TW200805704A - Compound semiconductor device - Google Patents

Compound semiconductor device Download PDF

Info

Publication number
TW200805704A
TW200805704A TW95133090A TW95133090A TW200805704A TW 200805704 A TW200805704 A TW 200805704A TW 95133090 A TW95133090 A TW 95133090A TW 95133090 A TW95133090 A TW 95133090A TW 200805704 A TW200805704 A TW 200805704A
Authority
TW
Taiwan
Prior art keywords
layer
hexagonal
semiconductor layer
phosphide
crystal
Prior art date
Application number
TW95133090A
Other languages
Chinese (zh)
Other versions
TWI310247B (en
Inventor
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005259042A external-priority patent/JP2007073732A/en
Priority claimed from JP2005261946A external-priority patent/JP2007073872A/en
Priority claimed from JP2005266418A external-priority patent/JP2007081084A/en
Priority claimed from JP2005269516A external-priority patent/JP5005900B2/en
Priority claimed from JP2005277536A external-priority patent/JP5005902B2/en
Priority claimed from JP2005286495A external-priority patent/JP4700464B2/en
Priority claimed from JP2005312758A external-priority patent/JP5005905B2/en
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200805704A publication Critical patent/TW200805704A/en
Application granted granted Critical
Publication of TWI310247B publication Critical patent/TWI310247B/en

Links

Landscapes

  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A compound semiconductor device (1) includes a compound semiconductor having a stacked structure (100) of a hexagonal single crystal layer (101), a boron phosphide-based semiconductor layer (102) formed on a surface of the hexagonal single crystal layer and a compound semiconductor layer (103) disposed on the boron phosphide-based semiconductor layer, and electrodes (108, 109) disposed on the stacked structure, wherein the boron phosphide-based semiconductor layer is formed of a hexagonal crystal disposed on a surface formed of a (1.1.-2.0.) crystal face of the hexagonal single crystal layer.

Description

200805704 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關一種化合物半導體裝置,其係藉著將電 極配置在堆疊結構上建構而成,該堆疊結構係利用六方單 晶、形成在該單晶表面上之磷化硼爲底的半導體層及由在 該磷化硼爲底的半導體層上的化合物半導體形成的化合物 半導體層提供,該化合物半導體裝置在前述單晶層的( 1.1.-2.0.)晶面形成的表面上提供前述六方晶體的磷化硼 爲底的半導體層。 【先前技術】 至今,如JP-A HEI 2-28 8 3 8 8中揭示的,舉例來說, 已在立方閃鋅礦型晶體磷化鎵(GaP )或碳化矽(SiC ) 單晶製成的基材上形成該磷化硼爲底的半導體層。 在 JP-A HEI 2-288371 及 JP-A HEI 2-275682 中,揭 示化合物半導體裝置的發光二極體(LED )係由此基材、 形成在彼上面的磷化硼爲底的半導體層及依接合至彼的方 式配置的111族氮化物半導體層構成。在美國專利案號 6 1 94744 B1中,揭示例如單體磷化硼(BP)等的磷化硼 爲底的半導體層係形成在充當基材的矽單晶(矽)上。在 美國專利案號6069021中,揭示由矽基材、單體BP層及 配置在該單體BP層上面的III族氮化物半導體層提供的 堆疊結構建構LED的技術。 如JP-A HEI 2-275 682中揭示的,在運用形成在單晶 (2) (2)200805704 基材上的磷化硼爲底的半導體層之LED結構中,至今已 在立方閃鋅礦型晶體磷化硼層上配置歐姆電極。如 JP-A HEI 4-84486所揭示,即使在習知的雷射二極體( LD )中,歐姆電極係經配置與立方磷化硼層相接觸。 再者,如JP-B SHO 5 5 -3 8 3 4中揭示的,至今已利用 由硼化鎵(GaN )形成且配置在單晶基材上的III族氮化 物半導體層提供的堆疊結構建構藍色-及綠色LED。在 JP-A HEI 4-213878中,舉例來說,揭示由III族氮化物半 導體材料形成的包覆層(clad layer)與發光層的異質接 面建構的該短波長可見光或近紫外線或紫外線LED的發 光部分。 JP-A HEI 10-287497中揭示連在高頻下操作的場效電 晶體(FET ),舉例來說,都利用例如氮化鋁一鎵( AlxGal-xN: 0SXS1)等的III族氮化物半導體層配置在矽 基材上而提供的堆疊結構來建構。 同時,如 JP-A 2004- 1 8629 1中揭示的,已知使用立 方閃鋅礦型晶體磷化硼爲底的半導體層作爲包覆層而建構 雙異質(DH )結構的發光部分之技術。 構成發光部分的發光層及構成作爲發光層的阻障層之 包覆層的立方磷化硼爲底的半導體層可,如 JP-A HEI 3-87019中揭示的,藉由運用用於底層的立方閃 鋅礦型晶體砷化鎵(GaAs )而形成。 即使是基材係由矽形成且磷化硼爲底的半導體層係長 在該基材的(1 1 1 )晶面形成的表面上,無論如何,因此 -5- 200805704 (3) 長成的層最終仍含有大量的結晶性缺陷’例如堆疊不良及 攣晶(T. Udagawa 與 G. Shimaoka ’ J. Ceramic Processing200805704 (1) Nine, the invention belongs to the technical field of the invention. The present invention relates to a compound semiconductor device constructed by arranging electrodes on a stacked structure, which is formed by using a hexagonal single crystal. Providing a phosphide boron-based semiconductor layer on the surface of the single crystal and a compound semiconductor layer formed of a compound semiconductor on the phosphide-based semiconductor layer, the compound semiconductor device in the aforementioned single crystal layer (1.1. A surface of the crystal face is provided with a phosphide boron-based semiconductor layer of the aforementioned hexagonal crystal. [Prior Art] Up to now, as disclosed in JP-A HEI 2-28 8 3 8 8 , for example, it has been made of cubic sphalerite crystal gallium phosphide (GaP) or tantalum carbide (SiC) single crystal. The phosphide boron-based semiconductor layer is formed on the substrate. In JP-A HEI 2-288371 and JP-A HEI 2-275682, a light-emitting diode (LED) of a compound semiconductor device is disclosed as a substrate, a phosphide-based semiconductor layer formed on the substrate, and It is composed of a group 111 nitride semiconductor layer arranged in such a manner as to be bonded to the other. In U.S. Patent No. 6, 1 944 744 B1, it is disclosed that a boron nitride-based semiconductor layer such as a monomer phosphide (BP) or the like is formed on a ruthenium single crystal (ruthenium) serving as a substrate. In U.S. Patent No. 6,609,021, a technique for constructing an LED in a stacked structure provided by a tantalum substrate, a monomer BP layer, and a group III nitride semiconductor layer disposed over the monomer BP layer is disclosed. As disclosed in JP-A HEI 2-275 682, in the LED structure using a boron nitride-based semiconductor layer formed on a single crystal (2) (2) 200805704 substrate, it has been in the cubic sphalerite An ohmic electrode is disposed on the crystalline boron phosphide layer. As disclosed in JP-A HEI 4-84486, even in the conventional laser diode (LD), the ohmic electrode is configured to be in contact with the cubic boron phosphide layer. Furthermore, as disclosed in JP-B SHO 5 5 -3 8 3 4, the stack structure construction provided by the group III nitride semiconductor layer formed of gallium hydride (GaN) and disposed on a single crystal substrate has hitherto been utilized. Blue-and green LEDs. In JP-A HEI 4-213878, for example, the short-wavelength visible or near-ultraviolet or ultraviolet LED constructed by a heterojunction of a clad layer formed of a group III nitride semiconductor material and a light-emitting layer is disclosed. The glowing part. A field effect transistor (FET) connected to a high frequency operation is disclosed in JP-A HEI 10-287497, for example, a group III nitride semiconductor such as aluminum nitride-gallium (AlxGal-xN: 0SXS1) is used. The stack is constructed by stacking the layers provided on the tantalum substrate. Meanwhile, as disclosed in JP-A 2004-186629, a technique of constructing a light-emitting portion of a double heterogeneous (DH) structure using a pseudo-zinc-type crystal phosphide-boron-based semiconductor layer as a cladding layer is known. A light-emitting layer constituting a light-emitting portion and a cubic phosphide-based semiconductor layer constituting a cladding layer as a barrier layer of the light-emitting layer may be used as the substrate, as disclosed in JP-A HEI 3-87019 The cubic sphalerite crystal is formed by gallium arsenide (GaAs). Even if the substrate is formed of tantalum and the boron nitride-based semiconductor layer is elongated on the surface formed by the (1 1 1 ) crystal plane of the substrate, in any case, the layer grown from -5 to 200805704 (3) It still contains a large amount of crystalline defects such as poor stacking and twinning (T. Udagawa and G. Shimaoka ' J. Ceramic Processing

Res·(大韓民國),第4卷’弟2冊’ 2003年’第80至 83頁)。若基材由六方6H-型SiC形成且單體BP層長在 彼之(〇 . 〇 . 〇 · 1 ·)晶面上,因此長成的層最終含有大量的 • 結晶性缺陷,例如攣晶(τ· Udagawa等人,AppliedRes (Republic of Korea), Vol. 4, Desc. 2, 2003, pp. 80-83. If the substrate is formed of hexagonal 6H-type SiC and the monomer BP layer is on the surface of the (〇. 〇. 〇·1 ·) crystal, the grown layer eventually contains a large amount of crystal defects, such as twins. (τ· Udagawa et al., Applied

Surf.Sci·,(美國),第 244 卷,2004 年,第 28 5 至 288 頁)。即使是使用由含大量此等結晶性缺陷的磷化硼爲底 的半導體層提供的堆疊結構’舉例來說,仍會有無法穩定 製造反向具有高電壓且光電轉換顯示高效率的LED。 長在藍寶石(a -Al2〇3單晶)基材上的 GaN層,舉 例來說,含有大量的結晶性缺陷,例如位錯。即使是以含 大量的結晶性缺陷,例如位錯,的III族氮化物半導體層 用於功能層,例如發光層,仍然會有製成的LED不能提 高反向電壓或增進光電轉換效率的問題。再者,舉例來說 ,藉由作爲電子傳輸層(通道層)的FET結構,含大量 的結晶性缺陷的III族氮化物半導體層由於無法獲得高電 . 子移動性而有不能完全適當地增進高頻性質,例如輸出功 率,的問題。 該傳統磷化硼爲底的半導體材料及III族氮化物半導 體材料製成的薄層含有反相邊界(「晶體電子顯微鏡」, 由Hiroyasu Saka編寫且由Uchida Rokakuho股份有限公 司發行,1997年,11月25日,第1版,第64至65頁) (Y Abe等人,晶體生長期刊(Holland),第283卷, -6- 200805704 (4) 第2005年,第41至47頁)。至今,該化合物半導 置並不一定運用具有優異結晶性性質的半導體層而製 附帶地,在此使用的一詞「反相範疇(APD )」或「 邊界」(APB )表示晶體中的原子排列相關的相偏離 度(半周期)的邊界。二元合金的排序相中經常都會 此邊界。 含有大量反相邊界並顯露不良結晶性之磷化硼爲 半導體層及III族氮化物半導體層將妨礙獲得發光效 異的LED及電氣性質優異且具有充分穩定性的FET 力成果。 即使是鄰接含有大量結晶性缺陷的立方磷化硼爲 半導體層配置歐姆電極,彼等仍有無法穩定地製造反 有高電壓且出現高光電轉換效率的LED之問題,因 於操作該裝置的操作電流(裝置操作電流)將經由結 缺陷,例如攣晶,而招致預期的浅漏。即使是在充當 性缺陷的立方磷化硼爲底切半導體層的表面上配置蕭 接點(Schottky contact),彼等仍有不能穩定地製造 高頻性質的FET之問題,因爲最終將形成遇到大洩 流及不足的擊穿電壓問題的閘極且汲極電流將顯露出 的夾止(pinch-off)性質。 儘管上述已揭示可藉由III族氮化物半導體材料 的包覆層與發光層的異質接面建構短波長可見光或近 線或紫外線LED的發光部分,但是在傳統立方晶體 的底層上形成的磷化硼爲底的半導體層最後將變成含 體裝 造。 反相 180 發生 底的 率優 之努 底的 向具 爲用 晶性 結晶 特基 優於 漏電 不良 形成 紫外 製成 大量 200805704Surf. Sci·, (United States), Vol. 244, 2004, pp. 28 5 to 288). Even in the case of using a stacked structure provided by a phosphide-based semiconductor layer containing a large amount of such crystalline defects, for example, there is still an inability to stably manufacture an LED having a high voltage in reverse and a high efficiency in photoelectric conversion display. A GaN layer grown on a sapphire (a-Al2〇3 single crystal) substrate, for example, contains a large amount of crystal defects such as dislocations. Even if a group III nitride semiconductor layer containing a large amount of crystal defects such as dislocations is used for a functional layer such as a light-emitting layer, there is still a problem that the produced LED cannot raise the reverse voltage or improve the photoelectric conversion efficiency. Further, for example, by the FET structure as an electron transport layer (channel layer), a group III nitride semiconductor layer containing a large amount of crystal defects cannot be sufficiently appropriately promoted because high electric mobility cannot be obtained. The problem of high frequency properties, such as output power. The thin layer of the conventional boron phosphide-based semiconductor material and the group III nitride semiconductor material contains a reverse phase boundary ("Crystal Electron Microscopy", written by Hiroyasu Saka and issued by Uchida Rokakuho Co., Ltd., 1997, 11 25th, 1st edition, pp. 64-65) (Y Abe et al., Journal of Crystal Growth, Vol. 283, -6-200805704 (4) 2005, pp. 41-47). Heretofore, the semiconductor semiconducting does not necessarily use a semiconductor layer having excellent crystallinity, and the term "inverse phase (APD)" or "boundary" (APB) is used herein to mean an atom in a crystal. Arrange the boundaries of the associated phase deviation (half cycle). This boundary is often found in the ordered phase of binary alloys. The phosphide having a large number of inversion boundaries and exhibiting poor crystallinity as a semiconductor layer and a group III nitride semiconductor layer hinders the achievement of the luminescent effect of the LED and the FET force excellent in electrical properties and sufficient stability. Even if cubic phosphide containing a large amount of crystal defects is disposed adjacent to the ohmic electrode of the semiconductor layer, there is still a problem that it is impossible to stably manufacture an LED having a high voltage and high photoelectric conversion efficiency due to operation of the device. The current (device operating current) will cause the expected shallow leakage via junction defects, such as twinning. Even if the cubic boron phosphide serving as a defect is a Schottky contact on the surface of the undercut semiconductor layer, there is still a problem that the FET of the high frequency property cannot be stably manufactured, because eventually it will be formed. The large bleed and insufficient breakdown voltage problems of the gate and the pinch-off nature of the drain current will be revealed. Although it has been disclosed above that the light-emitting portion of the short-wavelength visible or near-line or ultraviolet LED can be constructed by the heterojunction of the cladding layer of the group III nitride semiconductor material and the light-emitting layer, the phosphating formed on the bottom layer of the conventional cubic crystal The boron-based semiconductor layer will eventually become bulk-packed. Inverted 180 occurs at the bottom of the rate of the best of the bottom of the direction of the use of crystalline crystalline special group than the leakage of poor formation of ultraviolet light made a large number of 200805704

