TW200832726A - Reel-to-reel reaction of precursor film to form solar cell absorber - Google Patents

Reel-to-reel reaction of precursor film to form solar cell absorber Download PDF

Info

Publication number
TW200832726A
TW200832726A TW096142734A TW96142734A TW200832726A TW 200832726 A TW200832726 A TW 200832726A TW 096142734 A TW096142734 A TW 096142734A TW 96142734 A TW96142734 A TW 96142734A TW 200832726 A TW200832726 A TW 200832726A
Authority
TW
Taiwan
Prior art keywords
chamber
gas
heating chamber
continuous flexible
flexible workpiece
Prior art date
Application number
TW096142734A
Other languages
Chinese (zh)
Inventor
Bulent M Basol
Original Assignee
Solopower Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solopower Inc filed Critical Solopower Inc
Publication of TW200832726A publication Critical patent/TW200832726A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

A roll-to-roll rapid thermal processing (RTP) tool with multiple chambers for forming a solar cell absorber by reacting a precursor layer on a continuous flexible workpiece. The RTP tool includes an elongated housing having a heating chamber with a predetermined temperature profile, a supply chamber and a receiving chamber. The heating chamber includes a small process gap in which the precursor layer is reacted with a Group VIA material to form an absorber layer. The continuous flexible workpiece is unrolled and advanced from the supply chamber into the heating chamber, and the processed continuous flexible workpiece is taken up and rolled in the receiving chamber.

Description

200832726 九、發明說明: 【發明所屬之技術領域】 本發明係關於製備薄膜的方法及設備,該薄膜係可$ 於光偵測器及光電應用之半導體薄膜上。 【先前技術】200832726 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method and apparatus for preparing a film which can be used on a semiconductor film of a photodetector and an optoelectronic application. [Prior Art]

太陽能電池為直接將陽光轉換為電能之光電裝置。^ 常見的太陽能電池材料為梦’其為單一或多晶晶圓 式。不過,使用矽系太陽能電池產生電力之成本高於夢由 更傳統的方法產生電力之成本。因此,自1970年代早期以 來,已有關於降低地上使用之太陽能電池之成本之努力。 降低太陽能電池成本之一種方法為發展可在大面積基板上 沈積太陽能電池等級之吸收板材料的低成本薄膜生長技 術,及使用高產量、低成本之方法製造這些元件。 包含元素週期表之某些第IB族(銅、銀、金)、第IIIA 族(硼、鋁、鎵、銦、鉈)、及第VIA族(氧、硫、硒、碌、 釙)材料或元素之第IBIIIAVIA族化合物之半導體為薄膜 太陽能電池結構之優良的吸收板材料。尤其,通常指為 CIGS(S)、或 Cu(IIl,Ga)(S,Se)2、或CuIn卜xGax(SySe卜y)k(其 中,OSxSl、OSy^l、且k近乎2)之銅、銦、鎵、硒、 及硫之化合物已使用在太陽能電池結構中,其產生接近 20%之轉換效率。包含第ΠΙΑ族元素鋁及/或第VIA族元 素碲之吸收板亦有希望❶因此,總括來說,包含·· i)來自 第IB族之銅、ϋ)來自第πια族之銦、鎵、及鋁之至少其 200832726 一、及iii)來自第VIA族之硫、硒、及碲之至少其一之化 合物在太陽能電池應用方面具有高度關注。A solar cell is a photovoltaic device that directly converts sunlight into electrical energy. ^ Common solar cell materials are dreams, which are single or polycrystalline wafers. However, the cost of generating electricity using tantalum solar cells is higher than the cost of generating electricity from more traditional methods. Therefore, since the early 1970s, efforts have been made to reduce the cost of solar cells used on the ground. One way to reduce the cost of solar cells is to develop low cost thin film growth techniques that can deposit solar cell grade absorber material on large area substrates, and to manufacture these components using high throughput, low cost methods. Contains certain Group IB (copper, silver, gold), Group IIIA (boron, aluminum, gallium, indium, antimony) and Group VIA (oxygen, sulfur, selenium, bismuth, antimony) materials of the Periodic Table of the Elements or The semiconductor of the element IBIIIAVIA compound is an excellent absorber material for a thin film solar cell structure. In particular, it is generally referred to as CIGS (S), or Cu (IIl, Ga) (S, Se) 2, or CuIn Bu xGax (SySe Bu y) k (where OSxSl, OSy^l, and k is nearly 2) Compounds of indium, gallium, selenium, and sulfur have been used in solar cell structures, which produce conversion efficiencies approaching 20%. An absorption plate comprising a lanthanide element aluminum and/or a group VIA element lanthanum is also promising. Therefore, in summary, including: i) copper from the group IB, bismuth), indium, gallium from the πια group, And at least its 200832726 I and iii) compounds of at least one of sulfur, selenium, and antimony from Group VIA are of high interest in solar cell applications.

習用的第IBIIIAVIA族化合物之光電電池(例如 (:11(111,0&,八1)(8,36,丁6)2)之薄膜太陽能電池之結構示於第1 圖。裝置10係製造於基板11上,例如,一玻璃薄板、一 金屬薄板、一絕緣箔或網、或一導電箔或網。包含 Cu(In,Ga,Al)(S,Se,Te)2族中之一材料之吸收板薄膜12係 生長於導電層13上,導電層13先前已沈積在基板Η上並 充當與裝置間之電接觸。基板11及導電層13形成基底 20。包含鉬、钽、鎢、鈦及不鏽鋼等之不同的導電層已使 用於第1圖之太陽能電池結構中。如果基板本身為經過適 當選擇的導電材料,則不使用導電層13是可行的,因為基 板11可接著用作與裝置間之歐姆接觸。在吸收板薄膜i 2 生長後,透明層1 4 (例如,硫化鎘、氧化鋅、或硫化鎘/氧 化鋅堆疊)形成於吸收板薄膜上。光1 5穿過透明層1 4進入 裝置。金屬柵(未顯示)亦可沈積在透明層14上方以減少裝 置之等效串聯電阻。吸收板薄膜12之較佳的電型為p型, 而透明層14之較佳的電型為n型。不過,η型吸收板及p 型窗層亦可使用。第1圖之較佳的裝置結構稱為「基板型」 結構。「覆板型(superstarte-type)」結構亦可藉由在透明覆 板(例如,玻璃或透明聚合物箔)上沈積一透明導電層、接 著沈積Cu(In,Ga,Al)(S,Se,Te)2吸收板薄膜、及最後藉由導 電層形成與裝置間之歐姆接觸來構成。在此覆板結構中, 光由透明覆板側進入裝置。由多種方法沈積之多種材料可 6 200832726 用於提供第1圖所示之裝置之不同層。 在利用第IBIIIAVIA族化合物吸收板之薄膜太陽能電 池中,電池效率為IB/ΠΙΑ之莫耳比率之強函數。如果在 成分中有多於一種第ΙΠΑ族材料,這些第ΙΠΑ族元素之 相對量或莫耳比率亦影響性質。舉例來說,對 Cu(In,Ga)(S,Se)2吸收板薄膜來說,裝置效率為Cu/(In + Ga)The structure of a thin-film solar cell of a conventional IBIIIAVIA compound (for example, (11, 111, 0, 8) (8, 36, butyl 6) 2) is shown in Fig. 1. The device 10 is manufactured in On the substrate 11, for example, a glass sheet, a metal sheet, an insulating foil or mesh, or a conductive foil or mesh, comprising one of Cu(In, Ga, Al)(S, Se, Te) 2 families. The absorber film 12 is grown on the conductive layer 13. The conductive layer 13 has previously been deposited on the substrate and serves as electrical contact with the device. The substrate 11 and the conductive layer 13 form the substrate 20. Containing molybdenum, tantalum, tungsten, titanium and Different conductive layers of stainless steel or the like have been used in the solar cell structure of Fig. 1. If the substrate itself is a suitably selected conductive material, it is feasible to not use the conductive layer 13, since the substrate 11 can then be used as a device An ohmic contact. After the growth of the absorber film i 2 , a transparent layer 14 (for example, a cadmium sulfide, zinc oxide, or a cadmium sulfide/zinc oxide stack) is formed on the absorber film. The light 15 passes through the transparent layer 14 Entering the device. A metal grid (not shown) may also be deposited on the transparent layer 14 In order to reduce the equivalent series resistance of the device, the preferred electrical type of the absorber film 12 is p-type, and the preferred electrical type of the transparent layer 14 is n-type. However, the n-type absorption plate and the p-type window layer are also It can be used. The preferred device structure of Figure 1 is called a "substrate type" structure. The "superstarte-type" structure can also be used on a transparent cover plate (for example, glass or transparent polymer foil). Depositing a transparent conductive layer, depositing a Cu(In,Ga,Al)(S,Se,Te)2 absorber film, and finally forming an ohmic contact between the device and the device by the conductive layer. The light enters the device from the side of the transparent cladding. A variety of materials deposited by various methods can be used to provide different layers of the device shown in Figure 1. In the thin film solar cell using the absorption plate of the IBIIIAVIA compound, the battery efficiency Is a strong function of the IB/ΠΙΑ molar ratio. If there is more than one steroidal material in the composition, the relative amount or molar ratio of these steroidal elements also affects the properties. For example, for Cu(In, Ga) (S, Se) 2 absorption plate film, loaded The efficiency is Cu/(In + Ga)

之莫耳比率之函數❹此外’電池的某些重要參數,例如, 其開路電壓、短路電流、及填充因子隨著第IIIA族元素之 莫耳比率,亦即,Ga/(Ga + In)之莫耳比率,變化。一般說 來,為了良好的裝置效能,Cu/(In + Ga)之莫耳比率係保持 在約1.0或低於1.0。另一方面,隨著Ga/(Ga + In)之莫耳比 率增加,吸收板層之光學能帶隙增加,因此,太陽能電池 之開路電壓增加而短路電流可典型地減少。對薄膜沈積製 程來說,重要的是具有控制IB/ΠΙΑ之莫耳比率及成分中 之第IIIA族成分之莫耳比率之能力。須注意雖然化學式常 寫作 Cu(In,Ga)(S,Se)2,一更精確的化合物公式為 Cu(In,Ga)(S,Se)k,其中k典型接近2但可非恰好為2。為 了簡單,我們將繼續使用k為2之值。進一步須注意化學 式中之表示法「Cu(X,Y)」意指所有由(乂 = 〇〇/0及γ=ι 〇〇〇/〇) 至(X=100%及Y = 〇%)之X和Y之化學成分.舉例來說, Cu(In,Ga)意指所有由Culn至CuGa之成分。同樣地, Cu(In,Ga)(S,Se)2意指具有Ga/(Ga + In)之莫耳比率由〇變化 至1及Se/(Se + S)之莫耳比率由〇變化至1之整族化合物。 生長用於太陽能電池應用之Cu(In,Ga)(S,Se)2型化合 7 200832726 物薄膜之一技術為一兩階段製程,其中,Cu(In,Ga)(S,Se)2 材料之金屬成分首先沈積至一基板上,接著在一高溫退火 製程中與硫及/或硒反應。舉例來說,在CuInSe2之生長中, 銅及銦之薄層首先沈積在一基板上,接著此堆疊前驅層在 升高的溫度下與硒反應。如果反應大氣亦包含硫,則可長 成CuIn(S,Se)2層。在前驅層中添加鎵,亦即,使用銅/銦/ 鎵堆疊薄膜前驅物,允許Cu(In,Ga)(S,Se)2吸收板之生長。The function of the molar ratio ❹ in addition to some important parameters of the battery, for example, its open circuit voltage, short circuit current, and fill factor with the molar ratio of the Group IIIA element, ie, Ga/(Ga + In) Molar ratio, change. In general, the molar ratio of Cu/(In + Ga) is maintained at about 1.0 or lower for good device performance. On the other hand, as the molar ratio of Ga/(Ga + In) increases, the optical band gap of the absorbing layer increases, and therefore, the open circuit voltage of the solar cell increases and the short-circuit current can be typically reduced. For film deposition processes, it is important to have the ability to control the molar ratio of IB/ΠΙΑ and the molar ratio of Group IIIA components in the composition. It should be noted that although the chemical formula is often written as Cu(In,Ga)(S,Se)2, a more precise compound formula is Cu(In,Ga)(S,Se)k, where k is typically close to 2 but may not be exactly 2 . For the sake of simplicity, we will continue to use k for a value of 2. It should be further noted that the expression "Cu(X,Y)" in the chemical formula means all from (乂= 〇〇/0 and γ=ι 〇〇〇/〇) to (X=100% and Y = 〇%) The chemical composition of X and Y. For example, Cu(In, Ga) means all components from Culn to CuGa. Similarly, Cu(In,Ga)(S,Se)2 means that the molar ratio of Ga/(Ga + In) from 〇 to 1 and Se/(Se + S) varies from 〇 to 至An entire family of compounds. Growth of Cu(In,Ga)(S,Se)2 type 7 for solar cell applications. One of the technologies of the film is a two-stage process in which Cu(In,Ga)(S,Se)2 is used. The metal component is first deposited onto a substrate and then reacted with sulfur and/or selenium in a high temperature annealing process. For example, in the growth of CuInSe2, a thin layer of copper and indium is first deposited on a substrate, which is then reacted with selenium at elevated temperatures. If the reaction atmosphere also contains sulfur, it can grow into a CuIn(S, Se) 2 layer. The addition of gallium to the precursor layer, i.e., the use of a copper/indium/gallium stacked film precursor, allows the growth of Cu(In,Ga)(S,Se)2 absorber plates.

