TW200536141A - Nitride device and method for manufacturing the same - Google Patents

Nitride device and method for manufacturing the same Download PDF

Info

Publication number
TW200536141A
TW200536141A TW93111787A TW93111787A TW200536141A TW 200536141 A TW200536141 A TW 200536141A TW 93111787 A TW93111787 A TW 93111787A TW 93111787 A TW93111787 A TW 93111787A TW 200536141 A TW200536141 A TW 200536141A
Authority
TW
Taiwan
Prior art keywords
layer
nitride
patent application
scope
gallium nitride
Prior art date
Application number
TW93111787A
Other languages
Chinese (zh)
Other versions
TWI236164B (en
Inventor
Shih-Chen Wei
Yung-Hsin Shie
Wen-Liang Li
Shi-Ming Chen
Original Assignee
Epitech Corp Ltd
Shi-Ming Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epitech Corp Ltd, Shi-Ming Chen filed Critical Epitech Corp Ltd
Priority to TW93111787A priority Critical patent/TWI236164B/en
Priority to KR20040046986A priority patent/KR100629857B1/en
Application granted granted Critical
Publication of TWI236164B publication Critical patent/TWI236164B/en
Publication of TW200536141A publication Critical patent/TW200536141A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A nitride device and a method for manufacturing the same are disclosed. The present invention comprises the following steps. First, provide a substrate, and locate a buffer layer on the substrate. Next, locate an undoped GaN layer on the buffer layer. Then, locate a semiconductor epitaxial structure on the undoped GaN layer. Finally, form a P+-GaN layer on the semiconductor epitaxial structure, wherein UDMHy or organic metal with N are used as the source of N, and hydrogen or the mix of nitrogen and hydrogen are used as the carrier gas.

Description

200536141200536141

五、發明說明(1) 【發明所屬之技術領域] 其製造方法,特別是有 (M0CVD)的方式形成之 本發明是有關於一種氮化物元件及 關於一種以有機金屬化學氣相沉積 氮化物元件。 ' 【先前技術】 半導體發光元件’例如發光二極 ·V. Description of the invention (1) [Technical field to which the invention belongs] The manufacturing method, especially the method formed by (M0CVD), relates to a nitride element and a nitride element formed by organometallic chemical vapor deposition . '[Prior art] Semiconductor light emitting element' such as a light emitting diode ·

Diode; LED),係利用半導體材( lght Emitting 一種可將電能轉換為光能之微/斤製作而成的元件,係 導體發光元件不但體積小,匕:態光源。由於’此類半 快、耐震、壽命長等特性,驅動電壓低、反應速率 薄、短、小之需求,因而已成合各式應用設備輕、 子產品。 匕成為日常生活中相當普及之電 近年來’許多的焦點集中在 f仆锭f Γ T在以亂化物為主的半導體,例如 及氮化銘銦鎵(A1In心=乳化銦鎵(InGaN)、以 發光元件半導體大多忠t斤形成的發光元件。此類的 板上,而與其他發光元件换用叮=^威貝石(Sapphlre)基 寳石基板係-絕緣體,因m電的基板不㈤。蓉於藍 於疋,電極的製作必須直极i作電極。 導體層做各別地接艏=”雎的+導體層以及η型的半 發光二極體中的Ϊ:乂才能完成此類發光元件的製作。 B ^ φ ^ 氮化物半導體材料在磊晶時,合/ $ 曰曰過中導入足夠 ,θ , 會在磊 氫原子所鈍化乂Γ ’但是大部分的摻雜物卻會被 因此,氦化物發光二極體必須在激 破 我作完成Diode; LED), is a component made of semiconductor material (lght Emitting) that can convert electrical energy into light energy. Microelectronics is not only small in size, but also a light source. Because of this type of semi-fast, Characteristics such as shock resistance, long life, low driving voltage, thin response rate, short, and small requirements have made it a lightweight and sub-product for various applications. Daggers have become quite popular in daily life. In recent years, many focuses have been focused on The f ingot f Γ T is a semiconductor mainly composed of chaotic compounds, such as indium gallium nitride (A1In core = emulsified indium gallium (InGaN), and light emitting elements are mostly formed by light emitting element semiconductors. Such boards Sapphlre-based gem substrate system-insulator is used instead of other light-emitting elements, because the substrate of m electricity is not good. Rong Yulan is blue, so the electrode must be made with i as the electrode. Conductor In order to complete the production of this type of light-emitting element, a + conductor layer with 艏 = ”雎 and a 导体: 乂 in a η-type semi-emitting diode can be separately formed. B ^ φ ^ When a nitride semiconductor material is epitaxially formed, Hop / $ , [Theta], will Lei hydrogen atom passivation qe Γ 'but most of it will be dopant Thus, helium compound emitting laser diodes must be completed broken I