結晶性缺陷的晶體層,因爲與該底層沒有充分的晶格配合 。該層’舉例來說,將伴隨,由於與底層的晶格不相配, 最終將變成含大量平面缺陷,例如攣晶及堆疊缺陷,的結 晶性層的問題。在以舉例來說,含大量的結晶性缺陷的磷 化硼爲底的半導體層作爲包覆層而製造該LED的發光部 分的情況下,仍未能達到穩定地製造高亮度的L E D,因爲 發光層用於操作該LED的電流之短路流動的發生將妨礙 用於發光的表面膨脹。 本發明就上述先前技藝的現況而創作並針對下列目標 〇 (η本發明的目標在於提供使磷化硼爲底的半導體 層能含有僅小密度的結晶性缺陷,例如攣晶及堆疊缺陷, 及優異的結晶性,且能藉由使用該磷化硼爲底的半導體層 而增進該裝置的不同性質的半導體裝置。 (2 )本發明另一目的在於提供能獲得由結晶性優異 的半導體層提供之堆疊結構的化合物半導體裝置,即使該 半導體層係供於具有含大量結晶性缺陷且能增進該裝置的 特徵性質的III族氮化物半導體層之基材上亦同。 (3 )本發明另一目的在於提供一化合物半導體裝置 ,該化合物半導體裝置能藉由使用含僅小量反相邊界之具 優異性質的磷化硼爲底的半導體材料或III族氮化物半導 體材料製成的薄層而製造光學性質及電氣性質優異。 (4 )本發明另一目的在於提供能供給磷化硼爲底的 半導體層的半導體裝置,該磷化硼爲底的半導體層能降低 -8 - 200805704 (6) 裝置操作電流洩漏,充當發光裝置時提高光電轉換效率, 提高反向電壓,充當場效電晶體時賦予閘極以高擊穿電壓 ’並改良汲極電流的夾止性質。 (5 )本發明另一目的在於提供能建構包覆層的半導 體發光裝置,該包覆層構成含磷化硼爲底的半導體層的 ' DH結構發光部分,該磷化硼爲底的半導體層具有僅含小 量結晶性缺陷並增進發光性質的優異性質。 【發明內容】 本發明的第一個形態,就完成上述目的的觀點而言, 係有關一種化合物半導體裝置,其係藉著將電極配置在堆 疊結構上建構而成,該堆疊結構係利用六方單晶、形成在 該單晶表面上之磷化硼爲底的半導體層及配置在該磷化硼 爲底的半導體層上且由化合物半導體形成的化合物半導體 層提供,且其特徵爲具有由六方晶體形成並配置該單晶層 的(1.1.-2.0.)晶面形成的表面上的磷化硼爲底的半導體 層。 本發明的第二個形態的特徵爲具有本發明第一個形態 的結構中的單晶層,其係上述由藍寶石(a -Ah 〇3單晶) 形成。 本發明的第三個形態的特徵爲具有本發明第一個形態 的結構中的六方單晶層,其係由六方111族氮化物半導體 形成。 本發明的第四個形態的特徵爲具有本發明第一個形知 -9 - (7) (7)200805704 的結構中的磷化硼爲底的半導體層,其係由具有充當其表 面的(1.1 .-2.0.)晶面之晶體形成。 本發明的第五個形態的特徵爲具有本發明第一個形態 的結構中的磷化硼爲底的半導體層,其係由具有充當其表 面的(1.0 .-1.0.)晶面之晶體形成。 本發明的第六個形態的特徵爲具有本發明第一個形態 的結構中的磷化硼爲底的半導體層內側的(〇·〇.〇. 1.)晶 面,其係實質上平行於該層的厚度方向排列,且該層的η 個(η表示2或更大的正整數)連續性(〇·〇.〇.2.)晶面的 距離實質上等於該單晶層的c-軸長度。 本發明的第七個形態的特徵爲使本發明第六個形態的 結構中的前述(〇 · 0 · 0.2 ·)晶面的數目η爲6或更小。 本發明的第八個形態的特徵爲具有本發明第一個形態 的結構中的前述化合物半導體層,其係由六方半導體材料 形成。 本發明的第九個形態的特徵爲具有本發明第一個形態 的結構中的前述磷化硼爲底的半導體層與前述化合物半導 體層,彼等係沿著充當界面的()晶面接合。 本發明的第十個形態的特徵爲具有本發明第一個形態 的結構中的前述磷化硼爲底的半導體層與前述化合物半導 體層,彼等係沿著充當界面的(1.0.-1.0.)晶面接合。 本發明的第十一個形態的特徵爲具有本發明第九或十 個形態的結構中之構成前述化合物半導體層的(〇·〇.〇. 1. )晶面及構成前述磷化硼爲底的半導體層的(0.0·0·1·) -10- 200805704 (8) 晶面,彼等係實質上平行於前述半導體層的堆疊方向排列 〇 本發明的第十二個形態的特徵爲具有本發明第一個形 態的結構中的前述磷化硼爲底的半導體層,其係由不含反 相邊界的六方磷化硼爲底的半導體形成。 本發明的第十三個形態的特徵爲具有本發明第一個形 態的結構中的前述電極,彼等係配置使得裝置操作電流依 實質上平行於構成前述磷化硼爲底的半導體層的( 〇·〇.0.1·)晶面及構成前述化合物半導體層的(0·0.0.1.) 晶面二者之方向流動。 本發明的第十四個形態的特徵爲具有本發明第一個形 態的結構中的前述電極,彼等係配置使得裝置操作電流依 實質上垂直於構成前述磷化硼爲底的半導體層的( 0 · 0 · 0 · 1 ·)晶面及構成前述化合物半導體層的(〇 . 〇 . 〇 . 1 ·) 晶面之方向流動。 本發明的第十五個形態的特徵爲具有本發明第一個形 態的結構中的前述磷化硼爲底的半導體層,其係由六方單 體磷化硼形成。 本發明的第十六個形態的特徵爲本發明第十四個形態 的結構中的前述六方單體磷化硼的c-軸長度落在0.52奈 米或更大及0.53奈米或更小的範圍內。 根據本發明的第一個形態,因爲藉著將電極配置在堆 疊結構,該堆疊結構係利用六方單晶、形成在該單晶表面 上之磷化硼爲底的半導體層及配置在該磷化硼爲底的半導 -11 - 200805704 (9) 體層上且由化合物半導體形成的化合物半導體層提供,上 建構而成的化合物半導體裝置係供至前述單晶層與由六方 晶體形成的前述磷化硼爲底的半導體層的(1 . 1 . - 2.0 .)晶 面形成的表面上,所以會形成含有僅小密度的結晶性缺陷 ’例如攣晶及堆疊缺陷,及優異的結晶性之磷化硼爲底的 •半導體層。結果,可利用結晶性優異的磷化硼爲底的半導 體層以便提供高性能的半導體裝置。 根據本發明的第二個形態,因爲該六方單晶層係由藍 寶石(a -Al2〇3單晶)形成且該六方磷化硼爲底的半導體 層係配置在由(1·1·-2·0·)晶面形成的藍寶石表面上,所 以可穩定地形成具有平行於該藍寶石的< 1.-1.0.0>方向 取向之<1.-1.0.0>方向且具有充當表面的(1.1.-2.0.)晶 面之六方磷化硼爲底的半導體層。 根據本發明的第三個形態,因爲該六方單晶層係由 ΙΠ族氮化物半導體形成,且利用具有充當其表面的( 1.1.-2.0.)晶面之六方III族氮化物半導體及接合至該III 族氮化物半導體表面而配置之六方磷化硼爲底的半導體層 構成的第一堆疊結構部分,所以該III族氮化物半導體中 所含的位錯可進一步經由該堆疊結構部分的界面擴散而抑 制,並朝磷化硼爲底的半導體層側增殖。另外根據本發明 的第三個形態,構成前述第一堆疊結構部分的六方磷化硼 爲底的半導體層可藉著使六方ΠΙ族氮化物半導體進一步 接合至上側表面而在其上側表面上提供第二堆疊結構部分 。經由進一步提供第二堆疊結構部分,可產生具有進一步 -12- 200805704 (10) 降低的密度之例如穿透位錯等的結晶性缺陷之Π I族氮化 物半導體。本發明的第三個形態,因此,能產製能供給結 晶性優異的半導體層之堆疊結構,並顯露出能製造特徵性 質優異的化合物半導體裝置之功效。 根據本發明的第四個形態,因爲該磷化硼爲底的半導 體層係配置在由該六方單晶層的(1·1·-2.0·)晶面形成與 具有充當其表面的(1.1.-2.0.)晶面形成的表面上,所以 可獲得具有充當(1.1.-2.0.)晶面的表面之六方磷化硼爲 底的半導體層,該表面具有平行於該六方單晶層的 < 1·-1·0·0>方向取向之< 1·-1·〇·〇>方向。上述的磷化硼 爲底的半導體層含有僅小密度的結晶性缺陷,例如攣晶, 且結晶性優異。結果,可利用結晶性優異的六方磷化硼爲 底的半導體層以便穩定地提供高性能的半導體裝置。再者 ,本發明的第四個形態能在構成該六方單晶層的表面之( 1.1.-2.0.)晶面上形成該磷化硼爲底的半導體層,該磷化 硼爲底的半導體層具有接合至該表面的(1.1.-2.0.)晶面 ,具有充當其表面的(1.1.-2.0.)晶面,且具有依垂直方 . 向排列在彼內的(0.0.0.1.)晶面,且也能在構成該磷化 硼爲底的半導體層的表面之(1.1 .-2.0.)晶面上形成由III 族氮化物半導體構成的化合物半導體層,該化合物半導體 層具有接合至該表面的(1.1.-2.0.)晶面,具有充當其表 面的(1 .1 . - 2 · 0 ·)晶面,且具有依垂直方向排列在彼內的 (0.0.0.1.)晶面。本發明的第四個形態,因此,使該磷 化硼爲底的半導體層及該化合物半導體層能各自變成顯示 -13- (11) (11)200805704 幾乎沒有結晶性缺陷,例如反相邊界、堆疊缺陷或攣晶, 的可辨視痕跡且結晶性優異的層,並顯示能製造放射高強 度光的半導體發光裝置之功效。 根據本發明的第五個形態,因爲該六方磷化硼爲底的 半導體層係配置在該六方單晶層的 (1 · 1 · -2.0 ·)晶面形 成的表面上且係由具有充當其表面的(1.0.-1.0.)晶面之 晶體形成,所以可穩定地獲得具有充當表面的(1.0.-1.0. )晶面之六方磷化硼爲底的半導體層,該表面具有平行於 該六方單晶層的< 1·-1.〇.〇>方向取向之< 1·-1·0.0>方向 。該磷化硼爲底的半導體層含有僅小密度的結晶性缺陷, 例如攣晶,且結晶性優異。因此,本發明的第五個形態可 利用由此結晶性優異的六方磷化硼爲底的半導體層而穩定 地提供高性能的半導體裝置。再者,本發明的第五個形態 能在構成該六方單晶層的表面之(1.1.-2 _0·)晶面上形成 六方磷化硼爲底的半導體層,該六方磷化硼爲底的半導體 層具有接合至該表面的(1.0.-1.0.)晶面,具有充當其表 面的(1 · 0 · -1 · 0 ·)晶面,且具有依垂直方向排列在彼內的 (0·0·0·1·)晶面,且也能在構成該磷化硼爲底的半導體 層的表面之(1·〇·-1·〇·)晶面上形成由六方III族氮化物 半導體形成的化合物半導體層,該六方III族氮化物半導 體層具有接合至該表面的(1·1·-2.0.)晶面,具有充當其 表面的(1·1 .-2.0·)晶面,且具有依垂直方向排列在彼內 的(0·0·0·1·)晶面。本發明的第五個形態,因此,使該 磷化硼爲底的半導體層及該化合物半導體層能各自變成顯 -14- 200805704 (12) 示幾乎沒有結晶性缺陷,例如反相邊界、堆疊缺陷或攣晶 ,的可辨視痕跡且結晶性優異的層,並顯示能製造放射高 強度光的半導體發光裝置之功效。 根據本發明的第六個形態,前述磷化硼爲底的半導體 層具有實質上平行於該層的厚度方向排在彼內的( 〇·〇·〇.1.)晶面,且該層的η個(η表示2或更大的正整數 )連續性(〇.〇.0.2.)晶面的距離實質上等於前述單晶層 的c-軸長度。因爲該六方磷化硼爲底的半導體具有與該六 方單晶的優異長期配對性質,此六方磷化硼爲底的半導體 最終含有僅小量結晶性缺陷且結晶性優異。本發明的第六 個形態,因此,能形成含有僅含小量結晶性缺陷且結晶性 優異的六方磷化硼爲底的半導體之化合物半導體裝置,因 此,顯露出增進該化合物半導體裝置的特徵性質之功效。 根據本發明的第七個形態,因爲該磷化硼爲底的半導 體層係形成使得該(0.0.0 · 2 .)晶面的數目η可爲6或更 小,所以所獲得的六方磷化硼爲底的半導體層含有僅小量 不合宜的位錯並具有優異的品質。由此此結構,本發明的 第七個形態顯露出能製造電氣擊穿電壓優異的LED之功 效。 根據本發明的第八個形態,因爲該化合物半導體層係 由六方半導體材料形成,所以利用含有僅小密度的反相邊 界且結晶性優異的III族氮化物半導體層將帶來能製造高 發光強度的短波長可見光LED的功效。 根據本發明的第九個形態,因爲該磷化硼爲底的半導 -15- (13) (13)200805704 體層與該化合物半導體層係形成以便沿著充當界面的( 1 .1 .-2.0.)晶面接合,所以可穩定地形成由不含反相邊界 之六方磷化硼爲底的半導體層及不含反相邊界之六方化合 物半導體層組成的堆疊結構。由於該堆疊結構,因此,本 發明的第九個形態將帶來能穩定製造半導體裝置’例如短 波長可見光LED,其優於光學及電氣性質的功效。 根據本發明的第十個形备’因爲該碟化棚爲底的半導 體層與該化合物半導體層係形成以便沿著充當界面的( 1 . 0 . -1.0 .)晶面接合,所以可穩定地形成由不含反相邊界 之六方磷化硼爲底的半導體層及不含反相邊界之六方化合 物半導體層組成的堆豐結構。本發明的弟十個形恶’因此 ,將帶來能穩定製造,舉例來說,短波長可見光LED,其 由於該堆疊結構而優於光學及電氣性質的功效。 根據本發明的第十一個形態’因爲構成該化合物半導 體層的(〇.〇.0.1.)晶面及構成該磷化硼爲底的半導體層 的(0.0·0.1.)晶面係平行於該化合物半導體的堆疊方向 排列,所以可降低對裝置操作電流流動的阻抗。本發明的 第十一個形態,因此,將帶來能製造較不會遇到電力損耗 問題之顯示高效率光電轉換及高頻場效電晶體(FET )的 LED之功效。 根據本發明的第十二個形態’因爲該磷化硼爲底的半 導體層係由,舉例來說’不含反相邊界的六方磷化硼爲底 的半導體形成,所以經由接合此磷化硼爲底的半導體至化 合物半導體形成的化合物半導體層而得到的產物可有效地 -16- (14) (14)200805704 作爲用於配置不含反相邊界的六方化合物半導體層之材料 層。再者,本發明的第十二個形態將帶來使不含反相邊界 的六方化合物半導體層能作爲,舉例來說,發光層並後繼 地能製造得到高強度發光的半導體裝置之功效。 根據本發明的第十三個形態,因爲該等電極係配置使 得該裝置操作電流可依實質上平行於構成該磷化硼爲底的 半導體層的(0.0.0.1.)晶面及構成該化合物半導體層的 (〇·〇·〇. 1.)晶面二者之方向流動,所以該操作電流可更 平順地流動。本發明的第十三個形態,因此,將帶來能製 造,舉例來說,具有正向小電流的LED之功效。 根據本發明的第十四個形態,因爲該等電極係配置使 得該裝置操作電流可依實質上垂直於構成該磷化硼爲底的 半導體層的(〇.〇.〇.K)晶面及構成該化合物半導體層的 (0 · 0.0.1 .)晶面二者之方向流動,所以該操作電流可流 動同時僅遇到小的阻抗。本發明的第十四個形態,因此, 將帶來能製造熱產生僅造成小輸出損失的高頻功率FET 之功效。 根據本發明的第十五個形態,因爲該磷化硼爲底的半 導體層係由六方單體磷化硼形成,所以僅招致小洩漏電流 的歐姆電極或蕭特基接點習慣上可藉著在含特別小密度結 晶性缺陷的六方單體磷化硼層表面上配置電極而形成。本 發明的第十五個形態,因此,將帶來能便於提供具有高光 電轉換效率的發光裝置或附有高擊穿電壓的閘極並改良汲 極電流的夾止性質的F E T之功效。 -17- (15) (15)200805704 根據本發明的第十六個形態’因爲該磷化硼爲底的半 導體層係由六方單體磷化硼形成’使得該磷化硼的c -軸長 度可落在0.52奈米或更大及〇·53奈米或更小的範圍內, 所以可製造由含有僅小量結晶性缺陷’例如攣晶及堆疊缺 陷,的六方單體磷化硼形成之層(磷化硼層)。再者,藉 著使用結晶性優異的磷化硼層可獲得優異品質的化合物半 導體層。本發明的第十六個形態,因此,能形成含結晶性 優異的磷化硼爲底的半導體層之化合物半導體裝置,並後 繼地帶來增進該化合物半導體裝置的特徵性質之功效。 【實施方式】 本發明係有關一種化合物半導體裝置,其係藉著將電 極配置在堆疊結構上建構而成,該堆疊結構係利用六方單 晶、形成在該單晶表面上之磷化硼爲底的半導體層及配置 在該磷化硼爲底的半導體層上且由化合物半導體形成的化 合物半導體層提供,該化合物半導體裝置在前述單晶層的 (1 · 1 · -2 · 0 ·)晶面形成的表面上提供前述由六方晶體形成 的磷化硼爲底的半導體層。 上述的磷化硼爲底的半導體層係由含有充當基本組成 元素的硼(B )及磷(P )的III至V族化合物半導體材料 形成的晶體層。舉例來說,其係由單體磷化硼(BP )或 聚合物ΒόΡ ( B^P2 )或由例如含充當組成元素的硼(b ) 及硼以外的III族元素之憐化硼鋁(Βι_χΑΐχΡ其中0<X 〈1 )、磷化硼鎵(Bi-xGaxP其中〇 < X < 1 )及磷化硼銦 -18- (16) 200805704 (Bi-χΙηχΡ其中0< X< 1 )等的多單元混合晶體形成 導體層。另外,該半導體層係由混合晶體形成,例如 含充當組成元素的磷(P )以外的V族元素之氮磷化 ΒΝγΡ^γ其中0<Y<1)及砷磷化硼(BPhAsy其中 < 1 )。在含硼(B )以外的III族元素之混合晶體中 硼(B )以外的III族元素的較佳組成比例(上述組 中的元素X)爲〇·4〇或更小。這是因爲組成比例(: 超過0.40時,容易突然地形成非六方而是立方晶體 化硼爲底的半導體層。 以上使用的措辭「由六方晶體形成的磷化硼爲底 導體層」表示含充當基本組成元素的硼(Β)及磷( 之六方晶體層。在考慮因素時,例如晶體生長容易度 成控制複雜度,該六方磷化硼爲底的半導體層較佳地 體磷化硼(Β Ρ )形成。有關六方單晶層的具體例, 證例如藍寶石(α -Α12〇3單晶)及纖維鋅礦型Α1Ν III族氮化物半導體單晶及例如氧化鋅(ΖηΟ )單晶、 型(纖維鋅礦型)或4Η-型或6Η-型碳化矽或其單晶 的塊狀單晶(bulk single crystals)。除此之外,可 具有充當其表面的非極性晶面並配置在例如LiA102 立方晶體上之III族氮化物半導體層作爲例子。尤其 了達到形成本發明預期的六方磷化硼爲底的半導體層 的,最有益地可利用藍寶石(α -氧化鋁單晶)基材。 以上使用的措辭「六方磷化硼爲底的半導體層」 具有充當其單位晶格的六方Bravais晶格的六方磷化 的半 例如 硼( 0 < Y ,該 成式 =X) 的磷 的半 :ρ ) 及組 由單 可引 等的 2H- 層等 引證 等的 是爲 的目 表不 棚爲 -19- (17) (17)200805704 底的半導體材料(「晶體電子顯檢查」,由 Hiroyasu Saka 編寫並由 Uchida Rokakuho 發行,1997 年,11 月 25 曰,第1版,第3至7頁)。該六方磷化硼爲底的半導體 層當中,特別是不含反相邊界的六方磷化硼爲底的半導體 層較佳爲藉由使用用於底層的六方單晶形成。 彼上面配置磷化硼爲底的半導體層的表面較佳地由( 1·1.-2.0·)晶面形成。較佳地,此層較地配置在所謂藍寶 石(1·1·-2·0·)晶面的表面上,換言之Α-平面。藉著使用 的藍寶石(1·1 .-2.0.)晶面(Α-平面),可穩定獲得的並 非普通的閃鋅礦型而是六方磷化硼爲底的半導體層。這可 解釋爲假設構成例如藍寶石的(1.1.-2·0·)晶面等的非極 性晶面中的晶體之原子爲求便於製造具有高共價鍵結性質 的六方磷化硼爲底的半導體層而排列。 前述藍寶石的(1.1.-2.0.)晶面可爲藉由 CZ ( Czochralski)法、Vernouil法或EFG (邊緣界定塡膜生長 )法(舉例來說,參照BRAIAN R· PAMPLIN編著,「晶 體生長」,1975年,Pergamon出版股份有限公司)長成 的塊狀單晶的 A-平面或藉由化學氣相沈積(CVD)法或 藉由例如濺鍍法的物理手段長成的氧化鋁單晶膜的 A-平 面。 前述六方磷化硼爲底的半導體層可藉由例如鹵素法、 氫化物法或有機金屬化學氣相沈積(MOCVD )法等的氣 相生長手段來形成。那可藉由,舉例來說,以三乙基硼( (C2H5)3B)作爲硼(B)來源及三乙基磷((C2H5)3P)作 -20- 200805704 (18) 爲磷(P )來源的Μ O C V D法而形成。那可藉由以三氯化 硼(BCh )作爲硼來源及三氯化磷(PCh )作爲磷(p ) 來源的鹵素CVD而形成。不拘硼來源及磷來源的組合, 用於該六方磷化硼爲底的半導體層的形成的生長溫度較佳 爲700 °C或更高且1200 °C或更低。藉由這些生長手段,可 在由(1·1 .-2.0·)晶面形成的六方單晶層表面上形成具有 充當其表面的(1.1.-2.0.)晶面的六方憐化砸爲底的半導 體層。 若該六方磷化硼爲底的半導體層係形成在,舉例來說 ,藍寶石的(1 · 1 · - 2 · 0 ·)晶面形成的表面上,依特定晶體 取向獨自取向的六方磷化硼爲底的半導體層可藉由先開始 供應磷來源至該表面,後繼地供應例如硼的III族元素原 料而形成。若磷化硼爲底的半導體層的形成係藉由,舉例 來說,時程上在三乙基硼((c2h5)3b )之前供應膦(PH3 )至由藍寶石的(1·1·-2·0·)晶面形成的表面而根據 MOCVD法開始,就可獲得具有平行於該藍寶石的 < 1·-1·0·0·>方向延展之< 1·-1.0·0·>方向的六方磷化硼 爲底的半導體層。有關所形成的磷化硼爲底的半導體層是 六方晶體層與否的問題之硏究及有關該六方單晶層相關的 六方磷化硼爲底的半導體層的取向之硏究可藉由,舉例來 說,例如電子繞射或X-射線繞射等的分析手段來進行。 若該六方磷化硼爲底的半導體層具有由(1.1.-2.0.) 晶面形成的表面及平行於六方單晶層的< 1.-1.0.0. >方向 延展之<1·-1.0·0·>方向,此六方磷化硼爲底的半導體層 -21 - 200805704 (19) 的特徵爲含有僅小量的例如攣晶及堆疊缺陷等的結晶性缺 陷,因爲其係配置在,舉例來說,藍寶石的(1.1.-2.0.) 晶面形成的表面上,且依優於晶格配對性質的方向取向。 特別是若該六方磷化硼爲底的半導體層係由具有與上述表 面的取向關係的單體磷化硼(BP )形成,幾本上不含攣 晶的六方磷化硼爲底的半導體層可在超過與該六方單晶層 的界面約5 0奈米至1 00奈米的距離的區域中獲得。藉由 攣晶密度的降低而降低攣晶造成的邊界密度的情況可藉由 普通斷面TEM技術觀察到。 例如,舉例來說,六方單體BP層製成的半導體層等 結晶性優異的六方磷化硼爲底的半導體層可作爲用於彼上 形成例如,舉例來說,III族氮化物半導體層等結晶性優 異的單晶層的底層。有關依接合到該六方磷化硼爲底的半 導體層的方式有益地配置的III族氮化物半導體層的具體 例,可引證纖維鋅礦型GaN、A1N、氮化銦(InN )及其 混合晶體,換言之氮化鋁—鎵—銦(AlxGaYInzN其中 0SX,Y,ZS1及X + Y + Z=l)。再者,可引證含氮(N)及氮 以外的例如磷(Ρ )及砷(As )等的V族元素的纖維鋅礦 型氮磷化鎵(GaNi-γΡγ其中0SYC1)。 含僅小量的例如攣晶等的結晶性缺陷的六方BP層, 由於結晶性優異,可有效地作爲用於彼上形成具有優異品 質的六方化合物半導體層的底層。有關該六方化合物半導 體層的具體例,可引證2H-型(纖維鋅礦型)或4H-型或 6H-型SiC、ZnO (氧化鋅)、纖維鋅礦型GaN、A1N、氮 -22- 200805704 (20) 化銦(InN )及其混合晶體,換言之氮化鋁一鎵一銦( AlxGaYInzN 其中 〇SX,Y,ZSl 及 X + Y + Z=l)。再者,可引 證含氮(Ν )及氮以外的例如磷(ρ )及砷(a s )等的V 族元素的纖維鋅礦型六方氮磷化鎵(GaN^PY其中〇^γ< 1 ) ° 不限於該化合物半導體發光裝置的蕭特基能障FET 可藉由使用含降低密度的結晶性缺陷且優於結晶性的六方 III族氮化物半導體層作爲電子傳輸層(通道層)而建構 。該通道層可由未摻雜的η-型GaN層形成,亦即由避開 雜質的刻意添加得到的層。含降低密度的結晶性缺陷之六 方ΠΙ族氮化物半導體層可有益地用於製造高頻性質優異 的FET,因爲彼能顯露出高電子移動性。 本發明能實現上述的結構使得該化合物半導體層的( 〇 · 〇 · 〇 · 1 ·)晶面及構成該磷化硼爲底的半導體層的( 〇 . 〇 . 〇 . 1 .)晶面可平行於該化合物半導體層的堆疊方向排 列。 本發明能實現上述的結構使得上述的電極可使該裝置 操作電流依實質上平行於構成該磷化硼爲底的半導體層的 (0 · 0 · 0 · 1.)晶面及構成該化合物半導體層的的(0 · 0 · 0 · 1 · )晶面的方向流動。 , 再者,本發明能實現上述的結構使得上述的電極可使 該裝置操作電流依實質上垂直於構成該磷化硼爲底的半導 體層的(0·0.0.1.)晶面及構成該化合物半導體層的的( 0.0.0.1 :)晶面的方向流動。 -23- 200805704 (21) 再者,本發明能實現上述的結構使得該六方單體磷化 硼的c-軸長度可落在0.52奈米或更大及0.53奈米或更小 的範圍內。 在該六方單晶的非極性表面,例如該(1.1.-2.0.)晶 面,上形成六方B P層的期間,(A )用於生長該B P層的 • 溫度爲750 °C或更高且900°C或更低,及(B )供至該生長 反應系統的磷來源對硼來源的濃度比例(所謂的V/III比 例)係介於250或更高及550或更低的範圍內。再者,( C)若該BP層的生長速率係落在每分鐘20奈米或更大及 每分鐘5 0奈米或更小的範圍內,就可穩定地形成依平行 於增加層厚度方向(相對於前述單晶表面的垂直及堆疊方 向)的速度的方式規則排列之具有(0.0.0.1.)晶面的六 方B P層。 該六方BP層的生長速率,當每單位時間供至該生長 反應系統的硼來源濃度提高時,可實質上正比於前述生長 溫度範圍內的濃度提高。當每單位時間供至該生長反應系 統的硼來源濃度固定時,生長速率將隨生長溫度增高而提 高。若此溫度落到750 °C以下,因爲該硼來源及該磷來源 的熱分解並未充分地進行,所以生長速率突然掉落且無法 達到上述的有益生長速率。 若該六方BP層係,舉例來說,藉由使用膦(PH3 ) 作爲磷來源及三乙基硼((C2H5)3B )作爲硼來源的 MOCVD法形成,此形成係將生長溫度固定在800°C下而 實行,該PH3/(C2H5)3B比例,亦即,供至該生長反應系 -24 - 200805704 (22) 統的原料濃度比例,在400下,且生長速率在每分鐘35 奈米下。若生長溫度超過900 °C,過高將會有可能引發, 舉例來說,組成式B 6P之類的聚合磷化硼晶體突然形成的 缺點。 若生長速率落到每分鐘20奈米或若該速率超過每分 鐘5 0奈米,任一例都將使其難以穩定地獲得由具有計量 化學組成的單體BP形成。若生長速率陡落至不到每分鐘 20奈米,最終形成非計量化學組成的BP層中含有硼(B )比磷(P)更大量的程度將突然增高。若生長速率高到 超過每分鐘50奈米,過高將會有突然增高最終形成的缺 點。 具有實質上計量化學組成並在滿足(A )項中說明的 有益生長溫度及(B)項中說明的有益V/III比例並進一 步滿足(C )項中說明的有益生長速率的生長條件下形成 的六方BP層的六方單位晶格中的c-軸長度(參照,舉例 來說,「供材料硏究員用的晶體電子顯微鏡」,由 Hiroyasu Saka編寫且由 Uchida Rokakuho股份有限公司 發行,1997年,11月25日,第1版,第3至7頁)將落 在0.52奈米或更大且0.53奈米或更小的範圍中。 在具有依垂直方向(該BP層的生長方向,堆疊方向 )幾乎平行關係的方式排列的(〇.0.0.1.)晶面的六方BP 層中,用於操作該裝置的電流(裝置操作電流)可輕易地 依平行於(〇 · 〇 · 〇 · 1 .)晶面的方向流動。第3圖槪略地舉 例說明由垂直於該六方BP層20的c-軸方向的方向觀看 -25- (23) (23)200805704 的磷原子(P )與硼原子(B )的排列情形。附帶地,該 c -軸方向垂直於該(0.0.0.1.)晶面。在垂直於該六方BP 層20的c-軸的方向,如第3圖舉例說明的有間隙20H, 取決於磷原子(P )與硼原子(B )的排列。藉由構成該 六方BP層20的磷與硼原子(p與B ),電流(電子), 通過存在於該(〇·〇.〇·1·)晶面上的間隙20H而無可察覺 地發散之後,將依平行於該(0.0.0.1 .)晶面的方向方便 地流動。 源於上述晶體中的磷及硼原子排列的間隙存在依平行 於(0.0·0.1.)晶面的方向之六方BP層中。在第4圖中, 由平行於該六方BP層20的c-軸方向的方向觀看磷原子 (P )及硼原子(B )晶體的排列。如第4圖舉例說明的 ,在平面視圖中有假設正六邊形的間隔2 0H。在周圍的磷 及硼原子,因此,達到使該裝置操作電流流動而不會被發 散的支配目的。該六方BP層20的c-軸係垂直於第4圖 的頁面。 依垂直於該單晶表面呈形成於含(〇.〇.0.1.)晶面的 六方單晶上的六方BP層的特徵爲含有僅小量之例如攣晶 及堆疊缺陷等的結晶性缺陷。這可解釋爲假設該BP層係 配置在依幾乎平行關係規則排列之六方單晶具有( 〇.〇. 〇. 1.)晶面的小極性表面上。此結構有利於使使該裝 置操作電流依平行或垂直於該六方BP層的(0.0.0.1·)晶 面的方向流動而不會受到攣晶邊界妨礙的目的。攣晶產生 的邊界密度隨攣晶密度的減小而降低的情況可由普通斷面 -26- 200805704 (24) TEM技術觀察到。 該六方單體BP層特別有用於當作用於形成具有極接 近彼之a-軸的晶格常數的III族氮化物半導體層之底層。 該六方單體BP的a-軸測起來約0.319奈米且與該六方 GaN的a-軸相同。在該六方單體BP層上,因此,由於優 異的晶格機械加工而可形成結晶性優異的GaN層。藉由 利用結晶性優異的III族氮化物半導體層,可形成能產生 高強度發光的p-ri接面異質結構。舉例來說,可形成用於 具有充當包覆層的GaN層的LED中的異質接面發光部分 及充當發光層的GaxIni_xN ( 0 < X < 1 )。藉由利用由結 晶性優異的III族氮化物半導體層形成之發光部分,可提 供顯示高亮度且優於例如反向電壓等的電氣性質之化合物 半導體層。 該六方單體BP層特別有用於當作用於形成纖維鋅礦 型六方氮化鋁-鎵的目的之底層,該纖維鋅礦型六方氮化 鋁一鎵(組成式:AlxGaYN其中0SX,Y<1及X + Y=l)具 有極接近該六方單體ΒΡ層之c-軸長度(〇·52奈米至0.53 奈米)的c-軸長度。利用該六方單體ΒΡ層當作底層而形 成的AlxGaYN ( 0<X,YS1及X + Y=l )層由於具有因優異的 晶格機械加工而平行於該六方Β Ρ層的(〇 · 〇 . 〇 . 1 _ )晶面規 則排列的(〇· 〇·〇.1·)晶面而能優於結晶性。 依幾乎平行關係規則排列之具有(0·0·0·1·)晶面的 化合物半導體層,類似於上述的六方ΒΡ層,能使該裝置 操作電流輕易地依該c -軸的方向,亦即垂直於(〇 . 〇 · 〇 · 1 · -27- (25) (25)200805704 )晶面的方向流動。也能使該裝置操作電流輕易地依平行 於(0 · 0 · 0 · 1 ·)晶面的方向流動。具有如此排列的( 0 · 0 · 0.1 ·)晶面的六方化合物半導體層,因此,可作爲預 期形成化合物半導體裝置的功能層。 舉例來說,藉著利用能藉由具有依幾乎平行關係規則 排列之(〇·〇·〇· 1.)晶面而優於結晶性的 AlxGaYN其中 〇<x5Y^l及Χ + Υ = 1 )層,可形成能產生高強度發光的ρ-η 接面異質結構。舉例來說,可形成用於具有充當包覆層的 GaN層的 LED中的異質接面發光部分及充當發光層的 GaxIm-χΝ ( 0< X< 1 )。藉由利用由使該裝置操作電流能 輕易流動且具有依幾乎平行關係規則排列之(0.0 .〇· 1 ·) 晶面的化合物半導體層形成之發光部分,可提供具有反向 低電壓的化合物半導體發光裝置。 當用於附有如上述的六方BP層及形成在彼上的發光 部分之化合物半導體裝置中的堆疊結構設有歐姆電極使該 裝置操作電流可依平行於該六方BP層或構成該發光部分 的六方化合物半導體層(依垂直於該c-軸的方向)的( 〇·〇 .0.1·)晶面的方向流動,可製成對於該裝置操作電流 流動僅提供低抗性的化合物半導體發光裝置。 舉例來說,利用配置在導電性六方A1N基材3 1上的 六方BP層32及配置在彼上且由AlxGaYInzN ( 0<X,Y,ZS1 ,X + Y + Z=l )形成的發光部分33提供的堆疊結構30,如 第5圖中舉例說明的,可藉著將一個極性歐姆電極3 4配 置在該發光部分上且另一個極性歐姆電極35在該基材31 -28- (26) (26)200805704 的反側上而製造。換句話說,此製造係藉由具有數個配置 在該堆疊結構3 0上面及下方的電極使得彼等可夾住該基 材31、六方BP層32及發光部分33而完成。 舉例來說,可製成利用配置在導電性六方GaN基材 41上的六方BP層42及配置在彼上且由 AlxGaYInzN( 0<X?Y?Z<1 ^ X + Y + Z=l )形成的發光部分43提供的堆疊結 構40,如第6圖中舉例說明的,藉著將一個極性歐姆電 極44配置在該發光部分上且另一個極性歐姆電極45在介 於該發光部分43與基材41之間的六方BP層42表面上 以製造能使裝置操作電流僅以低阻抗依垂直於該( 〇 . 〇 . 〇 . 1 .)晶面的方向流動的化合物半導體發光裝置。 代替該化合物半導體發光裝置,蕭特基能障ME SFET 可藉著利用含有僅低密度的結晶性缺陷且優於結晶性的六 方化合物半導體層當作電子傳輸層(通道層)而製造。該 通道層可由,舉例來說,來自避開雜質的刻意添加的高純 度未摻雜η-型GaN層形成。含有僅低密度的結晶性缺陷 的六方III族氮化物半導體層係便於優於高頻性質的 ME SFET的製造,因爲彼能實現高電子移動性。 在製造該ME SFET的時候,爲求確保大飽和電流起見 ,適於使裝置操作電流能依垂直於配置充當電子傳輸層( 通道層)53,該通道層係接合到該基材51上的六方BP 層52表面上,的六方化合物半導體層的(〇·〇·〇·ΐ·)晶面 的方向(平行於c -軸的方向)流動的源極5 5及汲極5 6係 在如第7圖舉例說明的堆疊結構50的電子供應層54表面 -29- (27) 200805704 上依側向相對立。 因此,本發明已發現與六方磷化硼層的結晶性 關的晶體平面的較佳排列並完成,由於此發現的運 低對於裝置操作電流的流動的阻抗且使適當的裝置 其效能。 本發明能建構利用III族氮化物半導體形成六 層並附有第一堆疊結構部分,該第一堆疊結構部分 充當其表面的(1.1.-2.0.)晶面之六方III族氮化 體層及以接合到該III族氮化物半導體層表面的方 的六方磷化硼爲底的半導體層組成,的結構或能建 第二堆疊結構部分的結構,該第二堆疊結構部分裔 族氮化物半導體接合到構成該第一堆疊結構部分的 化硼爲底的半導體層上側表面而得到。 用於形成第一堆疊結構部分的磷化硼爲底的半 係呈η-型或P-型導電層的形態,取決於目標裝置 。另外’就目標的裝置來看,使用π -型或V -型高阻 化硼爲底的半導體層。 連依接合到該III族氮化物半導體層,例如 3C-型、4Η-型或6Η-型碳化矽(SiC)或GaN (參 例來說,T· Udagawa 等人,Phys. Stat. Sol·,0 (7) ’第2027頁),的方式配置的立方閃鋅礦型磷化 的半導體層都能顯露出抑制由構成第一堆疊結構部 化硼爲底的半導體層顯現的位錯穿透的功能。使用 例如具有充當其表面的(1.1.-2.0.)晶面之SiC或 結構有 用,降 能增進 方單晶 由具有 物半導 式配置 構附有 :使 III 六方磷 導體層 的種類 ί几性憐 立方或 照,舉 (2003) 硼爲底 分的磷 配置在 氧化鋅 -30- (28) (28)200805704 (ZnO )等的六方晶體層上的六方磷化硼爲底的半導體層 時,顯露出上述的功能更有效。使用配置在具有充當其表 面的(1 · 1 · - 2 . (K )晶面之111族氮化物半導體層上的六方 磷化硼爲底的半導體層時,顯露出特別地顯著。這是因爲 該晶體系統相同且形成這些晶體的晶面陣列優於配對性質 明確地說,本發明預期提供將ΠΙ族氮化物半導體層 倂入第一堆疊結構部分中的化合物半導體裝置,該第一堆 疊結構部分由具有充當其表面的(1 · 1 . -2.0 .)晶面之六方 III族氮化物半導體層及依接合到該III族氮化物半導體層 表面的方式配置的磷化硼爲底的半導體層組成。 具有充當其表面的(1.1.-2.0.)晶面之六方III族氮 化物半導體層可,舉例來說,形成於由例如不具極性的碳 化矽或GaN單晶等(1·-1.0.2.)晶面形成的表面上。其可 藉由分子束磊晶(MB E )法形成,舉例來說,在藍寶石的 (1·-1·0·2·)晶面(R -平面)上。 構成第一堆疊結構部分的磷化硼爲底的半導體層最佳 地由六方單體ΒΡ形成。該六方單體ΒΡ可形成在底層上 ,該底層係由具有充當其表面的小極性晶面之六方晶體形 成。特別是,較佳爲在具有充當其表面的(1 · 1 · -2 · 0 ·)晶 面之六方III族氮化物半導體層上形成。這是因爲該六方 Β Ρ層可輕易地且穩定地形成在該六方晶體的非極性晶面 上。事實上具有充當其表面的(1·1·-2·0·)晶面之六方 AlxGa^N ( 0SXS1 )層的優點爲能在彼上形成含僅小量 200805704 (29) 的攣晶及堆疊缺陷且優於結晶性的優異品質的六方單體 BP層。這是因爲具有約0.319奈米的軸之六方BP及該六 方AlxGai_xN ( 0SXS1 )實質上具有相同的a-軸晶格常數 〇 含僅小密度的結晶性缺陷且構成第一堆疊結構部分的 六方BP層可藉由前述手段形成以引發該六方磷化硼爲底 的半導體層的氣相生長。無論可能適用於該氣相生長的手 段爲何,該磷化硼爲底的半導體層較佳地具有依平行於作 爲底層的六方III族氮化物半導體層的< 1.-1.0.0>方向取 向之<1.-1.0.0>方向。這兩個層的取向關係可,舉例來 說,根據電子繞射影像來硏究。 接著,爲達在由具有充當其表面的(K1.-2.0.)晶面 之六方晶體形成的底層上形成第一堆疊結構部分的目的而 配置的六方磷化硼爲底的半導體層係賦予抑制由六方晶體 形成的底層中所含之位錯增殖的功能。在由六方 AlxGauN ( 0SXS1 )層及藉著以該層作爲底層而形成的 六方 BP層構成的第一堆疊結構部分中,存在該六方 AlxGai_xN ( 0SXS1 )層中的位錯係藉由含六方BP層的界 面防止依向上的方向的擴散及增殖。由構成第一堆疊結構 部分的六方BP層所顯露的抑制位錯擴散作用可經由第一 堆疊結構部分界面附近區域的斷面TEM觀察而清楚地確 認。 使用含僅小量的攣晶及位錯且配置在具有充當其表面 的(1.1.-2.0.)晶面之六方III族氮化物半導體層中的六 -32- (30) 200805704 方磷化硼爲底的半導體層時,可在彼上面形成含特小密度 之例如擴散位錯等的結晶性缺陷之III族氮化物半導體層 。由此,依循此目的,本發明能任意地建構利用由構成上 述第一堆疊結構部分的磷化硼爲底的半導體層及依接合到 該磷化硼爲底的半導體層的上側表面的方式配置的六方 III族氮化物半導體層構成的第二堆疊結構部分提供的結 構。形成第二堆疊結構部分的III族氮化物半導體層,舉 例來說,爲 AlxGa!_xN ( 0SXS1 )或氮化鎵一銦(組成式 :GaxIm-χΝ ( 0< X< 1 )且註定優於結晶性。 因爲構成第一堆疊結構部分的六方磷化硼爲底的半導 體層係配置在具有充當其表面的(1.1.-2.0·)晶面之六方 III族氮化物半導體層,所以彼同樣地具有充當其表面的 (1.1.-2.0·)晶面。因此,具有充當其表面的(1.1.-2.0. )晶面之六方氮化物半導體層可作爲能有效在彼上形成具 有充當其表面的(1.1·-2·0·)晶面之第二堆疊結構部分的 六方III族氮化物半導體層。以具有充當其表面的(1.1.-2 ·0·)晶面之六方ΒΡ層作爲底層時,舉例來說,該第二 堆疊結構部分中就可穩定地獲得具有充當其表面的(1.1.-2.0 ·)晶面且含僅小密度的結晶性缺陷之六方III族氮化 物半導體層。 使用,聯合六方磷化硼爲底的半導體層,構成第二堆 疊結構部分之具有優異結晶性的III族氮化物半導體層時 ,可在彼上形成優於結晶性的III族氮化物半導體層形成 的Ρ-η接面異質結構。舉例來說,利用充當發光層的η-型 -33- 200805704 (31)A crystalline layer of crystalline defects because there is insufficient lattice coordination with the underlayer. This layer', for example, will accompany the problem of a crystalline layer containing a large number of planar defects, such as twins and stacking defects, due to incompatibility with the underlying crystal lattice. In the case where, for example, a phosphide-based semiconductor layer containing a large amount of crystalline defects is used as a cladding layer to fabricate a light-emitting portion of the LED, it is still not possible to stably produce a high-brightness LED because of luminescence The occurrence of a short circuit flow of the current used to operate the LED will impede surface expansion for illumination. The present invention has been made in view of the state of the art in the prior art described above and is directed to the following objects (n the object of the present invention is to provide a semiconductor layer having a boron phosphide as a base capable of containing only a small density of crystalline defects such as twinning and stacking defects, and A semiconductor device excellent in crystallinity and capable of enhancing different properties of the device by using the phosphide boron-based semiconductor layer. (2) Another object of the present invention is to provide a semiconductor layer which is excellent in crystallinity. The compound semiconductor device of the stacked structure is the same as that of the substrate having a group III nitride semiconductor layer having a large amount of crystal defects and capable of enhancing the characteristic properties of the device. (3) Another aspect of the present invention SUMMARY OF THE INVENTION It is an object of the invention to provide a compound semiconductor device which can be fabricated by using a thin layer made of a boron phosphide-based semiconductor material or a group III nitride semiconductor material having excellent properties with only a small amount of reversed-phase boundaries. It is excellent in optical properties and electrical properties. (4) Another object of the present invention is to provide a semiconductor capable of supplying a semiconductor layer of boron phosphide as a base. The phosphide-boron-based semiconductor layer can reduce the operating current leakage of the device -8 - 200805704 (6), improve the photoelectric conversion efficiency when serving as a light-emitting device, increase the reverse voltage, and give the gate a high voltage when acting as a field effect transistor. The breakdown voltage' improves the pinch-off property of the drain current. (5) Another object of the present invention is to provide a semiconductor light-emitting device capable of constructing a cladding layer, which constitutes a semiconductor layer containing boron phosphide as a base In the DH structure light-emitting portion, the phosphide-boron-based semiconductor layer has an excellent property of containing only a small amount of crystal defects and enhancing luminescent properties. [First aspect of the invention] From the viewpoint of accomplishing the above object Related to a compound semiconductor device constructed by disposing an electrode on a stacked structure using a hexagonal single crystal, a phosphide-borated semiconductor layer formed on the surface of the single crystal, and a configuration Provided on the phosphide-based semiconductor layer and provided by a compound semiconductor layer formed of a compound semiconductor, and characterized by having a hexagonal crystal formed and arranging the single crystal a boron nitride-based semiconductor layer on the surface of the (1.1.-2.0.) crystal plane of the layer. The second aspect of the present invention is characterized by having a single crystal layer in the structure of the first aspect of the present invention, The above is formed of sapphire (a-Ah 〇3 single crystal). The third aspect of the present invention is characterized by having a hexagonal single crystal layer in the structure of the first aspect of the present invention, which is composed of a hexagonal group 111 nitride. Semiconductor formation. A fourth aspect of the present invention is characterized by having a boron phosphide-based semiconductor layer in the structure of the first invention of the present invention-9-(7)(7)200805704, which has The crystal of the surface (1.1.-2.0.) crystal plane is formed. The fifth aspect of the present invention is characterized by having a boron phosphide-based semiconductor layer in the structure of the first aspect of the present invention, which has A crystal of a (1.0 .-1.0.) crystal plane on the surface thereof is formed. A sixth aspect of the present invention is characterized in that, in the structure of the first aspect of the present invention, the phosphide-borated semiconductor layer inside the semiconductor layer is substantially parallel to The layers are arranged in the thickness direction, and the distance of n (n represents a positive integer of 2 or more) continuity of the layer (the 〇·〇.〇.2.) crystal plane is substantially equal to c- of the single crystal layer Shaft length. The seventh aspect of the present invention is characterized in that the number η of the aforementioned (〇 · 0 · 0.2 ·) crystal faces in the structure of the sixth aspect of the present invention is 6 or less. An eighth aspect of the invention is characterized in that the compound semiconductor layer of the structure of the first aspect of the invention is formed of a hexagonal semiconductor material. A ninth aspect of the present invention is characterized in that the phosphide-boron-based semiconductor layer and the compound semiconductor layer in the structure of the first aspect of the present invention are bonded along the () crystal plane serving as an interface. A tenth aspect of the present invention is characterized in that the phosphide-boron-based semiconductor layer and the compound semiconductor layer in the structure of the first aspect of the present invention are along the interface (1.0.-1.0. ) Crystal face bonding. An eleventh aspect of the present invention is characterized in that, in the structure of the ninth or tenth aspect of the present invention, the crystal face of the compound semiconductor layer constituting the compound semiconductor layer and the boron phosphide are formed The semiconductor layer (0.0·0·1·) -10- 200805704 (8) crystal planes, which are substantially parallel to the stacking direction of the semiconductor layers. The feature of the twelfth aspect of the present invention is that The phosphide boron-based semiconductor layer in the structure of the first aspect of the invention is formed of a semiconductor having hexagonal phosphide as a base which does not have a reverse phase boundary. A thirteenth aspect of the present invention is characterized in that the electrodes of the structure of the first aspect of the present invention are arranged such that the device operating current is substantially parallel to a semiconductor layer constituting the phosphide boron base (晶·〇.0.1·) crystal plane and the direction of both (0·0.0.1.) crystal planes constituting the compound semiconductor layer. A fourteenth aspect of the present invention is characterized in that the electrode according to the first aspect of the present invention is configured such that the device operating current is substantially perpendicular to a semiconductor layer constituting the phosphide boron base ( 0 · 0 · 0 · 1 ·) The crystal plane and the direction of the crystal plane constituting the compound semiconductor layer (〇. 〇. 〇. 1 ·). A fifteenth aspect of the invention is characterized in that the phosphide-boron-based semiconductor layer in the structure having the first aspect of the invention is formed of hexagonal mono-boride phosphide. The sixteenth aspect of the present invention is characterized in that the c-axis length of the hexagonal monomer phosphide in the structure of the fourteenth aspect of the present invention falls within 0.52 nm or more and 0.53 nm or less. Within the scope. According to the first aspect of the present invention, since the electrode is disposed in the stacked structure, the stacked structure utilizes a hexagonal single crystal, a phosphide-bored semiconductor layer formed on the surface of the single crystal, and is disposed in the phosphating Boron-based semiconducting -11 - 200805704 (9) provided on a bulk layer and provided by a compound semiconductor layer formed of a compound semiconductor, the above-structured compound semiconductor device is supplied to the aforementioned single crystal layer and the aforementioned phosphating formed by hexagonal crystals On the surface of the boron-based semiconductor layer (1.1 to 2.0) crystal plane, crystal defects containing only a small density, such as twin crystals and stacking defects, and excellent crystallinity phosphating are formed. Boron-based semiconductor layer. As a result, a phosphide boron-based semiconductor layer excellent in crystallinity can be utilized in order to provide a high-performance semiconductor device. According to a second aspect of the present invention, the hexagonal single crystal layer is formed of sapphire (a-Al2〇3 single crystal) and the hexagonal phosphide-based semiconductor layer is disposed by (1·1·-2) ·0·) on the surface of the sapphire formed by the crystal face, so it can be stably formed to have parallel to the sapphire <1.-1.0.0> Direction Orientation <1.-1.0.0> A semiconductor layer having a hexagonal phosphide as a base having a (1.1.-2.0.) crystal plane serving as a surface. According to a third aspect of the present invention, the hexagonal single crystal layer is formed of a lanthanum nitride semiconductor, and is bonded to a hexagonal group III nitride semiconductor having a (1.1.-2.0.) crystal plane serving as a surface thereof a first stacked structure portion composed of a hexagonal phosphide-based semiconductor layer disposed on a surface of the group III nitride semiconductor, so that dislocations contained in the group III nitride semiconductor can further diffuse through an interface of the stacked structure portion On the other hand, it suppresses and proliferates toward the side of the semiconductor layer which is phosphide-based. Further, according to the third aspect of the present invention, the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion can provide the first surface on the upper surface thereof by further bonding the hexagonal bismuth nitride semiconductor to the upper side surface. Two stacking structure parts. By further providing the second stacked structure portion, a Group I nitride semiconductor having a crystalline defect such as a threading dislocation or the like having a further reduced density of -12-200805704 (10) can be produced. According to the third aspect of the present invention, it is possible to produce a stacked structure in which a semiconductor layer having excellent crystallinity can be supplied, and to exhibit the effect of producing a compound semiconductor device having excellent characteristics. According to a fourth aspect of the present invention, the semiconductor layer of the boron phosphide-based lining is formed by the (1·1·-2.0·) crystal plane of the hexagonal single crystal layer and has a surface serving as its surface (1.1. -2.0.) on the surface on which the crystal faces are formed, so that a hexagonal phosphide-based semiconductor layer having a surface serving as a (1.1.-2.0.) crystal plane having a surface parallel to the hexagonal single crystal layer can be obtained. <1·-1·0·0> direction orientation <1·-1·〇·〇> Direction. The above-mentioned semiconductor layer of boron phosphide has a crystal defect of only a small density, for example, twin crystal, and is excellent in crystallinity. As a result, a semiconductor layer having hexagonal phosphide having excellent crystallinity as a base can be utilized in order to stably provide a high-performance semiconductor device. Furthermore, the fourth aspect of the present invention can form the phosphide-boron-based semiconductor layer on the (1.1.-2.0.) crystal plane constituting the surface of the hexagonal single crystal layer, and the phosphide-based semiconductor The layer has a (1.1.-2.0.) crystal plane bonded to the surface, having a (1.1.-2.0.) crystal plane serving as its surface, and having a vertical direction (0.0.0.1.) arranged in the same direction. a crystal face, and a compound semiconductor layer composed of a group III nitride semiconductor having a junction to a (1.1.-2.0.) crystal plane constituting a surface of the phosphide-based semiconductor layer The (1.1.-2.0.) crystal plane of the surface has a (1 .1 . - 2 · 0 ·) crystal plane serving as its surface, and has a (0.0.0.1.) crystal plane arranged in the vertical direction. . According to a fourth aspect of the present invention, the phosphide-based semiconductor layer and the compound semiconductor layer can each become a display-13-(11)(11)200805704 with almost no crystal defects, such as a reverse phase boundary, A layer of a defect or a crystal which is discernible and has excellent crystallinity, and exhibits an effect of producing a semiconductor light-emitting device that emits high-intensity light. According to a fifth aspect of the present invention, the hexagonal phosphide-based semiconductor layer is disposed on a surface formed by the (1 · 1 · -2.0 ·) crystal plane of the hexagonal single crystal layer and has a function as a surface thereof The crystal of the (1.0.-1.0.) crystal plane of the surface is formed, so that a hexagonal phosphide-based semiconductor layer having a (1.0.-1.0.) crystal plane serving as a surface can be stably obtained, the surface having parallel to the Hexagonal single crystal layer <1·-1.〇.〇> Directional orientation <1·-1·0.0> Direction. The semiconductor layer having a phosphide-based phosphide has a crystal defect of only a small density, for example, twin crystal, and is excellent in crystallinity. Therefore, the fifth aspect of the present invention can stably provide a high-performance semiconductor device by using a semiconductor layer having hexagonal phosphide as a base which is excellent in crystallinity. Furthermore, the fifth aspect of the present invention can form a hexagonal phosphide-based semiconductor layer on the (1.1.-2 _0·) crystal plane constituting the surface of the hexagonal single crystal layer, and the hexagonal phosphide is a bottom. The semiconductor layer has a (1.0.-1.0.) crystal plane bonded to the surface, having a (1 · 0 · -1 · 0 ·) crystal plane serving as a surface thereof, and having a vertical alignment in the other (0) ·0·0·1·) crystal plane, and can also form a hexagonal group III nitride semiconductor on the (1·〇·-1·〇·) crystal plane of the surface of the semiconductor layer constituting the phosphide boron base a compound semiconductor layer having a hexagonal group III nitride semiconductor layer having a (1·1·-2.0.) crystal plane bonded to the surface, having a (1·1 .-2.0·) crystal plane serving as a surface thereof, and It has a (0·0·0·1·) crystal plane arranged in the vertical direction. According to a fifth aspect of the present invention, the phosphide-based semiconductor layer and the compound semiconductor layer can each become a display-14-200805704 (12) showing almost no crystal defects such as a reverse phase boundary and a stack defect. Or a layer which is crystallizable and which is excellent in crystallinity, and exhibits an effect of producing a semiconductor light-emitting device which emits high-intensity light. According to a sixth aspect of the present invention, the phosphide-boron-based semiconductor layer has a crystal plane which is substantially parallel to the thickness direction of the layer, and the layer is The distance of n (n represents a positive integer of 2 or more) continuity (〇.〇.0.2.) crystal plane is substantially equal to the c-axis length of the aforementioned single crystal layer. Since the hexagonal phosphide-based semiconductor has excellent long-term matching properties with the hexagonal single crystal, the hexagonal phosphide-based semiconductor finally contains only a small amount of crystal defects and is excellent in crystallinity. According to the sixth aspect of the present invention, it is possible to form a compound semiconductor device including a semiconductor having only a small amount of crystal defects and having excellent crystallinity as a base, and thus exhibiting the characteristic properties of the semiconductor device of the compound. The effect. According to the seventh aspect of the present invention, since the boron nitride-based semiconductor layer is formed such that the number η of the (0.0.0 · 2 .) crystal faces can be 6 or less, the obtained hexagonal phosphating is obtained. The boron-based semiconductor layer contains only a small amount of unsuitable dislocations and has excellent quality. With this configuration, the seventh aspect of the present invention reveals the effect of producing an LED excellent in electrical breakdown voltage. According to the eighth aspect of the present invention, since the compound semiconductor layer is formed of a hexagonal semiconductor material, a group III nitride semiconductor layer containing only a small density of reversed-phase boundaries and excellent in crystallinity can be used to produce high luminous intensity. The efficacy of short-wavelength visible light LEDs. According to a ninth aspect of the present invention, since the boron phosphide-based semiconductive -15-(13)(13)200805704 bulk layer is formed with the compound semiconductor layer so as to serve as an interface (1.1.-2.0) The crystal plane is bonded so that a stacked structure composed of a hexagonal phosphide-based semiconductor layer having no reverse-phase boundary and a hexagonal compound semiconductor layer having no reverse-phase boundary can be stably formed. Due to the stacked structure, the ninth aspect of the present invention will bring about an effect of stably manufacturing a semiconductor device such as a short-wavelength visible light LED which is superior to optical and electrical properties. According to the tenth aspect of the present invention, the semiconductor layer which is the bottom of the dish is formed with the compound semiconductor layer so as to be bonded along the crystal plane (1 . 0 . -1.0 . ) which serves as an interface, so that it can be stably A stacking structure composed of a hexagonal phosphide-based semiconductor layer having no reverse-phase boundary and a hexagonal compound semiconductor layer having no reverse-phase boundary is formed. The ten inventions of the present invention will therefore result in stable manufacturing, for example, short-wavelength visible light LEDs, which are superior to optical and electrical properties due to the stacked structure. According to the eleventh aspect of the present invention, the (0.0.0.1.) crystal plane of the semiconductor layer constituting the compound semiconductor layer and the (0.0.0.1.) crystal plane constituting the phosphide boron-based semiconductor layer are parallel to The compound semiconductors are arranged in the stacking direction, so that the impedance to the current flowing of the device operation can be reduced. According to the eleventh aspect of the present invention, it is possible to produce an LED capable of producing a high-efficiency photoelectric conversion and a high-frequency field effect transistor (FET) which is less likely to suffer from power loss. According to the twelfth aspect of the present invention, since the phosphide-borated semiconductor layer is formed by, for example, a hexagonal phosphide-based semiconductor having no reverse phase boundary, the boron phosphide is bonded via the bonding. The product obtained as the compound semiconductor layer formed of the semiconductor to the compound semiconductor can be effectively -16-(14) (14)200805704 as a material layer for arranging the hexagonal compound semiconductor layer having no reverse phase boundary. Further, the twelfth aspect of the present invention brings about the effect of enabling a hexagonal compound semiconductor layer having no reverse phase boundary as, for example, a light-emitting layer and subsequently capable of producing a semiconductor device having high-intensity light emission. According to the thirteenth aspect of the present invention, the device operating current can be substantially parallel to the (0.0.0.1.) crystal plane of the semiconductor layer constituting the phosphide boron and constitute the compound. The semiconductor layer flows in the direction of both crystal faces, so the operating current can flow more smoothly. The thirteenth aspect of the present invention, therefore, will bring about the effect of being able to manufacture, for example, an LED having a positive low current. According to the fourteenth aspect of the present invention, the device operating current is such that the device operating current is substantially perpendicular to a (〇.〇.〇.K) crystal plane of the semiconductor layer constituting the phosphide boron base. The direction of both (0 · 0.0.1 .) crystal faces constituting the semiconductor layer of the compound flows, so the operating current can flow while encountering only a small impedance. According to the fourteenth aspect of the present invention, it is possible to produce a high-frequency power FET capable of generating heat with only a small output loss. According to the fifteenth aspect of the present invention, since the phosphide-boron-based semiconductor layer is formed of hexagonal monomer phosphide, an ohmic electrode or a Schottky junction which causes only a small leakage current is customarily used. It is formed by disposing an electrode on the surface of a hexagonal monomer phosphide layer containing a particularly small density of crystalline defects. According to a fifteenth aspect of the present invention, there is provided an effect of facilitating the provision of a light-emitting device having high photoelectric conversion efficiency or a gate electrode having a high breakdown voltage and improving the pinching property of the Zener current. -17-(15) (15)200805704 According to the sixteenth aspect of the invention 'because the boron nitride-based semiconductor layer is formed of hexagonal monomer phosphide,' such that the c-axis length of the boron phosphide It can fall within the range of 0.52 nm or more and 〇·53 nm or less, so that it can be formed from hexagonal monomer phosphide containing only a small amount of crystalline defects such as twins and stacking defects. Layer (boron phosphide layer). Further, a compound semiconductor layer of excellent quality can be obtained by using a boron phosphide layer excellent in crystallinity. According to the sixteenth aspect of the present invention, it is possible to form a compound semiconductor device comprising a semiconductor layer having a phosphide-based base excellent in crystallinity, and to further improve the characteristic properties of the compound semiconductor device. [Embodiment] The present invention relates to a compound semiconductor device constructed by disposing an electrode on a stacked structure using a hexagonal single crystal and a boron phosphide formed on the surface of the single crystal. a semiconductor layer and a compound semiconductor layer formed on the phosphide-based semiconductor layer and formed of a compound semiconductor having a (1 · 1 · -2 · 0 ·) crystal plane of the single crystal layer A semiconductor layer based on the aforementioned boron phosphide formed of a hexagonal crystal is provided on the formed surface. The above boron phosphide-based semiconductor layer is a crystal layer formed of a group III to V compound semiconductor material containing boron (B) and phosphorus (P) which serve as basic constituent elements. For example, it is composed of monomeric boron phosphide (BP) or polymer bismuth (B^P2) or by, for example, boron (a) containing a group III element other than boron (b) and boron as a constituent element (Βι_χΑΐχΡ) Where 0 <X 〈1 ), GaN gallium phosphide (Bi-xGaxP where 〇 < X < 1) and boron indium phosphide -18- (16) 200805704 (Bi-χΙηχΡ where 0 < X < 1) A multi-cell mixed crystal forms a conductor layer. Further, the semiconductor layer is formed of a mixed crystal, for example, a nitrogen phosphating γγ Ρ γ containing a group V element other than phosphorus (P) serving as a constituent element. <Y <1) and arsenic phosphide (BPhAsy among them) < 1). The preferred composition ratio of the group III element other than boron (B) in the mixed crystal of the group III element other than boron (B) (element X in the above group) is 〇·4 〇 or less. This is because the composition ratio (: when it exceeds 0.40, it is easy to form a semiconductor layer which is not hexagonal but cubic crystallized boron as a base. The above-mentioned phrase "boron phosphide formed of hexagonal crystals is a bottom conductor layer" means The basic constituent elements of boron (germanium) and phosphorus (the hexagonal crystal layer. When considering factors such as crystal growth ease into control complexity, the hexagonal phosphide-based semiconductor layer is preferably bulk phosphide (Β Ρ) formation. Specific examples of the hexagonal single crystal layer, such as sapphire (α -Α12〇3 single crystal) and wurtzite type Ν1Ν group III nitride semiconductor single crystal and, for example, zinc oxide (ΖηΟ) single crystal, type ( a wurtzite type) or a 4 Η-type or 6 Η-type tantalum carbide or a single crystal bulk single crystals thereof, in addition to which may have a non-polar crystal plane serving as a surface thereof and disposed in, for example, LiA 102 The Group III nitride semiconductor layer on the cubic crystal is exemplified. In particular, to achieve the hexagonal phosphide-based semiconductor layer contemplated by the present invention, a sapphire (α-alumina single crystal) substrate can be utilized most advantageously. The above-mentioned phrase "hexagonal boron nitride-based semiconductor layer" has a hexagonal phosphating half of a hexagonal Bravais lattice serving as its unit lattice, such as boron (0). < Y , the half of the phosphorus of the formula =X): ρ ) and the group of the 2H-layer such as the single quotable, etc., are for the purpose of -19-(17) (17)200805704 The bottom semiconductor material ("Crystal Electron Display", written by Hiroyasu Saka and published by Uchida Rokakuho, 1997, November 25, 1st edition, pp. 3-7). Among the hexagonal phosphide-based semiconductor layers, in particular, a hexagonal phosphide-based semiconductor layer having no reverse phase boundary is preferably formed by using a hexagonal single crystal for the underlayer. The surface of the semiconductor layer on which the boron phosphide is disposed is preferably formed of a (1·1.-2.0·) crystal plane. Preferably, this layer is disposed relatively on the surface of a so-called sapphire (1·1·-2·0·) crystal plane, in other words, a Α-plane. By using the sapphire (1·1 .-2.0.) crystal plane (Α-plane), it is possible to stably obtain a semiconductor layer which is not a common sphalerite type but a hexagonal phosphide-based base. This can be interpreted as assuming that atoms of crystals in a non-polar crystal plane constituting a (1.1.-2·0·) crystal plane such as sapphire are made to facilitate fabrication of hexagonal phosphide boron having high covalent bonding properties. The semiconductor layers are arranged. The (1.1.-2.0.) crystal plane of the aforementioned sapphire may be a CZ (Czochralski) method, a Vernouil method or an EFG (edge-defining film growth) method (for example, referenced by BRAIAN R. PAMPLIN, "Crystal Growth" , 1975, Pergamon Publishing Co., Ltd.) A-plane of a block-shaped single crystal grown or an alumina single crystal film grown by chemical vapor deposition (CVD) or by physical means such as sputtering. A-plane. The hexagonal phosphide-based semiconductor layer can be formed by a gas phase growth means such as a halogen method, a hydride method or an organometallic chemical vapor deposition (MOCVD) method. That can be, for example, using triethylboron ((C2H5)3B) as the boron (B) source and triethylphosphorus ((C2H5)3P) as -20-200805704 (18) as phosphorus (P) The source is formed by the Μ OCVD method. That can be formed by halogen CVD using boron trichloride (BCh) as the boron source and phosphorus trichloride (PCh) as the phosphorus (p) source. The growth temperature for the formation of the hexagonal phosphide-based semiconductor layer is preferably 700 ° C or higher and 1200 ° C or lower, regardless of the combination of the boron source and the phosphorus source. By these growth means, a hexagonal psychic ruthenium having a (1.1.-2.0.) crystal plane serving as a surface thereof can be formed on the surface of the hexagonal single crystal layer formed of the (1·1 .-2.0·) crystal plane. Semiconductor layer. If the hexagonal phosphide-based semiconductor layer is formed on, for example, a surface formed by a (1 · 1 · - 2 · 0 ·) crystal plane of sapphire, hexagonal phosphide which is independently oriented according to a specific crystal orientation The bottom semiconductor layer can be formed by first supplying a source of phosphorus to the surface, and subsequently supplying a source of a group III element such as boron. If the boron phosphide-based semiconductor layer is formed by, for example, supplying phosphine (PH3) to triethylboron ((c2h5)3b) to sapphire (1·1·-2) ·0·) the surface formed by the crystal face and starting from the MOCVD method, it is possible to obtain a parallel to the sapphire <1·-1·0·0·> direction extension <1·-1.0·0·> The hexagonal phosphide boron in the direction is a semiconductor layer as a base. A study on whether the formed boron nitride-based semiconductor layer is a hexagonal crystal layer or not, and an orientation of the hexagonal phosphide-based semiconductor layer associated with the hexagonal single crystal layer may be utilized. For example, an analysis method such as electron diffraction or X-ray diffraction is performed. If the hexagonal phosphide-based semiconductor layer has a surface formed by a (1.1.-2.0.) crystal plane and is parallel to the hexagonal single crystal layer < 1.-1.0.0. > direction extended <1·-1.0·0·> direction, the hexagonal phosphide-based semiconductor layer-21 - 200805704 (19) is characterized by containing only a small amount of crystalline defects such as twins and stack defects, Because it is arranged on, for example, the surface of the sapphire (1.1.-2.0.) crystal plane, and is oriented in a direction superior to the lattice pairing property. In particular, if the hexagonal phosphide-based semiconductor layer is formed of a monomeric boron phosphide (BP) having an orientation relationship with the surface, a hexagonal phosphide-based semiconductor layer containing no twins thereon It can be obtained in a region exceeding a distance of about 50 nm to 100 nm from the interface of the hexagonal single crystal layer. The reduction of the boundary density caused by twinning by the decrease in twin density can be observed by ordinary cross-sectional TEM techniques. For example, a hexagonal phosphide-based semiconductor layer having excellent crystallinity such as a semiconductor layer made of a hexagonal monomer BP layer can be used as a semiconductor layer for forming, for example, a group III nitride semiconductor layer. A bottom layer of a single crystal layer excellent in crystallinity. Specific examples of the group III nitride semiconductor layer which are advantageously disposed in a manner of bonding to the hexagonal phosphide-based semiconductor layer can be cited as wurtzite-type GaN, AlN, indium nitride (InN), and mixed crystals thereof. In other words, aluminum nitride-gallium-indium (AlxGaYInzN where 0SX, Y, ZS1 and X + Y + Z = l). Further, a wurtzite type nitrogen phosphide (Gani-γΡγ, 0SYC1) containing a group V element such as phosphorus (Ρ) and arsenic (As) other than nitrogen (N) and nitrogen may be cited. The hexagonal BP layer containing only a small amount of crystalline defects such as twins is excellent in crystallinity, and can be effectively used as a primer layer for forming a hexagonal compound semiconductor layer having excellent properties on the other. Specific examples of the hexagonal compound semiconductor layer can be cited as 2H-type (wow-zinc-type) or 4H-type or 6H-type SiC, ZnO (zinc oxide), wurtzite-type GaN, A1N, nitrogen-22-200805704 (20) Indium (InN) and its mixed crystal, in other words, aluminum nitride-gallium-indium (AlxGaYInzN wherein 〇SX, Y, ZSl and X + Y + Z = l). Further, it is possible to introduce a wurtzite-type hexagonal nitrogen phosphide (GaN) containing a group V element such as phosphorus (ρ) and arsenic (a s ) other than nitrogen (Ν) and nitrogen (GaN^γ) < 1) ° Schottky barrier FET not limited to the compound semiconductor light-emitting device can be used as an electron transport layer (channel layer) by using a hexagonal group III nitride semiconductor layer containing a crystal defect having a reduced density and superior in crystallinity And construct. The channel layer may be formed of an undoped n-type GaN layer, that is, a layer obtained by intentional addition avoiding impurities. A hexagonal bismuth nitride semiconductor layer containing a reduced density of crystalline defects can be advantageously used for the fabrication of FETs having excellent high frequency properties because they exhibit high electron mobility. The present invention can realize the above-mentioned structure such that the crystal plane of the (S. Arranged in parallel to the stacking direction of the compound semiconductor layers. The present invention can realize the above structure, such that the electrode can make the operating current of the device be substantially parallel to the (0 · 0 · 0 · 1.) crystal plane of the semiconductor layer constituting the phosphide boron as a base and constitute the compound semiconductor The direction of the (0 · 0 · 0 · 1 · ) crystal plane of the layer flows. Furthermore, the present invention can achieve the above structure such that the electrode can cause the device operating current to be substantially perpendicular to the (0·0.0.1.) crystal plane of the semiconductor layer constituting the phosphide boron base and constitute the The direction of the (0.0.0.1:) crystal plane of the compound semiconductor layer flows. Further, the present invention can realize the above structure such that the c-axis length of the hexagonal monomer phosphide can fall within the range of 0.52 nm or more and 0.53 nm or less. During the formation of the hexagonal BP layer on the non-polar surface of the hexagonal single crystal, for example, the (1.1.-2.0.) crystal plane, (A) the temperature for the growth of the BP layer is 750 ° C or higher. The concentration ratio of the phosphorus source to the boron source (so-called V/III ratio) supplied to the growth reaction system at 900 ° C or lower, and (B ) is in the range of 250 or higher and 550 or lower. Furthermore, (C) if the growth rate of the BP layer falls within a range of 20 nm or more per minute and 50 nm or less per minute, it can be stably formed in parallel with the thickness of the added layer. A hexagonal BP layer having a (0.0.0.1.) crystal plane regularly arranged in a manner of (relative to the vertical and stacking directions of the single crystal surface). The growth rate of the hexagonal BP layer, when the concentration of boron source supplied to the growth reaction system per unit time is increased, can be substantially proportional to the increase in concentration within the aforementioned growth temperature range. When the boron source concentration supplied to the growth reaction system per unit time is fixed, the growth rate will increase as the growth temperature increases. If the temperature falls below 750 ° C, the growth rate suddenly drops and the above-mentioned beneficial growth rate cannot be achieved because the boron source and the thermal decomposition of the phosphorus source are not sufficiently performed. If the hexagonal BP layer is formed, for example, by using phosphine (PH3) as a phosphorus source and triethylboron ((C2H5)3B) as a boron source, the formation temperature is fixed at 800°. In the case of C, the ratio of PH3/(C2H5)3B, that is, the ratio of the raw materials supplied to the growth reaction system -24 - 200805704 (22), is 400, and the growth rate is 35 nm per minute. . If the growth temperature exceeds 900 °C, too high a level may occur, for example, a disadvantage of the sudden formation of a polymerized boron phosphide crystal such as B 6P. If the growth rate falls to 20 nm per minute or if the rate exceeds 50 nm per minute, either case makes it difficult to stably obtain a monomer BP having a stoichiometric composition. If the growth rate drops to less than 20 nm per minute, the BP layer that eventually forms a non-metering chemical composition will suddenly increase in a greater amount of boron (B) than phosphorus (P). If the growth rate is as high as more than 50 nm per minute, too high will have a sudden increase in the final formation. Formed under growth conditions having a substantially stoichiometric chemical composition and satisfying the beneficial growth temperature specified in (A) and the beneficial V/III ratios specified in (B) and further satisfying the beneficial growth rate illustrated in (C) The c-axis length in the hexagonal unit lattice of the hexagonal BP layer (see, for example, "Crystal Electron Microscope for Materials Researchers", prepared by Hiroyasu Saka and issued by Uchida Rokakuho Co., Ltd., 1997 , November 25, 1st edition, pages 3 to 7) will fall in the range of 0.52 nm or more and 0.53 nm or less. Current used to operate the device in a hexagonal BP layer having a substantially parallel relationship of the vertical direction (the growth direction of the BP layer, the stacking direction) (device operating current) ) can easily flow in the direction parallel to the (〇· 〇· 〇· 1 .) crystal plane. Fig. 3 is a schematic view showing the arrangement of the phosphorus atom (P) and the boron atom (B) of -25-(23) (23)200805704 viewed from the direction perpendicular to the c-axis direction of the hexagonal BP layer 20. Incidentally, the c-axis direction is perpendicular to the (0.0.0.1.) crystal plane. In the direction perpendicular to the c-axis of the hexagonal BP layer 20, there is a gap 20H as illustrated in Fig. 3, depending on the arrangement of the phosphorus atom (P) and the boron atom (B). By constituting the phosphorus and boron atoms (p and B) of the hexagonal BP layer 20, the current (electron) is undetectably diverged by the gap 20H existing on the crystal plane of the (〇·〇.〇·1·) crystal plane. Thereafter, it will flow conveniently in a direction parallel to the (0.0.0.1.) crystal plane. The gap originating from the arrangement of phosphorus and boron atoms in the above crystal exists in the hexagonal BP layer parallel to the direction of the (0.0.0.1.) crystal plane. In Fig. 4, the arrangement of the crystals of the phosphorus atom (P) and the boron atom (B) is observed in a direction parallel to the c-axis direction of the hexagonal BP layer 20. As illustrated in Figure 4, there is an interval of 20H in the plan view that assumes a regular hexagon. The phosphorus and boron atoms in the surroundings, therefore, achieve the dominating purpose of causing the operating current of the device to flow without being dissipated. The c-axis of the hexagonal BP layer 20 is perpendicular to the page of Figure 4. A hexagonal BP layer which is formed on a hexagonal single crystal having a (〇.〇.0.1.) crystal plane perpendicular to the surface of the single crystal is characterized by containing only a small amount of crystal defects such as twin crystals and stacked defects. This can be explained by assuming that the BP layer is disposed on a small polar surface of a hexagonal single crystal having a (〇.〇. 〇. 1.) crystal plane arranged in an almost parallel relationship. This structure facilitates the purpose of causing the operating current of the device to flow in a direction parallel or perpendicular to the (0.0.0.1·) crystal plane of the hexagonal BP layer without being hindered by the twin boundary. The decrease in the boundary density of twins as the density of twins decreases can be observed by the ordinary section -26-200805704 (24) TEM technique. The hexagonal monomer BP layer is particularly useful as an underlayer for forming a group III nitride semiconductor layer having a lattice constant close to the a-axis. The a-axis of the hexagonal monomer BP was measured to be about 0.319 nm and was the same as the a-axis of the hexagonal GaN. On the hexagonal monomer BP layer, a GaN layer excellent in crystallinity can be formed due to excellent lattice machining. By using a group III nitride semiconductor layer having excellent crystallinity, a p-ri junction heterostructure capable of generating high-intensity light emission can be formed. For example, a heterojunction light-emitting portion in an LED having a GaN layer serving as a cladding layer and GaxIni_xN (0) serving as a light-emitting layer may be formed. < X < 1). By using a light-emitting portion formed of a group III nitride semiconductor layer excellent in crystallinity, a compound semiconductor layer exhibiting high luminance and superior in electrical properties such as a reverse voltage can be provided. The hexagonal monomer BP layer is particularly useful as a bottom layer for the purpose of forming wurtzite-type hexagonal aluminum nitride-gallium, which is composed of hexagonal aluminum nitride-gallium (composition formula: AlxGaYN, where 0SX, Y) <1 and X + Y = 1) The c-axis length having a c-axis length (〇·52 nm to 0.53 nm) which is very close to the hexagonal unit layer. AlxGaYN (0) formed by using the hexagonal monomer layer as a bottom layer The <X, YS1 and X + Y=l) layers are regularly arranged by (〇· 〇. 〇. 1 _ ) crystal plane parallel to the hexagonal ruthenium layer due to excellent lattice machining (〇·〇 · 〇.1·) crystal face can be superior to crystallinity. A compound semiconductor layer having a (0·0·0·1·) crystal plane arranged in an almost parallel relationship rule, similar to the above-described hexagonal germanium layer, enables the operating current of the device to easily depend on the direction of the c-axis, That is, it flows perpendicularly to the direction of the crystal plane (〇. 〇· 〇·1 · -27-(25) (25)200805704). It is also possible to easily operate the current of the device in a direction parallel to the (0 · 0 · 0 · 1 ·) crystal plane. The hexagonal compound semiconductor layer having the (0 · 0 · 0.1 ·) crystal plane thus arranged can be used as a functional layer for predicting formation of a compound semiconductor device. For example, by using AlxGaYN which is superior to crystallinity by having a crystal plane arranged in a nearly parallel relationship (其中·〇·〇· 1.) The <x5Y^l and Χ + Υ = 1 ) layers form a p-η junction heterostructure capable of producing high-intensity luminescence. For example, a heterojunction light-emitting portion in an LED having a GaN layer serving as a cladding layer and a GaxIm-χΝ (0) serving as a light-emitting layer may be formed. < X < 1). A compound semiconductor having a reverse low voltage can be provided by using a light-emitting portion formed of a compound semiconductor layer which is easy to flow by the operation current of the device and has a (0.0.〇·1 ·) crystal plane regularly arranged in an almost parallel relationship Light emitting device. When a stack structure for a compound semiconductor device having a hexagonal BP layer as described above and a light-emitting portion formed thereon is provided with an ohmic electrode, the device operating current may be parallel to the hexagonal BP layer or a hexagonal portion constituting the light-emitting portion The compound semiconductor layer (in the direction perpendicular to the c-axis) flows in the direction of the (〇·〇.0.1·) crystal plane, and can be made into a compound semiconductor light-emitting device which provides only low resistance to the current flow of the device operation. For example, a hexagonal BP layer 32 disposed on the conductive hexagonal A1N substrate 31 is disposed and disposed on the other side by AlxGaYInzN (0 <X, Y, ZS1, X + Y + Z = l) The stacked structure 30 provided by the light-emitting portion 33, as exemplified in Fig. 5, can be disposed by illuminating a polar ohmic electrode 34 A partially upper and another polar ohmic electrode 35 is fabricated on the opposite side of the substrate 31-28-(26)(26)200805704. In other words, the fabrication is accomplished by having a plurality of electrodes disposed above and below the stacked structure 30 such that they can sandwich the substrate 31, the hexagonal BP layer 32, and the light emitting portion 33. For example, a hexagonal BP layer 42 disposed on the conductive hexagonal GaN substrate 41 can be fabricated and disposed on the other side by AlxGaYInzN(0 <X?Y?Z <1 ^ X + Y + Z = l ) The stacked structure 40 provided by the light-emitting portion 43 is formed, as exemplified in Fig. 6, by arranging one polarity ohmic electrode 44 on the light-emitting portion and the other polarity The ohmic electrode 45 is fabricated on the surface of the hexagonal BP layer 42 between the light-emitting portion 43 and the substrate 41 to enable the device operating current to be perpendicular to the (晶. 〇. 〇.1.) crystal plane only with a low impedance. A compound semiconductor light-emitting device that flows in the direction. Instead of the compound semiconductor light-emitting device, the Schottky barrier ME SFET can be manufactured by using a hexagonal compound semiconductor layer containing only a low-density crystalline defect and superior in crystallinity as an electron transport layer (channel layer). The channel layer can be formed, for example, by a highly pure undoped η-type GaN layer deliberately added to avoid impurities. A hexagonal group III nitride semiconductor layer containing only a low density of crystalline defects facilitates the fabrication of ME SFETs superior to high frequency properties because it enables high electron mobility. In the manufacture of the ME SFET, in order to ensure a large saturation current, it is suitable for the device operating current to function as an electron transport layer (channel layer) 53 perpendicular to the configuration, the channel layer being bonded to the substrate 51. On the surface of the hexagonal BP layer 52, the source 5 5 and the drain 5 6 of the hexagonal compound semiconductor layer in the direction of the crystal plane (parallel to the c-axis direction) are as follows. The electron supply layer 54 of the stacked structure 50 illustrated in Fig. 7 is surface-biased on the surface -29-(27) 200805704. Accordingly, the present inventors have discovered a preferred arrangement and completion of the crystal plane associated with the crystallinity of the hexagonal boron phosphide layer, as this has been found to impede the impedance of the flow of the device operating current and to enable proper device performance. The present invention can construct a hexagonal group III nitride layer formed by using a group III nitride semiconductor and having a first stacked structure portion serving as a (1.1.-2.0.) crystal plane of the surface thereof. a hexagonal phosphide-based semiconductor layer bonded to the surface of the group III nitride semiconductor layer, or a structure capable of forming a second stacked structure portion, the second stacked structure partially bonded to the nitride semiconductor The boron-based bottom surface of the semiconductor layer constituting the first stacked structure portion is obtained. The form in which the boron phosphide-based base for forming the first stacked structure portion is an η-type or P-type conductive layer depends on the target device. Further, in view of the target device, a π-type or V-type high-resistance boron-based semiconductor layer is used. The bonding is bonded to the group III nitride semiconductor layer, for example, 3C-type, 4Η-type or 6Η-type tantalum carbide (SiC) or GaN (for example, T. Udagawa et al., Phys. Stat. Sol., 0 (7) 'p. 2027), the cubic zinc-phosphorus-type phosphatized semiconductor layer configured in such a manner as to exhibit dislocation penetration which is manifested by the semiconductor layer constituting the first stacked structure. Features. It is useful to use, for example, SiC or a structure having a (1.1.-2.0.) crystal plane serving as its surface, and the energy-saving enhancement single crystal is attached by a semi-conducting configuration: a type of a hexagonal phosphorus conductor layer. Pity Cube or Photograph, (2003) When the boron-based phosphorus is disposed in a hexagonal phosphide-based semiconductor layer on a hexagonal crystal layer such as zinc oxide-30-(28)(28)200805704 (ZnO), It is more effective to reveal the above functions. The use of a hexagonal phosphide-based semiconductor layer disposed on a group 111 nitride semiconductor layer of (1 · 1 · - 2 . (K) crystal plane serving as its surface is particularly remarkable. This is because The crystal system is identical and the crystal face array forming the crystals is superior to the pairing property. Specifically, the present invention contemplates providing a compound semiconductor device in which a bismuth nitride semiconductor layer is doped into the first stacked structure portion, the first stacked structure portion The composition is composed of a hexagonal group III nitride semiconductor layer having a (1·1 . -2.0 .) crystal plane serving as a surface thereof and a boron nitride-based semiconductor layer disposed to be bonded to the surface of the group III nitride semiconductor layer. A hexagonal group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as a surface thereof may be formed, for example, by, for example, a non-polarized tantalum carbide or a GaN single crystal (1·-1.0.2). .) on the surface formed by the crystal face. It can be formed by molecular beam epitaxy (MB E ) method, for example, on the (1·-1·0·2·) crystal plane (R-plane) of sapphire The bottom of the phosphide phosphide that constitutes the first stacked structure portion The bulk layer is preferably formed of a hexagonal monomer ruthenium which may be formed on the underlayer which is formed of a hexagonal crystal having a small polar crystal face serving as a surface thereof. In particular, it preferably has a function as a hexagonal crystal thereof. The hexagonal group III nitride semiconductor layer of the (1 · 1 · -2 · 0 ·) crystal plane is formed on the surface. This is because the hexagonal germanium layer can be easily and stably formed on the non-polar crystal plane of the hexagonal crystal. The fact that the hexagonal AlxGa^N ( 0SXS1 ) layer having a (1·1·-2·0·) crystal plane serving as its surface has the advantage of forming a twin crystal containing only a small amount of 200805704 (29) on the other surface. And a hexagonal monomer BP layer which is superior in defect and superior in crystallinity. This is because the hexagonal BP having an axis of about 0.319 nm and the hexagonal AlxGai_xN (0SXS1) have substantially the same a-axis lattice constant. A hexagonal BP layer containing only a small density of crystalline defects and constituting a portion of the first stacked structure may be formed by the foregoing means to initiate vapor phase growth of the hexagonal phosphide-based semiconductor layer, regardless of possible application to the gas phase. What is the means of growth, the boron phosphide is the bottom The semiconductor layer preferably has parallel as by a hexagonal Group III nitride semiconductor layer underlying the <1.-1.0.0> Directional direction <1.-1.0.0> Direction. The orientation relationship of the two layers can, for example, be based on electron diffraction images. Next, the hexagonal phosphide-based semiconductor layer system is provided for the purpose of forming the first stacked structure portion on the underlayer formed of the hexagonal crystal having the (K1.-2.0.) crystal plane serving as the surface thereof. The function of dislocation proliferation contained in the underlayer formed by hexagonal crystals. In the first stacked structure portion composed of a hexagonal AlxGauN (0SXS1) layer and a hexagonal BP layer formed by using the layer as a bottom layer, there is a dislocation in the hexagonal AlxGai_xN (0SXS1) layer by a hexagonal BP layer The interface prevents diffusion and proliferation in the upward direction. The dislocation diffusion inhibiting effect exhibited by the hexagonal BP layer constituting the first stacked structure portion can be clearly confirmed by the cross-sectional TEM observation of the region near the interface of the first stacked structure portion. Six-32-(30) 200805704 cubic boron phosphide containing only a small amount of twins and dislocations and disposed in a hexagonal group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as its surface In the case of the underlying semiconductor layer, a group III nitride semiconductor layer containing a crystalline defect such as a diffusion dislocation such as a diffusion dislocation may be formed on the other surface. Thus, in accordance with the purpose, the present invention can be arbitrarily constructed by using a phosphide-based semiconductor layer constituting the first stacked structure portion and an upper surface of the semiconductor layer bonded to the phosphide-based semiconductor layer. The structure of the second stacked structure portion of the hexagonal group III nitride semiconductor layer is provided. The group III nitride semiconductor layer forming the second stacked structure portion is, for example, AlxGa!_xN (0SXS1) or gallium nitride-indium (composition formula: GaxIm-χΝ (0) < X < 1 ) and destined to be superior to crystallinity. Since the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion is disposed on the hexagonal group III nitride semiconductor layer having the (1.1.-2.0·) crystal plane serving as the surface thereof, the same has the same as Surface (1.1.-2.0·) crystal plane. Therefore, a hexagonal nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as a surface thereof can be effectively formed as a second stack having a (1.1·-2·0·) crystal plane serving as a surface thereof. A hexagonal group III nitride semiconductor layer of a structural portion. When the hexagonal germanium layer having the (1.1.-2 ·0·) crystal plane serving as its surface is used as the underlayer, for example, the second stacked structure portion can be stably obtained to have its surface (1.1.- 2.0 ·) A hexagonal group III nitride semiconductor layer having a crystal face and containing only a small density of crystalline defects. When a semiconductor layer having hexagonal phosphide as a base is used to form a group III nitride semiconductor layer having excellent crystallinity in a second stacked structure portion, a group III nitride semiconductor layer which is superior in crystallinity can be formed thereon. The Ρ-η junction heterostructure. For example, using η-type as a light-emitting layer -33- 200805704 (31)