兩階段製程方法亦可利用包含第 VIA族材料之堆疊 層。舉例來說,Cu(In,Ga)Se2薄膜可藉由在銦一鎵一硒/銅 一硒堆疊中沈積銦一鎵一碼及銅一硒層並使它們在硒存在 時起反應。同樣地,包含第VIA族材料及金屬成分之堆疊 亦可使用。包含第VIA族材料之堆疊包含,但不限制為, 銦一鎵一砸/銅堆疊、銅/銦/鎵/砸堆疊、銅/$西/銦/鎵/叾西堆 疊等。 β 包含金屬成分之前驅層之硒化及/或硫化可以第 via 族材料之不同形式實行。一方法包含使用例如H2Se、H2s、 或它們的混合物之氣體同時或連續地與包含銅、銦、及/ 或鎵之前驅物反應。以此方式,Cu(In,Ga)(S,Se)2薄膜可在 退火及在升高的溫度下起反應後形成。其可藉由在化合物 形成之製程期間在反應氣體中撞擊電漿來增加反應速率或 反應度。來自元素源之硒蒸氣及硫蒸氣亦可用於硒化及硫 化。或者,如先前所述,硒及/或硫可沈積在包含銅、錮、 及7或鎵之前驅層上,且堆疊的結構可在升高的溫度下退火 來開始介於金屬元素或成分及第VIA族材料間之反應以形 200832726 成 Cu(In,Ga)(S,Se)2 化合物。The two-stage process can also utilize stacked layers containing Group VIA materials. For example, a Cu(In,Ga)Se2 film can be deposited by depositing an indium-gallium-one-code and a copper-selenium layer in an indium-gallium-selenium/copper-selenium stack and allowing them to react in the presence of selenium. Similarly, stacks containing Group VIA materials and metal components can also be used. Stacks comprising Group VIA materials include, but are not limited to, indium-gallium-germanium/copper stacks, copper/indium/gallium/germanium stacks, copper/$West/indium/gallium/cassette stacks, and the like. The selenization and/or vulcanization of the beta layer containing the metal component can be carried out in different forms of the viae material. A method comprises reacting a gas comprising a copper, indium, and/or gallium precursor simultaneously or continuously using a gas such as H2Se, H2s, or a mixture thereof. In this way, a Cu(In,Ga)(S,Se)2 film can be formed after annealing and reacting at an elevated temperature. It can increase the reaction rate or degree of reactivity by striking the plasma in the reaction gas during the process of compound formation. Selenium vapor and sulfur vapor from elemental sources can also be used for selenization and sulfurization. Alternatively, as previously described, selenium and/or sulfur may be deposited on the precursor layer comprising copper, germanium, and gallium, and the stacked structure may be annealed at elevated temperatures to begin intercalating with the metal element or composition and The reaction between the Group VIA materials is in the form of 200832726 to form a Cu(In,Ga)(S,Se)2 compound.

在兩階段製程中之反應步驟典型在分批熔爐中實行。 在此方法中,一些具有沈積在其上之前驅層之預切基板係 放置在分批熔爐中’且反應實行週期可為15分鐘至數小時 之範圍。在基板載入後,分批熔爐之溫度典型升高至可介 於400°C至60 0°C之範圍間之反應溫度。此溫度增加之斜坡 率通常低於 5 °C /秒,典型小於 1 °C /秒。在美國專利第 5578503號中所述之一先前技術之方法利用快速熱退火 (RTP)方法使前驅物層以一次一基板之批次方式起反應。在 此設計中,具有前驅物層之基板之溫度係以一高速率,典 型為10°C /秒,升高至反應溫度。 欲實行硒化/硫化製程之反應腔室之設計對結果的化 合物薄膜之品質、太陽能電池之效率、產量、材料利用、 及製程成本來說是關鍵。本發明提供方法及設備以捲繞式 方法實行用於CIGS(S)型吸收板形成之前驅物層之反應。 捲繞式或捲式處理增加產量並最小化基板處置。因此,其 對大規模製造來說為一較佳的方法。 【發明内容】 本發明提供一方法及整合型工具以在連續撓性基板上 形成太陽能電池吸收板層。一包含多個腔室之捲繞式快速 熱處理(RTP)工具係用於使連續撓性工件上之前驅物層起 反應。 本發明之一實施態樣提供一具有多個腔室之整合型捲 9 200832726 繞式RTP工具以藉由在連續撓性工件之表面上使前驅物芦 起反應來形成一太陽能電池吸收板。該工具包含一細長外 罩,其包含一真空線路以將細長外罩内部變成真空。此外, 細長外罩之一加熱腔室可施加一預定溫度模式(& predetermined temperature profile)至該連續撓性工件。加熱The reaction steps in the two-stage process are typically carried out in a batch furnace. In this method, some pre-cut substrates having a precursor layer deposited thereon are placed in a batch furnace' and the reaction execution period may range from 15 minutes to several hours. After the substrate is loaded, the temperature of the batch furnace is typically raised to a reaction temperature which is between 400 ° C and 60 ° C. The ramp rate for this temperature increase is typically less than 5 °C / sec, typically less than 1 °C / sec. One of the prior art methods described in U.S. Patent No. 5, 558, 503 utilizes a rapid thermal annealing (RTP) process to react a precursor layer in a batch-to-substrate batch. In this design, the temperature of the substrate having the precursor layer is raised to the reaction temperature at a high rate, typically 10 ° C / sec. The design of the reaction chamber for the selenization/vulcanization process is critical to the quality of the resulting compound film, solar cell efficiency, throughput, material utilization, and process cost. The present invention provides a method and apparatus for carrying out a reaction for a precursor layer prior to formation of a CIGS (S) type absorbing plate in a roll-to-roll process. Winding or roll processing increases throughput and minimizes substrate handling. Therefore, it is a better method for mass production. SUMMARY OF THE INVENTION The present invention provides a method and integrated tool for forming a solar cell absorber layer on a continuous flexible substrate. A wound rapid thermal processing (RTP) tool comprising a plurality of chambers is used to react a precursor layer on a continuous flexible workpiece. One embodiment of the present invention provides an integrated roll having multiple chambers. 9 200832726 A wound RTP tool is used to form a solar cell absorber by reacting precursors on the surface of a continuous flexible workpiece. The tool includes an elongated outer cover that includes a vacuum line to vacuum the interior of the elongated outer cover. Additionally, a heating chamber of the elongated housing can apply a predetermined temperature profile to the continuous flexible workpiece. heating

腔室延伸介於加熱腔室之一第一端點之一第一開^及加熱 腔室之一第二端點之一第二開口間,並包含由加熱腔室之一 頂部壁、一底部壁、及側壁所界定之製程間隙。鄰接加熱腔 至之第一開口之氣體入口線路(a gas inlet line)在製程期間 傳送可為惰性氣體或可包含第VIA族材料之製程氣體至加 熱腔至内。連續撓性工件係配置成在製程期間可前進通過製 程間隙及第一及第二開口間。依撓性工件在製程間隙中之速 度及加熱腔室之預定的溫度模式而定,撓性工件之多個部分 可在反應期間經歷該預定溫度對時間變化的模式。 細長外罩之一供應腔室可支承一捲連續撓性工件之供 應捲。供應腔室係鄰接加熱腔室之第一端點,且第一開口連 接供應腔室之内部空間至製程間隙,而連續撓性工件^配置 成可由供應腔室通過第一開口前進至加熱腔室中。細長外罩 之一接收腔室由加熱腔室接收連續撓性工件。第二開口連接 接收腔室之内部空間至製程間隙,而連續撓性工件^配置成 可由製程腔室通過第二開口進入接收腔室。 一移動機制藉由饋送供應腔室中該捲連續撓性工件先 前尚未捲繞部份,及在接收腔t中拾起並捲繞該㈣撓性工 件之已處理的部分,而在加熱腔室之製程間隙内部支承並移 10 200832726 動該連續撓性工件(竟白红,κ各 匕、l括位於處理腔室内並於其中進 理的一部分連續撓性工件)穿過其中 一-排氣線路配置在鄰接加熱腔室之第一及第二開 一處’其可由製程腔室移除製程氣體及氣態副產物。氣體Α 口線路及排氣線路係配w以a、查碎植ω 人 置以虽連續撓性工件在製程間 部移動時,允許链^ 兄千ι程軋體出現並流過連續撓性工件之 上方。 衣面 _ 【實施方式】 可以不同方式達成包含第ΙΒ族材料'第ιιια族 及選擇性的第VIA族材料或成分之前驅物與第via族材料 之反應。這些技術包含在硒、硫、及碲 王夕具一存在時, 加熱前驅層至3 5 0 eC至600。(:之溫度笳图,私,丄 !耗圍(較佳的範圍為 400C至575C)達由1分鐘至數小時之範囹 祀固的週期;硒、 硫、及碲係由例如:i)直接沈積在前驅物上之固態硒、硫、 或碲源、及ii)H2Se氣體、H2S氣體、H2Te氣體、硒蒸氣、 硫蒸氣、碌蒸氣等源所提供。磁、硫、碲蒸氣亦可由加熱 遠離前驅物之這些材料之固態源來產生。氫化物氣體,例 如,HJe及Ηβ,可為瓶裝氣體。這類氫化物氣體及短壽 命氣體(例如,HaTe)亦可現場,舉例來說,藉由包含硫、 硒、及/或碲之陰極在水般酸性溶液中之電解作用來產生, 並接著提供給反應器。產生這些氫化物氣體之電氣化學方 法適於現場產生。 前驅層可同時或循序地曝露至多於一種的第VIA族材 11 200832726 料。舉例來說,包含銅、銦、鎵及磁之前驅層可在硫存在 時進行退火以形成Cu(In,Ga)(S,Se)2° 形成一 Cu(In,Ga)(S,Se)2化合物層之某些較佳的實施 例可總結如下:i)在包含銅、銦、及鎵之金屬前驅物上沈 積一硒層以形成一結構,並在升高的溫度下於氣態硫源中 使該結構起反應,ii)在包含銅、銦、及鎵之金屬俞驅物上 沈積一硫及叾西之混合層或一硫層及一硒層以形成一結構,The chamber extends between the first opening of one of the first ends of the heating chamber and the second opening of one of the second ends of the heating chamber, and includes a top wall and a bottom portion of the heating chamber The process gap defined by the wall and the side walls. A gas inlet line adjoining the heating chamber to the first opening conveys a process gas which may be an inert gas or may contain a Group VIA material to the heating chamber during the process. The continuous flexible workpiece is configured to advance through the process gap and between the first and second openings during the process. Depending on the speed of the flexible workpiece in the process gap and the predetermined temperature mode of the heating chamber, portions of the flexible workpiece may undergo the predetermined temperature versus time pattern during the reaction. One of the elongated housing supply chambers can support a roll of continuous flexible workpiece supply. The supply chamber is adjacent to the first end of the heating chamber, and the first opening connects the internal space of the supply chamber to the process gap, and the continuous flexible workpiece is configured to be advanced from the supply chamber to the heating chamber through the first opening in. One of the elongated housings receives a continuous flexible workpiece from the heating chamber. The second opening connects the interior space of the receiving chamber to the process gap, and the continuous flexible workpiece is configured to be accessible from the processing chamber through the second opening into the receiving chamber. a moving mechanism for feeding the portion of the continuous flexible workpiece in the supply chamber that has not been wound before, and picking up and winding the processed portion of the (four) flexible workpiece in the receiving chamber t, and in the heating chamber The process gap is internally supported and moved 10 200832726 to move the continuous flexible workpiece (white, κ, 一部分, a part of the continuous flexible workpiece located in the processing chamber and processed therein) through one of the exhaust lines Arranged adjacent to the first and second openings of the heating chamber 'which can remove process gases and gaseous by-products from the process chamber. The gas port line and the exhaust line are equipped with a to check the planting ω. When the continuous flexible workpiece moves between the processes, the chain is allowed to appear and flow through the continuous flexible workpiece. Above. Clothing _ [Embodiment] The reaction of the precursor material of the Group VI 材料 及 及 及 及 及 及 及 及 及 及 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 These techniques involve heating the precursor layer to 305 eC to 600 in the presence of selenium, sulfur, and bismuth. (: temperature map, private, 丄! consumption range (better range 400C to 575C) for a period of 1 minute to several hours of tamping; selenium, sulfur, and lanthanides by, for example: i) Sources of solid selenium, sulfur, or helium source deposited directly on the precursor, and ii) H2Se gas, H2S gas, H2Te gas, selenium vapor, sulfur vapor, vapor, and the like. Magnetic, sulfur, and helium vapors can also be produced by solid sources that heat these materials away from the precursor. Hydride gases, such as HJe and Ηβ, can be bottled gases. Such hydride gases and short-lived gases (eg, HaTe) may also be produced in situ, for example, by electrolysis of a cathode comprising sulfur, selenium, and/or ruthenium in an aqueous acidic solution, and then provided Give the reactor. The electrochemical methods of producing these hydride gases are suitable for on-site production. The precursor layer can be simultaneously or sequentially exposed to more than one type VIA material 11 200832726. For example, a copper, indium, gallium, and magnetic precursor layer can be annealed in the presence of sulfur to form Cu(In,Ga)(S,Se) 2° to form a Cu(In,Ga)(S,Se) Some preferred embodiments of the 2 compound layer can be summarized as follows: i) depositing a selenium layer on a metal precursor comprising copper, indium, and gallium to form a structure and at a raised temperature at a gaseous sulfur source Reacting the structure, ii) depositing a mixed layer of sulfur and lanthanum or a layer of sulfur and a layer of selenium on a metal impregnation comprising copper, indium, and gallium to form a structure,

