基板之部分表面及該等奈米 球之間隙;以及 XC)移除該等奈米球,形成一層狀微光學結構於該基板 之表面。 10 2.如申請專利範圍第1項所述之方法,其中步驟(A)之 將該等奈米球堆疊於該基板之表面的步驟,係包括: (A1)提供該基板及一位於一容器内之膠體溶液,且該 膠體溶液具有該等奈米球及一介面活性劑; (A2)放置該基板於該容器中,且該膠體溶液覆蓋於該 15 基板之表面;以及 (A3)加入一具揮發性之溶液於該容器中,移除該介面 • 活性劑並於該基板之表面堆疊形成該等奈米球。 3·如申請專利範圍第1項所述之方法,其中該基板之 材質係為P型單晶矽、N型單晶矽、P型多晶矽、N型多晶矽、 20 P型非晶矽、N型非晶矽、P型砷化鎵、N型砷化鎵、P型磷 化銦、N型磷化銦、P型磷化鎵銦、N型磷化鎵銦、P型硒化 銦銅或N型硒化銦銅。 24 200832743 10 15 鲁 20 4.如申請專利範圍第丨項所述 甘 層係湘化學氣相沈積法形成”,其巾該光學膜 奈米球H 缺料板之部分表面及該等 5·如申清專利範圍第i項所述之 ^ ^ ^ ^ 層之材質係為介電材f。 /,,、㈣光予膜 6·如申請專利範圍第丨 層之厚度料於料奈米球之法,其中該光學膜 球之Ld利範圍第1項所述之方法,其中該等奈米 球之红係介於100nm至12心之間。 8·如申請專利範圍第!項所述之方法,其中該等 球係具有相同的直徑。 、 、’ 9.如申請專利範圍第i項所述之方法,其中該等奈米 球係利用濕敍刻方式移除。 入 球传Hi請專利範圍第1項料之方法,其中該等奈米 未係先利用乾*刻方式移除該等奈⑽的—部分,再利 源蚀刻万式移除該等奈料_餘部分。 11· 一種形成-層狀微光學結構的方法,係包括下列步(A) 提供-基板及複數個奈料,且奈 於談基板之表面; (B) 形成-成模膜層於該基板之部分表 球之間隙·, 面及該等奈米 (C)熱處理該基板、該等奈米球及該成 一硬質母模;以及 模膜層,以形成 25 200832743 (D)將該硬質母模壓印於一軟質基材之表面,再將該硬 質母杈與該軟質基材互相脫離,以形成該層狀微光學結構。 5200832743 X. Patent Application Range: 1 · A method for forming a layered micro-optical structure includes the following steps: (A) providing a substrate and a plurality of nanospheres, and the nanospheres are stacked 5 on the substrate (B) forming an optical film layer on a portion of the surface of the substrate and the gap between the nanospheres; and XC) removing the nanospheres to form a layer of micro-optical structures on the surface of the substrate. The method of claim 1, wherein the step (A) of stacking the nanospheres on the surface of the substrate comprises: (A1) providing the substrate and one in a container a colloidal solution, wherein the colloidal solution has the nanospheres and a surfactant; (A2) placing the substrate in the container, and the colloidal solution covers the surface of the 15 substrate; and (A3) adding a A volatile solution is placed in the container, the interface active agent is removed and stacked on the surface of the substrate to form the nanospheres. 3. The method according to claim 1, wherein the material of the substrate is P-type single crystal germanium, N-type single crystal germanium, P-type polycrystalline germanium, N-type polycrystalline germanium, 20 P-type amorphous germanium, N-type. Amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type indium phosphide, N-type indium phosphide, P-type gallium indium arsenide, N-type gallium phosphide indium, P-type indium selenide copper or N Type indium selenide copper. 24 200832743 10 15 Lu 20 4. As described in the scope of the patent application, the formation of the chemical layer of the sweet layer is carried out by the vapor deposition method, the surface of the optical film nanosphere H lacking plate and the like The material of the ^ ^ ^ ^ layer described in item yi of the patent scope is the dielectric material f. /,,, (4) The light film 6 is as thick as the thickness of the second layer of the patent application. The method of the present invention, wherein the method of claim 1 wherein the nanospheres of the nanospheres are between 100 nm and 12 hearts. 8. The method of claim 2; , wherein the ball systems have the same diameter. The method of claim i, wherein the nanospheres are removed by wet sculpt. The method of the first item, wherein the nanometers are first removed by means of dry etching, and then removed by the source etching method. a method of layered micro-optical structure comprising the following steps (A) providing a substrate and a plurality of ingots, and (B) forming a gap between a portion of the surface of the substrate and the surface of the substrate, the surface and the nano (C) heat-treating the substrate, the nanospheres and the hard master mold; and the mold film The layer is formed to form 25 200832743 (D) the hard master mold is imprinted on the surface of a soft substrate, and the hard mother substrate and the soft substrate are separated from each other to form the layered micro-optical structure. 10 12.如申請專利範圍第u項所述之方法,其中該基°板之 材質係為P型單晶砍、N型單晶梦、p型多晶梦、N型多晶石夕、 P型非晶石夕、N型非晶石夕、P型砰化鎵、N型砰化鎵、p型磷 化銦、N型碟化銦、p型構化錁銦、N型磷化嫁姻、p型匕 銦鋼或N型碰化銦銅。 I如中請專利範圍第u項所述之方法,其中該成模膜 2利用化學氣相沈積法形成於該基板之部等 奈米球之間隙。 