200536141 五、發明說明(2) 後,進行活化的回火(A η n e a 1 i n g )步驟,以提高氮化物半 導體材料的摻雜濃度。一般係藉由高溫爐管、微波爐等加 熱方式來進行活化退火步驟,將發光二極體置於適當高溫 環境中,經一段時間後,材料内的原子將會進行晶格位置 重排,進而減少半導體與金屬電極間的接觸電阻。 因此,習知的做法係在成長完氮化鎵相關的發光二極體結 構後,將蠢晶片拿出蠢晶機台,再將蠢晶片放入爐子升溫 至4 0 0°C〜1 0 0 0°C,再於氮氣的環境下回火,以使鎂摻雜之 氮化鎵從高阻抗的氮化鎵變成低阻抗的p型氮化鎵,使用 此法之缺點為,於晶粒製造時,必須多加一個回火的步 驟。另一方法為,於磊晶成長完後,將成長腔内的氣體全 部切換成氮氣,並控制降溫的速度,以使得鎂摻雜之氮化 鎵從不導電的氮化鎵變成導電的P型氮化鎵。其缺點為必 須控制降溫的速度,且成長腔内的成長溫度會隨著機台的 保養而有所變化,故較不易精確控制。 造 製 其 及 件 元 物 化 氮 Uttul 種 1 供 提 在 是 就 的 目 的 3 明 容發 内本 明, 發此 ί 因 方 造 製 其 及 件 元 物 化 氣 種 - 。供 驟提 步在 的是 火就 回的 略目 省一 以另 可的 ,明 法發 方本 方 造 製 其 及 件 元 。物 溫化 降氮 接種 直一 可供 ,提 度在 速是 的就 溫的 降目 制一 控又 需的 不明 ,發 法本 包 少 至 件 元 物 化 氮 •ft 種 1 出 。提 性, 定的 穩目 之述 產上 量之 口 月 力咿 增發 可本 ,據 法根200536141 V. Description of the invention (2) After the activation tempering (A η n e a 1 i n g) step is performed to increase the doping concentration of the nitride semiconductor material. Generally, the activation annealing step is performed by heating methods such as high temperature furnace tubes and microwave ovens. The light emitting diode is placed in a suitable high temperature environment. After a period of time, the atoms in the material will be rearranged in the lattice position, thereby reducing Contact resistance between semiconductor and metal electrodes. Therefore, the conventional method is to take out the stupid wafer out of the stupid crystal machine after growing the light emitting diode structure related to gallium nitride, and then put the stupid wafer in the furnace to increase the temperature to 400 ° C ~ 100 ° 0 ° C, and then tempered in a nitrogen environment to change the magnesium-doped gallium nitride from high-resistance gallium nitride to low-resistance p-type gallium nitride. The disadvantage of using this method is that When tempering, an additional tempering step must be added. Another method is that after the epitaxial growth is completed, all the gas in the growth cavity is switched to nitrogen, and the cooling rate is controlled so that the magnesium-doped gallium nitride changes from a non-conductive gallium nitride to a conductive P-type Gallium nitride. The disadvantage is that the speed of cooling must be controlled, and the growth temperature in the growth cavity will change with the maintenance of the machine, so it is difficult to accurately control. To make it and its components, chemical nitrogen Uttul species 1 The supply and delivery of the present invention is described in the contents of the present invention, and it is hereby made to produce its and its components, materialized gas species-. For the sake of quick reference, it is possible to save the fire and return the plan, otherwise, the law-maker shall make it and its components. Material temperature reduction and nitrogen reduction inoculation are available immediately. The rate of improvement is very fast. It is unknown and the need for temperature control and control is unknown. The method requires as little as one piece of materialized nitrogen • ft. Improved, stable and stable description of the output of the monthly output