並在升高的溫度下於沒有硫或硒之氣態大氣、或包含硫及 砸之至少其一之氣態大氣中使該結構起反應,iii)在包含 銅、銦、及鎵之金屬前驅物上沈積一硫層以形成一結構, 並在升高的溫度下於氣態硒源中使該結構起反應,iv)在包 含銅、銦、及鎵之金屬前驅物上沈積一硒層以形成一結構, 並在升高的溫度下使該結構起反應以形成Cu(In,Ga)Se2層 及/或包含銅、銦、及鎵之硒化物之混合相層,並接著使And reacting the structure at elevated temperatures in a gaseous atmosphere free of sulfur or selenium, or in a gaseous atmosphere comprising at least one of sulfur and helium, iii) on a metal precursor comprising copper, indium, and gallium Depositing a sulfur layer to form a structure, and reacting the structure in a gaseous selenium source at an elevated temperature, iv) depositing a selenium layer on a metal precursor comprising copper, indium, and gallium to form a structure And reacting the structure at an elevated temperature to form a Cu(In,Ga)Se2 layer and/or a mixed phase layer comprising selenides of copper, indium, and gallium, and then

Cu(In,Ga)Se2層及/或混合相層與氣態硫源、液態硫源、或 例如硫層之固態硫源起反應,v)在包含銅、銦、及鎵之金 屬前驅物上沈積一硫層以形成一結構,並在升高的溫度下 使該結構起反應以形成Cu(In,Ga)S2層及/或包含銅、銦、 及錄之硫化物之混合相層,並接著使Cu(In,Ga)S2層及/或 ’見〇相層與氣態硒源、液態硒源、或例如硒層之固態硒源 起反應。 巧 >主意第VIA族材料是腐蝕性的。因此,在升高的溫 度下曝露5银The Cu(In,Ga)Se2 layer and/or the mixed phase layer reacts with a gaseous sulfur source, a liquid sulfur source, or a solid sulfur source such as a sulfur layer, v) deposited on a metal precursor comprising copper, indium, and gallium a sulfur layer to form a structure and react the structure at an elevated temperature to form a Cu(In,Ga)S2 layer and/or a mixed phase layer comprising copper, indium, and recorded sulfide, and then The Cu(In,Ga)S2 layer and/or the 'see phase layer are reacted with a gaseous selenium source, a liquid selenium source, or a solid selenium source such as a selenium layer. Qiao > Ideas Group VIA materials are corrosive. Therefore, exposure of 5 silver at elevated temperatures

I第VIA族材料或材料蒸氣之反應器或腔室之所 有部件之U w料必須經過適當選擇。這些部件必須由實質上 12 200832726 為惰性之材料製造或必須以實質上為惰性之材料覆蓋,例 如陶瓷(例如,氧化鋁、氧化钽、二氧化鈦、氧化锆等)、 玻璃、石英、不鏽鋼、石墨、耐火金屬(例如,鈕)、耐火 金屬氮化物及/或碳化物(例如,氮化鈕及/或碳化钽、氮化 鈦及/或碳化鈦、氮化鎢及/或碳化鎢、其他氮化物及/或碳 化物,例如,氮化矽及/或碳化矽等)。The U w material of all components of the reactor or chamber of the Group VIA material or material vapor must be suitably selected. These components must be made of materials that are substantially inert to 12200832726 or must be covered with a substantially inert material such as ceramics (eg, alumina, yttria, titania, zirconia, etc.), glass, quartz, stainless steel, graphite, Refractory metal (eg, button), refractory metal nitride and/or carbide (eg, nitride button and/or tantalum carbide, titanium nitride and/or titanium carbide, tungsten nitride and/or tungsten carbide, other nitrides) And/or carbides, for example, tantalum nitride and/or tantalum carbide, etc.).

匕s銅、銦、鎵、及選擇性至少一種第VIA族材料之 刖驅層之反應可在以低速率施加製程溫度至前驅層之反應 器中實行。或者,快速熱處理(RTP)可用在前驅物之溫度以 至少約1 o°c /秒之速率升高至高反應溫度之情況下使用。 第VIA族材料,如果包含在前驅層中,可由蒸冑、賤鏡、 或電鍍獲得。或者可製備包含第VIA族奈米粒子之墨水, 且可沈積这些墨水以在前驅層内部形成第VIA族材料層。 亦可使用其他液體或溶液,例如包含至少一種第via族材 料之有機金屬溶液。浸泡至熔化物或墨水、噴濺溶化物或 墨水、刮板塗佈或墨水書寫技術可用於沈積這類層。 實行前驅層反應以形成第IBIIIAVIA族化合物薄膜之 捲式設備100或捲繞式RTP反應器示於第2圖。須注意在 此反應器中’欲反應之前驅層可包含至少—種第IB族:料 及至少一種第IIIA族材料。舉例來說,前驅層可為鋼/銦/ 鎵、銅一鎵/銦、銅一銦/嫁、銅/姻—嫁、鋼—録/鋼—姻、 銅一鎵/銅一銦/鎵、鋼/鋼一銦/鎵、或銅銦/鋼一嫁等 之堆疊,纟中在堆疊内部之不同材料層之順序可改變。此 處,銅-_、銅一銦、銦_鎵分別意指銅及鎵之合金或混 13 200832726The reaction of 匕s copper, indium, gallium, and a ruthenium drive layer of at least one Group VIA material can be carried out in a reactor that applies a process temperature to the precursor layer at a low rate. Alternatively, rapid thermal processing (RTP) can be used with the temperature of the precursor raised to a high reaction temperature at a rate of at least about 1 °C / second. The Group VIA material, if included in the precursor layer, can be obtained by steaming, frog mirroring, or electroplating. Alternatively, an ink comprising Group VIA nanoparticles can be prepared and these inks can be deposited to form a Group VIA material layer within the precursor layer. Other liquids or solutions may also be used, such as an organometallic solution comprising at least one via-type material. Soaking into melt or ink, spray melt or ink, blade coating or ink writing techniques can be used to deposit such layers. A roll apparatus 100 or a wound RTP reactor which performs a precursor layer reaction to form a film of the IBIIIAVIA compound film is shown in Fig. 2. It should be noted that in the reactor, the precursor layer may comprise at least one of Group IB: materials and at least one Group IIIA material. For example, the precursor layer can be steel/indium/gallium, copper-gallium/indium, copper-indium/marriage, copper/marriage-marriage, steel-recording/steel-marriage, copper-gallium/copper-indium/gallium, The stack of steel/steel-indium/gallium, or copper-indium/steel-grafting, etc., the order of the different material layers in the stack can be changed. Here, copper-_, copper-indium, indium-gallium means alloys or mixed of copper and gallium, respectively. 13 200832726

合物、鋼及銦之合金或混合物、和銦及鎵之合金 或者,前驅層亦可包含至少_種第VIA族材料^二。 層有許多範例…範例為銅/鋼…第VIA族材料堆:驅 銅-第VIA族材料’銦/鎵堆疊、銦—第via族材料/鋼: VIA族材料堆疊、或鎵—第VIA族材料/銅/銦堆疊,其中 銅一第VIA族材料包含銅及第VIA族材料之合金、混合 物、或化合物(例如,硒化銅、硫化鋼等)、銦一第ΜΑ族 材料包含銦及第VIA族材料之合金、混合物、或化合物(= 如,硒化銦、硫化銦等)、及鎵一第VIA族材料包含鎵及 第VIA核材料之合金、混合物、或化合物(例如,砸化錄、 硫化鎵等)。這些前驅物係沈積在包含基板11之基底2〇 上’基底20可如第1圖所示額外包含導電層13。其他可 使用本發明之方法及設備處理之前驅物類型包含第 IBIIIAVIA族材料層,其可使用低溫方法,例如,化合物 電鐘、無電電鍍、來自化合物目標之濺鍍、使用以第 IBIIIAVIA族奈米粒子為基底的墨水之墨水沈積、噴濺包 含銅、銦、鎵、及選擇性的硒之金屬奈米粒子等,形成於 基底上。這些材料層接著以350 °C至600 °C範圍之溫度在設 備或反應器中退火以提高它們的結晶品質、成分及密度。 退火及/或反應步驟可在本發明之反應器中以實質上 為大氣壓力、低於大氣壓力之壓力、或高於大氣壓力之壓 力實行。反應器中較低的壓力巧*透過使用真空泵來達成。 第2圖之捲式設備1〇〇可包含由加熱器糸統1〇2圍繞 之細長加熱腔室1 〇丨,加熱器系統1 〇2可具有一或多個加 14 200832726 熱區,例如,Z1、Z2、及Z3,以形成沿著腔室} 〇丨之長度 之溫度模式。在區與區之間較佳的是存在有具有低導熱性 之缓衝區域以便獲得急劇的溫度模式。這類緩衝區之使用 細節在2006年10月13日提出申請之發明名稱為「將前軀 〆 層轉換為光電吸收板之方法及設備」之美國專利申請案第 1 1/549,590號中討論,其全文併入於此以供參照。腔室ι〇1 整體可密封地附接至第一埠103及第二琿1〇4。整體 < 密 φ 封意指整個腔室的容積、第一埠、及第二埠係密封以隔絕 空氣大氣,因此,任何在内部容積使用的氣體不會浅漏(除 了在指定的排氣埠外),且沒有任何空氣滲入内部容積中。 換言之,腔室、第一及第二埠之整合為真空密閉。第〆捲 轴105A及第二捲軸105B係分別放置於第一蟀1〇3及第> 埠1 04中,而連續撓性工件1 〇6或撓性結構可在第一捲軸 10 5 A及第二捲轴10 5B間以任一方向移動,亦即,由左裏 右或由右至左。撓性結構包含欲在細長腔室中轉換為吸收 板層之前驅層。第一埠1 0 3具有至少一個第一埠氣體入口 • 107A及第一埠真空鍊路108A。同樣地,第二埠1〇4具有 至少一個第二埠氣體入口 10 7B並可具有第二埠真空線絡 108B。細長加熱腔室1〇1和第一埠1〇3及第二埠1〇4 <透 過第一埠真空線路1〇 8A及第二埠真空線路1〇8Β之任〆或 兩者排空。腔室1 0 1亦設置有至少一氣體線路i丨3及至少 / 一排氣裝置112。可能有額外的一或多條真空線路(未顯示) 連接至腔室1 〇 1。閥1 09較佳地係設置在所有氣體入口、 氣體線路、真空線路、及排氣裝置上以便形成可放置在單 15 200832726 一真空下之共用腔室。較值的是在腔室101之兩端點處有 狹缝1 1 0,撓性結構1 0 6町透過此狹缝通過。雖然,腔室 及第一及第二槔之排空是由工具之内部容積擺脫空氣之較 佳方法,為可以例如氮氣之氟體透過指定的排氣埠來淨化 工具之内部容積。The alloy, the alloy or mixture of steel and indium, and the alloy of indium and gallium or the precursor layer may also comprise at least one of the Group VIA materials. There are many examples of layers...examples are copper/steel...Part VIA material stack: copper drive-VIA material 'indium/gallium stack, indium—via family material/steel: VIA family material stack, or gallium—Part VIA Material/copper/indium stack, wherein the copper-VIA material comprises an alloy, a mixture, or a compound of copper and a Group VIA material (eg, copper selenide, sulfurized steel, etc.), and the indium-first material comprises indium and Alloys, mixtures, or compounds of the VIA family of materials (eg, indium selenide, indium sulfide, etc.), and gallium-VIA materials comprising gallium and alloys, mixtures, or compounds of the VIA core material (eg, 砸化录) , gallium sulfide, etc.). These precursors are deposited on the substrate 2 including the substrate 11. The substrate 20 may additionally include a conductive layer 13 as shown in Fig. 1. Other types of precursors that can be processed using the method and apparatus of the present invention comprise a layer of material of Group IBIIIAVIA, which can be used in a low temperature process, for example, a compound clock, electroless plating, sputtering from a compound target, use of a Group IBIIIAVIA family of nanoparticles. The ink of the substrate-based ink is deposited, and a metal nanoparticle containing copper, indium, gallium, and selective selenium is sprayed on the substrate. These layers of material are then annealed in a device or reactor at temperatures ranging from 350 °C to 600 °C to increase their crystalline quality, composition and density. The annealing and/or reaction step can be carried out in the reactor of the present invention at substantially atmospheric pressure, pressure below atmospheric pressure, or pressure above atmospheric pressure. The lower pressure in the reactor is achieved by using a vacuum pump. The roll type apparatus 1 of Fig. 2 may include an elongated heating chamber 1 围绕 surrounded by a heater system 1 〇 2, and the heater system 1 〇 2 may have one or more plus 14 200832726 hot zones, for example, Z1, Z2, and Z3 form a temperature pattern along the length of the chamber. It is preferable to have a buffer region having a low thermal conductivity between the regions to obtain a sharp temperature mode. The details of the use of such a buffer are discussed in U.S. Patent Application Serial No. 1 1/549,590, the entire disclosure of which is incorporated herein by reference. It is hereby incorporated by reference in its entirety. The chamber ι〇1 is integrally sealably attached to the first weir 103 and the second weir 1〇4. The overall < φ φ seal means the volume of the entire chamber, the first 埠, and the second 埠 seal to isolate the air atmosphere, therefore, any gas used in the internal volume will not leak (except in the designated exhaust 埠Outside), and no air penetrates into the internal volume. In other words, the integration of the chamber, the first and second crucibles is vacuum sealed. The second reel 105A and the second reel 105B are respectively placed in the first 蟀1〇3 and the &10 04, and the continuous flexible workpiece 1 〇6 or the flexible structure can be on the first reel 10 5 A and The second reel 10 5B moves in either direction, that is, from left to right or from right to left. The flexible structure comprises a drive layer that is intended to be converted into an absorbent layer in the elongated chamber. The first 埠1 0 3 has at least one first helium gas inlet • 107A and a first helium vacuum link 108A. Similarly, the second 埠1〇4 has at least one second helium gas inlet 10 7B and may have a second helium vacuum line 108B. The elongated heating chamber 1〇1 and the first 埠1〇3 and the second 埠1〇4 < bleed through the first 埠 vacuum line 1 〇 8A and the second 埠 vacuum line 1 〇 8 〆 or both. The chamber 101 is also provided with at least one gas line i3 and at least one of the exhaust devices 112. There may be an additional one or more vacuum lines (not shown) connected to chamber 1 〇 1. Valve 109 is preferably disposed on all of the gas inlets, gas lines, vacuum lines, and venting means to form a common chamber that can be placed under a single vacuum of 200832,272,226. The value is that there is a slit 1 1 0 at the ends of the chamber 101 through which the flexible structure 106 is passed. Although the evacuation of the chamber and the first and second weirs is a preferred method of removing air from the internal volume of the tool, the internal volume of the tool can be purged by, for example, a fluorine gas passing through the designated exhaust gas.