GaxIm-xN ( O^X^l )層及充當包覆層的 n•型和卜型 AlxGa^xN ( O^X^l )層提供的p-n接面異質結構能形成用 於LED的雙異質(DH)接面發光部分。上述的發光層可 由單一層形成或可在單一或多量子井結構中。在任何情況 下,構成第二堆疊結構部分之優異結晶性的ΠΙ族氮化物 半導體層的運用能形成含優於結晶性的III族氮化物半導 體層的發光部分並因此能提供顯示高亮度且優於例如反向 電壓等的電氣性質的化合物半導體發光部分。 藉由使用組成與構成第二堆疊結構部分的六方III族 氮化物半導體層不同的III族氮化物半導體層而形成被配 置在含僅小密度的結晶性缺陷且構成第二堆疊結構部分的 六方III族氮化物半導體層上的p-n接面異質結構時,可 抑制含兩種組成不同的III族氮化物半導體層的界面中的 結晶性缺陷增殖。結果,該發光部分可利用結晶性更優異 的III族氮化物半導體層形成。據推測組成不同的III族 氮化物半導體層的堆疊導致引發這些半導體層中的應力且 此應力將參與這些半導體層的結晶性。 有關藉由堆疊組成不同的III族氮化物半導體層而形 成的p-n接面異質結構,P-η接面DH結構的發光部分可 利用纖維鋅礦型η-型GaN形成構成第二堆疊結構部分的 III族氮化物半導體層並在彼上依下列順序堆疊具有充當 下包覆層之0.20的銘組成之η -型Al〇.2〇Ga〇.8()層量子井結 構、充當井層的η-型Gao.9oIno.ioN層及充當能障層的n-型 AluoGauoN層的發光層及充當上包覆層之 p-型 -34- (32) 200805704The GaxIm-xN (O^X^l) layer and the n-type and Bu-type AlxGa^xN (O^X^l) layers serving as cladding layers provide a pn junction heterostructure that can form a double heterogeneity for LEDs ( DH) junction light emitting part. The luminescent layer described above may be formed from a single layer or may be in a single or multiple quantum well structure. In any case, the use of the bismuth nitride semiconductor layer constituting the excellent crystallinity of the second stacked structure portion can form a light-emitting portion containing a group III nitride semiconductor layer superior in crystallinity and thus can provide high brightness and excellent display A compound semiconductor light-emitting portion of an electrical property such as a reverse voltage. A hexagonal III disposed at a portion containing a crystal defect of only a small density and constituting a second stacked structure portion is formed by using a group III nitride semiconductor layer different in composition from a hexagonal group III nitride semiconductor layer constituting the second stacked structure portion. When the pn junction heterostructure on the group nitride semiconductor layer is formed, it is possible to suppress the propagation of crystal defects in the interface of the group III nitride semiconductor layer having two different compositions. As a result, the light-emitting portion can be formed using a group III nitride semiconductor layer having more excellent crystallinity. It is speculated that the stacking of the different group III nitride semiconductor layers results in the initiation of stress in these semiconductor layers and this stress will participate in the crystallinity of these semiconductor layers. Regarding the pn junction heterostructure formed by stacking different group III nitride semiconductor layers, the light-emitting portion of the P-η junction DH structure may be formed of wurtzite-type η-type GaN to form a second stacked structure portion. The group III nitride semiconductor layer is stacked on the other side in the following order: η-type Al〇.2〇Ga〇.8() layer quantum well structure having a composition of 0.20 serving as a lower cladding layer, serving as a well layer η a type of Gao.9oIno.ioN layer and a light-emitting layer of an n-type AluoGauoN layer serving as an energy barrier layer and a p-type-34- (32) 200805704 serving as an upper cladding layer