200536141 五、發明說明(3) 括:一基板、一緩 位於此緩衝層上、 層上、以及一高濃 上。 依照本發明之較佳 緩衝層之材質為氮 例如發光二極體。 其厚度較佳為1 0 0 根據本發明之另一 法,至少包括如下 衝層於此基板上。 層上。隨後,形成 上。最後,形成一 上。其中,在形成 構上時,係使用二 Diraethylhydrazi 子的來源,且使用 氣與氮氣之混氣的 依照本發明之較佳 緩衝層之材質為氮 例如發光二極體。 其厚度較佳為1 〇 〇 衝層位於此基板上、-未摻雜氮化鎵居 一半導體磊晶結構位於此未摻雜氮化^ 度之氮化鎵層位於此半導體磊晶結構’ 實施例,基板之材質為透明之藍寶石, 化鎵,且氮化物元件較佳為發;:件: 此外,高濃度之氮化鎵層可為口型,且 A至800 A’更佳為50 0 A。 目的’提出-種氮化物元件之製造方 步驟。首先,提供一基板,再形成一緩 接者,形成一未摻雜氮化鎵層於此緩衝 —半導體蟲晶結構於此未摻雜氮化鎵層 向濃度之氮化鎵層於此半導體磊晶結構 此商濃度之氮化鎵層於此半導體磊晶結 曱基聯氨(Unsymmetfie 或含氮的有機金屬作為氣原 虱乳或乳氣與氫氣之混氣作為載氣,氮 比例可為1比2。 實施例,基板之材質為透 化鎵’且氮化物元件較佳= 此外’南濃度之氮化鎵層可為P型,且 A至800 A,更佳為500 a。200536141 V. Description of the invention (3) Including: a substrate, a buffer on the buffer layer, a layer, and a high concentration. The material of the preferred buffer layer according to the present invention is nitrogen such as a light emitting diode. Its thickness is preferably 100. According to another method of the present invention, at least the following punching layers are formed on the substrate. On the floor. Subsequently, formed on. Finally, form one. Among them, in the formation of the structure, a source of two Diraethylhydrazi is used, and a material of a preferred buffer layer according to the present invention using a mixed gas of gas and nitrogen is nitrogen such as a light emitting diode. Its thickness is preferably 100 Å on the substrate,-undoped gallium nitride is located in a semiconductor epitaxial structure is located in this undoped nitrided GaN layer is located in this semiconductor epitaxial structure. For example, the material of the substrate is transparent sapphire, gallium nitride, and the nitride element is preferably made of: In addition, the high-concentration gallium nitride layer can be mouth-shaped, and A to 800 A 'is more preferably 50 0 A. Purpose 'proposes a manufacturing method of a nitride element. First, a substrate is provided, and then a buffer is formed to form an undoped gallium nitride layer for buffering. The semiconductor worm-crystal structure is where the undoped gallium nitride layer has a concentration of gallium nitride layer. The crystalline structure of this gallium nitride layer is epitaxially bonded to this semiconductor. Unsymmetfie or a nitrogen-containing organic metal is used as the carrier gas of the gaseous lice milk or a mixture of milk and hydrogen as the carrier gas. The nitrogen ratio can be 1 Than 2. In the embodiment, the material of the substrate is gallium transmissive and the nitride element is better = In addition, the gallium nitride layer with a south concentration may be P-type, and A to 800 A, more preferably 500 a.