反應前之撓性結構1 06A可為一基底,其具有沈積在 基底之至少一個面上之前驅薄膜。反應後之撓性結構1 06B 包含基底及由於前驅層反應而形成之第1BIIIAVIA族化合 物層。須注意我們並未在第2圖中區別撓性結構106之已 反應及未反應之部分,而是將兩者稱為撓性結構1 0 6 ^我 們亦將撓性結構指為一網,不管其上之前驅層是已反應或 未反應。基底之基板可為一撓性金屬或聚合物箔。如上文 所述,基底上之前驅薄膜至少包含銅、銦、及鎵、及選擇 性的第VIA族材料(例如硒)。撓性結構1 06之背側20A當 其移動通過腔室101時可或可不接觸腔室101之一壁。本 發明之製程現將透過特定實施例加以敘述。The flexible structure 106A prior to the reaction can be a substrate having a precursor film deposited on at least one side of the substrate. The flexible structure 106B after the reaction comprises a substrate and a first BIIIAVIA compound layer formed by the reaction of the precursor layer. It should be noted that we have not distinguished the reacted and unreacted portions of the flexible structure 106 in Figure 2, but rather referred to as the flexible structure 1 0 6 ^ We also refer to the flexible structure as a net, regardless of The previous drive layer is either reacted or unreacted. The substrate of the substrate can be a flexible metal or polymer foil. As noted above, the precursor film on the substrate comprises at least copper, indium, and gallium, and a selective Group VIA material (e.g., selenium). The back side 20A of the flexible structure 106 may or may not contact one of the walls of the chamber 101 as it moves through the chamber 101. The process of the present invention will now be described by way of specific embodiments.

f施例1 一 Cu(In,Ga)(S,Se)2吸收板層可使用第2圖之單一腔 室反應器設計來形成。反應前之示範的撓性結構1 06A示 於第3A圖。基底20可類似於第1圖之基底20。.前驅層 200係設置在基底20上。前驅層200包含銅、銦、及鎵。 石西層2 0 1可選擇性地沈積在前驅層2 〇 〇上方形成含硒之前 驅層202。硒亦可混入前驅層2〇〇中(未顯示)形成另一版 16 200832726 本之含硒前驅層。反應步驟後之撓性結構示於第3 B圖。 在此實例中,撓性結構106B包含基底2〇及由前驅層200 或含硒之前驅層202反應所得之第ΙΒΠΙAVIA族化合物層 2 03(例如〇11(111,〇&)(8,8 6)2薄膜)。 在將未反應之撓性結構1 〇6A或網載入至,舉例來說, 第一捲軸105A上之後,網之一端點可饋通腔室1〇1、通過 狹缝110之間隙111、接著捲繞在第二捲轴105B上。至第 一埠103及第二埠104之門(未顯示)關閉,且系統(包含第 一埠1 0 3、第二埠1 0 4、及腔室1 〇 1)排空以徐去空氣。或 者’系統可透過排氣裝置11 2以透過氣體入口或氣體線路 之任一或所有進入之惰性氣體(例如氮氣)淨化達一時間週 期。在排空或淨化後,系統充滿惰性氣體,而加熱器系統 I 02可打開以建立沿著腔室1 〇 1之長度之溫度模式。當所 需的溫度模式建立時,反應器準備好進行製程。 在形成,舉例來說,一 Cu(In,Ga)(S,Se)2吸收板層之 製程期間,——包含硒蒸氣之氣體或一硒源(例如H2Se)可引 入至腔室中,較佳地係透過腔室氣體入口 11 3。排氣裝置 II 2現可藉由開啟其閥而開啟,以便含硒氣體可引導至一 洗膝器或捕集阱(未顯示)。須注意硒為易揮發性材料,在 典型的反應溫度400°C至600°C左右,其蒸氣傾向於去到任 何存在的冷表面並以固態或液態硒之形式沈積。這意謂著 除非在反應製程期間採取預防措施,否則硒蒸氣可進入第 一琿103及/或第二埠104,並沈積在那兒的所有表面上, 包含第一埠1 03中之網之未反應部分及第二埠i 〇4中之網 17f Example 1 A Cu(In,Ga)(S,Se)2 absorber layer can be formed using the single chamber reactor design of Figure 2. An exemplary flexible structure 106A prior to the reaction is shown in Figure 3A. Substrate 20 can be similar to substrate 20 of Figure 1. The precursor layer 200 is disposed on the substrate 20. The precursor layer 200 comprises copper, indium, and gallium. The lithocene layer 210 is selectively deposited over the precursor layer 2 〇 形成 to form a selenium-containing precursor layer 202. Selenium can also be incorporated into the precursor layer 2 (not shown) to form another version of the 16 200832726 selenium-containing precursor layer. The flexible structure after the reaction step is shown in Figure 3B. In this example, the flexible structure 106B comprises a substrate 2 and a layer ΙΒΠΙAVIA compound layer 203 obtained by reacting the precursor layer 200 or the selenium-containing precursor layer 202 (eg, 〇11(111, 〇&) (8,8) 6) 2 film). After the unreacted flexible structure 1 〇 6A or net is loaded onto, for example, the first reel 105A, one end of the net can feed through the chamber 1〇1, through the gap 111 of the slit 110, and then It is wound on the second reel 105B. The doors to the first 埠 103 and the second 埠 104 (not shown) are closed, and the system (including the first 埠1 0 3, the second 埠1 0 4 , and the chamber 1 〇 1) is emptied to remove air. Alternatively, the system may be purged through the venting device 11 2 through any or all of the inert gas (e.g., nitrogen) entering the gas inlet or gas line for a period of time. After venting or purging, the system is filled with inert gas and heater system I 02 can be opened to establish a temperature pattern along the length of chamber 1 〇 1. When the desired temperature mode is established, the reactor is ready for the process. During the formation of, for example, a Cu(In,Ga)(S,Se)2 absorber layer, a gas containing selenium vapor or a source of selenium (eg, H2Se) can be introduced into the chamber. Preferably, the system passes through the chamber gas inlet 113. The venting device II 2 can now be opened by opening its valve so that the selenium-containing gas can be directed to a knee cleaner or trap (not shown). It should be noted that selenium is a volatile material. At typical reaction temperatures of from about 400 ° C to about 600 ° C, the vapor tends to go to any cold surface present and is deposited as solid or liquid selenium. This means that unless precautions are taken during the reaction process, selenium vapor can enter the first crucible 103 and/or the second crucible 104 and deposit on all surfaces there, including the first web in the first 101. Reaction part and net 17 in the second 埠i 〇4

200832726 之已反應部份。要最小化或消除這類硒 過第一埠氣體入口 107A引入一氣體至 透過第二埠氣體入口 10 7B引入一氣體 引入的氣體可為一含硒及/或含硫氣體, 解為硒及/或硫,但較佳的是引入的氣$ 如氮氣),且其加壓於兩個埠並建立通i 111、 由埠朝向腔室1 0 1之惰性氣體流。 此氣體流之速度可藉由所小狹縫1 或增加氣體至埠中之流量率來使其為高 阻止進入埠中之硒蒸氣擴散,並引導這 112, 在此處可將其捕集離開已處理之雜 111之較佳值可介於0.5至5顧之範圍 至3隨之範圍間。進入埠之氣體流量 整,而狹缝寬度則依撓性結構1 06或網 的網之寬度可介於1至4英尺之範圍間 一旦含硒氣體及惰性氣體流已設定 室1 0 1之溫度模式,繞性結構1 〇 6可以 埠1 0 3移動至第二埠i 〇 4。以此方式, 反應部份脫離第一捲轴l〇5A、進入腔 101、變為已反應並在網之基底上形成 板層、及變為捲繞至第二埠〗〇4中之第 須注意在第二埠1 〇4中可有一選擇性的 在將其捲繞於第二捲轴上之前冷备 上述討論亦可應用至包含硫之吸收 沈積,較佳的是透 第一埠103中,及 至第二埠104中。 其不會在低溫下分 蜜為一惰性氣體(例 曼狹缝 1 1 0之間隙 10之間隙 111及/ 。以此方式減少或 類蒸氣至排氣裝置 i。狹缝11 〇之間隙 間,更佳的介於1 率可依狹缝寬度調 之寬度而定。典型 〇 並已達到所需的腔 一預定速率由第一 撓性結構106之未 室 1 0 1、通過腔室 Cu(In,Ga)Se2 吸收 二捲轴105B上。 丨冷卻區(未顯示)以 [7已反應之網。 板層之形成。舉例 18 200832726 來說,欲形成Cu(In,Ga)S2層’上述討論之含硒氣體可以 含硫氣體(例如H2S)取代。欲形成Cu(In,Ga)(Se,S)2,含石西 氣體及含硫氣體之混合物可加以使用。或者’含硒之前驅 物可加以使用且反應可在含硫氣體中實行。The reaction part of 200832726. To minimize or eliminate such selenium, the gas introduced into the first helium gas inlet 107A to introduce a gas into the second helium gas inlet 10 7B may be a selenium-containing and/or sulfur-containing gas, which is decomposed into selenium and/or Or sulfur, but preferably introduced gas such as nitrogen, and it is pressurized to two helium and establishes a flow of inert gas from the helium toward the chamber 101. The velocity of the gas stream can be made high by preventing the diffusion of selenium vapor entering the crucible by the small slit 1 or increasing the flow rate of the gas into the crucible, and directing 112, where it can be trapped away The preferred value of the treated impurity 111 can range from 0.5 to 5 to 3 to the range. The gas flow into the crucible is complete, and the slit width is between 1 and 4 feet depending on the width of the flexible structure 106 or the net. Once the selenium-containing gas and the inert gas flow have set the temperature of the chamber 1 0 1 Mode, winding structure 1 〇6 can move from 1 0 3 to the second 埠i 〇4. In this way, the reaction portion is separated from the first reel 10A, enters the cavity 101, becomes reacted and forms a ply on the substrate of the mesh, and becomes the first to be wound into the second crucible 4 Note that in the second 埠1 〇4 there may be a selective cold-rolling prior to winding it onto the second reel. The above discussion may also be applied to absorbing deposition comprising sulfur, preferably through the first 埠103. And to the second one 104. It does not separate the honey into an inert gas at a low temperature (for example, the gaps 111 and/or the gaps 10 of the gaps of the 1 1 0 gaps. / / in this way reduce or vapor-like to the exhaust device i. Between the gaps of the slits 11 A better ratio of 1 may depend on the width of the slit width. A typical enthalpy has reached the desired cavity at a predetermined rate from the first chamber of the first flexible structure 106 to the chamber through the chamber Cu (In , Ga)Se2 is absorbed on the two reels 105B. The 丨 cooling zone (not shown) is [7-reacted mesh. Formation of the ply. Example 18 200832726, to form Cu(In,Ga)S2 layer' The selenium-containing gas may be replaced by a sulfur-containing gas (for example, H2S). To form Cu(In,Ga)(Se,S)2, a mixture containing a suit gas and a sulfur-containing gas may be used. It can be used and the reaction can be carried out in a sulfur-containing gas.