Al〇.G5Ga().95N層而獲得。在此使用的; III族氮化物半導體層」表示組成元素 有相同組成成分及不同組成比例的晶體 利用組成與構成第二堆疊結構部分 物半導體層不同的層,僅形成接合到構 分的六方III族氮化物半導體層表面的 晶性缺陷增殖的作用。再者,如含有碧 族元素的III族氮化物半導體層之以上 構中,藉由形成構成該p-n接面DH結 一步增進用於抑制結晶性缺陷的增殖之 中,由根據本發明第二堆疊結構部分5 族氮化物半導體層形成的P-n接面DH 顯示高亮度且優於例如反向電壓等的電 導體發光部分。 代替該化合物半導體發光裝置,可 度的結晶性缺陷且構成第二堆疊結構部 化物半導體層上的η-型III族氮化物半 特基能障FET的電子傳輸層(通道層 用,舉例來說,避開雜質的刻意添加 η-型 GaxIm-χΝ ( 0SXS1 )而形成。配 結晶性缺陷且構成第二堆疊結構部分的 半導體層上的η-型III族氮化物半導體 出高電子移動性。上述本發明的結構’ 性質優異的FET。 措辭「組成不同的 不同的晶體層或具 層。 的六方ΠΙ族氮化 成第二堆疊結構部 層,可達到抑制結 !乎不同組成的in 例示的發光部分結 構的個別層,可進 作用。在任何情況 :優異結晶性的III 結構能穩定地提供 氣性質之化合物半 以配置在含僅小密 分的六方III族氮 導體層作爲用於蕭 )。此通道層可利 得到的層未摻雜的 置在含僅小密度的 六方III族氮化物 層,因此,可顯露 因此,能提供高頻 -35- 200805704 (33) 本發明,在上述的發明結構中,能利用具有充當其表 面的(1·1. _2·0·)晶面的晶體形成上述的磷化硼爲底的半 導體層。 本發明,在上述的發明結構中,能利用具有充當其表 面的(1 . 0 · -1 · 0 ·)晶面的晶體形成上述的磷化硼爲底的半 導體層。 本發明,在上述的發明結構中,能利用六方半導體材 料形成上述的化合物半導體層。 本發明,在上述的發明結構中,使上述磷化硼爲底的 半導體層及上述化合物半導體層能依接合到充當界面的( 1·1·_2·0·)晶面的方式形成。 本發明,在上述的發明結構中,使上述磷化硼爲底的 半導體層及上述化合物半導體層能依接合到充當界面的( 1·0·-1·0·)晶面的方式形成。 本發明,在上述的發明結構中,能形成含有不含反相 邊界的六方磷化硼爲底的半導體之上述磷化硼爲底的半導 體層。 特別是,用於上述本發明結構的六方磷化硼爲底的半 導體層較佳地由前述六方材料單晶塊狀或單晶層形成並配 置在具有充當其表面的(1.1.-2.0.)晶面或(1.0.-1.0.) 晶面且具有依垂直於該表面的方向排列的(0.0.0 · 1 .)晶 面之材料上。較佳爲設置,舉例來說,在由該纖維鋅礦型 六方 GaN的(1·1·-2·0·)晶面形成的表面上,或在由( 1·〇·-1·〇·)晶面形成的表面上。另外,較佳爲設置,舉例 -36- (34) 200805704 來說,在氮化鋁(AIN )單晶基材或單晶層的(ι.1-2 0. )晶面形成的表面上,或在由(1.0.-1.0·)晶面形成的表 面上。 舉例來說’具有(1·1 .-2 ·0·)晶面作爲其表面之六方 GaN單晶層或A1N單晶層可藉由如使用固體來源或氣體 來源之例如MBE法等氣相生長方式,形成於例如具有( 1 .1 .-0.2.)晶面作爲其表面之藍寶石所形成的底層上。 該六方單晶層由(1.1.-2.0·)晶面或(mo·)晶 面形成的表面具有依垂直於該表面的方向規則地排列的( 0 · 0 · 0.1 ·)晶面。這個事實將參照第1 3圖中槪略地舉例說 明的六方材料片段的晶體結構解釋於下。 第1 3圖爲舉例說明接合區域中的原子排列的槪略圖 。參照第1 3圖,六方化合物半導體材料丨〇與六方磷化硼 爲底的半導體材料1 2依相互接合的方式形成且該纖維鋅 礦型六方化合物半導體材料10具有垂直於由其(1.0.-1.0.)晶面形成的表面l〇a所形成的(〇·〇·〇·ι·)晶面11 。在該(〇· 0.0.1 ·)晶面1 1中,交替地形成具有規則排列 的ΠΙ族元素的II族原子平面1 1 a及具有規則排列的ν族 元素的V族原子平面1 1 b。在具有構成該六方化合物單晶 1 0之交替地規則暴露出來的數排由幾乎不同元素形成的 原子平面11a及lib之表面10a上,同樣爲了達到使含有 例如硼(B )等的III族原子的原子平面與含有例如磷(p )等的 V族原子的原子平面交替地規則排列的目的,可 有效地形成沒有反相邊界的磷化硼爲底的半導體層1 2。 -37- 200805704 (35) 附帶地,本發明中使用的措辭「不含反相邊界」或「 沒有反向邊界」表示事實上該等邊界存在5個邊界/平方 公分或更小的密度,包括沒有反相邊界的情況。 沒有反向邊界的六方磷化硼爲底的半導體層可藉由前 述六方磷化硼爲底的半導體層的氣相生長手段形成。在藉 ‘ 由MOCVD法實行此形成的情況中,舉例來說,生長的溫 度較佳爲750°C或更高及120(TC或更低。若溫度落到750 °C以下,因爲那將妨礙硼來源及磷來源進行充分地熱分解 ,所以證明不利於促進沒有反向邊界的六方磷化硼爲底的 半導體層的生長。在超過1200 °C的溫度下生長證明並不 合宜,因爲缺乏形成六方磷化硼爲底的半導體層的晶面而 造成獲得沒有反向邊界的單晶層時的阻礙。特別是招致穩 定地形成沒有反向邊界的六方磷化硼爲底的半導體層的困 難,因爲其'將引起缺乏由構成六方磷化硼爲底的半導體層 的磷(P )形成的原子平面。 接著,在藉由MOCVD法形成沒有反相邊界的六方磷 化硼爲底的半導體層時,爲達形成P-型導電層的目的, 供至該生長系統的磷(P )來源對硼(B )來源的比例( 所謂的V/III比例)較佳爲120或更低。再者,該V/III 比例較佳爲介於2 0或更高及5 0或更低。接著,爲達形成 顯露η-型傳導度之沒有非相邊界的六方磷化硼爲底的半 導體層的目的,上述的V/III比例較佳爲150或更高。再 者,該V/III比例較佳爲400或更高及1 400或更低。 使用具有充當其表面的(1·1·-2·0·)晶面之六方單晶 -38- (36) 200805704 層時,該表面能在彼上形成經由其(1.1.-2.0.)晶面接合 到該表面的六方磷化硼爲底的半導體層,藉由傳承在該六 方單晶表面上的原子排列而以磊晶的方式生長,且能具有 充當其表面的(1.1.-2 ·0·)晶面。使用具有充當其表面的 (1.0 . -1 . 0 ·)晶面之六方單晶層時,該表面能在彼上形成 • 經由其 (1 . 〇 . -1 . 〇 .)晶面接合到該表面的六方磷化硼爲 底的半導體層,藉由傳承在該六方單晶表面上的原子排列 而以磊晶的方式生長,且能具有充當其表面的(1.0.-1.0. )晶面。 爲了參照第1 3圖的槪略圖而附加解釋,在具有充當 其表面12a的()晶面或(1.0.-1.0·)晶面之六 方磷化硼爲底的半導體材料12的內側,(0.0.0.1.)晶面 13係依垂直於其表面12a而規則地排列。該(0.0.0.1.) 晶面1 3交替地形成在具有規則排列的III族元素硼(B ) 之III族原子平面13a及具有規則排列的V族元素硼(P )之V族原子平面13b內部。也就是說,在由(1.1.-2.0. )晶面或(1.0.-1.0.)晶面形成的六方磷化硼爲底的半導 體層12的表面12a中,構成該(0.0.0.1.)晶面13的III 族原子平面1 3 a及V族原子平面1 3 b係交替重複地規則排 列。 結果,具有充當其表面的(1.1·-2·〇·)晶面或(1.0._ 1.0.)晶面之六方III族氮化物半導體層有效地當作,舉 例來說,爲達形成沒有反相邊界的六方III族氮化物半導 體層的目的之底層。 -39- (37) 200805704 在具有充當其表面的(1.1.-2.0.)晶面之六方 爲底的半導體層上,可形成經由其(1 · 1 · - 2 · 0 .)晶 到該表面且具有充當其表面的非極性(1 . 1 . -2.0 .) 六方III族氮化物半導體層。在此使用的措辭「非 面」表示隨附於該III族原子平面上的電荷與及隨 V族原子平面上的電荷由於ΙΠ族原子平面與V族 面暴露等量所以表面及極性相抵消而中和之表面。 在以接合到具有充當其表面的(1 . 1 · - 2 · 0 .)晶 有充當其表面的非極性(1 · 1 . - 2 · 0 ·)晶面之六方磷 底的半導體層的方式配置的六方化合物半導體層內 該(0 · 0 · 0 · 1 ·)晶面係依垂直於該表面的方向規則 。再者,彼等係平行於該六方磷化硼爲底的半導體 的(0.0.0.1·)晶面。此接合的方法,因此,能以 方式形成含極小量反相邊界且含僅小量的攣晶及堆 且優於結晶性之優異品質的六方化合物半導體層。 接著,在具有充當其表面的(1.0.-1.0.)晶面 磷化硼爲底的半導體層上,可形成經由其(1.0·-1 面接合到該表面且具有充當其表面的非極性(1 .〇· 晶面的六方III族氮化物半導體層。 在以接合到具有充當其表面的(1.0.-1.0.)晶 有充當其表面的非極性(1 . 0 . -1. 0.)晶面之六方磷 底的半導體層的方式配置的六方化合物半導體層內 該(0.0.0.1.)晶面係依垂直於該表面的方向規則 。再者,彼等係平行於該六方磷化硼爲底的半導體 磷化硼 面接合 晶面的 極性表 附於該 原子平 面且具 化硼爲 部中, 地排列 層內部 接合的 疊缺陷 之六方 • 〇 ·)晶 -1.0.) 面且具 化硼爲 部中, 地排列 層內部 -40- 200805704 (38) 的(0 · 0.0 · 1 ·)晶面。此接合的模式,因此,能以接合的 方式形成含極小量反相邊界且含僅小量堆疊缺陷且優於結 晶性之優異品質的六方化合物半導體層。 特別是,該六方磷化硼爲底的半導體層有益的是利用 單體磷化硼(B P )層形成。這是因爲在此情況中所需的 組成元素數目與形成上述磷化硼爲底的多重混合晶體的情 況相比係少的,且因此可便利地實行該形成作用而不會帶 來控制組成元素的組成比例時遇到的複雜度。再者,選擇 利用氮化錫一鎵(組成式:AlxGai-xN(O^X^l)形成該 六方化合物半導體層,因此形成的A1XG a nN層由於磷化 硼與氮化鋁一鎵之間良好晶格常數配對而含僅小量的結晶 性缺陷。 舉例來說,經由其(1.1.-2.0.)晶面接合到具有充當 其表面的(1.1.-2.0.)晶面之BP層且具有充當其表面的 (1 . 1 .-2.0.)晶面之GaN層幾乎沒有可察覺的攣晶跡象。 所製成的層具有優異的品質且沒有反相邊界。即使是經由 其(1 · 0 · -1 · 0 .)晶面接合到具有充當其表面的(1 · 〇 · -1 · 〇 . )晶面之BP層且具有充當其表面的(1·〇·-1·〇·)晶面之 Α1Ν層顯示幾乎沒有可察覺的攣晶跡象並向外作爲沒有反 相邊界的優異品質層也是一樣。 該六方磷化硼爲底的半導體層及六方化合物半導體層 內存在反相邊界,舉例來說,可藉由目視觀察斷面的 ΤΜΕ影像而分辨。在本發明中使用的措辭「沒有反相邊 界」,舉例來說,表示事實上邊界的密度爲5個邊界/平 -41 - (39) (39)200805704 方公分或更小,包括沒有反相邊界的情況。藉由利用 TEM的電子繞射法,可硏究該六方磷化硼爲底的半導體 層及/、方化合物半導體層內存在反相邊界內的攣晶及堆疊 缺陷的存在。當電子繞射影像顯示沒有攣晶造成的額外點 或堆置缺陷造成的擴散發散的可察覺跡象時,本發明將採 行聲稱沒有攣晶或堆疊缺陷的法則。 例如,舉例來說,具有例如上述非極性晶面的六方 III族氮化物半導體層等的六方化合物半導體層可有效地 作爲用於形成能引發高強度的可見光帶或紫外光帶發光的 氮化物半導體發光裝置的發光部分。也可有效地作爲用於 製造場效電晶體(FET )的電子傳輸層(通道層)或電子 供應層或作爲用於形成例如源或汲極等的歐姆電極的接觸 層。 本發明’在上述的發明結構中,能使以上的磷化硼爲 底的半導體層內部形成而使該(O.O.O.i·)晶面可實質上 平行於該層的厚度方向排列且η個連續性(〇·〇.0.2.)晶 面(η表示2或更大的正整數)的距離實質上等於上述單 晶的 c-軸長度。附帶地,在上述的發明結構中,該( 0 · 0 · 0 · 2 .)晶面的數目η較佳爲6或更少。 在上述的發明結構中,當所用的六方單晶係呈塊狀單 晶或單晶層時,特佳爲使用具有依實質上平行於增加其層 厚度的方向(生長方向)的方向排列之(0·0·0· 1.)晶面 的六方單晶。此單晶的表面,因此,舉例來說,係由( 1·〇·-1·〇.)晶面或(1.1.-2.0.)晶面形成。在此使用的措 -42- (40) (40)200805704 辭「增加層厚度的方向」表示個別層堆疊的方向。在下列 說明中,有時候可表示成「垂直方向」。該(〇·〇·〇·ΐ·) 晶面係實質上平行於增加該單晶的層厚度的方向排列。該 措辭「實質上平行」表示較佳地相對於該垂直方向落在 ± 1 0度的範圍內的方向。若此方向偏離此範圍,該偏離將 引發堆疊在彼上的層中產生很多攣晶及結晶性缺陷。 在上述的發明結構中,該單晶附有,在(1 · 0 · -1 · 0 ·) 晶面或(1.1.-2.0·)晶面形成的表面上,六方磷化硼爲底 的半導體層。舉例來說,在由2Η-型、4Η-型或6Η-型六方 碳化矽單晶的(1.0·-1.0·)晶面或(1.1·-2 _0·)晶面形成 的表面上配置該六方磷化硼爲底的半導體層。接著,在纖 維鋅礦型氮化鋁(Α1Ν )製成或類似纖維鋅礦型GaN製成 的(1.0·-1·0·)晶面或(1·1·-2·0·)晶面形成的表面上, 配置該六方磷化硼爲底的半導體層。該六方磷化硼爲底的 半導體層較佳爲設置在藍寶石(α -Α1203單晶)製成的單 晶之(1·〇·-1·〇.)晶面(通稱「Μ平面或m平面」)或( 1·1.-2.0.)晶面(通稱「A平面或a平面」)形成的表面 上。 接著,該磷化硼爲底的半導體,如以下本文中詳細說 明的,使其(0·0·0· 2·)晶面實質上垂直於該單晶的表面 排列並亦使η個連續性(0 · 〇 · 〇 · 2 ·)晶面(η表示2或更大 的正整數)的間隔實質上等於該單晶的c-軸長度(( 〇·〇·〇·1·)晶面的間距)。該磷化硼爲底的半導體層η個 連繪性(〇 · 〇 · 〇 . 2 ·)晶面的間隔及該單晶的c -軸長度就長 -43- 200805704 (41) 期而言相匹配。附帶地,該六方磷化硼爲底的半 (0·0·0.2.)晶面實質上垂直於上述單晶的表面 措辭「實質上垂直」表示較佳地相對於該垂直方 的範圍。若此方向偏離此範圍,該偏離將引發堆 的層中產生很多攣晶及結晶性缺陷。 該六方磷化硼爲底的半導體層可藉由上述的 方法形成在由例如上述晶面形成的的表面上。此 由例如氣體來源MBE法或化學束磊晶(CBE) 空環境下形成層的生長手段來實行。 舉例來說,在該六方單晶的較佳晶面形成的 藉由常壓(實質上大氣壓力)或減壓MOCVD法 磷化硼爲底的半導體層時,具有依平行於增加層 的方向(垂直於上述單晶表面的方向)間隔開的 排列的(0.0.0.2)晶面的六方磷化硼爲底的半導 由下列形成:(a)使生長溫度爲7 5 0 °C或更高 更低,(b )使供至該生長反應系統的磷(P )來 B)來源的濃度比例(所謂的V/III比例)落在 高及500或更低的範圍內,及(c )使該磷化硼 導體層的生長速率爲每分鐘20奈米或更大及每^ 米或更小。 該六方磷化硼爲底的半導體層的生長速率, 時間供至該生長反應系統的例如硼(B )等III 素的濃度提高時,係實質上正比於上述生長溫度 濃度提高。接著,當每單位時間供至該生長反應 導體層的 而排列, 向±10度 疊在彼上 氣相生長 形成可藉 法等在真 表面上, 形成六方 厚度方向 方式規則 體層可藉 8 5 0°C 或 源對硼( 400或更 爲底的半 >鐘30奈 當每單位 族組成元 範圍內的 系統的例 -44- (42) 200805704 如硼等III族組成元素的濃度固定時,生長速率 溫度增高而提高。在落到7 5 ot以下的低溫時, (B)來源及該磷(P)來源並未充分地進行熱 以生長速率突然掉落且將無法達到上述的較佳生 同時,超過8 5 0 °C的溫度提高的缺點爲突然引發 組成式Ββ的聚合磷化硼晶體的形成。 在使用膦(Ρ Η3 )作爲磷來源及三乙基硼( )作爲硼來源的MOCVD法形成形成該六方ΒΡ 中,舉例來說,此形成係藉由將生長溫度固定在 而實行,供至該生長反應系統的原料濃度比例, 該PH3/(C2H5)3B比例在450下,且生長速率在; 奈米下。 爲了達到在該六方單晶的較佳晶面形成的表 地形成具有依垂直六方磷化硼爲底的半導體層表 平行配置的(〇 . 〇 . 〇 . 2 ·)晶面之六方磷化硼爲底 層的目的,該磷化硼爲底的半導體層的生長較佳 在該表面的不需要物質已經脫附之後開始。該磷 的半導體層較佳地,舉例來說,在該六方單晶被 過就該六方磷化硼爲底的半導體層生長而言較佳 度之後生長,換言之加熱到超過8 5 0 °C的溫度以 吸附在該六方單晶表面上的分子的脫附。該六方 底的半導體層,接在吸附分子的脫附之後’較佳 六方單晶表面上,同時由於脫附而獲得清潔的表 不動地保持清潔。有關生長該六方磷化硼爲底的 將隨生長 因爲該硼 分解,所 長速率。 例如具有 (C2H5)3B 層的情況 8 00〇C 下 換言之, 寒分鐘25 面上穩定 面的方向 的半導體 地在吸附 化硼爲底 加熱至超 溫度的溫 便引發被 磷化硼爲 爲長在該 面仍完整 半導體層 -45- (43) (43)200805704 的手段,在減壓環境下進行生長之高真空或減壓化學氣相 沈積(C V D )法的環境下進行生長的Μ B E法或c B E法證 明都適合。 在例如上述較佳晶面形成的六方單晶的清潔表面上, 可穩定地形成相對於如上述六方單晶的c-軸長度顯露長期 相配的六方磷化硼爲底的半導體層。第1 8圖槪略地舉例 說明由六方磷化硼爲底的半導體層顯示及本發明設計的長 期相配的外觀。此圖舉例說明六方單晶6 1爲具有充當其 表面61Α的(1·0·-1·0·)晶面之藍寶石且以接合到該表面 61Α的方式配置的六方磷化硼爲底的半導體層 62爲 Β 〇 . 9 8 A 1 〇 . 〇 2 Ρ層時產生的長期相配的外觀。如該圖所示, (0.0 · 0 · 1 ·)晶面6 1 B係依垂直於該表面6 1 A的方向幾乎 平行狀態規則地排列。在經由接合表面62A接合到該六 方單晶的表面6 1 A之六方磷化硼爲底的半導體層62內部 ,總共 6個(0.0.0.2·)晶面 62B平行於藍寶石的( 0.0.0.1.)晶面61B排列。明確地說,在該單晶61與六方 磷化硼爲底的半導體層62之間的接合系統60中,清潔藍 寶石的表面6 1 A具有總共6個依相等於第1 8圖所示之藍 寶石c-軸長度(1.30奈米)(第18圖所示的c-軸長度) 的間距排列的(〇·〇·〇.2·)晶面62B。 換句話說,在該六方單晶61上,可依下列情況形成 六方磷化硼爲底的半導體層:其c-軸長度及(〇.〇.0.2.) 晶面62B的總長度( = (n-l)xd) (η表示2或更大的正 整數,例如2、3、4、5或6,且d表示相鄰(〇·〇·〇·2·) -46- 200805704 (44) 平面之間的間隔)可相等,換言之處於長期相配的狀態。 (0.0.0.2.)晶面的數目等於至少2,因爲d的値由二相鄰 (0.0.0.2.)晶面之間的間隔提供。也就是說,η的値爲2 或更大。 在依接合到該藍寶石的(1.0.-1.0.)晶面形成的表面 上的方式配置的Bq.98A1o.o2P混合晶體層或BG.99Ga〇.01P 混合晶體層中,如上所述,構成長期相配結構的( 0.0.0.2.)晶面的數目爲6,換言之η爲6。然而,在依接 合到GaN的(1.0.-1.0.)晶面形成的表面上的方式配置的 BP層中η爲2。另外在依接合到A1N的(1.0.-1.0·)晶面 形成的表面上的方式配置的ΒΡ層中η爲2。接著,在依 接合到GaN或Α1Ν製成的單晶的(1·1._2·0·)晶面上的方 式配置的ΒΡ層中η爲2。 若上面要配置磷化硼爲底的半導體層的六方單晶表面 未得到充分的清潔,具有依第1 8圖舉例說明的方式依序 排列的(〇.〇·〇· 2.)晶面的六方磷化硼爲底的半導體層, 舉例來說,由於留在表面上的吸附分子氧(〇 )或水( η2ο )的負面反應,所以在以適當的穩定度製得時將遇到 阻礙。同樣地,若不屬於用於該六方磷化硼爲底的半導體 層生長的來源材料分子之例如一氧化碳(CO )、二氧化 碳(co2)及氮(Ν2 )等的不需要分子依吸附狀態留在該 六方單晶表面上時,缺點爲無法以適當的穩定度製得具有 前述長期相配結構的六方磷化硼爲底的半導體層。 在穩定地獲得能實現前述長期相配的六方磷化硼爲底 -47- 200805704 (45) 的半導體層時帶來的缺點係由於事實上吸附不需要的分子 干擾構成該六方磷化硼爲底的半導體層的(〇.〇.〇·2·)晶 面的依序排列而造成。該缺點的另一個成因在於事實上吸 附的分子終究可能源於平面指數與該(〇·〇·〇.2.)晶面不 同的晶面形成。有關該缺點又另一個成因,可引例事實上 該六方磷化硼爲底的半導體晶體不會長在吸附分子留存的 區域。使具有長期相配結構的六方磷化硼爲底的半導體層 以接合狀態配置時,因此,重要的是爲該六方單晶提供清 潔處理。 在真空環境下形成層的MBE法或CBE法的例子中, 該六方單晶表面上的吸附分子存在可,舉例來說,由反射 式高能電子繞射(RHEED )圖案察覺。若吸附的分子留在 表面上,該RHEED影像假設環(環狀)或後光圖案而非 主要源於該六方單晶表面的點或條痕狀態。吸附在該六方 單晶表面上的分子物種可,舉例來說,藉由例如紅外線吸 收光譜法或紫外線吸收光譜法等的分析手段來分辨。 再者,使該六方磷化硼爲底的半導體層依接合的方式 配置在該六方單晶表面上的時候’若生長速率落至不到每 分鐘20奈米或超過每分30奈米,任一種偏離都將造成阻 礙能實現長期相配的六方磷化硼爲底的半導體層的充分穩 定製造。這是因爲落至不到每分鐘20奈米的低生長速率 將引起構成該(〇. 〇·〇·2 ·)晶面該磷(P)原子的擴散並引 起足用於製造長期相配結構的(〇.〇·〇.2·)晶面中的數目 損失。這也是因爲若生長速率高到超過每分鐘30奈米’ -48- (46) (46)200805704 該(0.0.0.2.)晶面必然會形成超過足用於製造該長期相 配結構的(〇·〇·〇. 2.)晶面數目的量(換言之,本發明中 的η ) 〇 依等同於該六方單晶表面的心軸的距離排列以實現該 長期相配的六方磷化硼爲底的半導體層的(〇 · 〇 · 〇 · 2 ·)晶 面數目,換言之本發明的η,舉例來說,可由電子繞射分 析或運用穿透式電子顯微鏡(ΤΕΜ)的斷面ΤΕΜ技術獲 得的晶格影像來硏究。符合本發明的長期相配結構形成時 ,由該電子繞射影像上的六方單晶的(〇 · 〇 . 〇 . 1 ·)晶面發 出的繞射點出現相當於由該六方磷化硼爲底的半導體層的 (0.0.0.2·)晶面發出的繞射點(η-1 )倍的間距。 特別是,藉由形成η爲8或更小,較佳地6或更小, 的長期相配結構,可獲得含僅小量不合適位錯且優於結晶 性的六方磷化硼爲底的半導體層。該六方磷化硼爲底的半 導體層中依垂直於鄰近該磷化硼爲底的半導體層與該六方 單晶之間的界面的區域中之六方單晶的c-軸的方向產生的 不合適密度將正正比上述的η値而提高。發明人根據其硏 究的結果確認η爲6的長期相配結構將得到優異品質的六 方磷化硼爲底的半導體層,使其降至不到引起局部劣等擊 穿電壓並顯露僅小密度的不合適位錯。 η爲2或更大及6或更小的長期相配結構的六方磷化 硼爲底的半導體層可有效地作爲用於形成優於結晶性的優 異品質生長層的底層,因爲其含有僅小密度的不合適位錯 。適合配置在該長期相配結構的磷化硼爲底的半導體層上 -49- 200805704 (47) 的層爲例如,舉例來說,SiC、ZnO、GaN、AIN、InN及 彼等的混合晶體 AlxGaYInzN(〇SX,Y,ZSl 及 X + Y + Z=l) 等的III族氮化物半導體形成的生長層。接著,有關該III 族氮化物半導體層的具體例,可引例含氮(N )及氮以外 的例如磷(P )及砷(As )等的 V族元素之GaNuPY ( 〇<Y< 1 )及GaNnAsy ( 0<Y< 1 )形成的生長層。 藉由利用此III族氮化物半導體層,其係形成於具有 長期相配結構且含僅小量不合適位錯且當作底層的六方磷 化硼爲底的半導體層上,可建構能產生高強度發光的p-n 接面異質結構。舉例來說,可製造雙異質(DH )接合發 光零件以供甩於具有充當包覆層的 AlxGaYN ( 0SX,YS1 ,X + Y=l)層及充當發光層的GaxIiM-xNCiXXCl)層之 例如LED等的發光裝置。 不用化合物半導體發光裝置,蕭特基能障MESFET可 藉著運用含僅小密度的結晶性缺陷且優於結晶性的III族 氮化物半導體層當作電子傳輸層(通道層)而形成。該通 道層可,舉例來說,由避開雜質的刻意添加的未摻雜的 η-型GaN層形成。含僅小密度的結晶性缺陷的ΠΙ族氮化 物半導體層有益於獲得優於高頻性質的MESFET的目的, 因爲該半導體層顯露出高電子移動性。 本發明’在上述發明的結構中,使上述磷化硼爲底的 半導體層能由六方單體磷化硼形成並能建構該磷化硼爲底 的半導體層以便以電極供到其表面。 用於上述發明結構中的六方磷化硼爲底的半導體層係 -50- (48) 200805704 藉著使用六方單晶層或單晶基材充當其底層而形成。特別 是,在缺乏極性或沒有極性的晶面形成的六方單晶層或單 晶基材的表面上,可有效地形成該六方磷化硼爲底的半導 體層。這是因爲缺乏或沒有極性的六方單晶層或單晶基材 的晶面形成的表面具有能經排列以方便地產生六方磷化硼 爲底的半導體層。 在元素A與元素B的組合製成的六方化合物材料的 單晶中的措辭「適用於六方磷化硼爲底的半導體層的非極 性晶面」,舉例來說,表示暴露相同表面密度的元素 A 與元素B之表面。此說明的晶面爲,舉例來說,2H-型 SiC、纖維鋅礦型GaN或A1N的(1·1·-2·0·)晶面。藍寶 石的(1.1 .-2.0.)晶面也合乎此說明。 針對形成在缺乏或沒有極性的六方單晶層或單晶基材 的晶面上的磷化硼爲底的半導體層的製造而選擇具有小離 子性的材料時,可穩定地形成六方磷化硼爲底的半導體層 。該磷化硼爲底的半導體層具有小離子性時,因爲其與缺 乏或沒有極性的六方單晶層或單晶基材具有小離子性差異 ,所以能穩定形成含僅小量的例如攣晶等的結晶性缺陷的 優異品質磷化硼爲底的半導體層。該磷化硼爲底的半導體 當中,僅該單體磷化硼(ΒΡ )作爲用於穩定地製造六方 磷化硼爲底的半導體層的理想材料,因爲離子性(fi )小 到0.006 (參照,舉例來說,「半導體的能帶與鍵結」 ,(Physics Series 38 ),由 J · C P h i 11 i p s 編寫且由 Yoshioka Shoten Κ·Κ·出版,1 9 8 5 年,7 月 25 日,第 3 版 -51 - 200805704 (49) ,第51頁)。因爲砷化硼(BAs )具有0.002那麼小的fi (參照,舉例來說,上述「半導體的能帶與鍵結」,第 51頁),所以六方磷化硼爲底的半導體層也可由屬於含 BP的混合晶體之砷化硼(BASl_YPY其中0< YS1 )穩定地 形成。 特別是,具有小離子性並生長以獲得充當其表面的( 1·1 .-2.0.)晶面的磷化硼爲底的半導體層由於含僅小量的 攣晶及堆疊缺陷,所以可適當地作爲能達到沈積順應本發 明的電極的目的之半導體層。 無論所形成的磷化硼爲底的半導體層係六方晶體層與 否都可藉由例如電子繞射或X-射線繞射等的分析手段來 硏究。根據普通電子繞射分析,舉例來說,可看出接合到 該六方GaN單晶層的非極性晶面(1 . 1 · - 2.0 .)晶面上之單 體BP爲六方纖維鋅礦型晶體層。也可看出該六方BP晶 體層的表面構成非極性(1.1 ·-2.0.)晶面。 該纖維鋅礦型六方單體BP的a-軸測量約0.3 19奈米 且,因此,與III族氮化物半導體層的六方AlxGa^N ( 0<χ<1 )的a-軸相同。針對六方磷化硼爲底的半導體層的 形成而選擇單體BP時,由於有良好的晶格配對,因此, 可在該層上形成優於結晶性的ΠΙ族氮化物半導體層。形 成在缺乏或沒有極性的六方晶體上的磷化硼爲底的半導體 層可充當上層而成爲製造優於結晶性的III族氮化物半導 體層的助因,因爲該層優於結晶性。 配置在該六方磷化硼爲底的半導體層的歐姆電極可由 -52- 200805704 (50) 各種不同的金屬材料或導電性氧化物材料形成。有關顯示 η-型傳導的磷化硼爲底的半導體層,舉例來說,n-型歐姆 電極可由任何合金形成,例如金(Au) -鍺(Ge)合金 或金-錫(Sn)合金。該η -型歐姆電極可由含稀土元素 的合金形成,例如鑭(L a )—鋁(A1 )合金。此外,該 η-型歐姆電極可由氧化物材料,例如ZnO,形成。 有關該P -型磷化硼爲底的半導體層,p -型歐姆電極可 由金(Au) - i半(Zn)合金或金(Au) -皴(Be)合金 形成。該P-型歐姆電極也可由銦(In )錫(Sn )氧化物( IΤ Ο)複合材料層形成。接觸電阻不足的歐姆電極較佳地 由具有約lxl〇18cm_3或更大的載子濃度的低阻抗層形成。 彼上面配置歐姆電極的層較佳爲低阻抗層,無論如何彼都 可爲具有刻意添加的雜質的摻雜層或避開雜質的刻意添加 的未摻雜層。在單體BP層的情況中,便於形成電極的n-型及P -型低阻抗層都可依未摻雜的形態輕易地獲得。 該η -型及p -型歐姆電極常常都適當地配置在含僅小 量結晶性缺陷且優於結晶性的六方磷化硼爲底的半導體層 上。在優於結晶性的六方磷化硼爲底的半導體層上配置其 中之一歐姆電極,並鄰接地在形成於充當底層且優於結晶 性的上述層上的III族氮化物半導體層上配置其他歐姆電 極的規劃可助於產生優異品質的半導體裝置。 形成在六方磷化硼爲底的半導體層上的蕭特基接點可 由,舉例來說,例如鈦(Ti )等過渡金屬形成。也可由, 舉例來說,鉑(Pt )形成。優於結晶性且順應本發明的六 -53- 200805704 (51) 方磷化硼爲底的半導體層之運用能形成僅伴有微不 漏電流的閘極。特別是,具有配置在高阻抗磷化硼 半導體層上的蕭特基接點的結構能形成僅伴有微不 漏電流且優於擊穿電壓的閘極。因此,此構造可助 僅伴有微不足道洩漏電流且優於跨導性的高頻蕭特 FET。高阻抗的磷化硼爲底的半導體層可利用藉由 或摻雜η-型及P-型雜質中之一或二者而補償電力 抗六方單體ΒΡ層方便地形成。 有關六方磷化硼爲底的半導體層,用於引起歐 或蕭特基接觸的金屬電極可由普通真空沈積法、電 積法、濺鍍法等等形成。氧化物材料,例如ΙΤΟ及 可由普通物理成膜手段,例如濺鍍法及溼式成膜法 凝膠法,形成。 本發明的實施例所涵蓋的化合物半導體裝置將 形作說明。在各自實施例中,相似的組成元素由相 考編號表示。底下將解釋第一個實施例。 實施例1 本發明將引用利用依接合到藍寶石塊狀晶體的 2.0)晶面形成的表面上的方式配置的六方單體ΒΡ 構化合物半導體LED的情況爲例子作明確地解釋。 第1圖槪略地舉例說明有關實施例1的LED 構。然後,第2圖爲舉例說明該化合物半導體裝置 沿第1圖虛線Π-II取得的槪略橫斷面。 足道洩 爲底的 足道洩 於製造 基能障 未摻雜 的高阻 姆接觸 子束沈 ZnO, ,例如 參照圖 似的參 層而建 平面結 LED 1 -54- 200805704 (52) 製造該LED 1所欲的堆疊結構100係使用具有充當 其表面的(1·1.-2.0.)晶面(通稱「A-平面」)之藍寶石 (α-氧化鋁單晶)基材作爲基材1 〇 1而形成。在該基材 101的(1·1 .-2· 0·)晶面的表面上,藉由使用普通的 Μ Ο C V D法而以六方磷化硼爲底的半導體層1 0 2的形態形 成厚度約290奈米的未摻雜η_型六方單體ΒΡ層。 藉由普通ΤΕΜ分析,顯示構成該六方磷化硼爲底的 半導體層102的六方單體ΒΡ層的表面爲(1.1.-2.0.)晶 面。接著,藉由該電子繞射圖,顯示該藍寶石基材101的 <1·-1·0·0>方向及該六方單體ΒΡ層102的<1.-1.〇.〇> 方向相互平行取向。再者,藉由斷面ΤΕΜ技術觀察發現 該六方單體ΒΡ層102中幾乎沒有攣晶存在的可分辨跡象 。在該六方單體ΒΡ層內部離與藍寶石基材101的界面上 方約5 0奈米距離的區域中,發現晶格排列幾乎沒有可分 辨的混淆。 在構成該六方磷化硼爲底的半導體層102的六方單體 ΒΡ層的(1·1 .-2 ·0.)晶面形成的表面上,生長纖維鋅礦型 六方η-型GaN層103(層厚度=2100奈米)。利用普通 TEM的分析,在與構成該六方磷化硼爲底的半導體層1〇2 的六方單體BP層的界面附近的六方GaN層103內部區域 中幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層103的(1.1.-2.0.)表面上,依 下述順序堆疊由六方η-型AlG.15Ga().85N形成的下包覆層 1〇4 (層厚度=15〇奈米)、由分別地Ga〇.85In().15N井層 -55- (53) 200805704 /AU.cnGao.^N能障層5個循環組成之多量子井結構的 光層105,及由層厚度50奈米之由p-型Al〇.i〇Ga〇.9〇N 成的上包覆層106而完成p-n接面DH結構的發光部分 在前述上包覆層106表面上,再堆疊p-型GaN層(層 度=80奈米)充當接觸層107而完成該堆疊結構1〇〇的 成。 在部分前述P -型接觸層1 〇 7的區域中,利用金( ).氧化鎳(NiO)合金形成p-型歐姆電極108。在經由 式鈾刻手段移除存在於指定用於該電極1 0 9配置之區域 的層,例如下包覆層104及發光層105,而暴露出來的 型GaN層103表面上形成η-型歐姆電極1〇9。結果, 成該LED 1 。 藉由使20毫安培的裝置操作電流依p_型與n_型歐 電極108與109之間的前進方向流過而試驗此LED 1 發光性質。由LED 1發出的光的主要波長爲約460奈 。晶片在此狀態下的放射亮度爲約1.6燭光。因爲優於 晶性的III S矢氣化物半導體層可藉由在該六方BP層上 置構成該p-n接面DH結構發光部分的in族氮化物半 體層1 04至1 06及附有η-型歐姆電極1 09的η-型GaN 103而形成,當反向電流固定在1〇微安培時,反向電 呈現超過1 5伏特的高量級。再者,由於Π〗族氮化物 導體層的結晶性優良,幾乎看不出局部擊穿。 實施例2 發 形 〇 厚 形 Au 乾 中 η _ 兀 姆 的 米 結 配 導 層 壓 半 -56- (54) (54)200805704 本發明將引用藉由採用藍寶石塊狀晶體充當六方單晶 並利用配置在彼上的六方單體BP層建構化合物半導體 LED的情況爲例子作明確地解釋。 第8圖槪略地舉例說明適合實施例2的LED平面結 構。然後,第9圖爲舉例說明該LED 1沿虛線IX-IX取得 的槪略橫斷面。 製造該LED 1所欲的堆疊結構100係使用具有充當 其表面的(1.1.-2.0.)晶面之藍寶石基材作爲基材101而 形成。在該基材101的表面上,藉由使用普通的MOCVD 法而形成厚度約290奈米的未摻雜η-型六方單體BP層 102。 藉由普通TEM分析,顯示構成該六方單體BP層102 的(〇 · 〇 . 0 . 1 .)晶面依垂直於該藍寶石基材1 0 1表面的幾 乎平行狀態排列。明確的說,從依垂直於該六方單元晶格 的c-軸方向的幾乎平行方式排列的(0.0.0.1.)晶面的晶 格平面間隔來看,發現該六方單體BP層102的c-軸長度 爲0.5 24奈米。再者,藉由斷面的TEM技術觀察,該六 方單體BP層1 02中幾乎分辨不出攣晶的存在。在該六方 單體BP層內部離與藍寶石基材101的界面上方約50奈 米距離的區域中,確認該(〇.〇. 0.1.)晶面依幾乎平行的 方式規則排列,同時發現該晶格排列幾乎沒有可分辨的混 淆。 在具有平行於增加層厚度的方向排列的(0.0.0.1 .) 晶面之六方單體BP層102的表面上,生長摻雜鍺(Ge) -57- (55) (55)200805704 的纖維鋅礦型六方GaN層1〇3 (層厚度=1 900奈米)。根 據利用普通TEM的分析,發現長在作爲底層之六方單體 BP層102上的n -型GaN層1〇3爲具有平丫了於該/、方卓體 BP層102的(0.0.0.1·)晶面排列的(〇·〇·〇·1·)晶面之單 晶層。在該六方GaN層1〇3內部區域中幾乎看不出攣晶 及結晶性缺陷。 在該六方η-型GaN層1〇3的(1·1·_2·0·)表面上’依 下述順序堆疊由六方η-型A1Q.i5GaG 85N形成的下包覆層 104 (層厚度= 250奈米)、由分別地GaQ.85InG.15N井層及 Alo.oiGao.^N能障層7個循環組成之多量子井結構的發光 層105,及具有25奈米層厚度且由P-型Alo.ioGaojoN形 成的上包覆層1 〇6而完成p-n接面DH結構的發光部分。 此發光部分整體皆爲具有平行於該六方單體81>層102的 (0.0.0 · 1 ·)晶面排列的(〇 · 〇 . 〇 · 1 ·)晶面之單晶層。在整 個發光部分的內部區域中幾乎看不出攣晶及堆疊缺陷。在 該上包覆層106表面上進一步配置p-型GaN層(層厚度 =75奈米)而完成該堆疊結構100。 在部分則述P -型接觸層1 0 7的區域中’利用金-鎮 一氧化物合金形成P-型歐姆電極108。在經由乾式飩刻手 段移除存在於指定用於該電極1 〇 9配置之區域中的層,例 如下包覆層104及發光層105,而暴露出來的n-型GaN 層103表面上形成η -型歐姆電極109。結果,完成該LED 1 ° 藉由使20毫安培的裝置操作電流依p-型與n-型歐姆 -58- 200805704 (56) 電極1 08與1 09之間的前進方向流過而試驗此LED 1的 發光性質。由LED 1發出的光的主要波長爲約45 5奈米 。晶片在此狀態下的放射亮度爲約1 · 5燭光。因爲該歐姆 電極108及109係依橫越發光部分的堆疊結構100的垂直 方向配置以便使裝置操作電流可平行於構成該p-n接面 , DH結構發光部分的III族氮化物半導體層104至106的 (0·0.0.1.)晶面流動,正向(在20毫安培時)的電壓呈 現例如3.2伏特的低量級。 同時,因爲該發光部分可由配置在該六方BP層上而 註定優於結晶性的III族氮化物半導體層形成,所以反向 電流固定在1 〇微安培時獲得的反向電壓呈現超過1 5伏特 的高量級。由於構成發光部分的III族氮化物半導體層的 結晶性優良,所以幾乎看不出局部撃穿。 實施例3 本發明將引用利用具有充當其表面的()晶 面之GaN層及依接合到該表面且具有充當其表面的( 1.1.-2.0.)晶面之六方單體BP層所提供的堆疊結構建構 化合物半導體LED的情況爲例子作明確地解釋。 第1 0圖槪略地舉例說明適合實施例3的LED 1的平 面結構。第1 1圖爲舉例說明該LED 1沿第10圖虛線XI-XI取得的槪略橫斷面。 製造該LED 1所欲的堆疊結構1〇〇係使用具有充當 其表面的(1.-1.0.2·)晶面(通稱R-平面)之藍寶石( -59- 200805704 (57) α -氧化鋁單晶)作爲基材1 〇 1而形成。在該基材1 0 1的 (1·-1.0.2·)晶面的表面上,藉由使用普通的ΜΒΕ法而 形成具有充當其表面的(1·1·-2·0·)晶面之未摻雜的η-型 GaN層103。藉由普通斷面ΤΕΜ測定該GaN層103 (層 厚度=1 200奈米)中的位錯密度爲約2xl09cnT2。 在該GaN層103的(1.1.-2.0.)晶面形成的表面上, 生長未摻雜的η-型單體BP層102A(厚度約280奈米) 。結果,該GaN層103及該BP層102A形成根據本發明 設計的第一堆疊結構部分102A。根據利用TEM的普通電 子繞射分析,發現該BP層102 A爲具有充當其表面的( 1 · 1 .-2.0.)晶面之纖維鋅礦型單晶層。在該BP層102A的 電子繞射影像中,無法看出攣晶或堆疊缺陷造成的額外繞 射或擴散散射。再者,藉由斷面TEM分析,確認該GaN 層103中含的位錯受到該BP層1〇2Α的界面,換言之該 第一堆疊結構部分1 20A的界面抑制而不會向上擴散(向 該 BP 層 1 02A)。 在該六方單體BP層102的(1.1.-2.0·)晶面上,進 一步配置六方η-型GaN層102B(層厚度= 600奈米)。因 此,該六方BP層102A及六方GaN層102B形成根據本 發明設計的第二堆疊結構部分120B。因爲該六方GaN層 102B係依接合到該六方單體BP層102A的方式配置,所 以由普通斷面TEM技術測定的位錯密度呈現lxl04cnr2或 更小的低量級。 在構成第二堆疊結構部分(12〇Β )的六方GaN層 -60- 200805704 (58) 1 0 2 B的(1 . 1 . - 2 · 0 .)表面上,依下述順序堆疊各層:由組 成與GaN不同的六方η -型Alo.15Gao.85N形成的下包覆層 1 04 (層厚度= 3 00奈米)、分別地由Ga〇.88In〇,12N井層( 層厚度=3奈米)/AU.G1Ga().99N能障層(層厚度=10奈米 )5個循環組成之多量子井結構的發光層105,及具有90 * 奈米層厚度且由P-型 Al〇.1()Ga().9()N形成的上包覆層106 而完成p-n接面DH結構的發光部分。 根據普通TEM分析,構成該p-n接面DH結構的發光 部分之下包覆層104至上包覆層106分別地爲纖維鋅礦型 六方單晶層。再者,該發光部分可由特別優於結晶性的 III族氮化物半導體層形成,因爲彼係配置在僅含小量的 位錯且結晶性優異的GaN層102B上。 在上述的上包覆層 106表面上,進一步配置 p-型 GaN層(層厚度=90奈米)以作爲接觸層107而完成該堆 疊結構1 0 0的形成。 在部分上述P-型接觸層1〇7的區域中,形成由金-氧 化鎳合金形成P-型歐姆電極1〇8。在經由移除存在於指定 用於該η-型歐姆電極1〇9配置’之區域中的層,例如在下 包覆層104上的發光層1〇5,而暴露出來的下包覆層104 表面上形成η-型歐姆電極1〇9。結果,完成該LED 1。 藉由使20毫安培的裝置操作電流依p-型與η-型歐姆 電極108與109之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約450奈米 。晶片在此狀態下的放射亮度爲約1 · 7燭光。由於形成該 -61 - (59) (59)200805704 下包覆層104、發光層i〇5及構成p-ri接面DH結構發光 部分的上包覆層1 06之III族氮化物半導體層結晶性優良 的影響,反向電壓(當反向電流固定在1 0微安培時)呈 現超過15伏特的高量級。接著,由於構成該n-型GaN層 102B及配置在彼上的p_n接面〇Η結構發光部分之III族 氮化物半導體層的結晶性優良,所以幾乎看不出局部擊穿 實施例4 本發明將引用利用具有充當其表面的(1.1.-2.0·)晶 面之 GaN層及依接合到該表面且具有充當其表面的( 1·1.-2.0.)晶面之六方單體BP層所提供的堆疊結構建構 化合物半導體FET的情況爲例子作明確地解釋。 第1 2圖槪略地舉例說明適合實施例4的G aN爲底的 高頻FET 3的槪略斷面圖。製造該FET 3所欲的堆疊結構 3〇〇係使用具有充當其表面的(1·-1.0.2.)晶面(通稱R-平面)之藍寶石(α -氧化鋁單晶)作爲基材3 01而形成 。在該基材301的(1·-1.0.2.)晶面的表面上,藉由使用 普通的ΜΒΕ法而形成具有充當其表面的(1.1.-2.0.)晶 面之高阻抗的未摻雜的η-型GaN層302。藉由普通斷面 TEM測定該GaN層3 02 (層厚度1 〇〇〇奈米)中的位錯 潜度爲約3xl09cm2。 在該GaN層302的(1.1.-2.0.)晶面形成的表面上, 生長高阻抗的未摻雜P-型單體BP層3 03 (厚度約2〇〇奈 -62- 200805704 (60) 米)。結果,該GaN層302及該BP層303形成根據本發 明設計的第一堆疊結構部分3 2 0 A °藉由利用T EM的普通 電子繞射分析,發現該ΒΡ層3 03爲具有充當其表面的( 1.1.-2.0.)晶面之纖維鋅礦型單晶層。在該ΒΡ層3 03的 電子繞射影像中,無法看出攣晶或堆疊缺陷造成的額外繞 射或擴散散射。再者,藉由斷面ΤΕΜ分析’確認該GaN 層3 02中含的位錯受到該BP層3 03的界面,換言之該第 一堆疊結構部分320A的界面抑制而不會向上擴散(向該 BP 層 3 03 )。 在該六方單體BP層303的(1·1·-2.0.)晶面上,進 一步配置充當電子傳輸層3 04的未摻雜六方η-型GaN層 (層厚度=110奈米)。結果,該六方BP層103及構成電 子傳輸層3 04的六方GaN層形成根據本發明設計的第二 堆疊結構部分3 20B。因爲該電子傳輸層3 04係依接合到 該六方單體BP層3 03的方式配置,所以該電子傳輸層 304可由具有lxl04cm_2位錯密度的優異品質的晶體層形 成。 在由六方η-型GaN層形成且構成第二堆疊結構部分 320B的電子傳輸層304,的(1.1.-2.0·)表面上,以接合 的方式配置由組成與GaN不同的六方η-型AlG.25Ga().75N (層厚度=25奈米)形成的電子供應層3 05。進一步利用 由η-型GaN層形成的接觸層3 06提供該電子供應層305 而完成用於該FET的堆疊結構3 00的形成。 該電子傳輸層3 04可由優於結晶性的III族氮化物半 -63- (61) (61)200805704 導體層形成,因爲彼係配置在含僅小密度的攣晶及堆疊缺 陷且優於結晶性的六.方BP層3 03上。因爲該電子供應層 3 05係依接合到結晶性優異的電子傳輸層3 04的方式配置 ’所以由普通TEM分析發現該電子供應層3 05爲同樣地 具有優異結晶性的單晶層。 在經由普通乾式蝕刻技術移除部分接觸層3 06而暴露 出來的電子供應層3 05表面上形成蕭特基閘極3 07。殘存 在該閘極3 07相對側的GaN 3 06接觸層的表面上形成由稀 土元素-鋁合金形成的歐姆源極3 08及歐姆汲極3 09而完 成 FET 3 。 本發明的FET可具體化爲電力性質優異且能使用高 頻電力的GaN爲底的FET,因爲彼以使用六方單體BP層 作爲底層而形成且得以僅含小密度的位錯又具有優異結晶 性的GaN層作爲電子傳輸層,再者因爲彼顯露出大的跨 導性且經由位錯抑制電流的洩漏。再者,因爲該FET係 利用結晶性優異的六方單體BP層、GaN電子傳輸層及 GaN電子供應層形成,所以顯示幾乎沒有可分辨的局部擊 穿跡象。 實施例5 本發明的內容將引用藉由採用藍寶石塊狀晶體充當六 方單晶並利用配置在彼上的六方單體BP層建構化合物半 導體LED的情況爲例子作明確地解釋。 第1 4圖槪略地舉例說明適合此實施例5的LED平面 -64- 200805704 (62) 結構。然後,第15圖爲舉例說明該LED 1沿第14圖虛 線XV-XV取得的槪略橫斷面。製造該LED 1所欲的堆疊 結構1 〇 〇係使用,充當基材1 0 1,具有充當其表面的(1 .-1·〇.-2·)晶面(通稱R-平面)之藍寶石(α -氧化鋁單晶 )基材而形成。在該基材101的表面上,藉由普通 Μ Ο C V D法形成用於底層的單晶形態之層厚度約3 2 0 0奈米 的η-型六方GaN層103Α。藉由普通電子繞射分析,該六 方GaN層103A的表面經分辨爲(1.1.-2.0·)晶面。再者 ,藉由普通片段TEM技術觀察顯示構成該六方GaN層 103A的(0.0.0.1·)晶面係垂直於(ΐ·ΐ·-2·0·)晶面形成 的表面排列。 在該六方GaN層103Α的 (1 · 1 · - 2 · 0 .)晶面形成的 表面上,生長未摻雜的η-型六方單體BP層102。該六方 ΒΡ層102藉由普通大氣壓力MOCVD法在78 0°C下生長。 藉由普通斷面TEM技術觀察,顯示該六方BP層102係經 由(1·1·_2·0·)晶面接合至該六方GaN層103A且具有充 當其表面的(1·1.-2·0·)晶面,且構成該六方BP層102 內部的(0·0·0·1·)晶面與該(1·1·-2·0.)晶面呈幾乎平行 的關係垂直地排列。 接著,藉由根據片段ΤΕΜ技術的暗場影像觀察,幾 乎分辨不出具有充當其表面的(1.1.-2.0.)晶面之六方ΒΡ 層102中有反相邊界。再者,在該六方ΒΡ層102的的電 子繞射圖中,無法看出指示攣晶及條痕存在的額外繞射點 ,該攣晶及條痕暗示堆疊缺陷的存在。 -65· 200805704 (63) 在具有平行於增加層厚度的方向排列的(ο · ο. ο · 1 ·) 晶面之六方單體BP層102的表面上,生長摻雜鍺(Ge) 的纖維鋅礦型六方η-型GaN層l〇3B(層厚度=160奈米) 。藉由利用普通TEM的分析,分辨出長在作爲底層之六 方單體BP層102上的η-型GaN層103B爲具有平行於該 六方單體BP層102的(0.0.0.1.)晶面排列的(0·0·0.1· )晶面之單晶層。 據顯示該η-型GaN層103Β係經由該(1.1 .-2.0.)晶 面接合到六方單體BP層102且具有充當其表面的(1」·-2·〇·)晶面,且構成該η -型GaN層103B內部的(0·0·0·1· )晶面與該(1.1.-2.0.)晶面呈幾乎平行的關係垂直地排 列。再者,藉由普通TEM分析,幾乎不能分辨出該六方 GaN層103B中有反相邊界、攣晶及堆疊缺陷。 在該六方η-型GaN層1 03B的(1 · 1 ·_2·0·)表面上, 依下述順序堆疊由六方η-型Al〇.15Ga().85N形成的下包覆 層104 (層厚度=250奈米)、由分別地Ga〇.85In〇.15N井層 及AU.MGao.^N能障層5個循環組成之多量子井結構的 發光層105,及具有50奈米層厚度且由p-型 A1〇.i()Ga().9()N形成的上包覆層106而製成p-n接面DH結 構的發光部分。在上述上包覆層106的表面上,進一步配 置充當接觸層107的p-型GaN層(層厚度=80奈米)而 完成該堆疊結構1 〇 〇。 在部分上述p-型接觸層107的區域中,形成由金( Au )—氧化鎳(Ni〇 )合金形成p-型歐姆電極108。在經 -66- (64) (64)200805704 由乾式鈾刻技術移除存在於指定用於該電極1 09配置之區 域中的層,例如下包覆層104及發光層1〇5,而暴露出來 的η-型GaN層103B表面上形成η-型歐姆電極1〇9。結果 ,完成該LED 1。 藉由使20毫安培的裝置操作電流依p-型與n-型歐姆 電極108與109之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約460奈米 。晶片在此狀態下的放射亮度爲約1 . 6燭光。因爲在幾乎 沒發覺可分辨的反相邊界、攣晶及堆疊缺陷的六方BP層 102及η-型GaN層103上形成下包覆層104至上包覆層 106及構成p-n接面 DH結構發光部分的η-型歐姆電極 1 〇9,所以彼等能形成優於結晶性的III族氮化物半導體 層。因此,該發光層105放射無不均句的均句強度光。 實施例6 本發明的內容將引用藉由利用配置在具有充當其表面 的(1·0·_1·0.)晶面之GaN層上的六方ΒΡ層作爲六方單 晶而建構LED的情況爲例子作明確地解釋。 第1 6圖槪略地舉例說明適合此實施例6的LED 1平 面結構。然後,第17圖爲舉例說明該LED沿第16圖虛 線XVII-XVII取得的槪略橫斷面。 具有充當其表面的(1.0.-1.0.)晶面之GaN層103A 係在LiAl〇2塊狀單晶基材1〇1的(〇〇1 )晶面形成的表面 上藉由普通MBE法形成。藉由普通斷面TEM分析’顯示 -67- (65) (65)200805704 該(0.0.0.1.)晶面係垂直於具有480奈米層厚度的η -型 六方GaN層1 03Α內部的(1 .0.-1 ·〇.)晶面形成的表面排 列。 在以單晶底層的方式形成之六方GaN層103A的( 1.0.-1.0.)晶面的表面上,生長未摻雜的η-型六方單體磷 化硼(ΒΡ)層102。該六方ΒΡ層102係藉由普通大氣壓 力MOCVD法在800°C下生長。藉由普通斷面ΤΕΜ技術觀 察,顯示該六方BP層102係經由(1.0.-1.0·)晶面接合 至該六方GaN層103A且具有充當其表面的(1·0·-1·0·) 晶面,且構成該六方ΒΡ層102內部的(0.0.0.1·)晶面與 該(1 . 0 . - 1.0 ·)晶面呈幾乎平行的關係垂直地排列。 藉由根據斷面ΤΕΜ技術的暗場影像觀察,幾乎分辨 不出具有充當其表面的(1.0.-1.0.)晶面之六方ΒΡ層102 中有反相邊界。再者,在該六方ΒΡ層102的的電子繞射 圖中,無法看出指示攣晶及條痕存在的額外點,該攣晶及 條痕暗示堆疊缺陷的存在。 在具有平行於增加層厚度的方向排列的(0.0.0.1·) 晶面之六方單體ΒΡ層102的表面上,生長摻雜矽(si ) 的纖維鋅礦型六方η-型GaN層103B(層厚度=17〇奈米) 。藉由利用普通TEM的分析,發現長在作爲底層之六方 單體BP層102上的η-型GaN層103B爲具有平行於該六 方單體BP層102的(0.0.0.1·)晶面排列的(〇·〇.〇·1·) 晶面之單晶層。 據顯示該η-型GaN層1(ΠΒ係經由該(1·〇·-1·〇.)晶 -68- 200805704 (66) 面接合到六方單體BP層102且具有充當其表 1 ·〇.)晶面,且構成該η-型GaN層103B內部 )晶面與該(1.0.-1.0.)晶面呈幾乎平行的關 列。 再者,藉由普通TEM分析,幾乎不能分 GaN層103B中有反相邊界、攣晶及堆疊缺陷 在該六方GaN層103B的(1·0.-1·0·)晶 面上,其中幾乎不能分辨出反相邊界、攣晶及 依下述順序堆疊如實施例5所述相同結構中 層104、發光層105及上包覆層106而形成 結構的發光部分。接著,在構成該發光部分最 覆層1 0 6上,以接合的方式配置如實施例5說 觸層107而完成製造該LED 1所欲的堆疊結 成。 藉由前述實施例5中說明的相同手段於_ 之上形成p -型及η -型歐姆電極10 8及109而 。藉由使20毫安培的裝置操作電流依ρ -型與 - 極108與109之間的前進方向流過而試驗該 光性質。由LED 1發出的光的主要波長爲約 晶片在此狀態下的放射亮度爲約1.6燭光。因 發覺可分辨的反相邊界、攣晶及堆疊缺陷的 102及η-型GaN層1〇3上形成下包覆層104 1〇6及構成p-n接面DH結構發光部分的n. 1 〇9,所以彼等能形成優於結晶性的III族氮 面的(1.0·-的(0·0.0·1. 係垂直地排 辨出該六方 〇 面形成的表 堆疊缺陷, 成的下包覆 p-n接面DH 上層的上包 :明的相同接 構1 0 0的形 ^疊結構100 製成LED 1 η-型歐姆電 LED 1的發 460奈米。 爲在幾乎沒 六方 BP層 至上包覆層 -型歐姆電極 化物半導體 -69- 200805704 (67) 層。因此,該發光層105放射無不均勻的均句強度光。 實施例7 本發明內容將引用使用藍寶石塊狀晶體充當六方單晶 並利用形成在彼表面上的六方單晶單體BP層而建構LED 的情況爲例子作明確地解釋。 第19圖槪略地舉例說明有關實施例7的LED 1平面 結構。然後,第20圖爲舉例說明該化合物半導體裝置 LED 1沿第19圖虛線XX-XX取得的槪略橫斷面。 製造該LED 1所欲的堆疊結構100係形成在具有充 當其表面的(1 .1.-2.0.)晶面(通稱A-平面)且作爲基材 101之藍寶石(α-氧化鋁單晶)上。在該六方磷化硼爲 底的半導體層102形成在該基材101的表面上之前,爲達 脫附吸附在該基材101表面上的物質並清潔該表面的目的 ,在普通減壓MOCVD裝置中在約0.01大氣壓的真空度 下將藍寶石基材101加熱至1 200°C。 接著’在該藍寶石基材101的清潔表面上,藉由普通 減壓MOCVD法形成充當六方磷化硼爲底的半導體層之具 • 有約490奈米的層厚度之未摻雜n-型六方單體BP層ι〇2 。藉由普通ΤΕΜ分析,證明該六方單體ΒΡ層1〇2的( 0.0.0.2.)晶面與該藍寶石基材1〇1的清潔表面呈幾乎相 互平fr的關係垂直地排列。在該藍寶石基材1 〇 1的表面上 ’依相等於藍寶石c -軸長度的間距排列的六方b p層1 〇 2 的(0.0.0·2·)晶面數目爲6,亦即發明中所示的11爲6。 -70- 200805704 (68) 此外,藉由斷面TEM技術及電子繞射手段的觀察,幾乎 無法分辨該六方單體BP層1 〇2中的攣晶存在。再者,在 該六方單體BP層1〇2內部離與藍寶石基材1〇1的界面上 方約30奈米距離的區域中,發現(〇·〇·〇.2·)晶面的排列 幾乎沒有可分辨的混淆。確認該(0.0 · 0 · 2 ·)晶面依幾乎 平行的關係規則地排列。 在具有平行於增加層厚度的方向排列的(0 · 0 · 〇 . 2 .) 晶面之六方單體ΒΡ層102的表面上,生長摻雜鍺(Ge) 的纖維鋅礦型六方η-型GaN層103(層厚度=1900奈米) 作爲六方ΙΠ族氮化物半導體層。利用普通TEM的分析, 發現用充當底層的六方單體BP層102生長的η-型GaN層 103爲具有平行於六方單體BP層102的(0·0.0.2.)晶面 排列的(〇.〇·〇·1·)晶面之卓晶層。接著’在六方GaN層 1 03的內部區域中,幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層103的(1.1.-2.0·)表面上,依 下述順序堆疊由六方η-型Al〇.15Ga().85N形成的下包覆層 104 (層厚度=150奈米)、由分別地Ga〇.85In〇.15N井層及 Alo.cuGao.^N能障層5個循環組成之多量子井結構的發光 層105’及由層厚度50奈米之由p -型Al〇.i〇Ga〇.9〇N形成 的上包覆層106而製成p-n接面DH結構的發光部分。在 上述上包覆層106表面上進一步堆疊p-型GaN層(層厚 度=80奈米)充當接觸層107而完成該堆疊結構1〇〇的形 成。 在部分上述P-型接觸層107的區域中,利用金(An -71 - (69) (69)200805704 )·氧化鎳(NiO )合金形成p-型歐姆電極108。在經由乾 式蝕刻手段移除存在於指定用於該電極1 09配置之區域中 的層,例如下包覆層104及發光層105,而暴露出來的η-型GaN層103表面上形成η-型歐姆電極109。結果,完 成該LED 1 。 藉由使20毫安培的裝置操作電流依p-型與η-型歐姆 電極108與109之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約460奈米 。晶片在此狀態下的放射亮度爲約1 . 8燭光。因爲優於結 晶性的111族氮化物半導體層可藉由在該六方B P層1 0 2 上配置構成該p-n接面DH結構發光部分的下包覆層104 至上包覆層106及附有η-型歐姆電極109的η-型GaN層 103而形成,當反向電流固定在10微安培時,反向電壓 呈現超過15伏特的高量級。再者,由於III族氮化物半 導體層的結晶性優良,在由此製成的LED 1中幾乎看不 出局部擊穿。 實施例8 本發明將引用在依接合到藍寶石塊狀的(1.1.-2.0 ) 晶面的方式配置的六方單體BP層上提供歐姆電極而建構 化合物半導體裝置LED的情況爲例子作明確地解釋。 第21圖槪略地舉例說明有關實施例8的LED 1平面 結構。然後,第22圖爲舉例說明該化合物半導體裝置 LED 1沿第21圖虛線XXII-XXII取得的槪略橫斷面。 -72- (70) (70)200805704 製造該LED 1所欲的堆疊結構100係使用具有充當 其表面的(1·1·_2·〇·)晶面(通稱 Α-平面)之藍寶石( α -氧化鋁單晶)充當基材丨〇 1而形成。在該基材1 〇 1的 (1·1·-2·〇·)晶面的表面上,利用普通MOCVD法在750 C下形成具有充當其表面的(i.i.-2.0.)晶面之未慘雜的 11_型六方單體8?層(層厚度=2 00 0奈米)。該11-型:8?層 102的載子濃度經測定爲2X1019cm-3。 在該六方η-型GaN層103的(1·1·-2.0.)晶面形成的 表面上,生長未摻雜的 η-型六方 GaN層103 (層厚度 = 1 200奈米)。利用普通tem的分析,發現該六方單體 BP層102中含有小於lxl 〇4cm_2的小密度的攣晶及堆疊缺 陷。因爲該六方GaN層1 03係依接合到優於結晶性的六 方單體BP層102的方式配置,所以該六方GaN層103中 幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層103的(1.1.-2.0.)表面上,依 下述順序堆疊由六方η-型Al〇.15Ga().85N形成的下包覆層 104 (層厚度=280奈米)、由分別地Ga〇.85In〇.15N井層( 層厚度=3奈米)/Alo.cnGao.^N能障層(層厚度=8奈米) 5個循環組成之多量子井結構的發光層1 〇5,及由層厚度 85奈米且由p-型Al〇.1()Ga().9()N形成的上包覆層1〇6而製 成p-n接面DH結構的發光部分。在上述上包覆層106表 面上進一步堆疊ρ-型GaN層(層厚度=8〇奈米)充當接 觸層107,完成該堆疊結構1〇〇的形成。 在部分上述P-型接觸層1〇7的區域中,形成由金( -73- (71) (71)200805704Obtained from the Al〇.G5Ga().95N layer. The "Group III nitride semiconductor layer" used herein means that the constituent elements have the same composition and different composition ratios, and the crystal utilization composition is different from the layer constituting the second stacked structure semiconductor layer, and only the hexagonal III bonded to the constituent is formed. The role of the crystal defect proliferation on the surface of the group nitride semiconductor layer. Further, in the above structure of the group III nitride semiconductor layer containing a group of the elements, the second stack according to the present invention is formed by forming the pn junction DH to form a step for enhancing the proliferation for suppressing the crystal defects. The Pn junction DH formed by the structure portion 5 group nitride semiconductor layer exhibits high luminance and is superior to an electric conductor light-emitting portion such as a reverse voltage. Instead of the compound semiconductor light-emitting device, the crystalline layer is defective and constitutes an electron transport layer of the n-type group III nitride half-lattice barrier FET on the second stacked structure semiconductor layer (for the channel layer, for example, Formed by intentionally adding η-type GaxIm-χΝ ( 0SXS1 ) to avoid impurities, and the η-type Group III nitride semiconductor on the semiconductor layer constituting the second stacked structure portion with high crystal defects has high electron mobility. The structure of the present invention is excellent in the characteristics of the FET. The phrase "constructs different crystal layers or layers. The hexagonal lanthanum is nitrided into a second stacked structure layer, which can achieve the suppression of the junction! The individual layers of the structure can be actuated. In any case: the excellent crystalline III structure can stably provide the gas-soluble compound half to be disposed in the hexagonal group III nitrogen conductor layer containing only a small density as the Xiao). The channel layer can be obtained by undoping a layer containing a hexagonal group III nitride layer having only a small density, and therefore, can be exposed, thereby providing a high frequency -35-200805704 (33) According to the invention, in the above-described invention, it is possible to form the semiconductor layer having the above-described phosphide boron as a base by using a crystal having a (1·1._2·0·) crystal plane serving as a surface thereof. In the above, the semiconductor layer having the (1. 0 · -1 · 0 ·) crystal plane serving as the surface thereof can be used to form the above-described semiconductor layer of boron phosphide as a base. In the above invention, the hexagonal semiconductor can be utilized. The material forms the compound semiconductor layer described above. In the above-described invention, the semiconductor layer in which the phosphide boron is used as the bottom and the compound semiconductor layer can be bonded to serve as an interface (1·1·_2·0·). According to the present invention, in the above-described invention, the phosphide-boron-based semiconductor layer and the compound semiconductor layer can be bonded to the (1·0·-1·0·) crystal serving as an interface. According to the present invention, in the above-described configuration, the phosphide-based semiconductor layer containing the hexagonal phosphide-based semiconductor having no reverse phase boundary can be formed. Inventive structure The hexagonal phosphide-based semiconductor layer is preferably formed of the aforementioned hexagonal material single crystal bulk or single crystal layer and disposed on a (1.1.-2.0.) crystal plane serving as its surface or (1.0.-1.0.) a crystal face and having a (0.0.0 · 1 .) crystal plane arranged in a direction perpendicular to the surface. Preferably, it is disposed, for example, in the bauxite type hexagonal GaN (1·1) ·-2·0·) on the surface formed by the crystal plane, or on the surface formed by the (1·〇·-1·〇·) crystal plane. In addition, it is preferably set, for example, -36- (34) 200805704 In the case of an aluminum nitride (AIN) single crystal substrate or a surface of a single crystal layer formed of (1. 0. 0) crystal planes, or a surface formed by a (1.0.-1.0·) crystal plane on. For example, a hexagonal GaN single crystal layer or an A1N single crystal layer having a (1·1 .-2 ·0·) crystal plane as its surface can be grown by vapor phase, such as MBE method, using a solid source or a gas source. The method is formed on, for example, a bottom layer formed of sapphire having a (1 .1 .-0.2.) crystal plane as its surface. The surface of the hexagonal single crystal layer formed of the (1.1.-2.0·) crystal plane or the (mo·) crystal plane has a (0 · 0 · 0.1 ·) crystal plane which is regularly arranged in a direction perpendicular to the surface. This fact will be explained below with reference to the crystal structure of the hexagonal material fragment exemplarily illustrated in Fig. 13. Figure 13 is a schematic diagram illustrating the arrangement of atoms in the joint region. Referring to FIG. 3, a hexagonal compound semiconductor material tantalum and a hexagonal boron phosphide-based semiconductor material 12 are formed in a mutually bonded manner and the wurtzite-type hexagonal compound semiconductor material 10 has a perpendicular to it (1.0.- 1.0.) The (〇·〇·〇·ι·) crystal plane 11 formed by the surface l〇a formed by the crystal face. In the (〇·0.0.1 ·) crystal plane 1 1 , a group II atomic plane 1 1 a having a regularly arranged lanthanum element and a group V atomic plane 1 1 b having a regularly arranged ν group element are alternately formed. . Also in order to achieve a group III atom containing, for example, boron (B) or the like on a surface 10a having atomic planes 11a and lib formed by alternately regularly forming a plurality of rows of the hexagonal compound single crystal 10 The atomic plane is alternately arranged alternately with an atomic plane containing a group V atom such as phosphorus (p), and a boron nitride-based semiconductor layer 12 having no reverse phase boundary can be effectively formed. -37- 200805704 (35) Incidentally, the phrase "without inverse boundary" or "without reverse boundary" as used in the present invention means that there are actually five boundaries/square centimeters or less of density at the boundary, including There is no inversion boundary. The hexagonal phosphide-based semiconductor layer having no reverse boundary can be formed by a vapor phase growth means of the above-described hexagonal phosphide-based semiconductor layer. In the case where the formation is carried out by the MOCVD method, for example, the growth temperature is preferably 750 ° C or higher and 120 (TC or lower. If the temperature falls below 750 ° C, because that would hinder The boron source and the phosphorus source are sufficiently thermally decomposed, so it proves to be unfavorable for promoting the growth of the hexagonal phosphide-based semiconductor layer without the reverse boundary. Growth at temperatures exceeding 1200 °C proves to be unsuitable because of the lack of formation of hexagonal The fact that the boron nitride is the crystal plane of the underlying semiconductor layer causes a hindrance when obtaining a single crystal layer having no reverse boundary, in particular, it is difficult to stably form a hexagonal phosphide-based semiconductor layer having no reverse boundary because It 'will cause a lack of an atomic plane formed by phosphorus (P) constituting a hexagonal phosphide-based semiconductor layer. Next, when a hexagonal phosphide-based semiconductor layer having no inversion boundary is formed by MOCVD, For the purpose of forming a P-type conductive layer, the ratio of the source of phosphorus (P) to the source of boron (B) supplied to the growth system (so-called V/III ratio) is preferably 120 or less. The ratio of V/III is preferably 20 or higher and 50 or lower. Next, for the purpose of forming a hexagonal phosphide-based semiconductor layer having no η-type conductivity and having no non-phase boundary, the above V/III ratio is preferred. Further, the V/III ratio is preferably 400 or more and 1 400 or less. Using a hexagonal single crystal having a (1·1·-2·0·) crystal plane serving as a surface thereof Crystal-38- (36) 200805704 layer, the surface can form a hexagonal phosphide-based semiconductor layer bonded to the surface via its (1.1.-2.0.) crystal plane, by inheriting in the hexagonal The atoms on the surface of the single crystal are arranged to grow in an epitaxial manner, and can have a (1.1.-2 · 0 ·) crystal plane serving as a surface thereof. The crystal having (1.0 . -1 . 0 ·) which serves as a surface thereof is used. In the case of a hexagonal single crystal layer, the surface can be formed on the surface of the hexagonal phosphide-based semiconductor layer bonded to the surface via its (1. 1.-1. 〇.) crystal plane, by inheritance The atoms on the surface of the hexagonal single crystal are arranged to be epitaxially grown, and can have a (1.0.-1.0.) crystal plane serving as a surface thereof. In addition, on the inner side of the semiconductor material 12 having the hexagonal phosphide as the base of the () crystal plane or the (1.0.-1.0·) crystal plane of the surface 12a, the (0.0.0.1.) crystal plane 13 is vertical. Regularly arranged on the surface 12a thereof. The (0.0.0.1.) crystal plane 13 is alternately formed in a group III atomic plane 13a having a regularly arranged group III element boron (B) and a boron group of a group V having a regular arrangement (P) inside the group V atom plane 13b. That is, the surface of the semiconductor layer 12 based on the hexagonal phosphide boron formed by the (1.1.-2.0.) crystal plane or the (1.0.-1.0.) crystal plane In 12a, the group III atom plane 1 3 a and the group V atom plane 1 3 b constituting the (0.0.0.1.) crystal plane 13 are alternately arranged alternately. As a result, a hexagonal group III nitride semiconductor layer having a (1.1·-2·〇·) crystal plane or a (1.0._1.0.) crystal plane serving as its surface is effectively regarded as, for example, no formation for the formation. The bottom layer of the purpose of the hexagonal group III nitride semiconductor layer of the phase boundary. -39- (37) 200805704 On a hexagonal semiconductor layer having a (1.1.-2.0.) crystal plane serving as its surface, crystals may be formed via the (1 · 1 · - 2 · 0 . And having a non-polar (1.1 to 2.0) hexagonal group III nitride semiconductor layer serving as its surface. As used herein, the phrase "non-face" means that the charge attached to the plane of the group III atom and the charge on the plane of the group V atom are offset by the same amount of exposure of the plane of the atom of the group of the atom to the surface of the group V. The surface of neutralization. In a manner of bonding to a semiconductor layer having a hexagonal phosphorus base which serves as a non-polar (1 · 1 . - 2 · 0 ·) crystal plane of its surface (1 . 1 · - 2 · 0 . The (0 · 0 · 0 · 1 ·) crystal plane in the configured hexagonal compound semiconductor layer is ruled in a direction perpendicular to the surface. Furthermore, they are parallel to the (0.0.0.1·) crystal plane of the hexagonal phosphide-based semiconductor. This bonding method, therefore, can form a hexagonal compound semiconductor layer containing a very small amount of inversion boundary and containing only a small amount of twins and a stack and superior in quality superior to crystallinity. Next, on a semiconductor layer having a (1.0.-1.0.) crystal face phosphide as a base serving as a surface thereof, a non-polarity (which is bonded to the surface via the (1.0·-1 face) and having a surface serving as a surface thereof may be formed ( 1 . A hexagonal group III nitride semiconductor layer of a crystal face. The non-polar (1 . 0 . -1. 0.) which serves as a surface thereof is bonded to have a (1.0.-1.0.) crystal serving as a surface thereof. The (0.0.0.1.) crystal plane in the hexagonal compound semiconductor layer disposed in the manner of the hexagonal phosphorus-based semiconductor layer of the crystal face is regular in a direction perpendicular to the surface. Further, they are parallel to the hexagonal boron phosphide. The polarity of the bottom semiconductor phosphide surface-joining crystal face is attached to the atomic plane and has boron in the portion, and the hexagonal •················· Boron is the (0 · 0.0 · 1 ·) crystal plane of the inner layer -40- 200805704 (38). This bonding mode, therefore, can form a hexagonal compound semiconductor layer containing a very small amount of inverted boundary and containing only a small amount of stacked defects and superior in quality superior to crystallinity in a bonding manner. In particular, the hexagonal phosphide-based semiconductor layer is advantageously formed using a monomeric boron phosphide (B P ) layer. This is because the number of constituent elements required in this case is small as compared with the case of forming the above-described multiple mixed crystals based on boron phosphide, and thus the formation can be conveniently carried out without bringing control elements. The complexity of the composition ratio encountered. Furthermore, it is selected to form the hexagonal compound semiconductor layer by using a gallium nitride-gallium composition formula: AlxGai-xN (O^X^l), thus forming an A1XG a nN layer between the boron phosphide and the aluminum nitride-gallium Good lattice constant pairing with only a small amount of crystalline defects. For example, via its (1.1.-2.0.) crystal plane bonding to a BP layer having a (1.1.-2.0.) crystal plane serving as its surface and The GaN layer having a (1.1 to 2.0.) crystal plane serving as its surface shows almost no appreciable twinning. The resulting layer has excellent quality and has no inversion boundary. Even through it (1 · 0 · -1 · 0 .) The crystal plane is bonded to the BP layer having the (1 · 〇· -1 · 〇.) crystal plane serving as its surface and has a surface (1·〇·-1·〇·) serving as its surface The Α1Ν layer of the crystal face shows almost no appreciable signs of twinning and the same as the excellent quality layer without the reversed phase boundary. The hexagonal phosphide-based semiconductor layer and the hexagonal compound semiconductor layer have inverted boundaries. For example, it can be distinguished by visually observing the ΤΜΕ image of the section. The wording used in the present invention is "no. The inverse boundary", for example, indicates that the density of the boundary is actually 5 boundaries / flat -41 - (39) (39) 200805704 centimeters or less, including the case without the inversion boundary. By using TEM The electron diffraction method can investigate the presence of twin crystals and stack defects in the semiconductor layer and/or the compound semiconductor layer in the hexagonal phosphide-based layer. When the electron diffraction image shows no twinning In the case of additional points or detectable signs of diffusion divergence caused by stacking defects, the present invention will adopt a law claiming to have no twinning or stacking defects. For example, for example, a hexagonal group III nitrogen having, for example, the above non-polar crystal faces The hexagonal compound semiconductor layer of a compound semiconductor layer or the like can be effectively used as a light-emitting portion for forming a nitride semiconductor light-emitting device capable of inducing high-intensity visible light band or ultraviolet band light emission. It can also be effectively used as a field effect transistor. An electron transport layer (channel layer) of an (FET) or an electron supply layer or as a contact layer for forming an ohmic electrode such as a source or a drain or the like. In the structure, the above-mentioned semiconductor layer of boron phosphide can be formed inside so that the (OOOi·) crystal plane can be arranged substantially parallel to the thickness direction of the layer and η continuity (〇·〇.0.2.) The distance of the crystal plane (η represents a positive integer of 2 or more) is substantially equal to the c-axis length of the above single crystal. Incidentally, in the above-described inventive structure, the (0 · 0 · 0 · 2 ) crystal plane The number η is preferably 6 or less. In the above-described inventive structure, when the hexagonal single crystal used is a bulk single crystal or a single crystal layer, it is particularly preferable to use a layer which is substantially parallel to increase its thickness. The hexagonal single crystal of the crystal plane (0·0·0· 1.) arranged in the direction of the direction (growth direction). The surface of the single crystal, for example, is formed by a (1·〇·-1·〇.) crystal plane or a (1.1.-2.0.) crystal plane. The measure used here is -42- (40) (40)200805704. The direction of "increasing the thickness of the layer" indicates the direction in which the individual layers are stacked. In the following descriptions, sometimes it can be expressed as "vertical direction". The (〇·〇·〇·ΐ·) crystal plane is substantially parallel to the direction in which the layer thickness of the single crystal is increased. The phrase "substantially parallel" means a direction that preferably falls within a range of ± 10 degrees with respect to the vertical direction. If this direction deviates from this range, the deviation will cause many twins and crystalline defects to be generated in the layers stacked on top of it. In the above-described invention structure, the single crystal is provided with a hexagonal phosphide-based semiconductor on a surface formed by a (1·0 · -1 · 0 ·) crystal plane or a (1.1.-2.0·) crystal plane. Floor. For example, the hexagonal surface is disposed on a surface formed by a (1.0·-1.0·) crystal plane or a (1.1·-2 _0·) crystal plane of a 2Η-type, 4Η-type or 6Η-type hexagonal tantalum carbide single crystal. A boron nitride-based semiconductor layer. Next, a (1.0·-1·0·) crystal plane or a (1·1·-2·0·) crystal plane made of wurtzite type aluminum nitride (Α1Ν) or similar to wurtzite type GaN. On the formed surface, the hexagonal phosphide-based semiconductor layer is disposed. The hexagonal phosphide-based semiconductor layer is preferably a single crystal (1·〇·-1·〇.) crystal plane made of sapphire (α-Α1203 single crystal) (collectively referred to as "Μ plane or m plane" ") or (1·1.-2.0.) on the surface formed by the crystal plane (commonly referred to as "A plane or a plane"). Next, the boron phosphide-based semiconductor, as described in detail herein below, has its (0·0·0·2·) crystal plane aligned substantially perpendicular to the surface of the single crystal and also makes n continuity. (0 · 〇· 〇 · 2 ·) The plane of the crystal plane (η represents a positive integer of 2 or more) is substantially equal to the c-axis length of the single crystal (( 〇·〇·〇·1·) crystal plane spacing). The interplanar spacing of the n-thickness of the semiconductor layer of the boron phosphide-based semiconductor layer and the length of the c-axis of the single crystal are long -43-200805704 (41) match. Incidentally, the hexagonal (0·0·0.2.) crystal plane of the hexagonal phosphide is substantially perpendicular to the surface of the single crystal. The phrase "substantially perpendicular" means a range preferably relative to the vertical. If this direction deviates from this range, the deviation will cause many twins and crystalline defects in the layer of the stack. The hexagonal boron phosphide-based semiconductor layer can be formed on the surface formed of, for example, the above crystal face by the above method. This is carried out by, for example, a growth means for forming a layer in a gas source MBE method or a chemical beam epitaxy (CBE) atmosphere. For example, when a boron nitride-based semiconductor layer is formed by a normal pressure (substantial atmospheric pressure) or a reduced pressure MOCVD method in a preferred crystal plane of the hexagonal single crystal, it has a direction parallel to the added layer ( The hexagonal phosphide-based semi-conducting of the (0.0.0.2) crystal planes arranged perpendicularly to the direction of the surface of the single crystal is formed by: (a) making the growth temperature at 750 ° C or higher. Lower, (b) the concentration ratio of phosphorus (P) to B) supplied to the growth reaction system (so-called V/III ratio) falls within a range of high and 500 or lower, and (c) The growth rate of the boron phosphide conductor layer is 20 nm or more per minute and every m or less. The growth rate of the hexagonal phosphide-based semiconductor layer is substantially increased in proportion to the above-mentioned growth temperature concentration when the concentration of the III element such as boron (B) is increased in the growth reaction system. Then, when it is supplied to the growth reaction conductor layer every unit time, it is arranged to be vapor-phase grown on the surface of ±10 degrees, and can be formed on the true surface by a method of forming a hexagonal thickness direction. °C or source-to-boron (400 or more bottom half) clock 30 Nathan when the system per unit family composition range -44- (42) 200805704 If the concentration of the group III element such as boron is fixed, The growth rate temperature increases and increases. When the temperature falls below 75 ot, the source of (B) and the source of phosphorus (P) are not sufficiently heated to suddenly drop at the growth rate and will not reach the above-mentioned preferred life. The disadvantage of temperature increase over 850 °C is the sudden initiation of the formation of polymeric phosphide crystals of the composition Ββ. MOCVD method using phosphine (Ρ Η 3 ) as the phosphorus source and triethyl boron ( ) as the boron source Forming the hexagonal ruthenium, for example, the formation is carried out by fixing the growth temperature, the ratio of the raw material concentration to the growth reaction system, the ratio of the PH3/(C2H5)3B at 450, and the growth rate. Under; nano. The hexagonal phosphide having a crystal plane with a vertical hexagonal phosphide-based semiconductor layer arranged in parallel with the hexagonal phosphide-based semiconductor layer is formed on the surface formed by the preferred crystal plane of the hexagonal single crystal. For the purpose of the underlayer, the growth of the boron phosphide-based semiconductor layer is preferably started after the undesired material of the surface has been desorbed. The phosphorous semiconductor layer is preferably, for example, passed over the hexagonal single crystal. It is preferred to grow after the growth of the hexagonal phosphide-based semiconductor layer, in other words, to a temperature exceeding 850 ° C to adsorb the desorption of molecules on the surface of the hexagonal single crystal. The semiconductor layer is connected to the surface of the preferred hexagonal single crystal after desorption of the adsorbed molecules, and at the same time, the cleaned surface is kept clean by desorption. The growth of the hexagonal phosphide as the base will grow with the boron. For example, in the case of (C2H5)3B layer, in the case of 8 00 〇C, in other words, the semiconductor ground in the direction of the stabilizing surface on the cold surface of the minute 25 is heated to the temperature of the superheated bed by the adsorbed boron. Boron is a means for growing the semiconductor layer -45-(43) (43)200805704 on the surface, and growing under high vacuum or reduced pressure chemical vapor deposition (CVD) under reduced pressure. The ΜBE method or the c BE method proves to be suitable. On a clean surface of a hexagonal single crystal formed by, for example, the above-described preferred crystal plane, a hexagonal long-term matching with respect to the c-axis length such as the hexagonal single crystal described above can be stably formed. The boron phosphide-based semiconductor layer. Figure 18 is a schematic illustration of the semiconductor layer display with hexagonal phosphide as the base and the long-term matching appearance of the design of the present invention. This figure exemplifies a hexagonal single crystal 6 1 which is a hexagonal phosphide-based semiconductor which has a sapphire serving as a (1·0·-1·0·) crystal plane of its surface 61Α and is bonded to the surface 61Α. Layer 62 is Β 〇. 9 8 A 1 〇. 〇2 The long-term matching appearance produced by the Ρ layer. As shown in the figure, the (0.0 · 0 · 1 ·) crystal faces 6 1 B are regularly arranged in a state of being substantially parallel to the direction perpendicular to the surface 6 1 A. Inside the hexagonal phosphide-based semiconductor layer 62 bonded to the surface 61 1 A of the hexagonal single crystal via the bonding surface 62A, a total of 6 (0.0.0.2·) crystal faces 62B are parallel to the sapphire (0.0.0.1. The crystal faces 61B are arranged. Specifically, in the bonding system 60 between the single crystal 61 and the hexagonal phosphide-based semiconductor layer 62, the surface 6 1 A of the cleaned sapphire has a total of six sapphire equivalent to the one shown in FIG. (晶·〇·〇.2·) crystal plane 62B arranged at a pitch of c-axis length (1.30 nm) (c-axis length shown in Fig. 18). In other words, on the hexagonal single crystal 61, a hexagonal phosphide-based semiconductor layer can be formed under the following conditions: its c-axis length and (〇.〇.0.2.) the total length of the crystal face 62B (= ( Nl)xd) (η represents a positive integer of 2 or more, such as 2, 3, 4, 5 or 6, and d represents an adjacent (〇·〇·〇·2·) -46- 200805704 (44) plane The interval between them can be equal, in other words, in a long-term matching state. The number of (0.0.0.2.) crystal faces is equal to at least 2 because the 値 of d is provided by the interval between two adjacent (0.0.0.2.) crystal faces. That is, the 値 of η is 2 or more. In the Bq.98A1o.o2P mixed crystal layer or the BG.99Ga〇.01P mixed crystal layer disposed in such a manner as to be bonded to the surface formed by the (1.0.-1.0.) crystal plane of the sapphire, as described above, constitutes a long-term The number of (0.0.0.2.) crystal planes of the matching structure is 6, in other words, η is 6. However, η is 2 in the BP layer disposed in such a manner as to be bonded to the surface formed by the (1.0.-1.0.) crystal plane of GaN. Further, η is 2 in the ruthenium layer disposed so as to be bonded to the surface formed by the (1.0.-1.0·) crystal plane of A1N. Next, η is 2 in the ruthenium layer arranged in the manner of the (1·1._2·0·) crystal plane bonded to the single crystal of GaN or Α1Ν. If the surface of the hexagonal single crystal on which the boron nitride-based semiconductor layer is to be disposed is not sufficiently cleaned, it has a crystal plane which is sequentially arranged in the manner illustrated in Fig. 18 (〇.