200536141 五、發明說明(4) 【實施方式】 本發明係揭露一種氮化物元件及其製造方法,在P型氮化 鎵層上,藉由使用二甲基聯氨或含氮的有機金屬取代氨氣 (NH3),來成長高濃度之p型氮化鎵層。本發明之氮化物元 件及其製造方法不需經回火的步驟,可直接降溫,故可增 加量產之穩定性。為了使本發明之敘述更加詳盡與完備, 可參照下列描述並配合第1圖至第4圖之圖示。 凊蒼照第1圖’弟1圖係、纟會示依照本發明之較佳實施例之p 型氮化鎵之剖面圖。製作本發明之P型氮化鎵時,先提供 基板1 0 0,其中基板1 0 〇較佳為透明材質,且基板1 0 0之材 質可為氧化铭(Al2〇3),而較佳為藍寶石。接下來,於反應 腔内,進行基板100之熱洗(Thermal Cleaning)步驟,此 熱洗步驟較佳可在溫度1 1 〇 (TC之氫氣(H 2)環境下進行,以 清潔基板1 0 0。完成基板1 〇 〇之熱洗步驟後,再利用例如低 溫有機金屬化學氣相沉積的方式,降溫至5 0 Qt,以成長 緩衝層1 0 2覆蓋在基板1 〇 〇上,其中緩衝層1 〇 2之材質較佳 為氮化鎵。接著,再升溫至105(rc ’成長未摻雜氮化鎵層 1 0 4覆蓋在緩衝層1 0 2上,再成長n型氮化鎵層i 〇 6覆蓋在未 摻雜氮化鎵層104上。其中,此未摻雜氮化鎵層1〇4之厚度 較佳約為1μ m,且η型氮化鎵層丨〇6較佳可為矽摻雜,n型 氮化鎵層1 0 6之厚度較佳為2// m。待η型氮化鎵層丄〇 6形成 後’將溫度降至78(TC,成長多重量子井(Multi Quantum WeH; MQW)發光層108。接著,於多重量子井發光層ι〇8上 成長P型I化鋁鎵層110,其中此p型氮化鋁鎵層11〇較佳200536141 V. Description of the invention (4) [Embodiment] The present invention discloses a nitride element and a method for manufacturing the same. On the P-type gallium nitride layer, ammonia is replaced by dimethyl hydrazine or a nitrogen-containing organic metal. Gas (NH3) to grow a high-concentration p-type GaN layer. The nitride component of the present invention and its manufacturing method can be directly cooled without the need for tempering steps, so the stability of mass production can be increased. In order to make the description of the present invention more detailed and complete, reference may be made to the following descriptions and the illustrations in FIGS. 1 to 4. Fig. 1 shows a cross section of a p-type gallium nitride according to a preferred embodiment of the present invention. When manufacturing the P-type gallium nitride of the present invention, a substrate 100 is provided first, wherein the substrate 100 is preferably a transparent material, and the material of the substrate 100 may be an oxide (Al203), and is preferably sapphire. Next, in the reaction chamber, a thermal cleaning step of the substrate 100 is performed. This thermal cleaning step may be preferably performed at a temperature of 1 1 0 (TC in a hydrogen (H 2) environment to clean the substrate 1 0 0 After completing the thermal washing step of the substrate 1000, the temperature is reduced to 50 Qt by using a low-temperature organometallic chemical vapor deposition method, and the substrate 100 is covered with a growth buffer layer 102, wherein the buffer layer 1 The material of 〇2 is preferably gallium nitride. Then, the temperature is raised to 105 ° (rc ', the undoped gallium nitride layer 104 is grown on the buffer layer 102, and then the n-type gallium nitride layer i is grown. 6 covers the undoped gallium nitride layer 104. The thickness of the undoped gallium nitride layer 104 is preferably about 1 μm, and the n-type gallium nitride layer is preferably silicon. Doped, the thickness of the n-type gallium nitride layer 106 is preferably 2 // m. After the n-type gallium nitride layer 丄 06 is formed, the temperature is reduced to 78 ° C, and a multi-quantum well is grown. WeH; MQW) light-emitting layer 108. Next, a p-type aluminum gallium nitride layer 110 is grown on the multiple quantum well light-emitting layer 108, and this p-type aluminum gallium nitride layer 11 is better.

200536141 五、發明說明(5) 鎂摻雜,且此P型氮化鋁鎵層11 〇之厚度較佳可為2 ο ο A。 然後,成長P型氮化鎵層11 2於p型氮化鋁鎵層11 〇上,其 中,P型氮化鎵層Π 2較佳為鎂摻雜,且p型氮化鎵層1丨2之 厚度較佳可為0. 2/z m。 最後’再於ρ型乳化叙層1 1 2上成長高濃度之氮化嫁層(p + -GaN)114,以做為接觸層(Contact Layer),其厚度較佳 可為100 A至8 0 0 A,而厚度為50 0 A更佳。於成長此高濃度 之氮化鍊層1 1 4時’使用二曱基聯氨取代氨氣,以作為氮 原子的來源’而載氣可為氫氣或氮氣與氫氣之混氣,置 例可為1比2。 接著’將成長完之磊晶片拿出反應腔,不需經過回火的步 驟,直接做晶粒的製程。首先使用電感耦合式電漿 (I n d u c t i v e C 〇 u p 1 e d P 1 a s m a ; I C P )餘刻技術,移除部分 之高濃度之氮化鎵層1丨4、部分之p型氮化鎵層π 2、部分 之Ρ型氮化銘鎵層1 1 〇以及部分之多重量子井發光層1 〇 8, 直至暴露出部分之η型氮化鎵層1 〇 6為止。隨後,利用例如 蒸錢(Evaporation)方式,於高濃度之氮化鎵層η4上形成 透明電極層1 1 6,再於部分之透明電極層1 1 6上形成接觸電 極1 18,並於部分之^型氮化鎵層ι〇6上形成接觸電極12〇, 即完成整個發光二極體之製作,如第2圖所示。其中,透 明電極層1 1 6與接觸電極1 1 8較佳為鎳(N i)/金(Au )結構, ==電,1 2 0較佳為鈦(T i) /鋁/鎳/金結構。 >考弟3圖 其係纟會示使用不同氣體做載氣與氮原子之200536141 V. Description of the invention (5) Magnesium doping, and the thickness of the P-type aluminum gallium nitride layer 11 〇 may be 2 ο ο A. Then, a P-type gallium nitride layer 11 2 is grown on the p-type aluminum gallium nitride layer 11 0, wherein the p-type gallium nitride layer Π 2 is preferably doped with magnesium, and the p-type gallium nitride layer 1 2 2 / zm。 The thickness may be preferably 0.2 / zm. Finally, a high-concentration nitrided graft layer (p + -GaN) 114 is grown on the p-type emulsification layer 1 1 2 as a contact layer, and its thickness may preferably be 100 A to 80 0 A, and a thickness of 50 0 A is more preferred. When growing this high-concentration nitrided chain layer 1 1 4 'dihydrazyl hydrazine is used as a source of nitrogen atoms' and the carrier gas may be hydrogen or a mixed gas of nitrogen and hydrogen. An example may be 1 to 2. Then, “take out the grown Lei wafer out of the reaction chamber, and do the process of grain directly without going through the tempering step. First, an inductively coupled plasma (I nductive Coup 1 ed P 1 asma; ICP) technique is used to remove part of the high-concentration gallium nitride layer 1 丨 4 and part of the p-type gallium nitride layer π 2 , A part of the P-type GaN layer 1 10 and a part of the multiple quantum well light-emitting layer 10 until the part of the n-type GaN layer 106 is exposed. Subsequently, a transparent electrode layer 1 1 6 is formed on the high-concentration gallium nitride layer η4 by, for example, an evaporation method, and a contact electrode 1 18 is formed on a part of the transparent electrode layer 1 1 6, and a part of the A contact electrode 12 is formed on the ^ -type gallium nitride layer ι06, and the fabrication of the entire light emitting diode is completed, as shown in FIG. 2. Among them, the transparent electrode layer 1 16 and the contact electrode 1 1 8 preferably have a nickel (N i) / gold (Au) structure, == electrical, and 1 2 0 is preferably titanium (T i) / aluminum / nickel / gold. structure. > Cowboy 3 diagram, which shows how different gases are used as the carrier gas and the nitrogen atom

200536141 五、發明說明(6) 來源,以成長高濃度之氮化鎵層之結果。樣品A為使用氨 氣為氮原子的來源,以成長高濃度之氮化鎵層;樣品B為 使用二甲基聯氨取代氨氣為氮原子的來源,其中載氣為氫 氣;樣品C為使用二甲基聯氨取代氨氣為氮原子的來源, 其中載氣為氮氣與氮氣之混氣,其比例為1比2。在晶粒製 -程中,樣品A必須先經過回火的步驟,樣品B與樣品C則不 須經過回火的步驟。比較此三個樣品,可以發現三者的結 果相似,因此本發明之氮化物元件之製造方法確實可以省 下回火的步驟。 請再參考第4圖,其係繪示使用二曱基聯氨取代氨氣,以 成長高濃度之氮化鎵層時,二曱基聯氨之使用量對發光二 < 極體工作電壓(V f )的影響圖。如圖所示,當二甲基聯氨的 使用量太少時,發光二極體的工作電壓會偏高,而當二曱 基聯氨的使用量增加至2 0 0 Osccm以上時,發光二極體的工 作電壓可降至3. 1 V,因此本發明之氮化物元件之製造方法 可以提供高亮度、高品質的發光二極體。 由上述本發明之較佳實施例可知,應用本發明具有下列優 點。首先,成長高濃度之氮化鎵層時,反應腔内的載氣可 為氫氣或氮氣與氫氣的混氣,故在此高濃度之氮化鎵層長 成後,可直接關掉鎂原子與鎵原子的來源,不需將載氣全 部切換成氮氣。其次,使用二曱基聯氨代替氨氣,可降低 ❿ 鎂原子和氫原子結合的機率,因此,磊晶片可省略回火的 步驟,且不需控制降溫的速度,可直接降溫。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限200536141 V. Description of the invention (6) The source is the result of growing a high-concentration gallium nitride layer. Sample A uses ammonia as the source of nitrogen atoms to grow a high-concentration gallium nitride layer; Sample B uses dimethyl hydrazine instead of ammonia as the source of nitrogen atoms, where the carrier gas is hydrogen; sample C is used Dimethyl hydrazine replaces ammonia as the source of nitrogen atoms, where the carrier gas is a mixture of nitrogen and nitrogen, the ratio of which is 1 to 2. In the grain manufacturing process, sample A must go through the tempering step, and samples B and C need not go through the tempering step. Comparing these three samples, it can be found that the results of the three are similar, so the method of manufacturing the nitride element of the present invention can indeed save the tempering step. Please refer to FIG. 4 again, which shows the use of difluorenyl hydrazine instead of ammonia to grow a high-concentration gallium nitride layer. V f). As shown in the figure, when the amount of dimethyl hydrazine used is too small, the working voltage of the light-emitting diode will be high, and when the amount of fluorenyl hydrazine is increased to more than 200 Osccm, the light-emitting diode The working voltage of the electrode can be reduced to 3.1 V. Therefore, the method for manufacturing a nitride element of the present invention can provide a high-brightness and high-quality light-emitting diode. As can be seen from the above-mentioned preferred embodiments of the present invention, the application of the present invention has the following advantages. First, when growing a high-concentration gallium nitride layer, the carrier gas in the reaction chamber can be hydrogen or a mixture of nitrogen and hydrogen. Therefore, after the high-concentration gallium nitride layer is grown, the magnesium atoms and the The source of gallium atoms does not need to switch all the carrier gas to nitrogen. Secondly, the use of difluorenyl hydrazine instead of ammonia can reduce the probability of the combination of dysprosium magnesium atoms and hydrogen atoms. Therefore, the tempering step can be omitted in the epitaxial wafer, and the cooling rate can be directly reduced without controlling the cooling rate. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to be limited thereto.