第2圖之系統1 00之一特性為撓性結構1 06可由左移 動至右,與由右移動至左。以此方式可實行多於一個的反 應步驟。舉例來說,一第一反應可在網由左移動至右時實 行,接著一第二反應可在網由右移動至左時實行,且已反 應之網可由第一捲轴105A卸載。當然,甚至更多步驟的 反應或退火等可藉由在第一捲軸1〇5A及第二捲軸i〇5B間 更多次地移動網來實行。反應條件,例如氣體流量率及反 應溫度,對不同反應步驟可不相同。舉例來說,當網由左 移動至右時,腔室1 〇 1之溫度模式對第一反應步驟可設定 至400°c之最大溫度。以此方式,網之前驅物可在400°c下 部份或充分地反應或退火。 在網之所有部份大體上捲繞於第二捲軸 105B上之 後,溫度模式之最大溫度可調整至一較高的值(例如,5 5 〇 °C),且當已退火或反應之前驅層可進一步反應、退火、或 結晶時,網可由右移動至左,這一次係在 5 5 0 °C之較高溫 度下。須注意類似的製程可藉由使腔室1〇1更長,並設定 沿著腔室1 0 1之溫度模式以致當網由左行進至右時,舉例 來說,其行進通過一 400 °C之區並接著通過一 550 °C之區來 達成。不過,使用如上文所述之雙向移動,腔室101之長 度可縮短,且兩步驟/兩溫度反應仍可達成。要在反應步驟 19 200832726 間當網捲繞至第一捲軸105 A或第二捲軸1〇5B之任一之上 時保持網之溫度為高,可存在有放置於第一埠i 及第二 埠1 04之任一或兩者中之選擇性的加熱器(未顯示)。One of the features of System 100 of Figure 2 is that the flexible structure 106 can be moved from left to right and from right to left. More than one reaction step can be carried out in this way. For example, a first reaction can be performed while the net is moving from left to right, and then a second reaction can be performed when the web is moved from right to left, and the reacted web can be unloaded by the first reel 105A. Of course, even more steps of reaction or annealing or the like can be carried out by moving the net more than once between the first reel 1〇5A and the second reel i〇5B. The reaction conditions, such as the gas flow rate and the reaction temperature, may be different for different reaction steps. For example, when the web is moved from left to right, the temperature mode of chamber 1 〇 1 can be set to a maximum temperature of 400 ° C for the first reaction step. In this way, the mesh precursor can be partially or sufficiently reacted or annealed at 400 °C. After all portions of the web are substantially wound on the second reel 105B, the maximum temperature of the temperature mode can be adjusted to a higher value (e.g., 5 5 〇 ° C), and the layer is driven before annealing or reaction. When further reacted, annealed, or crystallized, the web can be moved from right to left, this time at a higher temperature of 550 °C. It should be noted that a similar process can be achieved by making the chamber 1〇1 longer and setting the temperature pattern along the chamber 1 0 1 so that when the web travels from left to right, for example, it travels through a 400 ° C The zone is then reached through a zone of 550 °C. However, using the two-way movement as described above, the length of the chamber 101 can be shortened, and a two-step/two-temperature reaction can still be achieved. To maintain the temperature of the web as high when the web is wound onto either of the first reel 105 A or the second reel 1 〇 5B between reaction step 19 200832726, there may be placement in the first 埠i and the second 埠A heater (not shown) that is optional in either or both of 04.

須注意除了反應器溫度及網之速率外,反應氣體之成 分亦可在上述之多步驟反應方法中加以改變。舉例來說, 在第一反應步驟期間’當網由左移動至右時,一第一氣體 (例如HJe)可在腔室1〇1中使用以形成一硒化前驅層。另 一方面,在第二反應步驟期間,當網由右移動至左時,另 一氣體(例如IS)可引入腔室101中。結果,硒化前驅層 可在網由第二捲軸105B移動至第一捲轴105A時與硫反 應’且因而一 Cu(In,Ga)(S,Se)2層可藉由轉換已砸化之前 驅層為硫化硒化物來長成。選擇氣體濃度、網之速率、及 反應溫度,可控制吸收板層中之砸及硫之量。舉例來說, 在最終的吸收板層中之硫/(硒+硫)之莫耳比率可藉由在與 硒之反應實行之第一製程步驟期間,增加網之速率及/或降 低反應溫度來增加。同樣地,硫/(硒+硫)之莫耳比率亦可 藉由在與硫之反應實行之第二反應步驟期間,降低網之速 率及/或增加反應溫度來增加。此提供一大撓性度以藉由最 佳化兩個彼此獨立之反應步驟來最佳化吸收板層之成分。 本發明之另一實施例示於第4圖。第4圖之反應器系 統400包含三區段式腔室450,其為更普遍的多腔室設計 之一實施例。第4圖之三區段式腔室45 0包含區段A、B、 及C。圍繞各區段之加熱裝置和第一埠、第一捲軸、第二 埠、及第二捲轴未示於圖中以簡化圖式。不過,類似那些 20 200832726 示於第2圖之設計可用於這類缺漏的部件。加熱裝置可為 加熱燈、加熱線圈等,且它們可具有獨立控制以在區段A、 B、及C產生不同的溫度值及模式。It should be noted that in addition to the reactor temperature and the rate of the web, the composition of the reactive gas can also be varied in the multi-step reaction process described above. For example, during the first reaction step, when the web is moved from left to right, a first gas (e.g., HJe) can be used in chamber 1〇1 to form a selenide precursor layer. On the other hand, during the second reaction step, another gas (e.g., IS) can be introduced into the chamber 101 as the web moves from the right to the left. As a result, the selenide precursor layer can react with sulfur as the mesh moves from the second reel 105B to the first reel 105A' and thus a Cu(In,Ga)(S,Se) 2 layer can be converted by deuteration before The drive layer is made of sulfide selenide. The gas concentration, the rate of the web, and the reaction temperature are selected to control the amount of rhodium and sulfur in the absorbent layer. For example, the molar ratio of sulfur/(selenium + sulfur) in the final absorber layer can be increased by the rate of the web and/or by the reaction temperature during the first process step performed in reaction with selenium. increase. Similarly, the molar ratio of sulfur/(selenium + sulfur) can also be increased by lowering the rate of the web and/or increasing the temperature of the reaction during the second reaction step carried out in reaction with sulfur. This provides a large degree of flexibility to optimize the composition of the absorbent layer by optimizing two separate reaction steps. Another embodiment of the invention is shown in Figure 4. The reactor system 400 of Figure 4 includes a three-section chamber 450, which is one embodiment of a more general multi-chamber design. Section 4 of the section chamber 45 0 includes sections A, B, and C. The heating means and the first weir, the first reel, the second weir, and the second reel surrounding each section are not shown in the drawings to simplify the drawing. However, designs similar to those described in Figure 2 200832726 can be used for such missing components. The heating means can be heat lamps, heating coils, etc., and they can be independently controlled to produce different temperature values and modes in zones A, B, and C.

第4圖之設計之重要特性為區段A及C由一區段分 隔,較佳的是由位於三區段式腔室45 0之區段B内部之低 容積區段410分隔。存在有將氣體帶入各區段A、B、及C 之裝置。舉例來說,入口 401及402可分別將氣體帶入區 段A及C,而入口 403可將氣體帶入區段B中之低容積區 段410。排氣裝置404及405可設置以分別由區段A及C 排出氣體。欲處理或反應之撓性結構1 06可通過第一狹缝 110A之第一間隙111A、進入三區段式腔室450、並接著通 過第二狹缝110B之第二間隙111B。 實施例2 一 Cu(In,Ga)(S,Se)2吸收板層可使用第4圖之三區段 式腔室反應器來形成。在載入未反應之撓性結構1 〇 6後, 如實施例1所述般抽吸及淨化系統,製程可因而開始。三 區段式腔室45 0之區段A、B、及C可具有可彼此相等或 不相等之ΤΙ、T2、及T3之溫度。此外,各區段A、B、 及C可沿著它們個別之長度具有一溫度模式而非只是一固 定溫度。在處理期間,一第一製程氣體(例如氮氣)可透過 入口 403引入區段B中之低容積區段410,同時一第二製 程氣體及一第三製程氣體可分別透過入口 401及402分別 引入區段A及C。 21 200832726An important feature of the design of Figure 4 is that sections A and C are separated by a section, preferably by a low volume section 410 located inside section B of the three section chamber 45 0 . There are devices for bringing gas into zones A, B, and C. For example, inlets 401 and 402 can carry gas into zones A and C, respectively, while inlet 403 can carry gas into low volume section 410 in section B. Exhaust devices 404 and 405 can be configured to exhaust gases from sections A and C, respectively. The flexible structure 106 to be treated or reacted may pass through the first gap 111A of the first slit 110A, enter the three-section chamber 450, and then pass through the second gap 111B of the second slit 110B. Example 2 A Cu(In,Ga)(S,Se)2 absorber layer can be formed using the three-stage chamber reactor of Figure 4. After loading the unreacted flexible structure 1 〇 6, the system is aspirated and purified as described in Example 1, and the process can thus begin. Sections A, B, and C of the three-section chamber 45 0 may have temperatures of ΤΙ, T2, and T3 that may be equal or unequal to each other. Moreover, each of segments A, B, and C can have a temperature pattern along their respective lengths rather than just a fixed temperature. During processing, a first process gas (eg, nitrogen) may be introduced into the low volume section 410 of the section B through the inlet 403, while a second process gas and a third process gas may be introduced through the inlets 401 and 402, respectively. Sections A and C. 21 200832726

第二製程氣體及第三製程氣體可為相同氣體或兩種不 同氣體。舉例來說,第二製程氣體可包含硒,而第三製程 氣體可包含硫。以此方式,當撓性結構1 〇 6上之一部通過 第一狹缝11 0A之第一間隙111A進入三區段式腔室450之 區段A時,該部分上之前驅層開始與硒反應並形成在該部 分上之硒化前驅層。當該部分進入低容積區段4 1 0時,其 在此區段内部於氮氣氣體中進行退火(如果區段B經過加 熱)直到其進入區段C為止。在區段C中,由於氣態硫種 之存在而使硫化發生,且一 Cu(In,Ga)(S,Se)2吸收板層因 而在該部分通過第二狹縫11 0B之第二間隙1 11 B離開三區 段式腔室45 〇前形成在該部分上。吸收板層中之硫/(硒+硫) 之莫耳比率可藉由區段A及C之相對溫度及長度來控制。 舉例來說,在一給定的網速率下,硫/(硒+硫)之比率可藉 由縮短區段A之長度及/或降低區段A之溫度來增加。 或者,或另外,區段C之長度及/或溫度可增加。相反 的執行可減少硫/(砸+硫)之莫耳比率。須注意,如同在先 前的實施例中,其可使撓性結構或網由右至左倒回以繼續 反應。其亦可改變引入至三區段式腔室4 5 0之各區段A、 B、及C之氣體以獲得具有不同成分之吸收板層。第4圖 乏設計具有一獨特特性,允許兩種不同氣體或蒸氣存在於 兩個不同的反應器之區段,以便捲式連續處理可藉由以循 序方式施加不同反應溫度及不同反應氣體至網之各部分以 在一網基板上實行。引入一惰性氣體至一位在兩區段(第4 圖之區段A及C)間之縮減容積區段充當一擴散屏蔽,並最 22 200832726 小化或消除在那兩區段中所用之不同氣體間之混合。透過 第4圖之入口 403弓|入之第一氣體流過低容積區段41〇至 右及至左,妨礙任何氣體由區段人及c流向彼此。須注意 更多的區段偕同更多介於它們之間的低容積區段可加至第 4圖之反應g ^又s十,且各區段可以+目溫度及t體運轉以 提供形成高品質之第IBIIIAVIA族化合物吸收板層之製程 撓〖生。同樣地,更多氣體入口及/或排氣裝置可加至第4圖 之系統,且這些氣體入口及排氣裝置之位置可加以改變。 多種不同的橫剖面形狀可用於本發明之腔室。分別具 有圓形及長方形橫剖面之兩種這類腔室5〇〇A及5〇〇b示於 第5A及5B圖。實質上,具有圓形橫剖面之圓柱形反應腔 室適於在腔室中吸真空,即使腔室由例如玻璃或石英之材 料製成亦然《不過,圓形腔室隨著基板或網之寬度增加至 1英尺、2英尺、或超過此範圍而變得非常大。具有急劇溫 度變化之溫度模式無法使用這類大圓柱形腔室來維持,且 因此捲繞式RTP製程無法在寬的撓性基板(例如,可為i 至4英尺寬或甚至更寬之基板)上實行。 如圖5B所示,腔室5_包含由頂部壁5i〇a、底部 壁510B、及側壁510C定義之長方形間隙。在此實例中, 腔室較佳地由金屬構成’因為如果腔室由石英或玻璃構 成,要在這一類腔室中吸真空而不打破它需要非常厚的壁 (半英吋或更大)。在此配置中,頂部壁51〇A及底部壁51& 實質上彼此平行,而撓性結構1〇6係放置在它們之間。具 有長方形橫剖面或配置之腔室較適於減少反應氣體之消 23The second process gas and the third process gas may be the same gas or two different gases. For example, the second process gas can comprise selenium and the third process gas can comprise sulfur. In this manner, when a portion of the flexible structure 1 〇 6 enters the segment A of the three-section chamber 450 through the first gap 111A of the first slit 110A, the portion of the front drive layer begins with selenium The selenized precursor layer is reacted and formed on the portion. When the portion enters the low volume section 410, it anneals within the zone in a nitrogen gas (if zone B is heated) until it enters zone C. In section C, vulcanization occurs due to the presence of gaseous sulfur species, and a Cu(In,Ga)(S,Se)2 absorber layer passes through the second gap 1 of the second slit 11 0B at that portion. 11 B leaves the three-section chamber 45 and is formed on the portion. The molar ratio of sulfur/(selenium + sulfur) in the absorber layer can be controlled by the relative temperatures and lengths of zones A and C. For example, at a given network rate, the ratio of sulfur/(selenium + sulfur) can be increased by shortening the length of section A and/or decreasing the temperature of section A. Alternatively, or in addition, the length and/or temperature of section C may increase. The opposite implementation reduces the molar ratio of sulfur/(砸+sulfur). It should be noted that, as in the prior embodiments, it allows the flexible structure or mesh to be retracted from right to left to continue the reaction. It can also change the gas introduced into each of sections A, B, and C of the three-section chamber 450 to obtain an absorbing layer having different compositions. The Figure 4 design has a unique feature that allows two different gases or vapors to be present in two different reactor sections so that continuous roll processing can be applied to the web by applying different reaction temperatures and different reaction gases in a sequential manner. The various parts are implemented on a mesh substrate. Introducing an inert gas to a reduced volume section between the two sections (sections A and C of Figure 4) acts as a diffusion shield and minimizes or eliminates the differences used in those two sections. Mixing between gases. The first gas entering through the inlet 403 of Fig. 4 flows through the low volume section 41A to the right and to the left, preventing any gas from flowing to each other by the segment person and c. It should be noted that more sections and more low volume sections between them can be added to the reaction g ^ s ten of Figure 4, and each section can be operated with + mesh temperature and t body to provide high formation. The quality of the IBIIIAVIA compound absorption board layer process is difficult to produce. Similarly, more gas inlets and/or vents can be added to the system of Figure 4, and the location of these gas inlets and vents can be varied. A variety of different cross-sectional shapes are available for use in the chamber of the present invention. Two such chambers 5A and 5B having circular and rectangular cross-sections, respectively, are shown in Figures 5A and 5B. In essence, a cylindrical reaction chamber having a circular cross section is adapted to draw a vacuum in the chamber, even if the chamber is made of a material such as glass or quartz. However, the circular chamber follows the substrate or the mesh. The width increases to 1 foot, 2 feet, or exceeds this range and becomes very large. Temperature modes with sharp temperature changes cannot be maintained using such large cylindrical chambers, and thus the roll-to-roll RTP process cannot be used on wide flexible substrates (eg, substrates that can be i to 4 feet wide or even wider) Implemented on. As shown in Fig. 5B, the chamber 5_ includes a rectangular gap defined by the top wall 5i〇a, the bottom wall 510B, and the side wall 510C. In this example, the chamber is preferably made of metal 'because if the chamber is made of quartz or glass, vacuuming in this type of chamber without breaking it requires very thick walls (half inch or more). . In this configuration, the top wall 51A and the bottom wall 51& are substantially parallel to each other with the flexible structure 1 〇 6 placed therebetween. A chamber with a rectangular cross section or configuration is more suitable for reducing the reaction gas.