通寺 15 20 料利範圍第U項所述之方法,其中該成模膜 層之材質係為陶瓷 U·如申請專利範圍第丨〗項所述之方法, 球之材質係與該成模膜層之材質相同。/ 如申請專利範圍第丨丨項所述之方法, 層之厚度係小於該等奈米球之直徑。 17·如申請專利範圍第U項所述之方 球之直徑係介於1〇〇nm至 '、 ·2以历之間 I8·如申請專利範圍第Π項所述 球係具有相同的直徑。 / , 19.如申請專利範圍第1 i項所 材之材質係為塑膠。 方法, 2〇.如申請專利範圍第U項所 係為退火處理。 方法, 其中該等奈米 其中該成模膜 其中該等奈米 其中該等奈米 其中該軟質基 其中該熱處理 26 200832743 21.—種具有一層狀微光學結構之微光學基板,係適用 於一發光二極體,包括: 一基板;以及 一層狀微光學結構,係位於該基板之表面並具有複數 5 個微凹穴。 22·如申請專利範圍第21項所述之微光學基板,其中 該基板之材質係為P型單晶矽、N型單晶矽、P型多晶矽、N 型多晶矽、P型非晶矽、N型非晶矽、P型砷化鎵、N型砷化 鎵、P型磷化銦、N型磷化銦、P型磷化鎵銦、N型磷化鎵銦、 10 P型硒化銦銅或N型硒化銦銅。 23.如申請專利範圍第21項所述之微光學基板,其中該 層狀微光學結構之材質係為金屬。 24·如申請專利範圍第21項所述之微光學基板,其中該 基板係為P型矽基板。 15 25_如申請專利範圍第21項所述之微光學基板,其中該 等微凹穴之形狀係為半球狀’。 丨 26.如申請專利範圍第21項所述之微光學基板,其中該 等微凹穴之直徑係介於100nm至1.2 /zm之間。 27. 如申請專利範圍第21項所述之微光學基板,其中該 20 等微凹穴係呈陣列狀排列。 28. —種具有一層狀微光學結構之發光二極體,係包 括·· 一基板; 一第一半導體層,係位於該基板之表面; 27 200832743 餐光層,係位於該弟一半導體層之表面並具有複數 個微凹穴; 一第二半導體層,係位於該發光層之表面; 510 12. The method of claim 5, wherein the material of the base plate is a P-type single crystal cut, an N-type single crystal dream, a p-type polycrystalline dream, an N-type polycrystalline stone, and a P Amorphous Shixia, N-type amorphous Shixi, P-type gallium antimonide, N-type gallium antimonide, p-type indium phosphide, N-type indium, p-type indium germanium, N-type phosphating marry , p-type indium-indium steel or N-type indium bump copper. The method of claim 5, wherein the molding film 2 is formed by a chemical vapor deposition method in a gap between the nanospheres such as a portion of the substrate. The method of U.S. Patent Application No. 15, wherein the material of the molding film layer is a ceramic U. The method described in the scope of the patent application, the material of the ball and the molding film. The layers are of the same material. / As described in the scope of claim 2, the thickness of the layer is less than the diameter of the nanospheres. 17. The diameter of the sphere as described in U.S. Patent Application Serial No. U is between 1 〇〇 nm and ', · 2 Between the calendars. I8. The spheres have the same diameter as described in the scope of the patent application. / , 19. The material of the material of item 1 i of the patent application is plastic. Method, 2〇. For the application of patent scope U is an annealing treatment. a method, wherein the nano-sized one of the nano-molecules wherein the nano-sized nanometers of the nano-sized soft moieties therein the heat-treating 26 200832743 21. a micro-optical substrate having a layered micro-optical structure is suitable for A light emitting diode comprising: a substrate; and a layered micro-optical structure on the surface of the substrate and having a plurality of micro-pits. The micro-optical substrate according to claim 21, wherein the material of the substrate is P-type single crystal germanium, N-type single crystal germanium, P-type polycrystalline germanium, N-type polycrystalline germanium, P-type amorphous germanium, N Amorphous germanium, P-type gallium arsenide, N-type gallium arsenide, P-type indium phosphide, N-type indium phosphide, P-type gallium indium arsenide, N-type gallium indium phosphide, 10 P-type indium selenide Or N-type indium selenide copper. 23. The micro-optical substrate of claim 21, wherein the layered micro-optical structure is made of a metal. The micro-optical substrate according to claim 21, wherein the substrate is a P-type germanium substrate. The micro-optical substrate of claim 21, wherein the micro-pits are hemispherical in shape. The micro-optical substrate of claim 21, wherein the micro-cavities have a diameter of between 100 nm and 1.2 /zm. 27. The micro-optical substrate of claim 21, wherein the 20 micro-cavities are arranged in an array. 28. A light-emitting diode having a layered micro-optical structure, comprising: a substrate; a first semiconductor layer on a surface of the substrate; 27 200832743 a light-emitting layer, located in the semiconductor layer The surface has a plurality of micro-pits; a second semiconductor layer is located on the surface of the light-emitting layer; 10 1510 15 20 一第一電接觸部,係電連接於該基板;以及 一第二電接觸部,係電連接於該第二半導體層。 