〇·〇· 2.). The hexagonal phosphide-based semiconductor layer, for example, will encounter an obstacle when it is produced with appropriate stability due to the negative reaction of the adsorbed molecular oxygen (〇) or water (η2ο) remaining on the surface. Similarly, if it is not a source material molecule for the growth of the hexagonal phosphide-based semiconductor layer, an unnecessary molecule such as carbon monoxide (CO), carbon dioxide (co2), and nitrogen (?2) remains in the adsorption state. On the surface of a hexagonal single crystal, there is a disadvantage in that a hexagonal phosphide-based semiconductor layer having the aforementioned long-term compatibility structure cannot be obtained with appropriate stability. The disadvantages brought about by stably obtaining the semiconductor layer capable of realizing the aforementioned long-term compatibility of hexagonal phosphide as the base -47-200805704 (45) are due to the fact that the unwanted molecular interference of adsorption constitutes the hexagonal boron phosphide. The sequential arrangement of the crystal faces of the semiconductor layer is caused by the sequential arrangement. Another cause of this disadvantage is that the molecules actually absorbed may eventually originate from the formation of a crystal plane having a different plane index than the (〇·〇·〇.2.) crystal plane. Another cause for this disadvantage is that, in fact, the hexagonal phosphide-based semiconductor crystal does not grow in the region where the adsorbed molecules remain. When the hexagonal phosphide-based semiconductor layer having a long-term compatibility structure is disposed in a bonded state, it is important to provide a cleaning treatment for the hexagonal single crystal. In the example of the MBE method or the CBE method for forming a layer in a vacuum environment, the adsorbed molecules on the surface of the hexagonal single crystal may exist, for example, by a reflection type high energy electron diffraction (RHEED) pattern. If the adsorbed molecules remain on the surface, the RHEED image assumes a ring (annular) or back light pattern rather than a point or streak state that is primarily derived from the surface of the hexagonal single crystal. The molecular species adsorbed on the surface of the hexagonal single crystal can be distinguished, for example, by an analytical means such as infrared absorption spectroscopy or ultraviolet absorption spectroscopy. Further, when the hexagonal phosphide-based semiconductor layer is disposed on the surface of the hexagonal single crystal in a bonding manner, if the growth rate falls below 20 nm per minute or exceeds 30 nm per minute, A deviation will result in a sufficiently stable fabrication of a semiconductor layer that is capable of achieving a long-term compatibility of hexagonal phosphide-based. This is because a low growth rate of less than 20 nm per minute will cause the diffusion of the phosphorus (P) atoms constituting the (〇. 〇·〇·2 ·) crystal plane and cause sufficient for the fabrication of long-term mating structures. (〇.〇·〇.2·) The number of crystal faces is lost. This is also because if the growth rate is as high as more than 30 nm per minute '-48-(46) (46)200805704, the (0.0.0.2.) crystal plane must form more than enough to make the long-term matching structure (〇· 〇·〇. 2.) The amount of crystal face number (in other words, η in the present invention) is arranged according to the distance from the mandrel of the hexagonal single crystal surface to realize the long-term matching hexagonal phosphide-based semiconductor The number of crystal faces of the layer, in other words, η of the present invention, for example, a lattice obtained by electron diffraction analysis or a cross-section technique using a transmission electron microscope (ΤΕΜ) Image to study. When the long-term matching structure according to the present invention is formed, the diffraction point emitted by the hexagonal single crystal (上·〇. 〇. 1 ·) crystal plane on the electron diffraction image appears to be equivalent to the hexagonal phosphide boron The pitch of the diffraction point (η-1) emitted by the (0.0.0.2·) crystal plane of the semiconductor layer. In particular, by forming a long-term matching structure in which η is 8 or less, preferably 6 or less, a hexagonal phosphide-based semiconductor containing only a small amount of inappropriate dislocations and superior in crystallinity can be obtained. Floor. The hexagonal phosphide-based semiconductor layer is not suitable for the direction of the c-axis of the hexagonal single crystal in a region perpendicular to the interface between the semiconductor layer adjacent to the phosphide boron and the hexagonal single crystal. The density will increase positively above the η値 described above. The inventors confirmed from the results of their investigation that the long-term matching structure with η of 6 will obtain an excellent quality hexagonal phosphide-based semiconductor layer, which will not fall below the local breakdown voltage and reveal only a small density. Suitable dislocations. A hexagonal phosphide-based semiconductor layer having a long-term matching structure of η of 2 or more and 6 or less can be effectively used as a bottom layer for forming an excellent quality growth layer superior to crystallinity because it contains only a small density Inappropriate dislocation. A layer suitable for being disposed on the phosphide-based semiconductor layer of the long-term matching structure -49-200805704 (47) is, for example, SiC, ZnO, GaN, AIN, InN, and their mixed crystals AlxGaYInzN ( A growth layer formed of a group III nitride semiconductor such as 〇SX, Y, ZS1 and X + Y + Z = l). Next, as a specific example of the group III nitride semiconductor layer, a group V element such as phosphorus (P) or arsenic (As) other than nitrogen (N) and nitrogen can be cited as a GaN layer ( V) <Y < 1 ) and GannAsy ( 0 <Y < 1) A formed growth layer. By using the group III nitride semiconductor layer, which is formed on a semiconductor layer having a long-term matching structure and containing only a small amount of inappropriate dislocations and serving as a bottom layer of hexagonal phosphide, can be constructed to produce high strength. Illuminated pn junction heterostructure. For example, a double heterojunction (DH) bonded light-emitting part can be fabricated for use in, for example, an LED having a layer of AlxGaYN (0SX, YS1, X + Y=l) acting as a cladding layer and a layer of GaxIiM-xNCiXXCl acting as a light-emitting layer. Light-emitting devices. Unlike the compound semiconductor light-emitting device, the Schottky barrier MESFET can be formed by using a group III nitride semiconductor layer containing only a small density of crystalline defects and superior in crystallinity as an electron transport layer (channel layer). The channel layer can be formed, for example, by an intentionally added undoped n-type GaN layer that avoids impurities. A bismuth nitride semiconductor layer containing only a small density of crystalline defects is advantageous for obtaining a MESFET superior to high frequency properties because the semiconductor layer exhibits high electron mobility. According to the invention, in the structure of the above invention, the boron nitride-based semiconductor layer can be formed of hexagonal monomer boron phosphide and the boron phosphide-based semiconductor layer can be constructed to be supplied to the surface by electrodes. The hexagonal phosphide-based semiconductor layer system used in the above-described structure of the invention is formed by using a hexagonal single crystal layer or a single crystal substrate as its underlayer. In particular, the hexagonal phosphide-based semiconductor layer can be efficiently formed on the surface of a hexagonal single crystal layer or a single crystal substrate formed by a crystal plane lacking polarity or polarity. This is because the surface formed by the crystal faces of the hexagonal single crystal layer or the single crystal substrate lacking or having no polarity has a semiconductor layer which can be arranged to conveniently produce hexagonal phosphide boron. The phrase "applicable to a non-polar crystal plane of a hexagonal phosphide-based semiconductor layer" in a single crystal of a hexagonal compound material prepared by combining element A and element B, for example, means an element exposing the same surface density The surface of A and element B. The crystal plane of this description is, for example, 2H-type SiC, wurtzite-type GaN or a (1·1·-2·0·) crystal plane of A1N. The crystal surface of the sapphire stone (1.1.-2.0.) also conforms to this description. When a material having a small ionic property is selected for the production of a phosphide-based semiconductor layer formed on a crystal face of a hexagonal single crystal layer or a single crystal substrate lacking or having no polarity, hexagonal boron phosphide can be stably formed. The bottom semiconductor layer. When the phosphide-based semiconductor layer has a small ionic property, since it has a small ionic difference with a hexagonal single crystal layer or a single crystal substrate having no or no polarity, it can stably form a small amount such as twin crystal. An excellent quality of crystalline defects such as phosphide boron as a base semiconductor layer. Among the phosphide-based semiconductors, only the monomer phosphide (ΒΡ) is an ideal material for stably producing a hexagonal phosphide-based semiconductor layer because the ionicity (fi) is as small as 0.006 (refer to For example, "Semiconductor Bands and Bonds" (Physics Series 38), written by J. CP hi 11 ips and published by Yoshioka Shoten Κ·Κ·, 1985, July 25, 3rd edition - 51 - 200805704 (49), p. 51). Since boron arsenide (BAs) has a small fi of 0.002 (refer to, for example, the above-mentioned "energy band and bonding of a semiconductor", p. 51), a hexagonal phosphide-based semiconductor layer may also be included. BP's mixed crystal of boron arsenide (BASl_YPY where 0 < YS1 ) is formed stably. In particular, a phosphide-based semiconductor layer having a small ionicity and grown to obtain a (1·1 .-2.0.) crystal plane serving as a surface thereof is suitable because it contains only a small amount of twin crystals and stacking defects. The ground serves as a semiconductor layer capable of achieving the purpose of depositing an electrode conforming to the present invention. The hexagonal crystal layer of the semiconductor layer which is formed of the boron phosphide as the base can be inspected by an analysis means such as electron diffraction or X-ray diffraction. According to ordinary electron diffraction analysis, for example, it can be seen that the monomer BP bonded to the non-polar crystal plane (1.1.2.0.) crystal plane of the hexagonal GaN single crystal layer is a hexagonal wurtzite crystal. Floor. It can also be seen that the surface of the hexagonal BP crystal layer constitutes a non-polar (1.1 ·-2.0.) crystal plane. The a-axis of the wurtzite-type hexagonal monomer BP is measured to be about 0.319 nm and, therefore, hexagonal AlxGa^N (0) with the group III nitride semiconductor layer <χ The a-axis of <1) is the same. When the monomer BP is selected for the formation of the hexagonal phosphide-based semiconductor layer, a good lattice pairing is formed, so that a bismuth nitride semiconductor layer superior in crystallinity can be formed on the layer. A boron nitride-based semiconductor layer formed on a hexagonal crystal lacking or having no polarity can serve as an upper layer to contribute to the fabrication of a group III nitride semiconductor layer superior to crystallinity because the layer is superior to crystallinity. The ohmic electrode disposed on the hexagonal phosphide-based semiconductor layer may be formed of -52-200805704 (50) various metal materials or conductive oxide materials. Regarding the phosphide-based semiconductor layer showing η-type conduction, for example, the n-type ohmic electrode may be formed of any alloy such as a gold (Au)-germanium (Ge) alloy or a gold-tin (Sn) alloy. The η-type ohmic electrode may be formed of an alloy containing a rare earth element, such as a lanthanum (L a )-aluminum (A1 ) alloy. Further, the η-type ohmic electrode may be formed of an oxide material such as ZnO. Regarding the P-type boron phosphide-based semiconductor layer, the p-type ohmic electrode can be formed of a gold (Au) - i semi (Zn) alloy or a gold (Au) - bismuth (Be) alloy. The P-type ohmic electrode may also be formed of a layer of indium (In) tin (Sn) oxide (I Τ 复合) composite. The ohmic electrode having insufficient contact resistance is preferably formed of a low-resistance layer having a carrier concentration of about 1 x 1 〇 18 cm 3 or more. The layer on which the ohmic electrode is disposed is preferably a low-resistance layer, and in any case, it may be a doped layer having intentionally added impurities or a deliberately added undoped layer avoiding impurities. In the case of a monomeric BP layer, both the n-type and P-type low-resistance layers which facilitate electrode formation can be easily obtained in an undoped form. The η-type and p-type ohmic electrodes are often suitably disposed on a semiconductor layer containing only a small amount of crystalline defects and superior to crystallinity of hexagonal phosphide. One of the ohmic electrodes is disposed on the semiconductor layer superior to the crystalline hexagonal phosphide-based substrate, and is disposed adjacently on the group III nitride semiconductor layer formed on the above layer serving as the underlayer and superior to the crystallinity The planning of ohmic electrodes can help produce semiconductor devices of superior quality. The Schottky junction formed on the hexagonal phosphide-based semiconductor layer can be formed, for example, of a transition metal such as titanium (Ti). It is also possible, for example, to form platinum (Pt). The use of a semiconductor layer which is superior to crystallinity and conforms to the present invention in accordance with the invention can form a gate with only a micro-leakage current. In particular, a structure having a Schottky junction disposed on a high-impedance boron phosphide semiconductor layer can form a gate which is only accompanied by a micro-leakage current and which is superior to a breakdown voltage. Therefore, this configuration can assist a high frequency Schottky FET that is only accompanied by a negligible leakage current and is superior to transconductivity. The high-impedance boron phosphide-based semiconductor layer can be conveniently formed by compensating the power-resistant hexagonal monomer layer by or doping one or both of the η-type and P-type impurities. Regarding the hexagonal phosphide-based semiconductor layer, the metal electrode for causing the Eu or Schottky contact can be formed by ordinary vacuum deposition, electrowinning, sputtering, or the like. The oxide material, for example, ruthenium, can be formed by ordinary physical film formation means such as sputtering and wet film formation. The compound semiconductor device covered by the embodiment of the present invention will be described. In the respective embodiments, similar constituent elements are indicated by reference numerals. The first embodiment will be explained below. [Embodiment 1] The present invention will be explicitly explained by taking an example of a hexagonal monomer constituting compound semiconductor LED which is disposed in such a manner as to be bonded to a surface formed by a 2.0) crystal plane of a sapphire block crystal. Fig. 1 schematically illustrates the LED structure of the first embodiment. Next, Fig. 2 is a schematic cross-sectional view showing the compound semiconductor device taken along the broken line Π-II of Fig. 1. The foot channel is the bottom of the foot, and the high-resistance contact beam sinking ZnO is fabricated. For example, the planar junction LED is formed with reference to the reference layer. 1 -54- 200805704 (52) Manufacture of the LED 1 The desired stacked structure 100 uses a sapphire (α-alumina single crystal) substrate having a (1·1.-2.0.) crystal plane (generally referred to as "A-plane") serving as its surface as a substrate 1 〇1 And formed. On the surface of the (1·1 .-2·0·) crystal plane of the substrate 101, a thickness is formed in the form of a semiconductor layer 10 2 based on hexagonal phosphide boron by a conventional Μ CVD method. About 290 nm of undoped η-type hexagonal monomer layer. The surface of the hexagonal monomer layer constituting the hexagonal phosphide-based semiconductor layer 102 was shown to be a (1.1.-2.0.) crystal plane by ordinary enthalpy analysis. Next, the sapphire substrate 101 is displayed by the electron diffraction pattern. <1·-1·0·0> direction and the hexagonal monomer layer 102 <1.-1.〇.〇> The directions are oriented parallel to each other. Further, it is found by the section ΤΕΜ technique that there is almost no distinguishable sign of the presence of twins in the hexagonal unit ruthenium layer 102. In the region of the inside of the hexagonal monomer layer which was separated by about 50 nm from the interface with the sapphire substrate 101, it was found that there was almost no discernible confusion in the lattice arrangement. On the surface formed by the (1·1 .-2 .0.) crystal plane of the hexagonal monolayer of the hexagonal phosphide-based semiconductor layer 102, a wurtzite-type hexagonal n-type GaN layer 103 is grown. (layer thickness = 2100 nm). By the analysis by the ordinary TEM, twinning and stacking defects were hardly observed in the inner region of the hexagonal GaN layer 103 in the vicinity of the interface with the hexagonal monomer BP layer constituting the hexagonal phosphide-based semiconductor layer 1〇2. On the (1.1.-2.0.) surface of the hexagonal η-type GaN layer 103, a lower cladding layer 1〇4 formed of hexagonal η-type AlG.15Ga().85N is stacked in the following order (layer thickness = 15〇N), the optical layer 105 of a multi-quantum well structure consisting of 5 cycles of Ga〇.85In().15N well layer-55-(53) 200805704 /AU.cnGao.^N barrier layer, And the light-emitting portion of the pn junction DH structure is completed by the upper cladding layer 106 of p-type Al 〇. The stacked p-type GaN layer (layer degree = 80 nm) is used as the contact layer 107 to complete the formation of the stacked structure. In a portion of the aforementioned P - -type contact layer 1 〇 7, a p-type ohmic electrode 108 is formed using a gold (). nickel oxide (NiO) alloy. The layer existing in the region designated for the electrode 109 configuration, such as the lower cladding layer 104 and the light-emitting layer 105, is removed by uranium engraving means, and the exposed type GaN layer 103 is formed with n-type ohms on the surface. Electrode 1〇9. As a result, the LED 1 is formed. The LED 1 luminescent properties were tested by flowing a 20 mA device operating current through the forward direction between the p-type and n-type European electrodes 108 and 109. The main wavelength of the light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state was about 1.6 candelas. Since the III S-sagittal semiconductor layer superior to the crystalline layer can be formed on the hexagonal BP layer by the indium nitride half layer of the pn junction DH structure illuminating portion 104 to 106 and the η-type The ohmic electrode 119 is formed of η-type GaN 103, and when the reverse current is fixed at 1 〇 microamperes, the reverse current exhibits a high order of more than 15 volts. Further, since the crystallinity of the ruthenium nitride conductor layer is excellent, local breakdown is hardly observed. Example 2 Hairline-shaped thick Au-shaped η _ 的 姆 米 米 米 米 米 米 米 - 56 - (54) (54) 200805704 The present invention will be cited by using a sapphire block crystal as a hexagonal single crystal and utilizing The case of constructing a compound semiconductor LED with a hexagonal monomer BP layer disposed on the other is explicitly explained as an example. Fig. 8 schematically illustrates an LED planar structure suitable for the second embodiment. Then, Fig. 9 is a schematic cross-sectional view taken along the dotted line IX-IX of the LED 1. The stacked structure 100 for manufacturing the LED 1 is formed using a sapphire substrate having a (1.1.-2.0.) crystal plane serving as a surface thereof as the substrate 101. On the surface of the substrate 101, an undoped n-type hexagonal monomer BP layer 102 having a thickness of about 290 nm was formed by using a conventional MOCVD method. By ordinary TEM analysis, it is shown that the (〇·〇 .0.1) crystal plane constituting the hexagonal monomer BP layer 102 is arranged in a substantially parallel state perpendicular to the surface of the sapphire substrate 101. Specifically, the hexagonal monomer BP layer 102 is found from the lattice plane spacing of the (0.0.0.1.) crystal planes arranged in an almost parallel manner perpendicular to the c-axis direction of the hexagonal unit lattice. - The length of the shaft is 0.5 24 nm. Further, by the TEM technique of the cross section, the presence of twins was hardly recognized in the hexagonal monomer BP layer 102. In the region of the hexagonal monomer BP layer which is about 50 nm above the interface with the sapphire substrate 101, it is confirmed that the (〇.〇.0.1.) crystal faces are regularly arranged in an almost parallel manner, and the crystal is found at the same time. There is almost no discernible confusion in the lattice arrangement. The fiber zinc doped with yttrium (Ge) -57-(55) (55)200805704 is grown on the surface of the hexagonal monomer BP layer 102 having a (0.0.0.1 .) plane aligned parallel to the thickness of the layer. The ore type hexagonal GaN layer is 1 〇 3 (layer thickness = 1 900 nm). According to analysis by ordinary TEM, it was found that the n-type GaN layer 1〇3 growing on the hexagonal monomer BP layer 102 as the underlying layer has a flatness of the /, the square body BP layer 102 (0.0.0.1· a single crystal layer of a crystal plane (晶·〇·〇·1·) arranged in a crystal plane. There are almost no twins and crystal defects in the inner region of the hexagonal GaN layer 1〇3. On the (1·1·_2·0·) surface of the hexagonal η-type GaN layer 1〇3, a lower cladding layer 104 formed of hexagonal η-type A1Q.i5GaG 85N is stacked in the following order (layer thickness = 250 nm), a light-emitting layer 105 of a multi-quantum well structure consisting of 7 cycles of GaQ.85 InG.15N well layer and Alo.oiGao.^N barrier layer, respectively, and having a thickness of 25 nm and consisting of P- The upper cladding layer 1 〇6 formed by the type Alo.ioGaojoN completes the light-emitting portion of the pn junction DH structure. The entire light-emitting portion is a single crystal layer having a (〇·〇· 〇 · 1 ·) crystal plane which is parallel to the (0.0.0 · 1 ·) crystal plane of the hexagonal monomer 81 > Twinning and stacking defects are hardly visible in the inner region of the entire light-emitting portion. The p-type GaN layer (layer thickness = 75 nm) is further disposed on the surface of the upper cladding layer 106 to complete the stacked structure 100. The P-type ohmic electrode 108 is formed by using a gold-town oxide alloy in a portion of the P-type contact layer 107. The layer existing in the region designated for the electrode 1 〇9 configuration, such as the lower cladding layer 104 and the light-emitting layer 105, is removed by dry etching, and η is formed on the surface of the exposed n-type GaN layer 103. - Type ohmic electrode 109. As a result, the completion of the LED 1 ° was tested by flowing a 20 mA device operating current according to the forward direction between the p-type and the n-type ohm-58-200805704 (56) electrodes 108 and 109. The luminescent properties of 1. The main wavelength of the light emitted by the LED 1 is about 45 5 nm. The radiance of the wafer in this state is about 1.5 light. Since the ohmic electrodes 108 and 109 are arranged in the vertical direction of the stacked structure 100 traversing the light emitting portion so that the device operating current can be parallel to the group III nitride semiconductor layers 104 to 106 constituting the pn junction, the light emitting portion of the DH structure. The (0·0.0.1.) crystal plane flows, and the forward (at 20 mA) voltage exhibits a low magnitude of, for example, 3.2 volts. Meanwhile, since the light-emitting portion can be formed by a group III nitride semiconductor layer destined to be superior to crystallinity disposed on the hexagonal BP layer, the reverse voltage obtained when the reverse current is fixed at 1 〇 microamperes exhibits more than 15 volts. High quality. Since the group III nitride semiconductor layer constituting the light-emitting portion is excellent in crystallinity, local puncturing is hardly observed. Embodiment 3 The present invention will be exemplified by using a GaN layer having a () crystal plane serving as a surface thereof and a hexagonal monomer BP layer bonded to the surface and having a (1.1.-2.0.) crystal plane serving as a surface thereof. The case of constructing a compound semiconductor LED in a stacked structure is explicitly explained as an example. Fig. 10 schematically illustrates the planar structure of the LED 1 suitable for the third embodiment. Fig. 1 is a schematic cross-sectional view showing the LED 1 taken along the dotted line XI-XI of Fig. 10. The desired stack structure for the LED 1 is sapphire (-59-200805704 (57) α-alumina having a (1.-1.0.2·) crystal plane (generally called R-plane) serving as its surface. Single crystal) is formed as the substrate 1 〇1. On the surface of the (1·-1.0.2·) crystal plane of the substrate 1 0 1 , a (1·1·-2·0·) crystal plane having a surface serving as a surface thereof is formed by using an ordinary crucible method. The undoped n-type GaN layer 103. The dislocation density in the GaN layer 103 (layer thickness = 1 200 nm) was determined by ordinary section ΤΕΜ to be about 2 x 10 cn T 2 . On the surface formed by the (1.1.-2.0.) crystal plane of the GaN layer 103, an undoped n-type monomer BP layer 102A (having a thickness of about 280 nm) was grown. As a result, the GaN layer 103 and the BP layer 102A form the first stacked structural portion 102A designed in accordance with the present invention. According to ordinary electron diffraction analysis using TEM, the BP layer 102 A was found to have a wurtzite-type single crystal layer having a (1 · 1 .-2.0.) crystal plane serving as its surface. In the electron diffraction image of the BP layer 102A, additional diffraction or diffusion scattering caused by twinning or stacking defects cannot be seen. Further, by cross-sectional TEM analysis, it is confirmed that the dislocations contained in the GaN layer 103 are subjected to the interface of the BP layer 1〇2Α, in other words, the interface of the first stacked structure portion 1 20A is suppressed without being diffused upward (toward BP layer 1 02A). On the (1.1.-2.0·) crystal plane of the hexagonal monomer BP layer 102, a hexagonal η-type GaN layer 102B (layer thickness = 600 nm) was further disposed. Therefore, the hexagonal BP layer 102A and the hexagonal GaN layer 102B form the second stacked structure portion 120B designed in accordance with the present invention. Since the hexagonal GaN layer 102B is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 102A, the dislocation density measured by the ordinary cross-sectional TEM technique exhibits a low order of lxl04cnr2 or less. On the surface of the hexagonal GaN layer-60-200805704 (58) 1 0 2 B (1. 1 . - 2 · 0 .) constituting the second stacked structure portion (12 〇Β ), the layers are stacked in the following order: The lower cladding layer 104 (layer thickness = 300 nm) formed by hexagonal η-type Alo.15Gao.85N different from GaN, respectively, is composed of Ga〇.88In〇, 12N well layer (layer thickness=3奈m)/AU.G1Ga().99N barrier layer (layer thickness = 10 nm) 5 cycles of a multi-quantum well structure of the light-emitting layer 105, and having a thickness of 90* nanolayer and consisting of P-type Al〇 The upper cladding layer 106 formed by .1()Ga().9()N completes the light-emitting portion of the pn junction DH structure. According to the ordinary TEM analysis, the cladding layer 104 to the upper cladding layer 106 which constitute the light-emitting portion of the p-n junction DH structure are respectively wurtzite-type hexagonal single crystal layers. Further, the light-emitting portion can be formed of a group III nitride semiconductor layer which is particularly superior to crystallinity because it is disposed on the GaN layer 102B which contains only a small amount of dislocations and is excellent in crystallinity. On the surface of the upper cladding layer 106 described above, a p-type GaN layer (layer thickness = 90 nm) is further disposed to serve as the contact layer 107 to complete the formation of the stacked structure 100. In a portion of the above-mentioned P-type contact layer 1?7, a P-type ohmic electrode 1?8 is formed by a gold-nickel oxide alloy. The surface of the lower cladding layer 104 exposed by removing the layer present in the region designated for the configuration of the n-type ohmic electrode 1〇9, such as the light-emitting layer 1〇5 on the lower cladding layer 104 An n-type ohmic electrode 1〇9 is formed thereon. As a result, the LED 1 is completed. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the forward direction between the p-type and the η-type ohmic electrodes 108 and 109. The main wavelength of light emitted by LED 1 is about 450 nm. The radiance of the wafer in this state is about 1.7 candle. Crystallization of the group III nitride semiconductor layer of the upper cladding layer 106 of the lower cladding layer 104, the light-emitting layer i〇5, and the light-emitting portion constituting the p-ri junction DH structure is formed by the formation of the -61-(59)(59)200805704 lower cladding layer 104, the light-emitting layer i〇5 The superiority of the effect, the reverse voltage (when the reverse current is fixed at 10 microamperes) presents a high magnitude of more than 15 volts. Then, since the crystallinity of the group III nitride semiconductor layer constituting the n-type GaN layer 102B and the p_n junction surface structure light-emitting portion disposed thereon is excellent, almost no partial breakdown is observed. A GaN layer having a (1.1.-2.0·) crystal plane serving as a surface thereof and a hexagonal monomer BP layer bonded to the surface and having a (1·1.-2.0.) crystal plane serving as a surface thereof will be cited. The case where the stacked structure is constructed to construct a compound semiconductor FET is explicitly explained as an example. Fig. 1 is a schematic cross-sectional view schematically showing a high frequency FET 3 suitable for the G aN of the fourth embodiment. The stack structure 3 for fabricating the FET 3 is made of a sapphire (α-alumina single crystal) having a (1·-1.0.2.) crystal plane (generally referred to as an R-plane) serving as a surface thereof as a substrate 3 Formed by 01. On the surface of the (1·-1.0.2.) crystal plane of the substrate 301, an undoped high-impedance having a (1.1.-2.0.) crystal plane serving as its surface is formed by using an ordinary crucible method. A hetero-n-type GaN layer 302. The dislocation potential in the GaN layer 302 (layer thickness: 1 nm) was determined by ordinary cross-section TEM to be about 3 x 10 9 cm 2 . On the surface formed by the (1.1.-2.0.) crystal plane of the GaN layer 302, a high-impedance undoped P-type monomer BP layer 03 is grown (thickness is about 2 〇〇-62-200805704 (60) Meter). As a result, the GaN layer 302 and the BP layer 303 form a first stacked structure portion 3 2 0 A ° designed according to the present invention. By ordinary electron diffraction analysis using T EM , it is found that the germanium layer 303 has a surface serving as its surface. (1.1.-2.0.) crystallized wurtzite-type single crystal layer. In the electron diffraction image of the ΒΡ layer 03, no additional diffraction or diffusion scatter caused by twinning or stacking defects can be seen. Furthermore, it is confirmed by the section ΤΕΜ analysis 'the dislocation contained in the GaN layer 302 is affected by the interface of the BP layer 303, in other words, the interface of the first stacked structure portion 320A is suppressed without being diffused upward (to the BP Layer 3 03 ). On the (1·1·-2.0.) crystal plane of the hexagonal monomer BP layer 303, an undoped hexagonal n-type GaN layer serving as the electron transport layer 304 (layer thickness = 110 nm) was further disposed. As a result, the hexagonal BP layer 103 and the hexagonal GaN layer constituting the electron transport layer 304 form a second stacked structure portion 3 20B designed in accordance with the present invention. Since the electron transport layer 304 is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 303, the electron transport layer 304 can be formed of a crystal layer of excellent quality having a dislocation density of lx10 4 cm 2 . On the (1.1.-2.0·) surface of the electron transport layer 304 formed of the hexagonal n-type GaN layer and constituting the second stacked structure portion 320B, hexagonal n-type AlG having a composition different from that of GaN is disposed in a bonding manner An electron supply layer 305 formed of .25Ga().75N (layer thickness = 25 nm). The electron supply layer 305 is further provided by a contact layer 306 formed of an n-type GaN layer to complete the formation of the stacked structure 300 for the FET. The electron transport layer 304 can be formed of a conductor layer of a group III nitride semi-63-(61) (61)200805704 which is superior to crystallinity because it is disposed in a crystal containing only a small density and a stack defect and is superior to crystallization. Sexual six. Square BP layer 3 03. Since the electron supply layer 305 is disposed so as to be bonded to the electron transport layer 304 having excellent crystallinity, it has been found by ordinary TEM analysis that the electron supply layer 305 is a single crystal layer having excellent crystallinity. A Schottky gate 3 07 is formed on the surface of the electron supply layer 305 exposed by removing a portion of the contact layer 306 via a conventional dry etching technique. The ohmic source 3 08 and the ohmic drain 3 09 formed of a rare earth element-aluminum alloy are formed on the surface of the GaN 610 contact layer on the opposite side of the gate 3 07 to complete the FET 3. The FET of the present invention can be embodied as a GaN-based FET excellent in power properties and capable of using high-frequency power because it is formed by using a hexagonal monomer BP layer as a bottom layer and has excellent crystallinity with only a small density of dislocations. The GaN layer acts as an electron transport layer, and because it exhibits large transconductivity and suppresses leakage of current via dislocations. Further, since the FET is formed using a hexagonal monomer BP layer having excellent crystallinity, a GaN electron transport layer, and a GaN electron supply layer, there is almost no sign of localized breakdown that is distinguishable. [Embodiment 5] The content of the present invention will be explicitly explained by taking the case where a sapphire block crystal is used as a hexagonal single crystal and a compound semiconductor LED is constructed using a hexagonal monomer BP layer disposed thereon. Figure 14 is a schematic illustration of the LED plane -64-200805704 (62) suitable for this embodiment 5. Then, Fig. 15 is a schematic cross-sectional view showing the LED 1 taken along the dotted line XV-XV of Fig. 14. The stack structure 1 for manufacturing the LED 1 is used as a substrate 1 0 1 , having a sapphire (referred to as an R-plane) serving as a surface of the surface (referred to as an R-plane) ( An α-alumina single crystal substrate is formed. On the surface of the substrate 101, an η-type hexagonal GaN layer 103 having a layer thickness of about 3 2 0 nm for a single crystal form of the underlayer was formed by a conventional Μ C V D method. The surface of the hexagonal GaN layer 103A is resolved into a (1.1.-2.0·) crystal plane by ordinary electron diffraction analysis. Further, the surface alignment of the (0.0.0.1·) crystal plane constituting the hexagonal GaN layer 103A perpendicular to the (ΐ·ΐ·-2·0·) crystal plane was observed by the ordinary fragment TEM technique. On the surface formed by the (1 · 1 · - 2 · 0 .) crystal plane of the hexagonal GaN layer 103, an undoped n-type hexagonal monomer BP layer 102 is grown. The hexagonal germanium layer 102 was grown at 78 0 ° C by ordinary atmospheric pressure MOCVD. Observed by the ordinary cross-sectional TEM technique, it is shown that the hexagonal BP layer 102 is bonded to the hexagonal GaN layer 103A via a (1·1·_2·0·) crystal plane and has a surface (1·1.-2·). 0·) crystal plane, and the (0·0·0·1·) crystal plane constituting the inside of the hexagonal BP layer 102 is vertically arranged in a nearly parallel relationship with the (1·1·-2·0.) crystal plane . Then, by observing the dark field image according to the segmentation technique, it is almost impossible to distinguish the hexagonal germanium layer 102 having the (1.1.-2.0.) crystal plane serving as its surface with an inversion boundary. Furthermore, in the electron diffraction pattern of the hexagonal germanium layer 102, additional diffraction points indicating the presence of twins and streaks are not visible, and the twins and streaks suggest the presence of stacking defects. -65· 200805704 (63) Growth of germanium (Ge)-doped fibers on the surface of a hexagonal monomer BP layer 102 having (ο · ο. ο · 1 ·) crystal planes aligned in a direction parallel to the thickness of the added layer Zinc-type hexagonal η-type GaN layer l〇3B (layer thickness = 160 nm). By analyzing by ordinary TEM, it is discriminated that the η-type GaN layer 103B grown on the hexagonal monomer BP layer 102 as the underlayer is arranged to have a (0.0.0.1.) crystal plane parallel to the hexagonal monomer BP layer 102. A single crystal layer of (0·0·0.1·) crystal plane. It is shown that the η-type GaN layer 103 is bonded to the hexagonal monomer BP layer 102 via the (1.1.-2.0.) crystal plane and has a (1"·-2·〇·) crystal plane serving as its surface, and is composed. The (0·0·0·1·) crystal plane inside the η-type GaN layer 103B is vertically arranged in a nearly parallel relationship with the (1.1.-2.0.) crystal plane. Furthermore, by ordinary TEM analysis, it is almost impossible to distinguish that the hexagonal GaN layer 103B has reversed phase boundaries, twinning, and stacking defects. On the surface of the (1·1 ·_2·0·) of the hexagonal η-type GaN layer 1300B, the lower cladding layer 104 formed of hexagonal η-type Al 〇.15Ga().85N is stacked in the following order ( Layer thickness = 250 nm), a multi-quantum well structure luminescent layer 105 consisting of 5 cycles of Ga〇.85In〇.15N well layer and AU.MGao.^N barrier layer, respectively, and having a 50 nm layer The upper cladding layer 106 having a thickness and formed of p-type A1〇.i()Ga().9()N is used to form a light-emitting portion of the pn junction DH structure. On the surface of the upper cladding layer 106 described above, a p-type GaN layer (layer thickness = 80 nm) serving as the contact layer 107 is further disposed to complete the stacked structure 1 〇 . In a portion of the above-described p-type contact layer 107, a p-type ohmic electrode 108 is formed from a gold (A)-nickel oxide (Ni〇) alloy. The layer present in the region designated for the electrode 09 configuration, such as the lower cladding layer 104 and the light-emitting layer 1〇5, is removed by dry uranium engraving technique via -66-(64)(64)200805704 An n-type ohmic electrode 1〇9 is formed on the surface of the resulting n-type GaN layer 103B. As a result, the LED 1 is completed. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current through the forward direction between the p-type and n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state is about 1.6 light. The lower cladding layer 104 to the upper cladding layer 106 and the light-emitting portion constituting the pn junction surface DH are formed on the hexagonal BP layer 102 and the n-type GaN layer 103 which are hardly aware of the distinguishable inversion boundary, twinning and stacking defects. The n-type ohmic electrodes 1 〇9, so they can form a group III nitride semiconductor layer superior to crystallinity. Therefore, the luminescent layer 105 emits the uniform intensity light of the non-uniform sentence. Embodiment 6 The content of the present invention will be exemplified by the case of constructing an LED by using a hexagonal germanium layer disposed on a GaN layer having a (1·0·_1·0.) crystal plane serving as a surface thereof as a hexagonal single crystal. Explain clearly. Fig. 16 is a schematic illustration of the LED 1 planar structure suitable for this embodiment 6. Then, Fig. 17 is a schematic cross-sectional view showing the LED taken along the dotted line XVII-XVII of Fig. 16. The GaN layer 103A having a (1.0.-1.0.) crystal plane serving as its surface is formed on the surface formed by the (〇〇1) crystal plane of the LiAl〇2 bulk single crystal substrate 1〇1 by the ordinary MBE method. . TEM analysis by ordinary section ‘show-67-(65) (65)200805704 The (0.0.0.1.) crystal plane is perpendicular to the η-type hexagonal GaN layer with a thickness of 480 nm. .0.-1 ·〇.) Surface alignment of the crystal faces. On the surface of the (1.0.-1.0.) crystal plane of the hexagonal GaN layer 103A formed in the form of a single crystal underlayer, an undoped n-type hexagonal monomer boron phosphide layer 102 is grown. The hexagonal germanium layer 102 was grown at 800 ° C by a normal atmospheric pressure MOCVD method. It is shown by the ordinary section ΤΕΜ technique that the hexagonal BP layer 102 is bonded to the hexagonal GaN layer 103A via a (1.0.-1.0·) crystal plane and has a surface (1·0·-1·0·) serving as its surface. The crystal faces, and the (0.0.0.1·) crystal faces constituting the inside of the hexagonal germanium layer 102 are vertically arranged in a nearly parallel relationship with the (1. 0. - 1.0 ·) crystal faces. By observing the dark field image according to the section ΤΕΜ technique, it is almost impossible to distinguish the hexagonal ruthenium layer 102 having the (1.0.-1.0.) crystal plane serving as its surface with an inversion boundary. Furthermore, in the electron diffraction pattern of the hexagonal germanium layer 102, additional dots indicating the presence of twins and streaks are not seen, and the twins and streaks suggest the existence of stacking defects. A wurtzite-type hexagonal n-type GaN layer 103B doped with ytterbium (si) is grown on the surface of the hexagonal monomer layer 102 having a (0.0.0.1·) crystal plane aligned in a direction parallel to the thickness of the layer to be increased ( Layer thickness = 17 〇 nanometer). By using ordinary TEM analysis, it was found that the η-type GaN layer 103B grown on the hexagonal monomer BP layer 102 as the underlayer is arranged to have a (0.0.0.1·) crystal plane parallel to the hexagonal monomer BP layer 102. (〇·〇.〇·1·) The single crystal layer of the crystal face. It is shown that the η-type GaN layer 1 (the lanthanoid system is bonded to the hexagonal monomer BP layer 102 via the (1·〇·-1·〇.) crystal-68-200805704 (66) plane and has serves as its surface 1 ·〇 The crystal plane, and the crystal plane constituting the inside of the η-type GaN layer 103B, is substantially parallel to the (1.0.-1.0.) crystal plane. Furthermore, by ordinary TEM analysis, it is almost impossible to divide the GaN layer 103B with an inversion boundary, twinning, and stacking defects on the (1·0.-1·0·) crystal plane of the hexagonal GaN layer 103B, in which almost The inversion boundary, the twinning, and the light-emitting portions of the structure 104, the light-emitting layer 105, and the upper cladding layer 106 of the same structure as described in Embodiment 5 cannot be resolved in the following order. Next, on the light-emitting portion covering layer 106, the contact layer 107 as in the fifth embodiment is placed in a bonded manner to complete the desired stack formation of the LED 1. P-type and η-type ohmic electrodes 10 8 and 109 are formed over _ by the same means as described in the foregoing embodiment 5. The light property was tested by flowing a 20 mA device operating current in the forward direction between the ρ-type and the -poles 108 and 109. The main wavelength of the light emitted by the LED 1 is about 164. The radiance of the wafer in this state is about 1.6 candelas. The under cladding layer 104 1 〇 6 and the n 1 构成 构成 构成 构成 及 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因Therefore, they can form a group III nitrogen surface superior to the crystalline (1.0·- (0·0.0·1.) vertically discriminates the surface stacking defects formed by the hexagonal surface, forming a lower cladding pn The upper package of the upper surface of the junction DH: the same structure of the same connection structure of 100 is made of LED 1 η-type ohmic electric LED 1 of 460 nm. For almost no hexagonal BP layer to the upper cladding layer - Type ohmic electrode compound semiconductor - 69 - 200805704 (67) Layer. Therefore, the light-emitting layer 105 emits no uneven uniform intensity light. Embodiment 7 The present invention will cite the use of a sapphire block crystal as a hexagonal single crystal and utilize The case of constructing an LED by forming a hexagonal single crystal monomer BP layer on the surface is exemplarily explained. Fig. 19 schematically illustrates the planar structure of the LED 1 relating to Embodiment 7. Then, Fig. 20 is an example. A schematic cross section of the compound semiconductor device LED 1 taken along the dotted line XX-XX of Fig. 19 The stacked structure 100 for manufacturing the LED 1 is formed on a sapphire (α-alumina single crystal) having a (1.1.-2.0.) crystal plane (commonly referred to as an A-plane) serving as a surface thereof and serving as the substrate 101. Before the hexagonal phosphide-based semiconductor layer 102 is formed on the surface of the substrate 101, the object is desorbed and adsorbed on the surface of the substrate 101, and the surface is cleaned. The sapphire substrate 101 was heated to a temperature of 1 200 ° C in a MOCVD apparatus at a vacuum of about 0.01 atm. Then 'on the clean surface of the sapphire substrate 101, a hexagonal phosphide was formed by ordinary decompression MOCVD. The bottom semiconductor layer has an undoped n-type hexagonal monomer BP layer ι〇2 having a layer thickness of about 490 nm. The hexagonal monomer layer 1 〇 2 is proved by ordinary ΤΕΜ analysis (0.0 .0.2.) The crystal faces are arranged perpendicularly to the clean surface of the sapphire substrate 1〇1 in a nearly fr fr relationship. On the surface of the sapphire substrate 1 〇1, the pitch is equal to the length of the sapphire c-axis. The number of (0.0.0·2·) crystal faces of the arranged hexagonal bp layer 1 〇2 is 6, which is the invention The 11 shown in the figure is 6. -70- 200805704 (68) In addition, by the observation of the cross-sectional TEM technique and the electronic diffraction means, it is almost impossible to distinguish the presence of twins in the hexagonal monomer BP layer 1 〇 2 . In the region of the hexagonal monomer BP layer 1〇2 which is about 30 nm above the interface with the sapphire substrate 1〇1, it is found that the arrangement of the (〇·〇·〇.2·) crystal faces is almost no. Distinguishable confusion. It is confirmed that the (0.0 · 0 · 2 ·) crystal faces are regularly arranged in an almost parallel relationship. On the surface of the hexagonal monomer layer 102 having a (0 · 0 · 〇. 2 . The GaN layer 103 (layer thickness = 1900 nm) is a hexagonal bismuth nitride semiconductor layer. Using the analysis of the ordinary TEM, it was found that the n-type GaN layer 103 grown with the hexagonal monomer BP layer 102 serving as the underlayer was arranged to have a (0·0.0.2.) crystal plane parallel to the hexagonal monomer BP layer 102 (〇 .〇·〇·1·) The crystal layer of the crystal face. Then, in the inner region of the hexagonal GaN layer 103, twinning and stacking defects are hardly seen. On the (1.1.-2.0·) surface of the hexagonal η-type GaN layer 103, a lower cladding layer 104 formed of hexagonal η-type Al 〇.15Ga().85N is stacked in the following order (layer thickness=150) Nano), a light-emitting layer 105' of a multi-quantum well structure consisting of 5 cycles of Ga〇.85In〇.15N well layer and Alo.cuGao.^N barrier layer, respectively, and a layer thickness of 50 nm. The upper cladding layer 106 formed of -type Al 〇 〇 〇 〇 〇 〇 〇 〇 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. Further formation of the stacked structure 1 is completed by further stacking a p-type GaN layer (layer thickness = 80 nm) on the surface of the upper cladding layer 106 as the contact layer 107. In a portion of the above-described P-type contact layer 107, a p-type ohmic electrode 108 is formed using gold (An -71 - (69) (69) 200805704) - nickel oxide (NiO) alloy. The layer existing in the region designated for the electrode 09 configuration, such as the lower cladding layer 104 and the light-emitting layer 105, is removed by dry etching, and the exposed n-type GaN layer 103 is formed on the surface of the n-type Ohmic electrode 109. As a result, the LED 1 is completed. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the forward direction between the p-type and the η-type ohmic electrodes 108 and 109. The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state is about 1.8 candles. Since the group 111 nitride semiconductor layer superior to the crystalline layer can be disposed on the hexagonal BP layer 10 2 by the lower cladding layer 104 to the upper cladding layer 106 and the η- constituting the light emitting portion of the pn junction DH structure. The n-type GaN layer 103 of the type ohmic electrode 109 is formed, and when the reverse current is fixed at 10 microamperes, the reverse voltage exhibits a high order of more than 15 volts. Further, since the crystallinity of the group III nitride semiconductor layer is excellent, partial breakdown is hardly observed in the LED 1 thus produced. [Embodiment 8] The present invention will clarify the case of constructing a compound semiconductor device LED by providing an ohmic electrode on a hexagonal monomer BP layer which is bonded to a sapphire block-like (1.1.-2.0) crystal plane as an example. . Fig. 21 schematically illustrates the planar structure of the LED 1 relating to Embodiment 8. Then, Fig. 22 is a schematic cross-sectional view showing the compound semiconductor device LED 1 taken along the broken line XXII-XXII of Fig. 21. -72- (70) (70)200805704 Manufacture of the LED 1 The desired stack structure 100 uses sapphire (α - with a (1·1·_2·〇·) crystal plane (commonly known as Α-plane) serving as its surface. The aluminum oxide single crystal is formed as the substrate 丨〇1. On the surface of the (1·1·-2·〇·) crystal plane of the substrate 1 〇1, the formation of the (ii-2.0.) crystal plane serving as the surface thereof at 750 C by the ordinary MOCVD method is not miserable. Miscellaneous 11_ type hexagonal monomer 8 layer (layer thickness = 2 00 0 nm). The carrier concentration of the 11-type: 8? layer 102 was determined to be 2 x 1019 cm-3. On the surface formed by the (1·1·-2.0.) crystal plane of the hexagonal η-type GaN layer 103, an undoped n-type hexagonal GaN layer 103 (layer thickness = 1 200 nm) was grown. Using the analysis of ordinary tem, it was found that the hexagonal monomer BP layer 102 contained a small density of twins and stack defects of less than lxl 〇 4 cm 2 . Since the hexagonal GaN layer 103 is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 102 superior in crystallinity, twinning and stacking defects are hardly observed in the hexagonal GaN layer 103. On the (1.1.-2.0.) surface of the hexagonal η-type GaN layer 103, a lower cladding layer 104 formed of hexagonal η-type Al 〇.15Ga().85N is stacked in the following order (layer thickness = 280) Nano), multiple quantum wells consisting of 5 cycles of Ga〇.85In〇.15N well layer (layer thickness = 3 nm) / Alo.cnGao.^N barrier layer (layer thickness = 8 nm) The luminescent layer 1 〇5 of the structure, and the pn junction DH formed by the upper cladding layer 1〇6 formed by a p-type Al〇.1()Ga().9()N having a layer thickness of 85 nm and having a thickness of 85 nm The illuminating part of the structure. Further, a p-type GaN layer (layer thickness = 8 Å nanometer) is stacked on the surface of the upper cladding layer 106 to serve as the contact layer 107, and the formation of the stacked structure 1 is completed. In the region of some of the above P-type contact layers 1〇7, formed by gold (-73-(71) (71)200805704