第12頁 200536141 五、發明說明(7) 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。Page 12 200536141 V. Description of the invention (7) Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention shall be attached as follows. The scope of the patent application shall prevail.

第13頁 200536141 圖式簡單說明 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 第1圖係繪示依照本發明之較佳實施例之p型氮化鎵之剖面 圖。 第2圖係繪示依照本發明之較佳實施例之發光二極體之剖 面圖。 第3圖係繪示使用不同氣體做載氣與氮原子之來源,以成 長高濃度之氮化鎵層之結果。 第4圖係繪示使用二曱基聯氨取代氨氣,以成長高濃度之 氮化鎵層時,二甲基聯氨之使用量對發光二極體工作電壓 (Vf )的影響圖。 【元件代表符號簡單說明】 1 0 0 :基板 1 0 2 :緩衝層 1 0 4 :未摻雜氮化鎵層 1 0 6 : η型氮化鎵層 108:多重量子井發光層 1 1 0 : ρ型氮化鋁鎵層 1 1 2 : ρ型氮化鎵層 114:高濃度之氮化鎵層Page 13 200536141 Brief description of the drawings [Simplified description of the drawings] In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings, The detailed description is as follows: FIG. 1 is a cross-sectional view showing a p-type gallium nitride according to a preferred embodiment of the present invention. Fig. 2 is a sectional view showing a light emitting diode according to a preferred embodiment of the present invention. Figure 3 shows the results of using different gases as the source of the carrier gas and nitrogen atoms to grow a high-concentration gallium nitride layer. Figure 4 is a graph showing the effect of the amount of dimethyl hydrazine on the operating voltage (Vf) of the light-emitting diode when using difluorenyl hydrazine instead of ammonia to grow a high-concentration gallium nitride layer. [Simple description of element representative symbols] 1 0 0: substrate 1 0 2: buffer layer 1 0 4: undoped gallium nitride layer 1 0 6: n-type gallium nitride layer 108: multiple quantum well light emitting layer 1 1 0: p-type aluminum gallium nitride layer 1 1 2: p-type gallium nitride layer 114: high-concentration gallium nitride layer

第14頁 200536141 圖式簡單說明 1 1 6 :透明電極層 1 1 8 :接觸電極 1 2 0 :接觸電極 mi 第15頁Page 14 200536141 Brief description of the drawings 1 1 6: Transparent electrode layer 1 1 8: Contact electrode 1 2 0: Contact electrode mi Page 15

Claims (1)

200536141 六、申請專利範圍 1. 一種氮化物元件,至少包括: 一基板; 一緩衝層位於該基板上; 一未摻雜氮化鎵(GaN)層位於該緩衝層上; 一半導體蠢晶結構位於該未推雜氮化錄層上;以及 一高濃度之氮化鎵層位於該半導體磊晶結構上。 2 ·如申請專利範圍第1項所述之氮化物元件,其中該基板 係一透明基板。 3 ·如申請專利範圍第1項所述之氮化物元件,其中該基板 之材質為氧化鋁(A 1 20 3)。 4 .如申請專利範圍第1項所述之氮化物元件,其中該基板 之材質為監寶石。 5 .如申請專利範圍第1項所述之氮化物元件,其中該緩衝 層之材質為氮化鎵。 6 .如申請專利範圍第1項所述之氮化物元件,其中該半導 體磊晶結構至少包括依序堆疊之: 一 η型氮化鎵層位於該未摻雜氮化鎵層上; 一多重量子井(MQW)發光層位於該η型氮化鎵層上; 一 Ρ型氮化鋁鎵(AlGaN)層位於該多重量子井發光層上;以200536141 6. Scope of patent application 1. A nitride device including at least: a substrate; a buffer layer on the substrate; an undoped gallium nitride (GaN) layer on the buffer layer; a semiconductor dummy structure The non-doped nitride nitride layer; and a high-concentration gallium nitride layer is located on the semiconductor epitaxial structure. 2. The nitride element according to item 1 of the scope of patent application, wherein the substrate is a transparent substrate. 3. The nitride element according to item 1 of the scope of patent application, wherein the material of the substrate is alumina (A 1 20 3). 4. The nitride element according to item 1 of the scope of the patent application, wherein the material of the substrate is a gemstone. 5. The nitride device according to item 1 of the scope of patent application, wherein the material of the buffer layer is gallium nitride. 6. The nitride element according to item 1 of the scope of the patent application, wherein the semiconductor epitaxial structure includes at least one of the following stacked sequentially: an n-type gallium nitride layer on the undoped gallium nitride layer; a multiple A quantum well (MQW) light emitting layer is located on the n-type gallium nitride layer; a p-type aluminum gallium nitride (AlGaN) layer is located on the multiple quantum well light emitting layer; 第16頁 200536141 六、申請專利範圍 及 一 P型氮化蘇層位於該P型氮化紹蘇層上。 7 ·如申請專利範圍第1項所述之氮化物元件,其中該高濃 ‘ 度之氮化鎵層為P型。 - 8 .如申請專利範圍第1項所述之氮化物元件,其中該高濃 度之氮化鎵層之厚度較佳為1 0 0 A至8 0 0 A。 9 .如申請專利範圍第1項所述之氮化物元件,其中該高濃 ( 度之氮化鎵層之厚度更佳為500 A。 1 0 . —種氮化物元件之製造方法,至少包括: 提供一基板; 形成一緩衝層於該基板上; 形成一未摻雜氮化蘇層於該緩衝層上; 形成一半導體磊晶結構於該未摻雜氮化鎵層上;以及 形成一高濃度之氮化鎵層於該半導體磊晶結構上。 1 1.如申請專利範圍第1 0項所述之氮化物元件之製造方 f 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用二曱基聯氨(Unsymmetric Dimethylhydrazine; UDMHy)作為氮原子的來源。Page 16 200536141 6. Scope of Patent Application and A P-type nitrided nitride layer is located on the P-type nitrided nitride layer. 7. The nitride device according to item 1 of the scope of patent application, wherein the high-concentration gallium nitride layer is a P-type. -8. The nitride device according to item 1 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is preferably 100 A to 800 A. 9. The nitride element according to item 1 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is more preferably 500 A. 1..-A method for manufacturing a nitride element, including at least: Providing a substrate; forming a buffer layer on the substrate; forming an undoped su nitride layer on the buffer layer; forming a semiconductor epitaxial structure on the undoped gallium nitride layer; and forming a high concentration A gallium nitride layer is formed on the semiconductor epitaxial structure. 1 1. The method for manufacturing a nitride device according to item 10 of the scope of patent application, wherein a high concentration gallium nitride layer is formed on the semiconductor. The epitaxial structure uses Unsymmetric Dimethylhydrazine (UDMHy) as the source of nitrogen atoms. 第17頁 200536141 六、申請專利範圍 1 2 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用含氮的有機金屬作為氮原子的來源。 1 3 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用氫氣作為載氣。 1 4 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用氮氣與氫氣之混氣作為載氣。 1 5 .如申請專利範圍第1 4項所述之氮化物元件之製造方 法,其中該氮氣與氫氣之混氣的比例可為1比2。 1 6 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該基板之材質為氧化铭(A 1 20 3)。 1 7.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該基板之材質為藍寶石。 1 8 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該緩衝層之材質為氮化鎵。Page 17 200536141 VI. Patent Application Range 1 2 · The method for manufacturing a nitride device as described in item 10 of the patent application range, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure The system uses a nitrogen-containing organic metal as a source of nitrogen atoms. 13. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure uses hydrogen as a carrier gas. 14 · The method for manufacturing a nitride device as described in item 10 of the scope of patent application, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure uses a mixed gas of nitrogen and hydrogen as Carrier gas. 15. The method for manufacturing a nitride element according to item 14 of the scope of the patent application, wherein the ratio of the mixed gas of nitrogen and hydrogen may be 1 to 2. 16. The method for manufacturing a nitride element as described in item 10 of the scope of patent application, wherein the material of the substrate is an oxide inscription (A 1 20 3). 1 7. The method for manufacturing a nitride element as described in item 10 of the scope of patent application, wherein the material of the substrate is sapphire. 18. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the material of the buffer layer is gallium nitride. 第18頁 200536141 六、申請專利範圍 1 9 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法’其中形成該半導體蠢晶結構之步驟至少包括·· 形成一 η型氮化嫁層於該未換雜氮化錄層上; 形成一多重量子井發光層於該η型氮化鎵層上; 形成一 Ρ型氮化铭錄層於該多重量子井發光層上;以及 形成一 Ρ型氮化嫁層於該Ρ型氮化銘嫁層上。 2 0 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層為ρ型。 2 1.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層之厚度較佳為1 0 0 Α至 8 0 0 A。 2 2 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層之厚度更佳為5 0 0 A。Page 18 200536141 VI. Application for Patent Scope 19 • The method for manufacturing a nitride element as described in Item 10 of the scope of patent application 'wherein the step of forming the semiconductor stupid crystal structure includes at least ... forming an n-type nitride film Forming a multiple quantum well light emitting layer on the n-type gallium nitride layer; forming a p-type nitride inscription layer on the multiple quantum well light emitting layer; and forming A P-type nitrided layer is formed on the P-type nitrided layer. 20 · The method for manufacturing a nitride device as described in item 10 of the scope of patent application, wherein the high-concentration gallium nitride layer is of a p-type. 2 1. The method for manufacturing a nitride device as described in item 10 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is preferably 100 A to 800 A. 2 2. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is more preferably 500 A.
TW93111787A 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same TWI236164B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same
KR20040046986A KR100629857B1 (en) 2004-04-27 2004-06-23 Nitride device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI236164B TWI236164B (en) 2005-07-11
TW200536141A true TW200536141A (en) 2005-11-01

Family

ID=36648977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same

Country Status (2)

Country Link
KR (1) KR100629857B1 (en)
TW (1) TWI236164B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391513B1 (en) 2015-10-05 2022-04-27 삼성전자주식회사 Material layer stack, light emitting device, light emitting package, and method of fabricating the light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534227B2 (en) 1998-07-10 2004-06-07 株式会社村田製作所 Semiconductor light emitting device
JP4327339B2 (en) 2000-07-28 2009-09-09 独立行政法人物質・材料研究機構 Semiconductor layer forming substrate and semiconductor device using the same
JP2003069073A (en) 2001-08-30 2003-03-07 Shin Etsu Handotai Co Ltd GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
JP2004014587A (en) 2002-06-04 2004-01-15 Hitachi Cable Ltd Nitride compound semiconductor epitaxial wafer and light emitting element

Also Published As

Publication number Publication date
TWI236164B (en) 2005-07-11
KR20050103860A (en) 2005-11-01
KR100629857B1 (en) 2006-09-29

Similar Documents

Publication Publication Date Title
JP2020036041A (en) Crystalline laminated structure and semiconductor device
JP2004319912A (en) Semiconductor light emitting device
CN101171694A (en) Nitride semiconductor element and production method therefor
US20070045607A1 (en) Algainn nitride substrate structure using tin as buffer layer and the manufacturing method thereof
WO2006109760A1 (en) Semiconductor element and method for manufacturing same
JP2010537436A (en) Method for fabricating low resistivity ohmic contacts to p-type III-V nitride semiconductor material at low temperature
TW201526287A (en) Method of manufacturing semiconductor device
JP4901115B2 (en) Gallium nitride semiconductor device
CN102334203B (en) Method for fabricating light emitting device
CN100524860C (en) Semiconductor element, and method for manufacturing it
CN105140365B (en) Based on Ga polarity gold-tinted LED structure and preparation method thereof in c surface sapphire substrates
JP3683560B2 (en) Gallium nitride semiconductor light emitting device and method of manufacturing the same
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
TW200536141A (en) Nitride device and method for manufacturing the same
JP4984821B2 (en) Semiconductor device and manufacturing method thereof
JP2006179618A (en) Semiconductor light emitting device and its manufacturing method
JP2007332012A (en) Fabrication process of semiconductor wafer
KR100737821B1 (en) Light emitting device and the fabrication method thereof
Tawfik et al. Efficient Electrochemical Potentiostatic Activation Method for GaN-Based Green Vertical-LEDs
JP4137223B2 (en) Method for producing compound semiconductor
KR101101954B1 (en) Vertical structured group n-type nitride-based semiconductors having electrode structures with diffusion barrier, and light emitting diodes comprising said semiconductors
WO2014034762A1 (en) Nitride semiconductor element
JP2002203798A (en) P-type nitride semiconductor and its manufacturing method
KR101188915B1 (en) Group 3 n-type nitride-based semiconductors having improved thermal stability, and method of manufacturing the same