29·如申請專利範圍第28項所述之發光二極體,其中該 =之材質係4P型單晶石夕、N型單晶石夕、p型多晶石夕、_ 夕,曰曰:夕、P型非晶石夕、N型非晶石夕、P型碎化鎵、N型坤化鎵、 P型磷化錮、N型磷化銦、p型磷化鎵銦、n型磷化鎵銦、p 型石西化錮鋼或N型砸化銦銅。 二極體,其中該 二極體,其中該 30·如申請專利範圍第28項所述之發光 等极凹穴之表面更形成有一反射層。 31·如申請專利範圍第28項所述之發光 基板係為p型發基板。 ^ / 32·如申凊專利範圍第28項所述之發光二極體,其中該 等微凹穴之形狀係為半球狀。 /、 33·如申請專利範圍第28項所述之發光二極體,豆中該 專微凹穴之直徑係介於100nm至12鋒之間:、 34.如申請專利範圍第28項所述之發光二極體,1中該 等微凹穴係呈陣列狀排列。 35·種具有一層狀微光學結構之發光二極體,係包 一基板; 一第—半導體層,係位於該基板之表面; 28 200832743 一發光層,係位於該第一半導體層之表面; 第一半導體層,係位於該發光層之表面; 層狀微光學結構,係位於該第二半導體層之表面並 具有複數個微凹穴; 一=一電接觸部,係電連接於該基板;以及 一第二電接觸部,係電連接於該第二半導體層。A first electrical contact is electrically connected to the substrate; and a second electrical contact is electrically connected to the second semiconductor layer. 29. The light-emitting diode according to claim 28, wherein the material is 4P type single crystal stone, N-type single crystal stone, p-type polycrystalline stone, _ 夕, 曰曰: Xi, P-type amorphous stone eve, N-type amorphous stone eve, P-type gallium arsenide, N-type koning gallium, P-type phosphide, N-type indium phosphide, p-type gallium phosphide indium, n-type phosphorus Gallium indium, p-type sillimanite or N-type indium antimonide copper. The diode, wherein the diode, wherein the surface of the illuminating equipolar cavity described in claim 28 is further formed with a reflective layer. 31. The light-emitting substrate according to claim 28, which is a p-type emitting substrate. The light-emitting diode of claim 28, wherein the micro-pits are hemispherical in shape. /, 33. The light-emitting diode of claim 28, wherein the diameter of the micro-cavity is between 100 nm and 12: 34. As described in claim 28 The light-emitting diodes, wherein the micro-pits are arranged in an array. 35. A light-emitting diode having a layered micro-optical structure, comprising a substrate; a first-semiconductor layer on a surface of the substrate; 28 200832743 an illuminating layer on a surface of the first semiconductor layer; a first semiconductor layer is located on the surface of the light-emitting layer; a layered micro-optical structure is located on the surface of the second semiconductor layer and has a plurality of micro-pits; an = electrical contact portion is electrically connected to the substrate; And a second electrical contact portion electrically connected to the second semiconductor layer. 10 36·如申請專利範圍第35項所述之發光二極體,置中該 ,板之材質係為P型單晶梦、N型單晶梦、p型多晶♦、N型 夕a曰石夕、P型非晶梦、N型非晶♦、p型石申化鎵、_神化錄、 =型碟化銦、_魏銦、㈣磷化鎵銦、n_化録姻、p 1石西化銦銅或N型砸化錮銅。 1510 36· If the light-emitting diode according to item 35 of the patent application is applied, the material of the board is P-type single crystal dream, N-type single crystal dream, p-type polycrystalline ♦, N-type 曰 a曰Shi Xi, P-type amorphous dream, N-type amorphous ♦, p-type stone Shenhua gallium, _ Shenhualu, = type indium, _Wei indium, (four) gallium indium phosphide, n_ ing marriage, p 1 Indium copper or N-type antimony copper. 15 20 37·如申請專利範圍第35項所述之發光 層狀微光學結構之材質係為介電材質。 38. 如申請專利範圍第35項所述之發光二極 基板係為p型矽基板。 39. 如申請專利範圍第35項戶斤述之發光二極體,其中該 專被凹穴之形狀係為半球狀。 Μ 40. 如申請專利範圍第35項所述之 顿凹穴之直握係介……〜之V 等微請專利範圍第35項所述之發光二極體,其中該 寺说凹穴係呈陣列狀排列。 ‘極體,其中該 中該 2920 37. The material of the luminescent layered micro-optical structure according to claim 35 is a dielectric material. 38. The light-emitting diode substrate according to claim 35 is a p-type germanium substrate. 39. If the light-emitting diode of the 35th item of the patent application is applied, the shape of the recess is a hemisphere. Μ 40. As for the direct grip system of the dents mentioned in the 35th paragraph of the patent application scope, the light-emitting diodes mentioned in Item 35 of the patent scope, such as the V, are said to be concave. Arranged in an array. ‘polar body, where the 29
TW96102786A 2007-01-25 2007-01-25 Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same TW200832743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96102786A TW200832743A (en) 2007-01-25 2007-01-25 Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96102786A TW200832743A (en) 2007-01-25 2007-01-25 Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same