200832726 耗’因為這類腔室之高度可 爾短至小於1 0 mm,而寬 乎接近撓性結構之寬度(可 ^ y 馬1至4英尺)。這樣小 亦允許在第VIA族蒸氣中 久應不需要引入太多第 材料至腔室内。須注意腔室 > 、 主5〇〇B之高度,亦即, 寸’為介於頂部及底部壁間 n之距離,而小的間隙尺 在反應期間保持第VIA族姑袓 矛 麩材枓於前驅層表面上方之 是必須的。同樣地,這些腔室可保持急劇變化的溫茂 甚至對超過4英尺之撓性基板寬度亦然。舉例來說 具有長方形橫剖面之腔室長度之一溫度模式可包含 分距離内《4〇〇 i 5峨之溫度變化。因此,這類 用在捲繞式RTP模式中,其中,以每秒幾公分之速 通過上文提及之溫度變化之一區段位於基板上之前 經歷每秒400至500。(:之溫度上升率。甚至每秒數 更高率可藉由增加基板速率來達成。 如第5 C圖所示乏橫剖面圖,另一較佳的腔室 含雙重腔室500 C,其中具有長方形橫剖面之内部腔 係放置在具有圓形橫剖面之圓柱形外部腔室5 0 1 A 此實例中,撓性結構1 06或網通過可為形狀正交之 室5 〇 1 B,而所有氣體流較佳地係引導至並通過具有 外部腔室501A之容積之内部腔室501B。以此方式 反應氣體的浪費,但在此同時,整個腔室邛因為外 5〇1 A之圓柱形形狀而輕易排空,即使腔室用例如石 料製成亦然。在此實例中之加熱器(未顯示)玎放置 腔室5 0 1 B之外側,但位於外部腔室5 0 1 A之内侧。 度則近 的高度 VIA族 間隙尺 寸對於 高超壓 .模式, ,沿著 在幾公 腔室可 率前進 驅薄膜 千°C之 設計包 室 501B 内。在 内部腔 遠小於 最小化 部腔室 英之材 在内部 以此方 24 200832726 式,沿著長方形橫剖面腔室之長度之急劇的溫度模式可加 以維持,同時具有排空反應器本體之能力。200832726 consumes because the height of such chambers is as short as less than 10 mm and is close to the width of the flexible structure (1 to 4 feet). This small size also allows for the introduction of too much material into the chamber for a long period of time in the Group VIA vapor. Pay attention to the height of the chamber >, the main 5〇〇B, that is, the inch ' is the distance between the top and bottom walls n, and the small gap rule keeps the VIA 袓 袓 spear bran during the reaction. Above the surface of the precursor layer is a must. As such, these chambers can maintain a sharply varying temperature, even for flexible substrate widths over 4 feet. For example, one of the chamber lengths having a rectangular cross section may include a temperature change of "4 〇〇 i 5 分 within a distance. Therefore, this type is used in a roll-up RTP mode in which a section of the temperature change mentioned above is subjected to 400 to 500 per second before passing through the above-mentioned temperature change at a speed of several centimeters per second. (: the rate of temperature rise. Even the higher rate per second can be achieved by increasing the substrate rate. As shown in Figure 5C, the other preferred chamber contains a double chamber 500 C, where An internal cavity having a rectangular cross section is placed in a cylindrical outer chamber 5 0 1 A having a circular cross section. In this example, the flexible structure 106 or mesh passes through a chamber 5 〇 1 B which may be orthogonal in shape. All of the gas flow is preferably directed to and through the internal chamber 501B having the volume of the outer chamber 501A. In this way, the waste of the reaction gas, but at the same time, the entire chamber is cylindrical due to the outer 5 〇 1 A The shape is easily emptied, even if the chamber is made of, for example, stone. The heater (not shown) in this example is placed outside the chamber 5 0 1 B but inside the outer chamber 5 0 1 A The height of the VIA family is close to the height of the VIA family. For the high overpressure mode, it is within the design chamber 501B of the film that can advance the film in a few centimeters. The internal cavity is much smaller than the minimum cavity. The material is in the interior of this side 24 200832726, along the length The sharp temperature pattern of the length of the square cross-sectional chamber can be maintained while having the ability to evacuate the reactor body.

第6圖顯示第2圖之反應器之這一類示範的版本。為 了簡化圖式,僅顯示腔室部分。如同可由此圖所見,雙重 腔室600包含圓柱形腔室601及正交腔室602,正交腔室 602係放置於圓柱形腔室6 01中。氣體入口 113及排氣裝 置112連接至正交腔室6 02。須注意圓柱形腔室601可非 密封地與正交腔室封離,以便當全部的腔室抽空時,壓力 在圓柱形腔室601及正交腔室間能相平衡。除此之外,如 果這些腔室彼此封離,它們可能必須要同時一起抽空以便 在他們之間沒有大的壓力差。 太陽能電池可使用在此領域中已為人所熟知的材料及 方法製造在形成於本發明之反應器中之化合物層上。舉例 來說,一薄(< 0.1微米)硫化鎘層可使用化學浸潰法沈積在 化合物層之表面上。一氧化鋅透明窗可使用有機金屬化學 氣相沈積法(MOCVD)或难鍍技術沈積在硫化錢層之上。一 金屬指形圖案選擇性地沈積在氧化鋅上方以完成太陽能電 池。 雖然本發明敘述關於某些較佳實施例,其修改對那些 熟悉此技藝者將是顯而易見。 【圖式簡單說明】 第1圖為利用第IBIIIAVIA族吸收板層之太陽能電池 之橫剖面圖。 25 200832726 第2圖顯示一設備,其以捲式方式使前驅層起反應以 在一撓性猪基底上形成第IBIIIAVIA族層。 第3 A圖顯示一示範的撓性結構,其包含一撓性基底 及沈積在其上之前驅層。 第3B圖顯示一基底,其具有藉由使第3A圖之前驅層 起反應而形成在其上之第IBIIIAVIA族吸收板層。Figure 6 shows an exemplary version of this type of reactor of Figure 2. To simplify the drawing, only the chamber portion is shown. As can be seen from this figure, the dual chamber 600 includes a cylindrical chamber 601 and an orthogonal chamber 602 that is placed in the cylindrical chamber 61. Gas inlet 113 and venting device 112 are coupled to orthogonal chamber 2020. It should be noted that the cylindrical chamber 601 can be hermetically sealed from the orthogonal chamber so that when all of the chambers are evacuated, the pressure is balanced between the cylindrical chamber 601 and the orthogonal chamber. In addition, if the chambers are sealed from each other, they may have to be evacuated together at the same time so that there is no large pressure difference between them. Solar cells can be fabricated on a layer of a compound formed in a reactor of the present invention using materials and methods well known in the art. For example, a thin (<0.1 micron) layer of cadmium sulfide can be deposited on the surface of the compound layer using chemical impregnation. The zinc oxide transparent window can be deposited on the sulfurized money layer using organometallic chemical vapor deposition (MOCVD) or hard plating techniques. A metal finger pattern is selectively deposited over the zinc oxide to complete the solar cell. Although the present invention has been described in terms of certain preferred embodiments, modifications thereof will be apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a solar cell using an absorption layer of the IBIIIAVIA group. 25 200832726 Figure 2 shows a device that reacts the precursor layer in a roll to form an IBIIIAVIA family layer on a flexible pig substrate. Figure 3A shows an exemplary flexible structure comprising a flexible substrate and a precursor layer deposited thereon. Figure 3B shows a substrate having an IBIIIAVIA family of absorber layers formed thereon by reacting the precursor layer of Figure 3A.

第4圖顯示另一設備,其以捲式方式使前驅層起反應 以在一撓性猪基底上形成第IBIIIAVIA族層。 第5A至5B圖顯示具有放置其中之撓性結構之不同反 應腔室之橫剖面圖。 第5C圖顯示一反應腔室之橫剖面圖,其包含一外部 腔室及一内部腔室。 第6圖顯示第2圖之反應器之這一類的示範版本。Figure 4 shows another apparatus which reacts the precursor layer in a roll form to form a layer IBIIIAVIA layer on a flexible pig substrate. Figures 5A through 5B show cross-sectional views of different reaction chambers having flexible structures placed therein. Figure 5C shows a cross-sectional view of a reaction chamber including an outer chamber and an inner chamber. Figure 6 shows an exemplary version of this type of reactor of Figure 2.

【主要元件符號說明】 10 裝置 12 吸收板薄膜 14 透明層 20 基底 100 捲式設備 102 加熱器系統 104 第二蜂 105B 第二捲轴 106A 反應前之撓性結構 11 基板 13 導電層 15 光 20A 背側 101 腔室 103 第一埠 105 A 第一捲軸 106 連續撓性工件 106B 反應後之撓性結構 26 200832726 107A 第一埠氣體入口 107B 第二埠氣體入口 108A 第一埠真空線路 108B 第二埠真空線路 109 闕 110 狹缝 110A 第一狹缝 110B 第二狹缝 111 間隙 111A 第一間隙 111B 第二間隙 112 排氣裝置 113 氣體線路 200 前驅層 201 石西層 202 含砸之前驅層[Main component symbol description] 10 Device 12 Absorber film 14 Transparent layer 20 Substrate 100 Roll device 102 Heater system 104 Second bee 105B Second reel 106A Flexible structure before reaction 11 Substrate 13 Conductive layer 15 Light 20A Back Side 101 chamber 103 first 埠 105 A first reel 106 continuous flexible workpiece 106B flexible structure after reaction 26 200832726 107A first helium gas inlet 107B second helium gas inlet 108A first helium vacuum line 108B second helium vacuum Line 109 阙 110 Slit 110A First Slit 110B Second Slit 111 Clearance 111A First Gap 111B Second Gap 112 Exhaust 113 Gas Line 200 Precursor 201 Stone West 202 Containing 砸 Front Drive

203 第IBIIIAVIA族化合物層 400 反應器系統 402、 403 入口 410 低容積區段 500 5 00C 雙重腔室 501B 内部腔室 510B 底部壁 600 外部腔室 602 正交腔室 401 入口 404、405 排氣裝置 450 三區段式腔室 500A、500B 腔室 501 A 外部腔室 510A 頂部壁 510C 側壁 601 圓柱形腔室 A、B、C 區段203 IBIIIAVIA compound layer 400 reactor system 402, 403 inlet 410 low volume section 500 5 00C double chamber 501B inner chamber 510B bottom wall 600 outer chamber 602 orthogonal chamber 401 inlet 404, 405 exhaust 450 Three-section chamber 500A, 500B chamber 501 A External chamber 510A Top wall 510C Side wall 601 Cylindrical chamber A, B, C Section

Zl、Z2、Z3 加熱區 27Zl, Z2, Z3 heating zone 27

Claims (1)

200832726 十、申請專利範圍: 1· 一種藉由在一連續撓性工件之一表面上使一前驅層 起反應而形成一太陽能電池吸收板之整合型捲繞式快速熱 處理工具,包含: 一細長外罩,其包含一密封共用腔室,該密封共用腔室 包含一加熱腔室、一供應腔室、及一接收腔室,其中;200832726 X. Patent Application Range: 1. An integrated winding type rapid heat treatment tool for forming a solar cell absorption plate by reacting a precursor layer on one surface of a continuous flexible workpiece, comprising: an elongated cover , comprising a sealed common chamber, the sealed shared chamber comprising a heating chamber, a supply chamber, and a receiving chamber, wherein 該加熱腔室定義一窄製程間隙,其施加一預定的溫度模 式至配置在其中之該連續撓性工件的部分,由一頂部壁' 一底部壁、及側壁所界定之該窄製程間隙可形成一開口, 其之一高度實質上小於其之一寬度,且其中該加熱腔室具 有一加熱腔室輸入開口及一加熱腔室輸出開口; 該供應腔室支承一捲用來供應該連續撓性工件之供應 捲,並具有一供應腔室開口,其中該供應腔室開口對準該 加熱腔室輸入開口,且其中該連續撓性工件係配置成可由 該供應腔室前進至該加熱腔室中; 該接收腔室支承一捲可由該加熱腔室收集該連續撓性 工件的接收捲,並具有一接收腔室開口,其中該接收腔室 開口對準該加熱腔室輸出開口,且其中該連續撓性工件係 配置成可由該加熱腔室前進至該接收腔室中;及 一移動機制,以在該共用腔室内部支承該連續撓性工 件,並藉由自該供應捲饋入該連續撓性工件先前未捲繞部 分,及在該接收腔室中於該接收捲上拾起並捲繞該連續撓 性工件之已處理部分,來移動該連續撓性工件通過該加熱 28 200832726 腔室之該窄製程間隙。 2.如申請專利範圍第1項所述之工具,更包含一真空線 路,其與該共用腔室相連,並允許在其中形成一真空並將 其排空。The heating chamber defines a narrow process gap that applies a predetermined temperature pattern to a portion of the continuous flexible workpiece disposed therein, the narrow process gap defined by a top wall 'a bottom wall and a sidewall An opening, one of which has a height substantially less than one of the widths, and wherein the heating chamber has a heating chamber input opening and a heating chamber output opening; the supply chamber supports a roll for supplying the continuous flexibility a supply roll of the workpiece and having a supply chamber opening, wherein the supply chamber opening is aligned with the heating chamber input opening, and wherein the continuous flexible workpiece is configured to be advanced from the supply chamber into the heating chamber The receiving chamber supports a roll of receiving rolls of the continuous flexible workpiece that can be collected by the heating chamber and has a receiving chamber opening, wherein the receiving chamber opening is aligned with the heating chamber output opening, and wherein the continuous a flexible workpiece configured to be advanced into the receiving chamber by the heating chamber; and a movement mechanism to support the continuous flexible workpiece within the common chamber, and Moving the continuous deflection by feeding the previously unwound portion of the continuous flexible workpiece from the supply roll and picking up and winding the processed portion of the continuous flexible workpiece on the receiving roll in the receiving chamber The workpiece passes through the narrow process gap of the chamber 28 200832726. 2. The tool of claim 1, further comprising a vacuum line connected to the common chamber and allowing a vacuum to be formed therein and evacuated. 3.如申請專利範圍第2項所述之工具,更包含一圓柱形 外殼,其圍繞該加熱腔室,其中該圓柱形外殼係對該細長 外罩密封。 4.如申請專利範圍第2項所述之工具,更包含一排氣線 路,其鄰接該加熱腔室之輸出開口,並可由該加熱腔室之 該窄製程間隙移除一製程氣體及氣態副產物; 一氣體入口線路,其鄰接該加熱腔室之輸入開口,並可 引入該製程氣體至該加熱腔室之該窄製程間隙,以致該製 程氣體朝該連續撓性工件之移動方向流動。 5.如申請專利範圍第4項所述之工具,其中該氣體入口 線路可提供一第VIA族材料之製程氣體至該加熱腔室中。 6.如申請專利範圍第2項所述之工具,其中該供應腔室 及該接收腔室包含氣體入口以輸送一惰性氣體至該供應及 接收腔室中。 29 200832726 7.如申請專利範圍第5項所述之工具,其中該供應腔室 及該接收腔室包含氣體入口以輸送一惰性氣體至該供應及 接收腔室中。 8.如申請專利範圍第2項所述之工具,其中介於該頂部 壁及該底部壁間之一距離會隨該加熱腔室之該製程間隙長3. The tool of claim 2, further comprising a cylindrical outer casing surrounding the heating chamber, wherein the cylindrical outer casing seals the elongated outer casing. 4. The tool of claim 2, further comprising an exhaust line adjacent to an output opening of the heating chamber and capable of removing a process gas and a gaseous state by the narrow process gap of the heating chamber a gas inlet line adjacent the input opening of the heating chamber and capable of introducing the process gas to the narrow process gap of the heating chamber such that the process gas flows toward the moving direction of the continuous flexible workpiece. 5. The tool of claim 4, wherein the gas inlet line provides a process gas of a Group VIA material to the heating chamber. 6. The tool of claim 2, wherein the supply chamber and the receiving chamber comprise a gas inlet to deliver an inert gas to the supply and receiving chamber. The tool of claim 5, wherein the supply chamber and the receiving chamber comprise a gas inlet to deliver an inert gas into the supply and receiving chamber. 8. The tool of claim 2, wherein a distance between the top wall and the bottom wall is longer with the process gap of the heating chamber 9.如申請專利範圍第8項所述之工具,其中該加熱腔室 之輸入開口及該加熱腔室之輸出開口各包含一隔片,其界 定出一小於該製程間隙之間隙。 10.如申請專利範圍第9項所述之工具,其中該加熱腔 室之該頂部壁實質上係平行於該加熱腔室之該底部壁。9. The tool of claim 8 wherein the input opening of the heating chamber and the output opening of the heating chamber each comprise a spacer defining a gap that is less than the process gap. 10. The tool of claim 9 wherein the top wall of the heating chamber is substantially parallel to the bottom wall of the heating chamber. 1 1.如申請專利範圍第1〇項所述之工具,其中該窄製程 間隙之高度係介於〇 · 5至1 0 mm之間。 1 2.如申請專利範圍第11項所述之工具,其中該窄製程 間隙之寬度係介於100至2000 mm之間。 1 3 ·如申請專利範圍第1項所述之工具,其中該温度模 30 200832726 式包含一在350°C至600°C之内的最大溫度 14· 一種藉由使先前沈積在一 之一前驅層起反應來形成一太 (rapid thermal processing,RTP)系 連續撓性工件之一表面 陽能電池的快速熱處 統,包含: 加熱腔1 1. The tool of claim 1, wherein the narrow process gap has a height between 〇 5 and 10 mm. 1 2. The tool of claim 11, wherein the narrow process gap has a width between 100 and 2000 mm. 1 3 · The tool of claim 1, wherein the temperature mode 30 200832726 comprises a maximum temperature within 350 ° C to 600 ° C. 14. A predecessor deposited by one of the precursors The layer reacts to form a fast thermal system of a surface solar cell of a continuous thermal processing (RTP) continuous flexible workpiece, comprising: a heating chamber _ V叹一具殳及將其排空 室包含一第一製程區段、—擴散屏蔽區段、及 二製程區段,該加熱腔室提供一 進之該連續撓性工件部分,其中 預定的溫度模式給經此_V sings a sigh and includes a first process section, a diffusion shield section, and a two-process section, the heating chamber providing a portion of the continuous flexible workpiece, wherein the predetermined Temperature mode for this 該第-製程區段在至少一第一氣態物種存在時,藉由 熱配置在其中之該連續撓性工件部份來進行處理;9 該第二製程區段在至少一第二氣態物種存在時,藉由 熱配置在其中之該連續撓性工件部份來進行處理; 配置在該第一及該第二區段間的該擴散屏蔽區段,藉 施加一惰性氣體至該擴散屏蔽區段中來分隔該第一及^ 製程區段之製程,以便該惰性氣體由該擴散屏蔽區段之 中央區域朝該第一製程區段及朝該第二製程區段流動, 而產生一屏蔽以減少談至少一第一氣態物種及該至少一 二氣態物種之混合;及 一移動機制,其藉由自該供應捲饋送該連續撓性工件 前未捲繞部分至該加熱腔室,及在該接收捲上拾起並捲 該連續撓性工件之已處理部分,以於該加熱腔室之多個 段中固持並移動該連續撓性工件使通過其中。 上 理 該 第 前 加 加 由 從 第 先 繞 區 31 200832726 1 5 .如申請專利範圍第1 4項所述之系統,更包含至少一 排氣裝置,其連接至該第一製程區段及該第二製程區段之 至少其一,以移除其中的多數氣態物種及反應副產物。The first process section is treated by thermally arranging the portion of the continuous flexible workpiece therein in the presence of at least one first gaseous species; 9 the second process section is present in the presence of at least one second gaseous species Processing by the heat-disposed portion of the continuous flexible workpiece; the diffusion shielding section disposed between the first and the second sections, by applying an inert gas to the diffusion shielding section Separating the process of the first and second process segments such that the inert gas flows from the central region of the diffusion shield segment toward the first process segment and toward the second process segment to create a shield to reduce talk a mixture of at least a first gaseous species and the at least one gaseous species; and a movement mechanism by feeding the unwinded portion of the continuous flexible workpiece from the supply roll to the heating chamber, and at the receiving volume The processed portion of the continuous flexible workpiece is picked up and wound to hold and move the continuous flexible workpiece through the plurality of segments of the heating chamber. The first pre-addition is from the first winding zone 31 200832726 1 5. The system of claim 14 further includes at least one exhausting device connected to the first process section and the At least one of the second process sections to remove most of the gaseous species and reaction byproducts therein. 16.如申請專利範圍第15項所述之系統,更包含一供應 腔室,以支承該連續撓性工件之供應捲,其中該供應腔室 係與該加熱腔室整合在一起。 17.如申請專利範圍第16項所述之系統,更包含一接收 腔室,以支承該連續撓性工件之接收捲,其中該接收腔室 係與該加熱腔室整合在一起。 1 8.如申請專利範圍第1 5項所述之系統,其中該供應腔 室及該接收腔室包含多個氣體入口,以輸送一惰性氣體至 • 該供應及接收腔室中。 1 9.如申請專利範圍第1 5項所述之系統,其中該第一及 第二製程區段包含多個氣體入口。 ’ 20.如申請專利範圍第1 5項所述之系統,其中該加熱腔 Γ 室之一頂部壁係與一底部壁平行。 3216. The system of claim 15 further comprising a supply chamber to support the supply roll of the continuous flexible workpiece, wherein the supply chamber is integrated with the heating chamber. 17. The system of claim 16 further comprising a receiving chamber for supporting the receiving roll of the continuous flexible workpiece, wherein the receiving chamber is integral with the heating chamber. The system of claim 15 wherein the supply chamber and the receiving chamber comprise a plurality of gas inlets for delivering an inert gas to the supply and receiving chambers. The system of claim 15 wherein the first and second process sections comprise a plurality of gas inlets. 20. The system of claim 15 wherein the top wall of the heating chamber is parallel to a bottom wall. 32 200832726 2 1.如申請專利範圍第20項所述之系統,其中一介 第一及第二製程區段之該頂部壁及該底部壁間之高度 為介於該擴散屏蔽區段之該頂部壁及該底部壁間之高 兩倍。 22.如申請專利範圍第15項所述之系統,其中一介 第一及第二製程區段之一頂部壁及一底部壁間之高度 於0.5至10 mm之範圍間。 2 3.如申請專利範圍第22項所述之系統,其中一介 第一及第二製程區段之側壁間之寬度係介於 1 00至 mm之範圍間。 24. 如申請專利範圍第14項所述之系統,其中該溫 式包含一介於350°C至600°C之範圍内之最大溫度。 25. —種用於在一連續撓性工件前進通過一捲繞式 熱處理(RTP)腔室時,在該連續撓性工件之一表面上形 吸收板層的方法,其中該捲繞式RTP腔室包含一具有 入開口之第一製程區段、一擴散屏蔽區段、及一具有 去開口之第二製程區段,且該擴散屏蔽區段配置在該 及第二製程區段間,其中一前驅層係配置於該表面上 方法包含: 於該 至少 度之 於該 係介 於該 2000 度模 快速 成一 一進 一離 第一 ,該 33 200832726 藉由自一供應捲饋送該連續撓性工件先前尚未捲繞部 分,來移動該連續撓性工件之一部分通過該進入開口至該 RTP腔室之該第一製程區段中; 藉由在施加一惰性氣體至該擴散屏蔽區段的同時,施加 一第一溫度模式以在該第一製程區段中處理該前驅層; 使該連續撓性工件之該部分通過該擴散屏蔽區段並朝 該第二製程區段前進;1. The system of claim 20, wherein a height between the top wall and the bottom wall of the first and second process sections is between the top wall of the diffusion shield section and The height between the bottom walls is twice. 22. The system of claim 15 wherein the height between the top wall and the bottom wall of one of the first and second process sections is between 0.5 and 10 mm. 2. The system of claim 22, wherein the width between the sidewalls of the first and second process sections is between 100 and mm. 24. The system of claim 14, wherein the temperature formula comprises a maximum temperature in the range of from 350 °C to 600 °C. 25. A method for forming an absorbing layer on a surface of a continuous flexible workpiece for advancing through a winding heat treatment (RTP) chamber as the continuous flexible workpiece advances, wherein the wound RTP chamber The chamber includes a first process section having an opening, a diffusion shield section, and a second process section having an opening, and the diffusion shield section is disposed between the second process section, wherein The method of arranging the precursor layer on the surface comprises: at least the system is between the 2000 degrees and the module is rapidly advanced one by one, the 33 200832726 by feeding the continuous flexible workpiece from a supply roll Not yet wound up to move a portion of the continuous flexible workpiece through the access opening into the first process section of the RTP chamber; by applying an inert gas to the diffusion shield section while applying a a first temperature mode to process the precursor layer in the first process section; passing the portion of the continuous flexible workpiece through the diffusion shield section and toward the second process section; 藉由在施加一惰性氣體至該擴散屏蔽區段的同時,施加 一第二溫度模式,以在該第二製程區段中處理該前驅層; 及 由該第二製程區段之該離去開口拾起該連續撓性工件 之該已處理之部分,並將其捲繞至一接收捲上。 26.如申請專利範圍第25項所述之方法,其中該移動、 前進、及拾起步驟以一為了改變由該連續撓性工件所經歷 之一溫度模式之變化之速率發生。 27.如申請專利範圍第26項所述之方法,更包含提供一 第一氣體至該第一製程區段。 2 8.如申請專利範圍第26項所述之方法,更包含提供一 第二氣體至該第二製程區段。 34 200832726 29.如申請專利範圍第27項所述之方法,更包含提供一 第二氣體至該第二製程區段。 3 0·如申請專利範圍第26項所述之方法,更包含使一惰 性氣體流過該進入開口至該第一製程區段中,及使另一惰 性氣體流過該離去開口進入該第二製程區段中。Applying a second temperature mode while applying an inert gas to the diffusion shield section to process the precursor layer in the second process section; and the leaving opening of the second process section The processed portion of the continuous flexible workpiece is picked up and wound onto a take-up roll. 26. The method of claim 25, wherein the moving, advancing, and picking steps occur at a rate to change a temperature pattern experienced by the continuous flexible workpiece. 27. The method of claim 26, further comprising providing a first gas to the first process section. The method of claim 26, further comprising providing a second gas to the second process section. The method of claim 27, further comprising providing a second gas to the second process section. The method of claim 26, further comprising flowing an inert gas through the inlet opening into the first process section, and flowing another inert gas through the exit opening into the first In the two process sections. 3 1 ·如申請專利範圍第29項所述之方法,更包含使一惰 性氣體流過該進入開口至該第一製程區段中,及使另一惰 性氣體流過該離去開口進入該第二製程區段中。 3 2.如申請專利範圍第29項所述之方法,其中該第一氣 體及該第二氣體包含一第VIA族材料氣體及一惰性氣體之 至少其一。 β 3 3.如申請專利範圍第32項所述之方法,其中在該第一 製程區段中處理該前驅層的步驟包含加熱該前驅層,同時 並施加包含碰之該第一氣體。 3 4.如申請專利範圍第33項所述之方法,其中在該第二 4 • 製程區段中處理該前驅層的步驟包含加熱該前驅層,同時 / 並施加含硫之該第二氣體。 35 200832726 3 5.如申請專利範圍第3 3項所述之方法,其中在該第二 製程區段中處理該前驅層的步驟包含施加含氮之該惰性氣 體0 36.如申請專利範圍第29項所述之方法,其中該第一氣 體為一惰性氣體而該第二氣體包含硒、硫、及一惰性氣體 之至少其一。The method of claim 29, further comprising flowing an inert gas through the inlet opening into the first process section, and flowing another inert gas through the exit opening into the first In the two process sections. The method of claim 29, wherein the first gas and the second gas comprise at least one of a Group VIA material gas and an inert gas. The method of claim 32, wherein the step of processing the precursor layer in the first process section comprises heating the precursor layer while applying and including the first gas. 3. The method of claim 33, wherein the step of processing the precursor layer in the second process section comprises heating the precursor layer while/and applying the second gas containing sulfur. The method of claim 3, wherein the step of treating the precursor layer in the second process section comprises applying the nitrogen-containing inert gas 0. 36. The method of claim, wherein the first gas is an inert gas and the second gas comprises at least one of selenium, sulfur, and an inert gas. 3 7.如申請專利範圍第36項所述之方法,其中該惰性氣 體係透過該進入開口所引入。 3 8.如申請專利範圍第3 7項所述之方法,其中該前驅層 包含一硒層,且在該第一製程區段中處理該前驅層的步驟 包含加熱該前驅層,同時並施加該惰性氣體。The method of claim 36, wherein the inert gas system is introduced through the inlet opening. 3. The method of claim 3, wherein the precursor layer comprises a selenium layer, and the step of processing the precursor layer in the first process section comprises heating the precursor layer while applying the Inert gas. 3 9.如申請專利範圍第38項所述之方法,其中在該第二 製程區段中處理該前驅層的步驟包含加熱該前驅層,同時 並施加含硫之該第二氣體。 4 0.如申請專利範圍第38項所述之方法,其中在該第二 製程區段中處理該前驅層的步驟包含施加含氮之該第二氣 36 200832726 41.如申請專利範圍第32項所述之方法,其中該前驅層 包含一硒層,且在該第一製程區段中處理該前驅層的步驟 包含加熱該前驅層,同時並施加包含硒之該第一氣體。 37The method of claim 38, wherein the step of treating the precursor layer in the second process section comprises heating the precursor layer while applying the second gas containing sulfur. The method of claim 38, wherein the step of processing the precursor layer in the second process section comprises applying the nitrogen-containing second gas 36 200832726 41. As claimed in claim 32 The method wherein the precursor layer comprises a selenium layer, and the step of processing the precursor layer in the first process section comprises heating the precursor layer while applying the first gas comprising selenium. 37
TW096142734A 2006-11-10 2007-11-12 Reel-to-reel reaction of precursor film to form solar cell absorber TW200832726A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86538506P 2006-11-10 2006-11-10

Publications (1)

Publication Number Publication Date
TW200832726A true TW200832726A (en) 2008-08-01

Family

ID=39609232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096142734A TW200832726A (en) 2006-11-10 2007-11-12 Reel-to-reel reaction of precursor film to form solar cell absorber

Country Status (6)

Country Link
EP (1) EP2102898A4 (en)
JP (1) JP2010509779A (en)
KR (1) KR20090110293A (en)
CN (1) CN101578707B (en)
TW (1) TW200832726A (en)
WO (1) WO2008085604A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398013B (en) * 2009-12-18 2013-06-01 Jenn Feng New Energy Co Ltd Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer
TWI509107B (en) * 2009-03-06 2015-11-21 Centrotherm Photovoltaics Ag Verfahren und vorrichtung zur thermischen umsetzung metallischer precusorschichten in halbleitende schichten mit chalkogenquelle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2205772A2 (en) * 2007-09-11 2010-07-14 Centrotherm Photovoltaics AG Method and arrangement for providing chalcogens
US8163090B2 (en) 2007-12-10 2012-04-24 Solopower, Inc. Methods structures and apparatus to provide group VIA and IA materials for solar cell absorber formation
US8323408B2 (en) 2007-12-10 2012-12-04 Solopower, Inc. Methods and apparatus to provide group VIA materials to reactors for group IBIIIAVIA film formation
CN102308174B (en) * 2008-11-28 2015-08-05 福尔克尔·普洛波斯特 Produce the method for semiconductor layer and the coated substrate particularly planar substrate by elemental selenium and/or elemental sulfur process
DE102009009022A1 (en) * 2009-02-16 2010-08-26 Centrotherm Photovoltaics Ag Method and device for coating flat substrates with chalcogens
DE102009011496A1 (en) * 2009-03-06 2010-09-16 Centrotherm Photovoltaics Ag Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery
DE102009049570B3 (en) * 2009-10-15 2011-02-17 Fhr Anlagenbau Gmbh Arrangement for gas separation and its use
WO2011132915A2 (en) * 2010-04-19 2011-10-27 한국생산기술연구원 Method for manufacturing solar cell
JP2014513413A (en) * 2011-03-10 2014-05-29 サン−ゴバン グラス フランス Method for producing ternary compound semiconductor CZTSSe and thin film solar cell
JP2012222157A (en) * 2011-04-08 2012-11-12 Hitachi Kokusai Electric Inc Substrate processing apparatus and method of manufacturing solar cell
US9583667B2 (en) 2012-02-29 2017-02-28 Alliance For Sustainable Energy, Llc Systems and methods for forming solar cells with CuInSe2 and Cu(In,Ga)Se2 films
CN103361603A (en) * 2012-03-29 2013-10-23 常熟卓辉光电科技有限公司 Vacuum evaporation equipment of semiconductor film material and preparation method of OLED (Organic Light Emitting Diode) conductive layer
DE102012205378A1 (en) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Process for the production of thin-film solar modules and thin-film solar modules obtainable by this process
KR101461315B1 (en) * 2012-06-19 2014-11-12 가부시키가이샤 스크린 홀딩스 Heat treatment apparatus and heat treatment method
KR101698281B1 (en) * 2012-07-09 2017-01-19 쌩-고벵 글래스 프랑스 System and method for processing substrates
KR101373314B1 (en) 2012-12-31 2014-03-12 (주)피앤테크 Apparatus for exhaust condensing of doping process tube for solar cell wafer
DE102014116696B4 (en) * 2014-11-14 2016-10-20 Von Ardenne Gmbh Vacuum chamber and method for operating a vacuum processing plant

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723507A (en) * 1986-01-16 1988-02-09 Energy Conversion Devices, Inc. Isolation passageway including annular region
JPH02148715A (en) * 1988-11-29 1990-06-07 Canon Inc Apparatus for forming semiconductor device continuously
JP2819056B2 (en) * 1990-07-24 1998-10-30 キヤノン株式会社 Method and apparatus for forming deposited film
WO1994007269A1 (en) * 1992-09-22 1994-03-31 Siemens Aktiengesellschaft Process for rapidly generating a chalkopyrite semiconductor on a substrate
JP3402637B2 (en) * 1992-12-28 2003-05-06 キヤノン株式会社 Method of manufacturing solar cell, manufacturing apparatus thereof, and method of manufacturing long sheet substrate
JP3571785B2 (en) * 1993-12-28 2004-09-29 キヤノン株式会社 Method and apparatus for forming deposited film
JP3332700B2 (en) * 1995-12-22 2002-10-07 キヤノン株式会社 Method and apparatus for forming deposited film
JPH11135811A (en) * 1997-10-28 1999-05-21 Yazaki Corp Cis-based solar cell module and its manufacture
US20030164225A1 (en) * 1998-04-20 2003-09-04 Tadashi Sawayama Processing apparatus, exhaust processing process and plasma processing
US7091136B2 (en) * 2001-04-16 2006-08-15 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
EP1556902A4 (en) * 2002-09-30 2009-07-29 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509107B (en) * 2009-03-06 2015-11-21 Centrotherm Photovoltaics Ag Verfahren und vorrichtung zur thermischen umsetzung metallischer precusorschichten in halbleitende schichten mit chalkogenquelle
TWI398013B (en) * 2009-12-18 2013-06-01 Jenn Feng New Energy Co Ltd Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer

Also Published As

Publication number Publication date
CN101578707A (en) 2009-11-11
JP2010509779A (en) 2010-03-25
KR20090110293A (en) 2009-10-21
WO2008085604B1 (en) 2008-12-24
EP2102898A4 (en) 2011-06-29
CN101578707B (en) 2012-08-22
WO2008085604A2 (en) 2008-07-17
WO2008085604A3 (en) 2008-10-16
EP2102898A2 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
TW200832726A (en) Reel-to-reel reaction of precursor film to form solar cell absorber
CN101578386B (en) Method and apparatus for converting precursor layers into photovoltaic absorbers
US9103033B2 (en) Reel-to-reel reaction of precursor film to form solar cell absorber
JP2011511477A (en) Reel-to-reel reaction of precursor films to form solar cell absorbers
US8323408B2 (en) Methods and apparatus to provide group VIA materials to reactors for group IBIIIAVIA film formation
TW201036191A (en) Reactor to form solar cell absorbers
KR101027318B1 (en) Method for the preparation of group ib-?a-?a quaternary or higher alloy semiconductor films
US20100226629A1 (en) Roll-to-roll processing and tools for thin film solar cell manufacturing
US8163090B2 (en) Methods structures and apparatus to provide group VIA and IA materials for solar cell absorber formation
TW201140738A (en) Roll-to-roll evaporation system and method to manufacture group IBIIIAVIA photovoltaics
EP3527687A1 (en) Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
US8153469B2 (en) Reaction methods to form group IBIIIAVIA thin film solar cell absorbers
US20120258567A1 (en) Reaction methods to form group ibiiiavia thin film solar cell absorbers
US20100139557A1 (en) Reactor to form solar cell absorbers in roll-to-roll fashion
TW201034230A (en) Reactor to form solar cell absorbers in roll-to-roll fashion
KR102130601B1 (en) A process of preparing chalcopyrite based thin film
Alberts et al. Preparation of CulnSe 2 thin films by rapid thermal processing of Se-containing precursors
KR101356212B1 (en) Fabrication method of absorber layers in the cis solar sell system and fabrication equipment thereof
Dejene et al. Preparation and structural properties of Culn (Se, S) 2 thin films prepared by the thermal diffusion of sulphur into CuInSe2