An ).氧化鎳(NiO )合金形成的p-型歐姆電極108。 在經由乾式蝕刻手段移除存在於指定用於該η-型歐 姆電極109配置之區域中六方η-型ΒΡ層102上方的層 103至107而暴露出來的六方η-型ΒΡ層102表面上形成 η-型歐姆電極109。該η-型歐姆電極109係由普通真空沈 積法獲得的金(Au ) -鍺(Ge )合金層(90重量%金及 1〇重量%鍺的合金)形成。 藉由使20毫安培的裝置操作電流依p-型與η-型歐姆 電極1 08與1 09之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約460奈米 。晶片在此狀態下的放射亮度爲約1 . 6燭光。因爲在優於 結晶性的六方BP層102上配置構成該p-n接面DH結構 發光部分的III族氮化物半導體層104至106及η-型歐姆 電極109,反向電壓(當反向電流固定在10微安培時) 呈現超過1 5伏特的高量級。再者,幾乎看不出局部擊穿 實施例9 本發明將引用在η-型及ρ-型六方單體ΒΡ層上配置η-型及Ρ-型歐姆電極而建構化合物半導體裝置LED的情況 爲例子作明確地解釋。 第23圖槪略地舉例說明有關實施例9的LED 2平面 結構。然後,第24圖爲舉例說明該LED 2沿第23圖虛 線XXIV-XXIV取得的槪略橫斷面。 -74- (72) (72)200805704 製造該LED 2所欲的堆疊結構200係,如前述實施 例8中說明的,形成於具有充當其表面的(1 · 1 · -2 · 0 .)晶 面(通稱A-平面)之藍寶石(α -氧化鋁單晶)且作爲基 材201而形成。在該基材201的(1·1·-2·0·)晶面的表面 上,以前述實施例8中說明的相同方法利用普通MOCVD 法在75(TC下形成具有充當其表面的()晶面之 未摻雜的n-型六方單體BP層202 (層厚度=2 000奈米) 。該η-型BP層202的載子濃度經測定爲2xl019cm_3。利 用普通TEM的分析,發現該六方單體BP層202中含有小 於lxl 04cnT2的小密度的攣晶及堆疊缺陷。 在該六方BP層202的(1.1.-2·0.)晶面形成的表面 上,依下述順序堆疊未摻雜的η-型GaN層203 (層厚度 = 1200奈米)、由具有充當其表面的(1·1·_2.0·)晶面之 六方η-型Al〇.15Ga().85N形成的下包覆層204 (層厚度=280 奈米)、由分別地Gao.85Ino.15N井層(層厚度=3奈米) /Ale.oiGao.^N能障層(層厚度=8奈米)5個循環組成之 多量子井結構的發光層205,及具有層厚度85奈米且由 P-型Alo.ioGao.9oN形成的上包覆層206而製成p-n接面 DH結構的發光部分。 在具有充當其表面的(1.1.-2.0.)晶面之六方η-型上 包覆層2 06的表面上,沈積ρ-型六方未摻雜的單體ΒΡ層 (層厚度=200奈米)充當接觸層 207。藉由普通斷面 ΤΕΜ觀察,構成該接觸層207的六方未摻雜的單體ΒΡ層 中幾乎分辨不出例如攣晶及堆疊缺陷等的平面缺陷及位錯 -75- (73) 200805704 在上述P-型接觸層207的中心部分 Au).鋅(Zn)合金(95重量%金及5重 形成的P-型歐姆電極208並呈現形成圓形 在經由乾式蝕刻手段移除存在於指另 姆電極209配置之區域中六方η-型BP層 層203至207而暴露出來的六方η-型ΒΡ 成平面視圖呈圓形的η-型歐姆電極209。 2 0 9係由普通真空沈積法獲得的金(Au ) 層(90重量%金及10重量%鍺的合金)J 藉由使20毫安培的裝置操作電流依 六方單體BP層207及202上的p-型與η 與209之間的前進方向流過而試驗該六方 及202。由LED 2發出的光的主要波長爲 片在此狀態下的放射亮度爲約1 .6燭光。 性的六方BP層202及207上配置構成該 構發光部分的ΙΠ族氮化物半導體層204 極208及209,反向電壓(當反向電流固 時)呈現超過1 8伏特的高量級。再者, 擊穿。 實施例1 〇 本發明將引用藉由配置在高阻抗η-型 上的蕭特基閘極及歐姆接觸電極和汲極而 中,形成由金( 量%鋅的合金) 平面形狀。 Ε用於該η-型歐 202上方的個別 層202表面上形 該η-型歐姆電極 —錯(Ge)合金 衫成。 分別地配置在該 -型歐姆電極208 單體BP層207 約4 6 0奈米。晶 因爲在優於結晶 P - η接面D Η結 至206及歐姆電 定在1 〇微安培 幾乎看不出局部 六方單體ΒΡ層 建構GaN爲底 -76- 200805704 (74) 的FET的情況爲例子作明確地解釋。 第2 5圖槪略地舉例說明適合此實施例1 〇的G aN爲 底的FET 3的槪略斷面結構。 製造該FET 3所欲的堆疊結構3〇〇係,如前述實施例 8中說明的,形成於具有充當其表面的(1.1.-2.0·)晶面 (通稱A-平面)且作爲基材301之藍寶石(α -氧化鋁單 晶)上。在該基材301的(1·1·-2·0·)晶面的表面上,藉 由使用普通的MOCVD法在1 050°C下形成高阻抗的未摻雜 六方單體BP層303 (層厚度=7 20奈米)。高阻抗的未 摻雜BP層3 03的載子濃度爲lxl〇17cnT3。根據利用普通 TEM的分析,該BP層3 03中含有小於1x1 〇4 cm·2的小量 攣晶及堆疊缺陷。 在高阻抗BP層3 03的表面上,依下述順序堆疊由未 摻雜的六方GaN層(層厚度=48奈米)形成的電子傳輸層 3 04及具有充當其表面的(1.1.-2.0.)晶面且由六方η-型 Al〇.25Ga().75N形成的電子供應層3 05 (層厚度=28奈米) 。該電子傳輸層 3 04及電子供應層3 05二者都藉由 MOCVD法形成。 在具有充當其表面的(1.1.-2.0·)晶面的六方η-型電 子供應層3 05上,依接合的方式配置使閘極3 07能沈積所 欲的蕭特基接觸形成層3 1 0。該蕭特基接觸形成層3 1 0係 由具有12奈米的層厚度及小於5x1 016cnT3的載子濃度的 高阻抗六方單體BP形成。等蕭特基接觸形成層310形成 之後,使該蕭特基接觸形成層3 1 0持續完全地留在平面視 -77- (75) 200805704 圖的中心區域中,爲的是使該蕭特基閘極3 0 7能形成,並 經由普通乾式蝕刻手段移除存在於該區域其餘部分的蕭特 基接觸電極形成層。 接著,堆疊充當接觸層306的η-型六方單體BP層( 層厚度=100奈米且載子濃度=2xl019cnT3)以覆蓋持續保 ‘ 留的蕭特基接觸形成電極310及暴露於其周圍的電子供應 層3 05二者的整個表面。藉由普通斷面TEM觀察,構成 該接觸層3 0 6的六方單體B P層中幾乎分辨不出例如攣晶 及堆疊缺陷等的平面缺陷及位錯。 之後,爲達沈積閘極3 0 7的目的,藉由普通乾式蝕刻 手段移除由六方η-型BP層形成且覆蓋該蕭特基接觸形成 電極310的接觸層306。在藉由移除接觸層306而暴露出 來的凹部部分3 3 0的蕭特基接觸形成電極3 1 0表面上,藉 由普通電子束沈積手段配置由鈦(T i )形成的蕭特基閘極 3 07 ° 接著,在共同地構成該接觸層3 0 6且分別地存在橫跨 該閘極3 0 7相反側上的六方B P層兩個獨立部分之一的表 面上,形成歐姆接觸電極3 0 8。然後,在存在橫跨該閘極 3 07相反側上的六方BP層另一個獨立部分形成的接觸層 3 06表面上,配置汲極3 09而完成該GaN-爲底的FET 3 之製造。構成源極3 0 8及汲極3 09的歐姆電極係由普通真 空沈積法獲得的金(Au )—鍺(Ge )合金層(95重量% 金及5重量%鍺的合金)形成。 因爲該等歐姆電極,即,源極308及汲極309,二者 -78- (76) 200805704 都配置在六方單體BP形成的接觸層306上且含僅小量的 攣晶及堆疊缺陷,所以可以解決遇到汲極電流流入短路圖 案,且如過去經驗在含高密度結晶性缺陷的區域中配置的 源極部分區域與相對的汲極區域之間呈集中狀態的缺點。 因此,可製成具有例如使裝置操作電流能在均勻電流密度 下流至電子傳輸層3 04等的獨特效能特徵之FET 3。 再者,因爲該蕭特基閘極3 07係鄰接在幾乎不含攣晶 及堆疊缺陷且由高阻抗六方單體BP形成的蕭特基接點形 成層3 1 0上,所以可製成附有僅顯示微不足道的洩漏電流 且顯露出高擊穿電壓的閘極307之GaN-爲底的FET 3。 實施例1 1 本發明內容將引用建構附有充當下包覆層的六方單體 B P層之化合物半導體LED的情況爲例子作明確地解釋。 第26圖爲舉例說明實施例1 1中說明的化合物半導體 LED 1的槪略平面結構。然後,第27圖爲舉例說明該 LED 1沿第26圖虛線XXVII-XXVII取得的槪略橫斷面。 用於該LED 1所欲的堆疊結構100係藉由使用藍寶 石(α-Α12〇3單晶)充當基材101而形成。在該基材ι〇1 的(1 .-1.0.2·)晶面(通稱R_平面)形成的表面上,藉由 普通減壓MOCVD法形成具有約8微米的層厚度且具有充 當其表面的(1.1.-2.0·)晶面之n-型GaN層103。 在該η-型GaN層ι〇3的(lu o·)晶面形成的表面 上’由六方未摻雜的單體BP形成的磷化硼爲底的半導體 -79- (77) 200805704 層係充當下包覆層104,藉由普通大氣壓力( )MOCVD法在750°C下形成。構成下包層的 的半導體層具有約290奈米的層厚度且具有充 (1.1.-2.0.)晶面。接著,此層的傳導型式爲 普通電解質C-V法發現其載子濃度爲約2x1 01 ,藉由普通TEM分析,顯示該下GaN層103 係藉由與充當下包覆層104的磷化硼爲底的半 面來抑制增殖。 在構成該下包覆層1〇4的BP層的(1.1, 形成的表面上,配置由堆疊分別地由二層,即 的η-型Ga〇.88Inc).12N層及充當緩衝層的η-型 成的5個循環得到之多量子井結構形成的發先 呈現多量子井結構的GamlnmN井層中,因 方BP層的下包覆層104之0&〇.88111().12>1井層 有充當其表面的(1·1·-2·0·)晶面,所以此井 優於結晶性的六方單晶層。藉由普通ΤΕΜ分 下包覆層104的表面之井層中幾乎分辨不出攣 由於經由(1.1.-2.0·)晶面接合到下包覆; . 面之井層的結晶性優良,所以構成又更高層的 層及Gao.^InmN井層二者都能轉變成幾乎不 於結晶性的六方單晶層。再者,構成多量子井 層105之井層與能障層二者都轉變成具有平行 包覆層104的(1.1.-2.0·)晶面堆疊的(1.1, 之六方單晶層。 約大氣壓力 磷化硼爲底 當其表面的 η-型且藉由 9cm_3。再者 含有的位錯 導體層的界 .-2 · 0 ·)晶面 ,充當井層 GaN層,組 :層105 。在 爲接合到六 係形成而具 層將轉變成 析,接合到 晶。 層104的表 ]GaN阻障 含攣晶且優 結構的發光 於構成該下 .-2.0·)晶面 -80 - (78) (78)200805704 在構成多量子并結構,該多量子井結構可藉由配置充 當底層的六方B P層而由含僅小量的結晶性缺陷之六方111 族氮化物半導體層形成,的發光層最外表面層的n_型 GaN層的(1 .1 .-2.0.)晶面上,藉由普通減壓MOCVD法 在1 080°C下配置充當上包覆層106的P-型Al〇.i5Ga〇.85N 層。該上包覆層106係由具有約4x1 〇17cnT3的載子濃度及 約90奈米的層厚度之六方Al〇.15GaG.85N層形成。因此, 該ρ - η接面D Η結構的發光部分係由構成上述下包覆層 1〇4的ΒΡ層、發光層105及上包覆層106構成。 在構成上包覆層106之(1.1.-2· 0·)晶面形成的 Al〇.15Ga〇.85N表面上,藉由普通減壓MOCVD法在1 050°C 下配置充當接觸層1〇7的P-型GaN層。該接觸層107係 由具有約lxl 018cnT3的載子濃度及約80奈米的層厚度之 六方GaN層形成。 在由ρ-型GaN層形成的接觸層107充當最上層配置 而完成該堆疊結構的形成之後,在該接觸層1〇7表面 之一邊緣形成P-型歐姆電極1〇8。ρ-型歐姆電極108係由 金及氧化鎳構成。型歐姆電極1〇9係形成在構成利用乾 式蝕刻方法暴露出來的六方磷化硼爲底的半導體層之下包 覆層104上。該η-型歐姆電極109係由金-鍺合金構成 〇 藉由使20毫安培的裝置操作電流依ρ-型與η-型歐姆 電極108與1〇9之間的前進方向流過而試驗此LED 1的 發光性質。由LED 1發出的光的主要波長爲約450奈米 -81 - (79) 200805704 。晶片在此狀態下的放射売度爲約1.2燭光。當正向電流 固定在20毫安培時’正向電壓爲約3.5伏特。在反映構 成下包覆層104的六方磷化硼爲底的半導體層、構成p-n 接面DH結構的發光部分之發光層1〇5及構成上包覆層 1 06的III族氮化物半導體層的優良結晶性時,當反向電 流固定在1 〇微安培時’反向電壓呈現超過1 〇伏特的高量 級。再者,因爲構成下包覆層1 〇4的六方磷化硼爲底的半 導體層抑制位錯從η-型GaN層103增殖到p-n接面DH結 構的發光部分,因此獲得的LED 1中幾乎看不出局部擊 穿。 實施例1 2 本發明內容將引用建構附有發光部分,該發光部分具 有由上及下包覆層來著發光層形成的六方磷化硼爲底的半 導體層,之LED的情況爲例子作明確地解釋。 第28圖槪略地舉例說明實施例12中說明的LED 1 的斷面結構。以類似第2 6圖及第2 7圖所示的組成元素表 示第2 8圖中類似的參考編號。 在藍寶石基材1 0 1表面上,依前述實施例1 1說明的 順序堆疊η-型六方GaN層103、由η-型六方單體BP層形 成的下包覆層104及多量子井結構的發光層105。因爲發 光層105具有由充當底層之磷化硼爲底的半導體層形成的 下包覆層1 〇4,所以其最終由含僅小量的例如攣晶等的結 晶性缺陷之六方GalnN井層及GaN能障層構成。 -82- (80) 200805704 接著,在構成該發光層最上表面層的η-型六方GaN 層形成的能障層上,藉由普通MOCVD法配置充當上包覆 層106的六方p -型磷化硼爲底的半導體層。該上包覆層 106係由未摻雜的p-型六方單體BP層構成。該上包覆層 106具有約250奈米的層厚度及約2x10 19cm_3的載子濃度 • 。接著,該上包覆層106的表面,如同構成底層且由六方An). A p-type ohmic electrode 108 formed of a nickel oxide (NiO) alloy. Formed on the surface of the hexagonal n-type germanium layer 102 exposed by the dry etching means to remove the layers 103 to 107 present above the hexagonal n-type germanium layer 102 in the region designated for the configuration of the n-type ohmic electrode 109 N-type ohmic electrode 109. The η-type ohmic electrode 109 is formed of a gold (Au)-germanium (Ge) alloy layer (90% by weight of gold and 1% by weight of bismuth alloy) obtained by a conventional vacuum deposition method. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the forward direction between the p-type and the n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state is about 1.6 light. Since the group III nitride semiconductor layers 104 to 106 and the n-type ohmic electrode 109 constituting the light-emitting portion of the pn junction DH structure are disposed on the hexagonal BP layer 102 superior to the crystallinity, the reverse voltage is applied (when the reverse current is fixed at At 10 microamperes, it exhibits a high level of more than 15 volts. Further, the partial breakdown is hardly observed. In the present invention, the case where the η-type and Ρ-type ohmic electrodes are disposed on the η-type and ρ-type hexagonal iridium layers to construct the compound semiconductor device LED is described. The examples are clearly explained. Fig. 23 schematically illustrates the planar structure of the LED 2 relating to Embodiment 9. Then, Fig. 24 is a schematic cross-sectional view showing the LED 2 taken along the dashed line XXIV-XXIV of Fig. 23. -74- (72) (72)200805704 A stack structure 200 for manufacturing the LED 2, as described in the foregoing Embodiment 8, is formed on a crystal having (1 · 1 · -2 · 0 .) serving as a surface thereof A sapphire (α-alumina single crystal) having a surface (generally referred to as an A-plane) is formed as the substrate 201. On the surface of the (1·1·-2·0·) crystal plane of the substrate 201, the same method as described in the above Example 8 was used to form (with a surface serving as a surface thereof at 75 TC by ordinary MOCVD method). The undoped n-type hexagonal monomer BP layer 202 (layer thickness = 2 000 nm) of the crystal face. The carrier concentration of the n-type BP layer 202 was determined to be 2 x 1019 cm 3 . Using ordinary TEM analysis, it was found The hexagonal monomer BP layer 202 contains a small density of twin crystals and stacking defects of less than lxl 04cnT2. On the surface formed by the (1.1.-2·0.) crystal plane of the hexagonal BP layer 202, the stack is not stacked in the following order. The doped n-type GaN layer 203 (layer thickness = 1200 nm) is formed of hexagonal η-type Al 〇.15Ga().85N having a (1·1·_2.0·) crystal plane serving as a surface thereof. Lower cladding layer 204 (layer thickness = 280 nm), by Ga.85Ino.15N well layer (layer thickness = 3 nm) / Ale.oiGao.^N barrier layer (layer thickness = 8 nm) a light-emitting layer 205 of a multi-quantum well structure composed of 5 cycles, and an upper cladding layer 206 having a layer thickness of 85 nm and formed of P-type Alo.ioGao.9oN to form a light-emitting portion of a pn junction DH structure Having as a surface On the surface of the hexagonal η-type upper cladding layer 06 of the (1.1.-2.0.) crystal plane, a p-type hexagonal undoped monomer layer (layer thickness = 200 nm) is deposited as the contact layer 207. By observing the ordinary section ΤΕΜ, the hexagonal undoped monomer layer constituting the contact layer 207 can hardly distinguish planar defects and dislocations such as twins and stack defects. -75- (73) 200805704 The central portion of the above P-type contact layer 207 is Au). Zinc (Zn) alloy (95% by weight of gold and 5 parts of P-type ohmic electrode 208 formed and formed into a circular shape, which is removed by means of dry etching means The hexagonal n-type ΒΡ to 207 exposed in the region of the electrode 209 is formed into a circular η-type ohmic electrode 209 in a plan view. The 2 0 9 system is obtained by ordinary vacuum deposition. The gold (Au) layer (90% by weight gold and 10% by weight bismuth alloy) J is operated by a 20 mA device current between the p-type on the hexagonal monomer BP layers 207 and 202 and η and 209 The forward direction flows through and tests the hexagonal and 202. The main wavelength of the light emitted by the LED 2 is the radiation of the sheet in this state. The light-emitting hexagonal BP layers 202 and 207 are disposed on the bismuth nitride semiconductor layer 204 poles 208 and 209 constituting the light-emitting portion, and the reverse voltage (when the reverse current is solid) exhibits more than 18 volts. High-level. Again, breakdown. [Embodiment 1] The present invention will be described by forming a flat shape of gold (alloy of zinc alloy) by a Schottky gate and an ohmic contact electrode and a drain electrode which are disposed on a high-impedance η-type. The η-type ohmic electrode - the wrong (Ge) alloy is formed on the surface of the individual layer 202 above the η-type ohms 202. Separately disposed in the -type ohmic electrode 208, the monomer BP layer 207 is about 460 nm. Crystals are based on FETs that are superior to crystalline P - η junction D Η junctions to 206 and ohms are set to 1 〇 microamperes and almost no local hexagonal monolayers are formed to construct GaN-based 76-76-200805704 (74) FETs. Explain explicitly for the examples. Fig. 25 is a schematic view showing a schematic sectional structure of the FET 3 which is suitable for the G aN of this embodiment. The stack structure 3 of the FET 3 is fabricated, as described in the foregoing Embodiment 8, formed on a (1.1.-2.0·) crystal plane (commonly referred to as an A-plane) serving as a surface thereof and serves as a substrate 301. Sapphire (α-alumina single crystal). On the surface of the (1·1·-2·0·) crystal plane of the substrate 301, a high-impedance undoped hexagonal monomer BP layer 303 is formed at 1 050 ° C by using a conventional MOCVD method ( Layer thickness = 7 20 nm). The high-impedance undoped BP layer 303 has a carrier concentration of lxl 〇 17cnT3. According to analysis by ordinary TEM, the BP layer 303 contains a small amount of twins and stack defects of less than 1 x 1 〇 4 cm·2. On the surface of the high-impedance BP layer 303, an electron transport layer 304 formed of an undoped hexagonal GaN layer (layer thickness = 48 nm) and having a surface serving as its surface (1.1.-2.0) were stacked in the following order. .) crystal face and electron supply layer 3 05 (layer thickness = 28 nm) formed of hexagonal η-type Al 〇.25Ga().75N. Both the electron transport layer 408 and the electron supply layer 305 are formed by the MOCVD method. On a hexagonal η-type electron supply layer 305 having a (1.1.-2.0·) crystal plane serving as a surface thereof, it is disposed in a bonding manner to enable the gate 3 07 to deposit a desired Schottky contact formation layer 3 1 0. The Schottky contact formation layer 3 10 is formed of a high-impedance hexagonal monomer BP having a layer thickness of 12 nm and a carrier concentration of less than 5 x 1 016 cn T3. After the formation of the Schottky contact formation layer 310, the Schottky contact formation layer 310 continues to remain completely in the central region of the plane view-77-(75) 200805704, in order to make the Schottky The gate 3 0 7 can be formed and the Schottky contact electrode forming layer present in the rest of the region is removed via a conventional dry etching method. Next, a η-type hexagonal monomer BP layer serving as the contact layer 306 (layer thickness = 100 nm and carrier concentration = 2 x 1019 cnT3) is stacked to cover the sustained Schottky contact forming electrode 310 and exposed thereto. The entire surface of both electron supply layers 305. By ordinary cross-sectional TEM observation, planar defects and dislocations such as twins and stacking defects are hardly resolved in the hexagonal BP layer constituting the contact layer 306. Thereafter, for the purpose of depositing the gate 3 107, the contact layer 306 formed of the hexagonal n-type BP layer and covering the Schottky contact forming electrode 310 is removed by ordinary dry etching. On the surface of the Schottky contact forming electrode 310 which is exposed by the removal of the contact layer 306, the Schottky gate formed of titanium (T i ) is disposed by ordinary electron beam deposition means. Pole 3 07 ° Next, an ohmic contact electrode 3 is formed on the surface of the contact layer 306 which is commonly formed and which respectively has one of two independent portions of the hexagonal BP layer on the opposite side of the gate 307 0 8. Then, on the surface of the contact layer 306 formed by the other independent portion of the hexagonal BP layer on the opposite side of the gate 307, the gate 309 is disposed to complete the fabrication of the GaN-based FET 3. The ohmic electrode constituting the source 3 0 8 and the drain 3 09 is formed of a gold (Au)-germanium (Ge) alloy layer (95% by weight of gold and 5% by weight of bismuth alloy) obtained by ordinary vacuum deposition. Because the ohmic electrodes, that is, the source 308 and the drain 309, both -78-(76) 200805704 are disposed on the contact layer 306 formed by the hexagonal monomer BP and contain only a small amount of twins and stack defects, Therefore, it is possible to solve the disadvantage that the drain current flows into the short-circuit pattern, and as in the past, the source portion region and the opposite drain region which are disposed in the region containing the high-density crystal defects are concentrated. Therefore, the FET 3 having a unique performance characteristic such as that the device operating current can flow to the electron transport layer 304 at a uniform current density can be made. Furthermore, since the Schottky gate 3 07 is adjacent to the Schottky contact formation layer 3 1 0 formed by the high-impedance hexagonal monomer BP, which is almost free of twins and stack defects, it can be made into a There is a GaN-based FET 3 of the gate 307 which shows only a negligible leakage current and exhibits a high breakdown voltage. [Embodiment 1] The present invention will be explicitly explained by way of an example in the case of constructing a compound semiconductor LED to which a hexagonal monomer B P layer serving as a lower cladding layer is attached. Fig. 26 is a schematic plan view showing the outline of the compound semiconductor LED 1 explained in the embodiment 11. Then, Fig. 27 is a schematic cross-sectional view showing the LED 1 taken along the broken line XXVII-XXVII of Fig. 26. The stacked structure 100 for the LED 1 is formed by using sapphire (α-Α12〇3 single crystal) as the substrate 101. On the surface formed by the (1.-1.0.2·) crystal plane of the substrate ι〇1 (commonly referred to as the R_plane), a layer thickness of about 8 μm is formed by ordinary decompression MOCVD method and has a surface serving as a surface thereof. The n-type GaN layer 103 of the (1.1.-2.0·) crystal plane. On the surface formed by the (lu o·) crystal plane of the η-type GaN layer ι〇3, a boron phosphide-based semiconductor formed of hexagonal undoped monomer BP-79- (77) 200805704 As the lower cladding layer 104, it was formed at 750 ° C by ordinary atmospheric pressure ( ) MOCVD method. The semiconductor layer constituting the lower cladding layer has a layer thickness of about 290 nm and has a (1.1.-2.0.) crystal plane. Next, the conduction pattern of this layer is found to be about 2×1 01 by the ordinary electrolyte CV method. The ordinary TEM analysis shows that the lower GaN layer 103 is based on boron phosphide serving as the lower cladding layer 104. Half of it to inhibit proliferation. On the surface of the BP layer constituting the lower cladding layer 1〇4, (1.1, the surface formed by the stack is respectively composed of two layers, that is, η-type Ga〇.88Inc). 12N layer and η serving as a buffer layer - In the GamlnmN well layer formed by the multi-quantum well structure formed by the five cycles of the type, the lower cladding layer 104 of the square BP layer is 0&88.11().12> The well layer has a (1·1·-2·0·) crystal plane serving as its surface, so this well is superior to the crystalline hexagonal single crystal layer. It is almost impossible to distinguish the well layer in the surface of the cladding layer 104 by ordinary enthalpy, because it is bonded to the lower cladding layer via the (1.1.-2.0·) crystal plane; the crystal layer of the surface layer is excellent, so the composition Both the higher layer and the Gao.^InmN well layer can be transformed into a hexagonal single crystal layer which is hardly crystalline. Furthermore, both the well layer and the energy barrier layer constituting the multi-quantum well layer 105 are converted into a (1.1.-2.0·) crystal plane stack having a parallel cladding layer 104 (1.1, a hexagonal single crystal layer. About atmospheric pressure The boron phosphide is η-type as its surface and is 9 cm_3. The boundary of the dislocation conductor layer contained in the .-2 · 0 ·) crystal plane serves as a well GaN layer, group: layer 105. The layer is transformed into a layer for bonding to the formation of the hexaphase, and is bonded to the crystal. The GaN barrier of layer 104 contains twins and the luminescent structure of the superior structure constitutes the lower .-2.0·) crystal plane-80 - (78) (78)200805704. In the multi-quantum structure, the multi-quantum well structure can By configuring a hexagonal BP layer serving as a bottom layer and forming a n-type GaN layer of the outermost surface layer of the light-emitting layer from a hexagonal group 111 nitride semiconductor layer containing only a small amount of crystalline defects (1 .1 .-2.0) On the crystal face, a P-type Al〇.i5Ga〇.85N layer serving as the upper cladding layer 106 was disposed at 1,080 ° C by a conventional decompression MOCVD method. The upper cladding layer 106 is formed of a hexagonal Al〇.15GaG.85N layer having a carrier concentration of about 4x1 〇 17cnT3 and a layer thickness of about 90 nm. Therefore, the light-emitting portion of the ρ - η junction D Η structure is composed of the ruthenium layer constituting the lower cladding layer 1 〇 4, the light-emitting layer 105, and the upper cladding layer 106. On the surface of Al〇.15Ga〇.85N formed on the (1.1.-2·0·) crystal plane of the upper cladding layer 106, it is configured as a contact layer 1 at a normal decompression MOCVD method at 1 050 ° C. 7 P-type GaN layer. The contact layer 107 is formed of a hexagonal GaN layer having a carrier concentration of about lxl 018 cnT3 and a layer thickness of about 80 nm. After the contact layer 107 formed of the p-type GaN layer serves as the uppermost layer configuration to complete the formation of the stacked structure, a P-type ohmic electrode 1〇8 is formed on one edge of the surface of the contact layer 1〇7. The p-type ohmic electrode 108 is composed of gold and nickel oxide. The ohmic electrode 1 〇 9 is formed on the underlying cladding layer 104 of the semiconductor layer constituting the hexagonal phosphide boron exposed by the dry etching method. The η-type ohmic electrode 109 is composed of a gold-bismuth alloy, and is tested by flowing a 20 mA device operating current in a forward direction between the ρ-type and the η-type ohmic electrodes 108 and 1〇9. The luminescent properties of LED 1. The main wavelength of light emitted by LED 1 is about 450 nm -81 - (79) 200805704. The wafer has a radiation intensity of about 1.2 candelas in this state. When the forward current is fixed at 20 mA, the forward voltage is about 3.5 volts. The semiconductor layer constituting the hexagonal phosphide constituting the lower cladding layer 104, the luminescent layer 1 〇 5 constituting the luminescent portion of the pn junction DH structure, and the group III nitride semiconductor layer constituting the upper cladding layer 106 When the crystallinity is excellent, when the reverse current is fixed at 1 〇 microamperes, the reverse voltage exhibits a high level of more than 1 volt. Further, since the hexagonal phosphide-based semiconductor layer constituting the lower cladding layer 1 〇 4 suppresses the propagation of dislocations from the η-type GaN layer 103 to the luminescence portion of the pn junction DH structure, almost the obtained LED 1 is obtained. No partial breakdown can be seen. Embodiment 1 2 The present invention will be described with a light-emitting portion having a hexagonal phosphide-based semiconductor layer formed of an upper and lower cladding layer and a light-emitting layer. The case of the LED is clarified as an example. Explain. Fig. 28 schematically illustrates the cross-sectional structure of the LED 1 explained in the embodiment 12. Similar reference numerals in Fig. 28 are indicated by constituent elements similar to those shown in Figs. 26 and 27. On the surface of the sapphire substrate 110, the n-type hexagonal GaN layer 103, the lower cladding layer 104 formed of the η-type hexagonal monomer BP layer, and the multi-quantum well structure are stacked in the order described in the foregoing embodiment 11. Light emitting layer 105. Since the light-emitting layer 105 has the lower cladding layer 1 形成4 formed of a semiconductor layer serving as a bottom layer of phosphide boron, it is finally composed of a hexagonal GalnN well layer containing only a small amount of crystalline defects such as twins and the like. The GaN barrier layer is formed. -82- (80) 200805704 Next, hexagonal p-type phosphating serving as the upper cladding layer 106 is disposed by an ordinary MOCVD method on an energy barrier layer formed of an n-type hexagonal GaN layer constituting the uppermost surface layer of the light-emitting layer A boron-based semiconductor layer. The upper cladding layer 106 is composed of an undoped p-type hexagonal monomer BP layer. The upper cladding layer 106 has a layer thickness of about 250 nm and a carrier concentration of about 2 x 10 19 cm_3. Next, the surface of the upper cladding layer 106 is like a bottom layer and is composed of six parties.

GaN層形成的能障層表面,係由(1.1 .-2.0.)晶面形成。 因爲構成上包覆層106的p-型六方單體BP層具有超 過約_ 3 . 1電子伏特的禁帶寬度,所以由六方BP形成的磷 化硼爲底的半導體層係作爲上包覆層106並聯合η-型磷 化硼爲底的半導體層103及發光層105構成p-n接面DH 結構的發光部分。 因爲該六方磷化硼爲底的半導體層構成具有高載子濃 度的上包覆層1 06,所以不像前述實施例1 1,用於LED 1 的堆疊結構1〇〇的製造不需冒險在上包覆層106上形成使 P-型歐姆電極108能沈積所欲的接觸層就能完成。 該P-型歐姆電極108,如第28圖舉例說明的,係依 直接接合到六方P-型磷化硼爲底的半導體層表面的方式 配置。η-型歐姆電極109,如前述實施例1 1中說明的, 係配置在藉由利用普通乾式飩刻方法而暴露出來之六方 η-型磷化硼爲底的半導體層所形成的下包覆層104表面上 ,而製造LED 1。 藉由使20毫安培的裝置操作電流依p-型與η-型歐姆 電極108與109之間的前進方向流過而試驗此LED 1的 -83- (81) 200805704 發光性質。由LED 1發出的光的主要波長爲約450奈米 。當正向電流固定在20毫安培時該LED 1產生的正向電 壓爲3.3伏特,比前述實施例1 1中說明的LED 1的量級 更低,因爲該上包覆層106係由具有高載子濃度且優於結 晶性的六方磷化硼爲底的半導體層形成。晶片在此狀態下 的放射亮度呈現約1 · 8燭光的高量級,因爲上包覆層及下 包覆層都由六方磷化硼爲底的半導體層構成。 在反映構成下包覆層104及構成p-n接面DH結構的 發光部分之上包覆層106的六方磷化硼爲底的半導體層及 構成發光層1 〇 5的III族氮化物半導體層的優良結晶性時 ,當反向電流固定在10微安培時,產生的反向電壓能達 到超過1 〇伏特的高量級。再者,因爲作爲下包覆層1 〇 4 的六方磷化硼爲底的半導體層抑制位錯從η-型GaN層 1 03增殖到p-η接面DH結構的發光部分,因此獲得的 LED 1中幾乎看不出局部擊穿。 產業應用性 本發明的化合物半導體裝置,如以上解釋的,爲藉著 在利用六方單晶、形成在該單晶上的磷化硼爲底的半導體 層及由形成在該磷化硼爲底的半導體層上的化合物半導體 形成的化合物半導體層提供的堆疊結構上配置電極而建構 的化合物半導體裝置,且該裝置適於具有配置在上述單晶 層的(1.1·-2· 0·)晶面形成的表面上的磷化硼爲底的半導 體層。因此,本發明能形成僅含小密度的例如攣晶及堆疊 -84 - 200805704 (82) 缺陷等的結晶性缺陷且結晶性優異的磷化硼爲底的半導體 層。 本發明,因此,使製成的磷化硼爲底的半導體層能僅 含小密度的例如攣晶及堆疊缺陷等的結晶性缺陷且具有優 異結晶性,因此能利用此磷化硼爲底的半導體層並提供具 ’ 有增進裝置的不同性質之半導體裝置。 接著,前述結構的發光能利用由僅含小量反相邊界的 優異品質磷化硼爲底的半導體材及ΙΠ族氮化物半導體材 料形成,且因此得以提供光學性質及電氣性質優異的化合 物半導體裝置及製造該化合物半導體裝置的方法。 再者,前述結構的發明能提供附有能降低裝置操作電 流洩漏,增高充當發光裝置的光電轉化效率,也增高反向 電壓,賦予場效電晶體的閘極高擊穿電壓並賦予汲極電流 的夾止性質的磷化硼爲底的半導體層之半導體裝置。 前述結構的發明使構成DH結構的發光部分之包覆層 能利用僅含小量的結晶性缺陷且品質優異之磷化硼爲底的 半導體層形成,並能提供具有實質上增進的發光性質的半 導體發光裝置。 接著,前述結構的發明預期利用III族氮化物半導體 形成六方單晶層,並提供由具有充當其表面的(1.1 .-2.0. )晶面之六方III族氮化物半導體及依接合到該III族氮 化物半導體層表面的方式配置的六方磷化硼爲底的半導體 層構成的第一堆疊結構部分,結果,防止III族氮化物半 導體所含的位錯穿過該堆疊結構部分的界面朝該磷化硼爲 -85- (83) (83)200805704 底的半導體層增殖。進一步預期使該六方III族氮化物半 導體層接合到構成前述第一堆疊結構部分的六方磷化硼爲 底的半導體層的上側表面而提供第二堆疊結構部分。由於 第二堆疊結構部分的提供,能製成含僅小密度的例如穿透 位錯等的結晶性缺陷之III族氮化物半導體。本發明,因 此,能製造附有優於結晶性的半導體層之堆疊結構,即使 是以含大量結晶性缺陷的III族氮化物半導體層提供在基 材上亦同,並因此提供具有增進的裝置性質之化合物半導 體裝置。 【圖式簡單說明】 第1圖係舉例說明實施例1中說明的LED之槪略平 面圖。 第2圖係舉例說明沿著虛線II-II由第1圖取得的 LED之槪略斷面圖。 第3圖係舉例說明由垂直於c-軸的方向觀看的六方 BP晶體層的原子排列之槪略平面圖。 第4圖係舉例說明由平行於c-軸的方向觀看的六方 BP晶體層的原子排列之槪略平面圖。 第5圖係舉例說明使電流能依平行於六方單晶層的( 0.0.0.1 .)晶面方向流動的裝置斷面結構之槪略圖。 第6圖係舉例說明使電流能依垂直於六方單晶層的( 0.0.0.1 .)晶面方向流動的裝置斷面結構之槪略圖。 第7圖係舉例說明使電流能依垂直於六方單晶層的( -86- (84) (84)200805704 0·0·0· 1 ·)晶面方向流動的ME SFET斷面結構之槪略圖。 第8圖係舉例說明實施例2中說明的LED之槪略平 面圖。 第9圖係舉例說明沿著虛線ΐχ_ IX由第8圖取得的 LED之槪略斷面圖。 第1 0圖係舉例說明實施例3中說明的LED之槪略平 面圖。 第11圖係舉例說明沿著虛線XI_XI由第10圖取得的 LED之槪略斷面圖。 弟1 2圖係舉例說明實施例4中說明的F E T之槪略平 面圖。 第1 3圖係舉例說明接合區域中的原子排列之槪略圖 〇 第1 4圖係舉例說明實施例5中說明的LED之槪略平 面圖。 第15圖係舉例說明沿著虛線XV-XV由第14圖取得 的LED之槪略斷面圖。 第1 6圖係舉例說明實施例6中說明的LED之槪略平 面圖。 第1 7圖係舉例說明沿著虛線χνιΙ-χVII由第1 6圖取 得的LED之槪略斷面圖。 第1 8圖係舉例說明長期相配接面系統之槪略圖。 第1 9圖係舉例說明實施例7中說明的LED之槪略平 面圖。 -87- (85) (85)200805704 第20圖係舉例說明沿著虛線χχ-XX由第19圖取得 的LED之槪略斷面圖。 第2 1圖係舉例說明實施例8中說明的LED之槪略平 面圖。 第22圖係舉例說明沿著虛線XXΠ-XXII由第21圖取 得的LED之槪略斷面圖。 第23圖係舉例說明實施例9中說明的LED之槪略平 面圖。 第24圖係舉例說明沿著虛線XXIV-XXIV由第23圖 取得的LED之槪略斷面圖。 第25圖係舉例說明實施例10中說明的LED的FET 之槪略平面圖。 第26圖係舉例說明實施例1 1中說明的LED之槪略 平面圖。 第27圖係舉例說明沿著虛線XXVII-XXVII由第26 圖取得的LED之槪略斷面圖。 第2 8圖係舉例說明實施例1 2中說明的l E D之槪略 平面圖。 【主要元件符號說明】 1 :化合物半導體裝置發光二極體 2 :發光二極體 3 :場效電晶體 1 〇 :六方化合物半導體材料 -88 - (86) (86)200805704 10a: ( 1 · 0 · -1 · 0 ·)晶面形成的表面 11: ( 0 · 0.0.1 ·)晶面 1 1 a : 11族原子平面 1 1 b : V族原子平面 1 2 :六方磷化硼爲底的半導體材料 1 2 a :表面 13: ( 0 · 0 · 0 · 1 ·)晶面 13a : III族原子平面 1 3 b : V族原子平面 20 :六方磷化硼層 2 0H :間隙 3 〇 :堆疊結構 3 1 :導電性六方氮化鋁基材 3 2 :六方磷化硼層 33 :發光部分 3 4 :極性歐姆電極 3 5 :極性歐姆電極 40 :堆疊結構 4 1 :導電性六方氮化鎵基材 42 :六方磷化硼層 43 :發光部分 44 :極性歐姆電極 45 :極性歐姆電極 50 :堆疊結構 -89- (87) (87)200805704 5 1 :基材 5 2 :六方磷化硼層 5 3 :電子傳輸層(通道層) 54 :電子供應層 5 5 :源極 5 6 :汲極 60 :接合系統 6 1 :六方卓晶 6 1 A :表面 6 1 B :藍寶石的(0 · 0 · 0 · 1 ·)晶面 62 :六方磷化硼爲底的半導體層 62A :接合表面 62B : (0.0.0.2.)晶面 100 :堆疊結構 1 0 1 ·•基材 102 :六方磷化硼爲底的半導體層 102A :未摻雜的n-型單體BP層 1 02B : η-型 GaN 層 103 :纖維鋅礦型六方η-型GaN層 1 03 A :六方η-型GaN層 103B :纖維鋅礦型六方η-型GaN層 1 04 :下包覆層 105 :發光層 1 06 :上包覆層 -90- (88) (88)200805704 107 :接觸層 108 : p-型歐姆電極 1 0 9 : η -型歐姆電極 120Α :第一堆疊結構部分 120Β :第二堆疊結構部分 200 :堆疊結構 2 0 1 :基材 202 :六方ΒΡ層 203 :未摻雜的η-型GaN層 2〇4 :下包覆層 205 :發光層 206 :上包覆層 2 0 7 :接觸層 208 : p-型歐姆電極 209: η -型歐姆電極 3 00 :堆疊結構 3 0 1 :基材 3 02 : η-型 GaN 層 3 03 :未摻雜p-型單體BP層 304:電子傳輸層 3 05 :電子供應層 3 〇 6 :接觸層 307:蕭特基閘極 3 0 8 :歐姆源極 -91 - (89) 200805704 3 0 9 :歐姆汲極 3 1 〇 :蕭特基接觸形成層 3 20A :第一堆疊結構部分 3 20B :第二堆疊結構部分 3 3 0 :凹部部分 -92The surface of the barrier layer formed by the GaN layer is formed by a (1.1.-2.0.) crystal plane. Since the p-type hexagonal monomer BP layer constituting the upper cladding layer 106 has a forbidden band width of more than about _3.1 volts, the phosphide-based semiconductor layer formed of hexagonal BP is used as the upper cladding layer. The semiconductor layer 103 and the light-emitting layer 105, which are combined with the η-type phosphide boron, constitute a light-emitting portion having a pn junction DH structure. Since the hexagonal phosphide-based semiconductor layer constitutes the upper cladding layer 106 having a high carrier concentration, unlike the foregoing embodiment 1, the fabrication of the stacked structure 1 for the LED 1 does not require risk. The formation of the upper cladding layer 106 allows the P-type ohmic electrode 108 to deposit the desired contact layer. The P-type ohmic electrode 108, as exemplified in Fig. 28, is disposed in such a manner as to be directly bonded to the surface of the hexagonal P-type boron phosphide-based semiconductor layer. The η-type ohmic electrode 109, as described in the foregoing Embodiment 11, is a lower cladding formed by a semiconductor layer of a hexagonal η-type phosphide-bored exposed by a conventional dry lithography method. On the surface of layer 104, LED 1 is fabricated. The -83-(81) 200805704 luminescent property of this LED 1 was tested by flowing a 20 mA device operating current through the forward direction between the p-type and the n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by LED 1 is about 450 nm. The LED 1 generates a forward voltage of 3.3 volts when the forward current is fixed at 20 milliamps, which is lower than that of the LED 1 described in the foregoing embodiment 11, because the upper cladding layer 106 is high. A semiconductor layer having a carrier concentration and superior to crystalline hexagonal phosphide boron is formed. The radiance of the wafer in this state is about a high level of about 1.88 light, since both the upper cladding layer and the lower cladding layer are composed of a hexagonal phosphide-based semiconductor layer. The hexagonal phosphide-based semiconductor layer constituting the cladding layer 106 and the light-emitting portion constituting the pn junction surface DH structure and the group III nitride semiconductor layer constituting the light-emitting layer 1 〇 5 are excellent. In the case of crystallinity, when the reverse current is fixed at 10 microamperes, the reverse voltage generated can reach a high level exceeding 1 volt. Furthermore, since the hexagonal phosphide-based semiconductor layer as the lower cladding layer 1 〇4 suppresses the propagation of dislocations from the η-type GaN layer 103 to the light-emitting portion of the p-η junction DH structure, the obtained LED is obtained. There is almost no partial breakdown in 1 . INDUSTRIAL APPLICABILITY The compound semiconductor device of the present invention, as explained above, is a semiconductor layer based on boron phosphide formed on a hexagonal single crystal, formed on the single crystal, and formed on the boron phosphide-based a compound semiconductor device in which a compound semiconductor layer formed of a compound semiconductor on a semiconductor layer is provided with a stacked electrode structure, and the device is adapted to have a (1.1·-2·0·) crystal plane formed on the single crystal layer The boron phosphide on the surface is a bottom semiconductor layer. Therefore, the present invention can form a semiconductor layer containing only a small density of crystal defects having defects such as twins and stacks of -84 - 200805704 (82) and having excellent crystallinity. According to the present invention, the phosphide-based semiconductor layer can be made to contain only a small density of crystalline defects such as twins and stack defects, and has excellent crystallinity, so that the phosphide-borated substrate can be utilized. The semiconductor layer is provided with a semiconductor device having a different property of the enhancement device. Next, the light-emitting energy of the above-described structure is formed using a semiconductor material and a bismuth nitride semiconductor material which are based on excellent quality phosphide boron containing only a small amount of reversed phase boundary, and thus provides a compound semiconductor device excellent in optical properties and electrical properties. And a method of manufacturing the compound semiconductor device. Furthermore, the invention of the foregoing structure can provide a photoelectric conversion efficiency which can reduce the operating current leakage of the device, increase the photoelectric conversion efficiency serving as the light-emitting device, and also increase the reverse voltage, impart a high breakdown voltage of the field effect transistor and impart a drain current. A semiconductor device in which a phosphide boron nitride-based semiconductor layer is sandwiched. According to the invention of the foregoing configuration, the cladding layer constituting the light-emitting portion of the DH structure can be formed by using a semiconductor layer containing only a small amount of crystalline defects and having excellent quality of phosphide as a base, and can provide substantially improved luminescent properties. Semiconductor light emitting device. Next, the invention of the foregoing structure is intended to form a hexagonal single crystal layer using a group III nitride semiconductor, and to provide a hexagonal group III nitride semiconductor having a (1.1.-2.0.) crystal plane serving as a surface thereof and to be bonded to the group III a first stacked structure portion composed of a hexagonal phosphide-based semiconductor layer disposed on the surface of the nitride semiconductor layer, and as a result, preventing dislocations contained in the group III nitride semiconductor from passing through the interface of the stacked structural portion toward the phosphorus Boronization is a proliferation of the semiconductor layer of -85-(83) (83)200805704. It is further contemplated to bond the hexagonal group III nitride semiconductor layer to the upper side surface of the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion to provide a second stacked structural portion. Due to the provision of the second stacked structure portion, a group III nitride semiconductor containing a crystal defect of only a small density such as a threading dislocation can be produced. According to the present invention, therefore, it is possible to manufacture a stacked structure with a semiconductor layer superior to crystallinity, even if it is provided on a substrate as a group III nitride semiconductor layer containing a large amount of crystal defects, and thus provides an improved device A compound semiconductor device of a nature. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic plan view showing an LED illustrated in the first embodiment. Fig. 2 is a schematic cross-sectional view showing the LED taken from Fig. 1 along the broken line II-II. Fig. 3 is a schematic plan view showing an atomic arrangement of a hexagonal BP crystal layer viewed from a direction perpendicular to the c-axis. Fig. 4 is a schematic plan view showing an arrangement of atoms of a hexagonal BP crystal layer viewed in a direction parallel to the c-axis. Fig. 5 is a schematic diagram showing a cross-sectional structure of a device in which current can flow in a direction parallel to the (0.0.0.1.) crystal plane of a hexagonal single crystal layer. Fig. 6 is a schematic view showing a cross-sectional structure of a device for causing a current to flow in a direction perpendicular to a (0.0.0.1.) crystal plane of a hexagonal single crystal layer. Fig. 7 is a schematic diagram showing the cross-sectional structure of the ME SFET in which the current can flow in the direction of the (-86-(84) (84)200805704 0·0·0·1 ·) plane perpendicular to the hexagonal single crystal layer. . Fig. 8 is a schematic plan view showing the LEDs explained in the second embodiment. Fig. 9 is a schematic cross-sectional view showing an LED taken from Fig. 8 along a broken line ΐχ_IX. Fig. 10 is a schematic plan view showing the LEDs explained in the third embodiment. Fig. 11 is a schematic cross-sectional view showing an LED taken from Fig. 10 along the broken line XI_XI. The schematic diagram of the F E T described in the fourth embodiment is exemplified. Fig. 13 is a schematic diagram showing an arrangement of atoms in a joint region. Fig. 14 is a schematic plan view showing an LED explained in the fifth embodiment. Fig. 15 is a schematic cross-sectional view showing an LED taken from Fig. 14 along a broken line XV-XV. Fig. 16 is a schematic plan view showing the LEDs explained in the sixth embodiment. Fig. 17 is a schematic cross-sectional view showing an LED taken from Fig. 16 along a broken line χνιΙ-χVII. Figure 18 is a schematic diagram illustrating a long-term mating junction system. Fig. 19 is a schematic plan view showing the LEDs explained in the seventh embodiment. -87- (85) (85)200805704 Fig. 20 is a schematic cross-sectional view showing an LED taken from Fig. 19 along a broken line χχ-XX. Fig. 2 is a schematic plan view showing the LEDs explained in the eighth embodiment. Fig. 22 is a schematic cross-sectional view showing an LED taken from Fig. 21 along the broken line XX Π - XXII. Fig. 23 is a schematic plan view showing the LEDs explained in the ninth embodiment. Figure 24 is a schematic cross-sectional view showing an LED taken from Fig. 23 along the broken line XXIV-XXIV. Fig. 25 is a schematic plan view showing an FET of the LED explained in Embodiment 10. Fig. 26 is a schematic plan view showing the LEDs explained in the embodiment 11. Figure 27 is a schematic cross-sectional view showing the LED taken from the 26th drawing along the broken line XXVII-XXVII. Fig. 28 is a schematic plan view showing the l E D explained in the embodiment 12. [Main component symbol description] 1 : Compound semiconductor device light-emitting diode 2: Light-emitting diode 3: Field-effect transistor 1 〇: Hexagon compound semiconductor material -88 - (86) (86)200805704 10a: (1 · 0 · -1 · 0 ·) Surface formed by crystal plane 11: ( 0 · 0.0.1 ·) crystal plane 1 1 a : group 11 atomic plane 1 1 b : group V atom plane 1 2 : hexagonal phosphide boron Semiconductor material 1 2 a : Surface 13: ( 0 · 0 · 0 · 1 ·) crystal face 13a : Group III atomic plane 1 3 b : Group V atom plane 20 : Hexagonal boron phosphide layer 2 0H : Gap 3 〇: Stacking Structure 3 1 : Conductive hexagonal aluminum nitride substrate 3 2 : hexagonal boron phosphide layer 33 : light-emitting portion 3 4 : polar ohmic electrode 3 5 : polar ohmic electrode 40 : stacked structure 4 1 : conductive hexagonal gallium nitride base Material 42: hexagonal boron phosphide layer 43: light-emitting portion 44: polar ohmic electrode 45: polar ohmic electrode 50: stacked structure - 89 - (87) (87) 200805704 5 1 : substrate 5 2 : hexagonal boron phosphide layer 5 3: electron transport layer (channel layer) 54: electron supply layer 5 5 : source 5 6 : drain 60: joint system 6 1 : hexagonal crystal 6 1 A : surface 6 1 B : sapphire (0 · 0 · 0 · 1 ·) crystal plane 62: hexagonal phosphide-based semiconductor layer 62A: bonding surface 62B: (0.0.0.2.) crystal plane 100: stacked structure 1 0 1 ·• substrate 102: hexagonal boron phosphide The bottom semiconductor layer 102A: undoped n-type monomer BP layer 102B: η-type GaN layer 103: wurtzite type hexagonal n-type GaN layer 1300 A: hexagonal n-type GaN layer 103B: Wurtzite type hexagonal η-type GaN layer 104: lower cladding layer 105: light-emitting layer 106: upper cladding layer - 90- (88) (88) 200805704 107: contact layer 108: p-type ohmic electrode 1 0 9 : η -type ohmic electrode 120 Α : first stacked structure portion 120 Β : second stacked structural portion 200 : stacked structure 2 0 1 : substrate 202 : hexagonal germanium layer 203 : undoped n-type GaN layer 2〇 4: lower cladding layer 205: light-emitting layer 206: upper cladding layer 2 0 7 : contact layer 208: p-type ohmic electrode 209: η-type ohmic electrode 3 00: stacked structure 3 0 1 : substrate 3 02 : Η-type GaN layer 3 03 : undoped p-type monomer BP layer 304: electron transport layer 3 05 : electron supply layer 3 〇 6 : contact layer 307: Schottky gate 3 0 8 : ohmic source - 91 - (89) 200805704 3 0 9 : Ohm 汲 3 1 〇: Schottky contacts forming layer 3 20A: a first portion 3 stacked structure 20B: a second stacked structure part 330: recessed portion -92

Claims (1)

200805704 (1) 十、申請專利範圍 1. 一種化合物半導體裝置,其包括: 化合物半導體,其具有六方單晶層、形成在該六方單 晶層表面上之磷化硼爲底的半導體層及配置在該磷化硼爲 底的半導體層上之化合物半導體層的堆疊結構;及 ’ 配置在該堆疊結構上的電極; 其中該磷化硼爲底的半導體層係由配置在該六方單晶 層的(1.1.-2.0·)晶面表面上之六方晶體所形成。 2 ·如申請專利範圍第1項之化合物半導體裝置,其 中該六方單晶層係由α -氧化鋁單晶體所形成。 3 .如申請專利範圍第1項之化合物半導體裝置,其 中該六方單晶層係由六方III族氮化物半導體所形成。 4.如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層係由具有(1.1.-2.0.)晶面爲其表面的晶體所形成。 5 ·如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層係由具宥(1.0.- , 1.0.)晶面爲其表面的晶體所形成。 6 ·如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層之內部中,( 〇.〇.0.1.)晶面係實質上平行於該半導體層的厚度方向排 歹ij,且其中該半導體層的「η」個連續性(0 · 0 · 0 · 2 ·)晶面 的距離實質上等於該單晶層的c-軸長度,該「η」表示2 或更大的正整數。 -93- (2) 200805704 7 .如申請專利範圍第6項之化合物半導體 中該「η」表示6或更小。 8. 如申請專利範圍第1至3項中任一項之 導體裝置,其中該化合物半導體層係由六方半導 形成。 9. 如申請專利範圍第1項之化合物半導體 中該磷化硼爲底的半導體層與該化合物半導體層 1.1.-2.0.)晶面作爲界面而接合。 10. 如申請專利範圍第1項之化合物半導體 中該磷化硼爲底的半導體層與該化合物半導體層 1.0.-1.0.)晶面作爲界面而接合。 11. 如申請專利範圍第9或10項之化合物 置,其中構成該化合物半導體層的(0.0 · 0 . 1 .) 成該磷化硼爲底的半導體層的(0.0.0.1.)晶面 而平行於該化合物半導體的堆疊方向。 12. 如申請專利範圍第1至3項中任一項之 導體裝置,其中該磷化硼爲底的半導體層不含反 界。 13. 如申請專利範圍第1至3項中任一項之 導體裝置,其中該電極係配置使得裝置操作電流 上平行於構成該磷化硼爲底的半導體層的(0. 〇 面及構成該化合物半導體層的(0.0.0.1 .)晶面 動。 14. 如申請專利範圍第1至3項中任一項之 裝置,其 化合物半 體材料所 裝置,其 係經由( 裝置,其 係經由( 半導體裝 晶面及構 係經配置 化合物半 相晶粒邊 化合物半 可依實質 • 0 · 1 ·)晶 之方向流 化合物半 -94- 200805704 (3) 導體裝置,其中該電極係配置使得裝置操作電流可依實質 上垂直於構成該磷化硼爲底的半導體層的(〇·〇.〇. 1.)晶 面及構成該化合物半導體層的(〇.〇·〇· 1.)晶面之方向流 動。 、 1 5 .如申請專利範圍第1至3項中任一項之化合物半 r 導體裝置,其中該磷化硼爲底的半導體層係由六方單體磷 化硼所形成。 1 6 .如申請專利範圍第1 5項之化合物半導體裝置’ 其中該六方單體磷化硼具有c-軸的長度在0.52奈米或更 大且0 · 5 3奈米或更小的範圍。 -95-200805704 (1) X. Patent application scope 1. A compound semiconductor device comprising: a compound semiconductor having a hexagonal single crystal layer, a phosphide boron-based semiconductor layer formed on a surface of the hexagonal single crystal layer, and a stacked structure of a compound semiconductor layer on the underlying semiconductor layer; and an electrode disposed on the stacked structure; wherein the phosphide-borated semiconductor layer is disposed on the hexagonal single crystal layer ( 1.1.-2.0·) The formation of hexagonal crystals on the surface of the crystal face. 2. The compound semiconductor device according to claim 1, wherein the hexagonal single crystal layer is formed of a single crystal of α-alumina. 3. The compound semiconductor device according to claim 1, wherein the hexagonal single crystal layer is formed of a hexagonal group III nitride semiconductor. 4. The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is formed of a crystal having a (1.1.-2.0.) crystal plane as its surface. The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is composed of a crystal having a crystal surface of 宥(1.0.- , 1.0.) form. The compound semiconductor device according to any one of claims 1 to 3, wherein, in the interior of the semiconductor layer of the boron phosphide, the (31..0.1.) crystal plane is substantially parallel to the The thickness direction of the semiconductor layer is 歹 ij, and wherein the distance of the "n" continuity (0 · 0 · 0 · 2 ·) crystal plane of the semiconductor layer is substantially equal to the c-axis length of the single crystal layer, η" represents a positive integer of 2 or more. -93- (2) 200805704 7. The "η" in the compound semiconductor of claim 6 indicates 6 or less. 8. The conductor device of any one of claims 1 to 3, wherein the compound semiconductor layer is formed by hexagonal semiconducting. 9. The compound layer of the phosphide boron-based semiconductor layer of the compound semiconductor of claim 1 is bonded to the compound semiconductor layer 1.1.-2.0.) crystal plane as an interface. 10. In the compound semiconductor of claim 1, the phosphide-based semiconductor layer is bonded to the compound semiconductor layer 1.0.-1.0.) crystal plane as an interface. 11. The compound according to claim 9 or 10, wherein (0.0.0.1) which constitutes the semiconductor layer of the compound is formed into a (0.0.0.1.) crystal plane of the semiconductor layer of the boron phosphide base. Parallel to the stacking direction of the compound semiconductor. 12. The conductor device of any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer does not contain a reverse boundary. 13. The conductor device according to any one of claims 1 to 3, wherein the electrode system is configured such that the device operating current is parallel to the semiconductor layer constituting the phosphide boron base (0. (0.0.0.1.) crystal plane movement of the compound semiconductor layer. 14. The apparatus according to any one of claims 1 to 3, wherein the compound half material is installed by means of Semiconductor mounting surface and structure configured compound semi-phase grain edge compound half can be according to the essence • 0 · 1 ·) crystal direction flow compound half-94- 200805704 (3) conductor device, wherein the electrode system configuration makes the device operate The current may be substantially perpendicular to a crystal plane of the semiconductor layer constituting the phosphide boron base and a crystal plane constituting the semiconductor layer of the compound. The compound semi-r conductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is formed of hexagonal monomer phosphide. If the patent application scope is 15th The compound semiconductor device' wherein the hexagonal monomer phosphide has a c-axis length of 0.52 nm or more and 0 · 5 3 nm or less.
TW95133090A 2005-09-07 2006-09-07 Compound semiconductor device TWI310247B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005259042A JP2007073732A (en) 2005-09-07 2005-09-07 Compound semiconductor element
JP2005261946A JP2007073872A (en) 2005-09-09 2005-09-09 Semiconductor element
JP2005266418A JP2007081084A (en) 2005-09-14 2005-09-14 Semiconductor light emitting element
JP2005269516A JP5005900B2 (en) 2005-09-16 2005-09-16 Semiconductor element
JP2005277536A JP5005902B2 (en) 2005-09-26 2005-09-26 Compound semiconductor device
JP2005286495A JP4700464B2 (en) 2005-09-30 2005-09-30 Compound semiconductor device
JP2005312758A JP5005905B2 (en) 2005-10-27 2005-10-27 Compound semiconductor device and compound semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
TW200805704A true TW200805704A (en) 2008-01-16
TWI310247B TWI310247B (en) 2009-05-21

Family

ID=39477977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95133090A TWI310247B (en) 2005-09-07 2006-09-07 Compound semiconductor device

Country Status (3)

Country Link
KR (1) KR100981077B1 (en)
DE (1) DE112006002403T5 (en)
TW (1) TWI310247B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398966B (en) * 2009-06-08 2013-06-11 Epistar Corp Light-emitting device and the manufacturing method thereof
TWI470794B (en) * 2011-09-28 2015-01-21 Transphorm Japan Inc Compound semiconductor device and method of manufacturing the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553834B2 (en) 1972-02-26 1980-01-26
JP2809690B2 (en) 1989-01-13 1998-10-15 株式会社東芝 Compound semiconductor material, semiconductor device using the same, and method of manufacturing the same
JP2809692B2 (en) * 1989-04-28 1998-10-15 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP2809691B2 (en) 1989-04-28 1998-10-15 株式会社東芝 Semiconductor laser
JP3053836B2 (en) 1989-06-16 2000-06-19 株式会社東芝 (III) —Method of manufacturing Group V compound semiconductor device
JPH03211888A (en) * 1990-01-17 1991-09-17 Toshiba Corp Semiconductor device and manufacture thereof
JP3104979B2 (en) 1990-07-27 2000-10-30 株式会社東芝 Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof
JP3102647B2 (en) 1990-12-10 2000-10-23 日本電信電話株式会社 Semiconductor light emitting device
JP3257442B2 (en) 1997-04-09 2002-02-18 松下電器産業株式会社 Method for producing gallium nitride crystal
US6069021A (en) 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JP3779255B2 (en) 2002-10-22 2006-05-24 昭和電工株式会社 Group III nitride semiconductor device, manufacturing method thereof, and light-emitting diode
JP3895266B2 (en) 2002-12-02 2007-03-22 昭和電工株式会社 BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE
JP4063801B2 (en) 2003-08-08 2008-03-19 昭和電工株式会社 Light emitting diode
FR2867374B1 (en) 2004-03-15 2007-04-13 Ge Med Sys Global Tech Co Llc PATIENT POSITIONING GUIDANCE IN A MEDICAL IMAGING ACQUISITION BEAM
JP2005259042A (en) 2004-03-15 2005-09-22 Seiko Epson Corp Image processing method and program
JP4576862B2 (en) 2004-03-22 2010-11-10 株式会社デンソー Integrated circuit device
JP2005266418A (en) 2004-03-19 2005-09-29 Canon Inc Image forming apparatus
JP2005277536A (en) 2004-03-23 2005-10-06 Toshiba Corp Digital broadcast receiver
JP4270000B2 (en) 2004-03-29 2009-05-27 三菱電機株式会社 Unequal power distribution synthesizer
JP2005312758A (en) 2004-04-30 2005-11-10 Nintendo Co Ltd Game system and game program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398966B (en) * 2009-06-08 2013-06-11 Epistar Corp Light-emitting device and the manufacturing method thereof
TWI470794B (en) * 2011-09-28 2015-01-21 Transphorm Japan Inc Compound semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
KR100981077B1 (en) 2010-09-08
DE112006002403T5 (en) 2008-07-10
KR20080042932A (en) 2008-05-15
TWI310247B (en) 2009-05-21

Similar Documents

Publication Publication Date Title
KR101363826B1 (en) Group ⅲ nitride based semiconductor device
US8536615B1 (en) Semiconductor device structures with modulated and delta doping and related methods
US8084781B2 (en) Compound semiconductor device
KR101636032B1 (en) Light emitting diode having interlayer with high dislocation density and method of fabricating the same
JP2005244207A (en) Nitride gallium based compound semiconductor luminous element
CN106299052B (en) A kind of GaN epitaxial structure and preparation method for LED
TW200807752A (en) III group nitride semiconductor light emitting element, process for producing III group nitride semiconductor light emitting element, and lamp
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
JP2002368260A (en) Compound semiconductor light-emitting element, manufacturing method therefor, lamp and light source
CN106784181B (en) Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
KR100827993B1 (en) Gallium nitride-based semiconductor device
TWI466324B (en) Light-emitting diode, light-emitting diode lamp and lighting apparatus
TW200414569A (en) Group-III nitride semiconductor device, production method thereof and light-emitting diode
TW541709B (en) III group nitride semiconductor luminescent element with the product method
TW200805704A (en) Compound semiconductor device
JP5115925B2 (en) Microcrystalline nitride semiconductor optical / electronic devices with controlled crystal orientation and facets
JP4700464B2 (en) Compound semiconductor device
WO2005109531A1 (en) P-n junction-type compoud semiconductor light-emitting diode
JP2007073732A (en) Compound semiconductor element
JP3659174B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing the same
CN206422089U (en) The GaN film of growth on a glass substrate
CN106299068B (en) Epitaxial structure and preparation method thereof based on Os substrates
KR101919109B1 (en) Uv light emitting deviceand uv light emitting device package
JP5005902B2 (en) Compound semiconductor device