Publications (2)

Publication Number Publication Date
TW200832743A true TW200832743A (en) 2008-08-01
TWI343660B TWI343660B (en) 2011-06-11

Family

ID=44818963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96102786A TW200832743A (en) 2007-01-25 2007-01-25 Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same

Country Status (1)

Country Link
TW (1) TW200832743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578849B (en) * 2010-02-12 2017-04-11 Lg伊諾特股份有限公司 Light emitting device light emitting device package and lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578849B (en) * 2010-02-12 2017-04-11 Lg伊諾特股份有限公司 Light emitting device light emitting device package and lighting system

Also Published As

Publication number Publication date
TWI343660B (en) 2011-06-11

Similar Documents

Publication Publication Date Title
JP2010258455A (en) Sapphire substrate with periodical structure
TWI361497B (en) Light-emitting diode apparatus and manufacturing method thereof
TWI395979B (en) A microlens and a mold manufacturing method thereof, and a light emitting device
JP2005259820A (en) Group iii-v compound semiconductor light emitting element and its manufacturing method
Wei et al. Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands
TWI425867B (en) Organic electroluminescence display device and method of manufacturing the same
CN101325237A (en) LED chip and manufacturing method thereof
TW201006002A (en) Opto-electrical device
TW201117283A (en) Method for preparing patterned substrate by using nano- or micro- particles
TWI357886B (en) Stamp having nanometer scale structure and applica
Yoon et al. Various nanofabrication approaches towards two-dimensional photonic crystals for ceramic plate phosphor-capped white light-emitting diodes
US8113903B2 (en) Fabrication method of light-emitting device
Kasugai et al. High-efficiency nitride-based light-emitting diodes with moth-eye structure
JP5632081B2 (en) Light emitting diode manufacturing method using nanoimprint mold, and light emitting diode manufactured by this method
WO2012017304A2 (en) White led device and manufacturing method thereof
CN101884088A (en) Have light-emitting diode chip for backlight unit and manufacture method thereof that high light extracts
TW200832743A (en) Method of forming a layered micro-optical structure, a micro-optical substrate containing same, and a LED containing same
KR20160092635A (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
CN100595936C (en) Micro optical base board and LED with L1 micro optical structure
CN101633220A (en) Micro lens, manufacturing method of mold insert of micro lens and luminescent device
Wang et al. Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film
KR101471089B1 (en) Light emitting diode having multi-layered photonic crystal layers
CN101635324A (en) Luminous element and manufacturing method thereof
TWI313520B (en)
Eissler et al. LED technology trends

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees