JP2004319912A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2004319912A
JP2004319912A JP2003114774A JP2003114774A JP2004319912A JP 2004319912 A JP2004319912 A JP 2004319912A JP 2003114774 A JP2003114774 A JP 2003114774A JP 2003114774 A JP2003114774 A JP 2003114774A JP 2004319912 A JP2004319912 A JP 2004319912A
Authority
JP
Japan
Prior art keywords
type
layer
contact layer
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114774A
Other languages
Japanese (ja)
Other versions
JP4135550B2 (en
Inventor
Yoshikatsu Morishima
嘉克 森島
Tsuneaki Fujikura
序章 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003114774A priority Critical patent/JP4135550B2/en
Publication of JP2004319912A publication Critical patent/JP2004319912A/en
Application granted granted Critical
Publication of JP4135550B2 publication Critical patent/JP4135550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which can exhibit an excellent luminous efficiency by providing a tunnel junction between an n type contact layer of a high carrier concentration and a p type contact layer and by promoting current diffusion into the high-carrier n type layer. <P>SOLUTION: In the semiconductor light emitting device, an active layer, a p type clad layer, a p type contact layer, and an n type contact layer are sequentially formed on an n type clad layer. A recess is formed to be extended from the n type contact layer to the n type clad layer, and an electrode is formed to be contacted with both of the n type contact layer and the p type clad layer in the recess. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、紫外、青色レーザダイオード、紫外、青色発光ダイオード等の窒化化合物半導体発光デバイスに関し、特に、発光効率を高めた窒化化合物半導体発光デバイスに関するものである。
【0002】
【従来の技術】
窒化アルミニウム、窒化ガリウム、窒化インジウム等の窒化化合物半導体は、紫外、青色レーザダイオードや発光ダイオード等の光素子用材料として脚光を浴びている。従来、窒化アルミニウム、窒化ガリウム、窒化インジウムおよびそれらの混晶である化合物半導体層をp型にする場合、ドーパントとして炭素、マグネシウムまたは亜鉛等を単独にドープすることによりp型化を行っている。GaN系材料のアクセプタ準位を形成するマグネシウム、亜鉛または炭素等のドーパントでは、アクセプタの活性化エネルギーが高いために5×1018cm−3以上の高キャリア濃度にすることは困難である。このため、p型GaN層と電極金属とのコンタクト抵抗は非常に高くなり、光デバイスなどの駆動電圧の上昇や抵抗熱による熱損傷などを引き起こしている。
【0003】
この高いコンタクト抵抗を低減させる技術として、p型コンタクト層の上に高キャリア濃度のn型GaN系コンタクト層を成長させ、p型コンタクト層とn型コンタクト層との間でトンネル接合をさせる技術が開発され、これにより電極からp型コンタクト層へ電流が流れるときの電圧降下は抑制され、また、電極とp型半導体間で生じる抵抗熱もかなり低いものとなってきている(例えば、非特許文献1)。
【0004】
【非特許文献1】
APPLIED PHYSICS LETTERS VOLUME 78, NUMBER 21 (21 MAY 2001),page 3265−3267
【0005】
図5は、従来提案されている発光ダイオードの構造を示すものであり、n型伝導を有するn型AlGaInNクラッド層51と、このn型クラッド層51の上に形成されたAlGaN活性層52と、この活性層52の上に形成されたp型伝導を有するp型AlGaInNクラッド層53と、このp型クラッド層53の上に形成されてオーム性接触を提供するのに用いられるp型伝導を有するp型AlGaInNコンタクト層54と、このp型コンタクト層54の上に形成され、n型伝導を有するn型AlGaInNコンタクト層55と、n型AlGaInNクラッド層51の上に形成された電極56と、n型AlGaInNコンタクト層55の上に形成された電極57とからなっている。
【0006】
【発明が解決しようとする課題】
しかし、ただ単純に高キャリア濃度n型コンタクト層(n型AlGaInNコンタクト層55)をp型コンタクト層(p型AlGaInNコンタクト層54)の上に位置させた構造では、電流密度が電極57の真下に集中し、発光効率を高めることができず、発光強度も1mW程度止まりである。
【0007】
そこで、高キャリア濃度n型コンタクト層の電流を拡散しやすくさせるため電流ブロッキング層を電極の下に位置させる構造とするために、p型コンタクト層を電極の下に突出させた形状となるよう、p型コンタクト層を気相エッチングなどで形成し、その後に高キャリア濃度n型コンタクト層を再成長させるような構造が提案された。図6は、この構造を示すものであり、61はn型AlGaInNクラッド層、62はAlGaN活性層、63はp型AlGaInNクラッド層、64はp型AlGaInNコンタクト層、65はn型AlGaInNコンタクト層、66、67は電極である。
【0008】
しかし、この構造では、高キャリア濃度n型コンタクト層(n型AlGaInNコンタクト層65)と接触するp型コンタクト層(p型AlGaInNコンタクト層64)の表面がエッチングダメージを受け、窒素抜けを誘発して低キャリア濃度化を招き、それらの間でトンネル接合をさせることができないという問題がある。
【0009】
本発明の目的は、上記した問題を解決し、高キャリア濃度n型コンタクト層とp型コンタクト層との間でのトンネル接合を可能とし、しかも高キャリアn型層内への電流拡散を促進させることにより、優れた発光効率を発揮する半導体発光デバイスを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、n型クラッド層の上に順次、活性層、p型クラッド層、p型コンタクト層およびn型コンタクト層が形成されてなり、前記n型コンタクト層から前記p型クラッド層にかけて凹部が形成され、該凹部内に前記n型コンタクト層と前記p型クラッド層の双方に接触する電極が形成されている半導体発光デバイスを提供する。この場合、前記凹部は、前記n型コンタクト層を貫通し、前記p型コンタクト層の表面を底部とするように形成されていても良く、また、前記n型コンタクト層を貫通し、前記p型コンタクト層の表面よりも食い込んだ面を底部とするように形成されていても良い。
【0011】
本発明においては、凹部の形成に際して、電極直下の領域にあるn型コンタクト層を気相エッチングまたは液相エッチングで除去し、p型コンタクト層表面が露出するまでエッチングを行うので、p型コンタクト層がエッチングダメージを受けて窒素抜けを誘発し、窒素空孔はドナーとして寄与するのでキャリア濃度を低下させ、高抵抗化する。本発明では、この高抵抗化部分を電極直下に形成して電流ブロック層として利用することにより、高キャリアn型層(n型コンタクト層)内への電流拡散が促進され、発光効率を向上できる。
【0012】
【発明の実施の形態】
図1は、本発明の発光デバイスの一実施の形態を示すもので、発光ダイオードへの適用例である。n型伝導を有するn型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層1の上に、AlGaN(0≦x≦1、0≦y≦1、x+y=1)活性層2、p型伝導を有するp型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層3、オーム性接触を提供するp型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層4およびn型伝導を有するn型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層5が形成されている。なお、活性層2としては、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)であっても良い。n型AlGaInNコンタクト層5からp型AlGaInNコンタクト層4の表面にかけて凹部8が形成され、この凹部8内に電極7が形成されている。凹部8は、n型AlGaInNコンタクト層5を気相エッチングまたは液相エッチングでp型AlGaInNコンタクト層4の表面が露出するまで除去することにより形成される。したがって、p型AlGaInNコンタクト層4の表面が凹部8の底面となる。なお、6は、n型AlGaInNクラッド層1に形成された電極である。
【0013】
図2は、本発明の発光デバイスの他の実施の形態を示すもので、発光ダイオードへの適用例である。図1に示した実施の形態と異なる点は、凹部28が、n型AlGaInNコンタクト層5を貫通し、かつp型AlGaInNコンタクト層4の表面よりも食い込んだ面を底部とするように形成され、この凹部28内に電極27が形成されている点である。
【0014】
図3は、本発明の発光デバイスの更に他の実施の形態を示すもので、発光ダイオードへの適用例である。この実施の形態は、SiC基板9の上にn型AlGaInNクラッド層1を形成したもので、SiC基板9の下に電極36が形成されている。
【0015】
(従来例1)
MOVPE装置にてサファイヤ基板上(C面)にエピタキシャル成長でLED構造を作製した。各原料は、Ga原料としてTMC(トリメチルガリウム)、N原料としてNH(アンモニア)、In原料としてTMI(トリメチルインジウム)、p型ドーパント原料としてCpMg(ビシクロペンタジエニルマグネシウム)、n型ドーパントとしてSiH(モノシラン)、高キャリア濃度n型コンタクト層用のn型ドーパントとしてTESi(テトラエチルシラン)を使用した。
【0016】
サファイヤ基板を有機洗浄したのち、成長圧力135Torrでバッファ層を成長させ、その上に1080℃でn型GaNクラッド層を成長させた。膜厚は、1μm、Si濃度は1×1018cm−3である。その後、成長温度を760℃まで落とし、InGaN/GaNの多重量子井戸活性層を形成した。このときの膜厚はInGaN/GaNで2.2nm/8nm、ペア数は4ペアである。その後、1120℃まで成長温度を上昇させp型クラッド層を成長させた。このときの膜厚は0.5μmでMg濃度は2×1019cm−3である。その上にp型コンタクト層を成長させた。膜厚は0.2μmでMg濃度は3.5×1019cm−3である。そして成長温度を1100℃に低下させ、高キャリア濃度n型コンタクト層を成長させた。膜厚は0.5μmでSi濃度は3×1019cm−3である。なお、各層におけるドーパント濃度は2次イオン質量分析法(SIMS)で測定した。
【0017】
このようにして作製したエピウェハの表面にフォトリソグラフィーでレジストをパターニングし、RIEでエッチング(BClガス使用)することによりn型GaNクラッド層を露出させた。n型GaNクラッド層、高キャリア濃度n型コンタクト層にそれぞれ対応するように電極を蒸着により形成した。そのときの電極材料は、Ti/Alで膜厚は300Å/1500Åで電極の形状は100μm×100μmの正方形である。その後に、電極をN雰囲気下で390℃で合金化させた。ダイサーでフルカットし、ダイボンディング、ワイヤーボンディングを施してLEDを作製した。この構造の発光ダイオードの光出力を積分球で測定したところ、20mA通電時で1mWという値であった。
【0018】
(実施例1)
従来例1と同様の構造をした発光ダイオードエピタキシャルウェハーを作製し、RIEでn型GaNクラッド層を露出させた後、再度フォトレジストを行い、高キャリア濃度n型コンタクト層上の電極直下の部分をエッチング除去した。エッチングした形状は、90μm×90μmの正方形状で、p型層も0.05μmだけエッチングした。その後、n型GaNクラッド層と、高キャリア濃度n型コンタクト層上のエッチングした部分に対応した電極を蒸着した。この大きさの電極を蒸着することにより、電極は、高キャリア濃度n型コンタクト層とp型コンタクト層の両方に接触できる。
【0019】
このようにして作製したLEDの光出力を積分球を用いて測定すると、20mA通電時で2mWと従来例の2倍の値であった。このときの発光特性を図4に示す。電流分散が良好に起きていて、電極の下には殆ど電流が流れていないことが分かる。このように光出力が2倍になる成因としては、次の2つが考えられる。一つは、高キャリア濃度n型コンタクト層をエッチングする際にp型コンタクト層の表面までエッチングしたことにより、p型層の表面はエッチングダメージを受け、窒素空孔が生じて正孔が補償され、その結果高抵抗化することが挙げられる。また、Ti/Alは、代表的なn型GaNへの電極であり、p型GaNへはショットキー性接合する。それらが相俟って良好な電流ブロック層となったものと推察される。
【0020】
(従来例2)
MOVPE装置にてSiC基板(0001面)にエピタキシャル成長でLED構造を作製した。各原料は、Ga原料としてTMC(トリメチルガリウム)、N原料としてNH(アンモニア)、p型ドーパント原料としてCpMg(ビシクロペンタジエニルマグネシウム)、n型ドーパントとしてSiH(モノシラン)、高キャリア濃度n型コンタクト層用のn型ドーパントとしてTESi(テトラエチルシラン)を使用した。
【0021】
まず、SiC基板をHClと過酸化水素でバブリングして、HF水溶液で処理した。その後、成長圧力135Torr、温度1140℃でn型Al0.1Ga0.9Nクラッド層を成長させた。膜厚は、0.4μm、Si濃度は5×1018cm−3である。その後、成長温度を1120℃にして、GaN/Al0.12Ga0.88Nの多重量子井戸活性層を形成した。このときの膜厚はGaN/Al0.12Ga0.88Nで2.3nm/8nm、ペア数は4ペアである。その後、1160℃まで成長温度を上昇させp型Al0.14Ga0.86Nクラッド層を成長させた。このときの膜厚は0.1μmでMg濃度は4×1019cm−3である。その上にp型Al0.14Ga0.86Nコンタクト層を成長させた。膜厚は0.1μmでMg濃度は8×1019cm−3である。そして成長温度を1140℃に低下させ、高キャリア濃度n型Al0.14Ga0.86Nコンタクト層を成長させた。膜厚は0.5μmでSi濃度は3×1019cm−3である。なお、各層におけるドーパント濃度は2次イオン質量分析法(SIMS)で測定した。
【0022】
このようにして作製したエピウェハを以下のようにしてデバイス化した。まず裏面のSiC基板にNi(20nm)/Au(300nm)電極を蒸着により形成した。次に表面にフォトリソグラフィーで電極パターンを作製し、Ni(30nm)/Au(150nm)電極を蒸着により形成した。そのときの電極の形状は、直径100μmの円形である。その後に、電極をN雰囲気下で390℃で合金化させた。ダイサーでフルカットし、ダイボンディング、ワイヤーボンディングを施してLEDを作製した。この構造の発光ダイオードの光出力を積分球で測定したところ、20mA通電時で0.3mWという値であった。
【0023】
(実施例2)
従来例2と同様の構造をした発光ダイオードエピタキシャルウェハーを作製し、RIEで高キャリア濃度n型コンタクト層上の電極直下の部分をエッチング除去した。エッチングした形状は、直径90μmの円形で、p型層も0.05μmだけエッチングした。その後、n型GaNクラッド層と、高キャリア濃度n型コンタクト層上のエッチングした部分に対応した電極を蒸着した。このときの材料は、Ti/Al(300Å/1500Å)であり、形状は直系120μmの円形である。この大きさの電極を蒸着することにより、電極は、高キャリア濃度n型コンタクト層とp型コンタクト層の両方に接触できる。このようにして作製したLEDの光出力を積分球を用いて測定すると、20mA通電時で0.6mWと従来例の2倍の値であった。
【0024】
【発明の効果】
以上説明してきたとおり、本発明の半導体発光デバイスによれば、電流分散が促進され、発光効率が向上して輝度を上昇させることができる。また、接触抵抗による発熱も少なくなるので、デバイスの劣化を防ぐことができ、発光ダイオードよりも大電流を必要とする高輝度LEDなどの寿命を飛躍的に伸ばすことが可能になる。
【図面の簡単な説明】
【図1】本発明の発光デバイスの一実施の形態を示すもので、発光ダイオードへの適用例の説明図。
【図2】本発明の発光デバイスの他の実施の形態を示すもので、発光ダイオードへの適用例の説明図。
【図3】本発明の発光デバイスの他の実施の形態を示すもので、発光ダイオードへの適用例の説明図。
【図4】発光特性の説明図。
【図5】従来例の説明図。
【図6】従来例の説明図。
【符号の説明】
1:n型クラッド層
2:活性層
3:p型クラッド層
4:p型コンタクト層
5:n型コンタクト層
6、7:電極
8:凹部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nitride compound semiconductor light emitting device such as an ultraviolet, blue laser diode, an ultraviolet light, and a blue light emitting diode, and more particularly to a nitride compound semiconductor light emitting device with improved luminous efficiency.
[0002]
[Prior art]
BACKGROUND ART Nitride compound semiconductors such as aluminum nitride, gallium nitride, and indium nitride have been spotlighted as materials for optical devices such as ultraviolet and blue laser diodes and light emitting diodes. Conventionally, when a compound semiconductor layer which is aluminum nitride, gallium nitride, indium nitride, or a mixed crystal thereof is made p-type, p-type is formed by doping carbon, magnesium, zinc, or the like solely as a dopant. With a dopant such as magnesium, zinc, or carbon that forms an acceptor level of a GaN-based material, it is difficult to achieve a high carrier concentration of 5 × 10 18 cm −3 or more because the activation energy of the acceptor is high. For this reason, the contact resistance between the p-type GaN layer and the electrode metal becomes extremely high, causing an increase in the drive voltage of an optical device or the like, thermal damage due to resistive heat, and the like.
[0003]
As a technique for reducing the high contact resistance, there is a technique of growing an n-type GaN-based contact layer having a high carrier concentration on a p-type contact layer and forming a tunnel junction between the p-type contact layer and the n-type contact layer. It has been developed, whereby the voltage drop when a current flows from the electrode to the p-type contact layer is suppressed, and the resistance heat generated between the electrode and the p-type semiconductor has been considerably reduced (for example, see Non-Patent Documents). 1).
[0004]
[Non-patent document 1]
APPLIED PHYSICS LETTERS VOLUME 78, NUMBER 21 (21 MAY 2001), page 3265-3267
[0005]
FIG. 5 shows the structure of a conventionally proposed light-emitting diode, in which an n-type AlGaInN cladding layer 51 having n-type conduction, an AlGaN active layer 52 formed on the n-type cladding layer 51, A p-type AlGaInN cladding layer 53 having p-type conduction formed on the active layer 52 and having p-type conduction formed on the p-type cladding layer 53 and used to provide ohmic contact. a p-type AlGaInN contact layer 54; an n-type AlGaInN contact layer 55 formed on the p-type contact layer 54 and having n-type conduction; an electrode 56 formed on the n-type AlGaInN cladding layer 51; And an electrode 57 formed on the type AlGaInN contact layer 55.
[0006]
[Problems to be solved by the invention]
However, in a structure where the high carrier concentration n-type contact layer (n-type AlGaInN contact layer 55) is simply positioned on the p-type contact layer (p-type AlGaInN contact layer 54), the current density is just below the electrode 57. Therefore, the luminous efficiency cannot be increased, and the luminous intensity stops at about 1 mW.
[0007]
Therefore, in order to have a structure in which the current blocking layer is located below the electrode in order to easily diffuse the current of the high carrier concentration n-type contact layer, the p-type contact layer has a shape protruding below the electrode, A structure has been proposed in which a p-type contact layer is formed by vapor phase etching or the like, and then a high carrier concentration n-type contact layer is regrown. FIG. 6 shows this structure, in which 61 is an n-type AlGaInN cladding layer, 62 is an AlGaN active layer, 63 is a p-type AlGaInN cladding layer, 64 is a p-type AlGaInN contact layer, 65 is an n-type AlGaInN contact layer, 66 and 67 are electrodes.
[0008]
However, in this structure, the surface of the p-type contact layer (p-type AlGaInN contact layer 64) in contact with the high-carrier-concentration n-type contact layer (n-type AlGaInN contact layer 65) suffers etching damage and induces nitrogen escape. There is a problem that a low carrier concentration is caused and a tunnel junction cannot be formed between them.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, enable a tunnel junction between a high carrier concentration n-type contact layer and a p-type contact layer, and promote current diffusion into a high carrier n-type layer. Accordingly, it is an object of the present invention to provide a semiconductor light emitting device exhibiting excellent luminous efficiency.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an active layer, a p-type clad layer, a p-type contact layer and an n-type contact layer which are sequentially formed on an n-type clad layer. Provided is a semiconductor light emitting device in which a concave portion is formed over a p-type cladding layer, and an electrode that contacts both the n-type contact layer and the p-type cladding layer is formed in the concave portion. In this case, the concave portion may be formed so as to penetrate the n-type contact layer and make the surface of the p-type contact layer a bottom portion. The contact layer may be formed so that the surface that is more incised than the surface is the bottom.
[0011]
In the present invention, when forming the concave portion, the n-type contact layer in the region immediately below the electrode is removed by vapor phase etching or liquid phase etching, and etching is performed until the surface of the p-type contact layer is exposed. Suffers etching damage and induces nitrogen elimination, and nitrogen vacancies contribute as donors, thereby lowering the carrier concentration and increasing the resistance. In the present invention, by forming the high resistance portion directly below the electrode and using it as a current blocking layer, current diffusion into the high carrier n-type layer (n-type contact layer) is promoted, and the luminous efficiency can be improved. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the light emitting device of the present invention, and is an example of application to a light emitting diode. on the n-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) cladding layer 1 having an n-type conductivity, Al x Ga y N ( 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y = 1) Active layer 2, p-type Al x Ga y In z N having p-type conduction (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z) ≦ 1, x + y + z = 1) cladding layer 3, p-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1 for providing ohmic contact) Contacts n-type Al x Ga y in z n ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) contact layer 5 having a layer 4 and n-type conductivity are formed. As the active layer 2, Al x Ga y In z N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) may be. n-type Al x Ga y In z N contact layer p-type from 5 Al x Ga y In z N recess 8 over the surface of the contact layer 4 is formed, the electrode 7 is formed in the recess 8. Recess 8 is formed by removing the n-type Al x Ga y In z N p-type contact layer 5 by vapor-phase etching or liquid phase etching Al x Ga y In z N surface of the contact layer 4 is exposed . Thus, the surface of the p-type Al x Ga y In z N contact layer 4 is a bottom surface of the recess 8. Incidentally, 6 is an electrode formed on the n-type Al x Ga y In z N cladding layer 1.
[0013]
FIG. 2 shows another embodiment of the light emitting device of the present invention, which is an example of application to a light emitting diode. The embodiment differs from that shown FIG. 1, the recess 28 extends through the n-type Al x Ga y In z N contact layer 5, and from the surface of the p-type Al x Ga y In z N contact layer 4 The point is that the cut-out surface is formed as the bottom portion, and the electrode 27 is formed in the concave portion 28.
[0014]
FIG. 3 shows still another embodiment of the light emitting device of the present invention, which is an application example to a light emitting diode. This embodiment is obtained by forming the n-type Al x Ga y In z N cladding layer 1 on the SiC substrate 9, the electrode 36 underneath the SiC substrate 9 is formed.
[0015]
(Conventional example 1)
An LED structure was produced on a sapphire substrate (C plane) by epitaxial growth using a MOVPE apparatus. Each raw material is TMC (trimethyl gallium) as a Ga raw material, NH 3 (ammonia) as an N raw material, TMI (trimethyl indium) as an In raw material, Cp 2 Mg (bicyclopentadienyl magnesium) as a p-type dopant raw material, and an n-type dopant. SiH 4 (monosilane), and TESi (tetraethylsilane) as an n-type dopant for a high carrier concentration n-type contact layer.
[0016]
After organic cleaning of the sapphire substrate, a buffer layer was grown at a growth pressure of 135 Torr, and an n-type GaN clad layer was grown thereon at 1080 ° C. The film thickness is 1 μm, and the Si concentration is 1 × 10 18 cm −3 . Thereafter, the growth temperature was lowered to 760 ° C. to form an InGaN / GaN multiple quantum well active layer. At this time, the film thickness of InGaN / GaN is 2.2 nm / 8 nm, and the number of pairs is four. Thereafter, the growth temperature was increased to 1120 ° C. to grow the p-type cladding layer. At this time, the film thickness is 0.5 μm, and the Mg concentration is 2 × 10 19 cm −3 . A p-type contact layer was grown thereon. The film thickness is 0.2 μm and the Mg concentration is 3.5 × 10 19 cm −3 . Then, the growth temperature was lowered to 1100 ° C., and a high carrier concentration n-type contact layer was grown. The film thickness is 0.5 μm and the Si concentration is 3 × 10 19 cm −3 . The dopant concentration in each layer was measured by secondary ion mass spectrometry (SIMS).
[0017]
A resist was patterned by photolithography on the surface of the thus-prepared epiwafer, and was etched by RIE (using BCl 3 gas) to expose the n-type GaN cladding layer. Electrodes were formed by vapor deposition so as to correspond to the n-type GaN cladding layer and the high carrier concentration n-type contact layer, respectively. The electrode material at that time is Ti / Al, the film thickness is 300 ° / 1500 °, and the shape of the electrode is a square of 100 μm × 100 μm. Thereafter, the electrodes were alloyed at 390 ° C. under N 2 atmosphere. An LED was manufactured by performing full cutting with a dicer and performing die bonding and wire bonding. When the light output of the light emitting diode having this structure was measured by an integrating sphere, the value was 1 mW when a current of 20 mA was supplied.
[0018]
(Example 1)
A light emitting diode epitaxial wafer having the same structure as that of the conventional example 1 was manufactured, and after exposing the n-type GaN cladding layer by RIE, the photoresist was again applied, and the portion immediately below the electrode on the high carrier concentration n-type contact layer was removed. It was removed by etching. The etched shape was a square of 90 μm × 90 μm, and the p-type layer was also etched by 0.05 μm. Thereafter, an electrode corresponding to the etched portion on the n-type GaN clad layer and the high carrier concentration n-type contact layer was deposited. By depositing an electrode of this size, the electrode can contact both the high carrier concentration n-type contact layer and the p-type contact layer.
[0019]
When the light output of the LED fabricated in this manner was measured using an integrating sphere, the value was 2 mW at a current of 20 mA, which was twice the value of the conventional example. FIG. 4 shows the emission characteristics at this time. It can be seen that the current distribution is good and almost no current flows under the electrode. As described above, the following two factors can be considered as factors that cause the light output to double. One is that when etching the n-type contact layer with a high carrier concentration, the surface of the p-type contact layer is etched, so that the surface of the p-type layer is damaged by etching, and nitrogen vacancies are generated and holes are compensated. As a result, the resistance is increased. Ti / Al is a typical electrode for n-type GaN, and has a Schottky junction with p-type GaN. It is presumed that they together formed a good current blocking layer.
[0020]
(Conventional example 2)
An LED structure was produced by epitaxial growth on a SiC substrate (0001 plane) using a MOVPE apparatus. Each raw material is TMC (trimethylgallium) as a Ga raw material, NH 3 (ammonia) as an N raw material, Cp 2 Mg (bicyclopentadienyl magnesium) as a p-type dopant raw material, SiH 4 (monosilane) as an n-type dopant, and a high carrier. TESi (tetraethylsilane) was used as an n-type dopant for the concentration n-type contact layer.
[0021]
First, a SiC substrate was bubbled with HCl and hydrogen peroxide and treated with an aqueous HF solution. Thereafter, an n-type Al 0.1 Ga 0.9 N clad layer was grown at a growth pressure of 135 Torr and a temperature of 1140 ° C. The film thickness is 0.4 μm, and the Si concentration is 5 × 10 18 cm −3 . Thereafter, the growth temperature was set to 1120 ° C. to form a GaN / Al 0.12 Ga 0.88 N multiple quantum well active layer. At this time, the film thickness of GaN / Al 0.12 Ga 0.88 N is 2.3 nm / 8 nm, and the number of pairs is four. Thereafter, the growth temperature was increased to 1160 ° C., and a p-type Al 0.14 Ga 0.86 N clad layer was grown. At this time, the film thickness is 0.1 μm, and the Mg concentration is 4 × 10 19 cm −3 . A p-type Al 0.14 Ga 0.86 N contact layer was grown thereon. The film thickness is 0.1 μm and the Mg concentration is 8 × 10 19 cm −3 . Then, the growth temperature was lowered to 1140 ° C., and a high carrier concentration n-type Al 0.14 Ga 0.86 N contact layer was grown. The film thickness is 0.5 μm and the Si concentration is 3 × 10 19 cm −3 . The dopant concentration in each layer was measured by secondary ion mass spectrometry (SIMS).
[0022]
The epiwafer produced in this manner was made into a device as follows. First, a Ni (20 nm) / Au (300 nm) electrode was formed on the backside SiC substrate by vapor deposition. Next, an electrode pattern was formed on the surface by photolithography, and a Ni (30 nm) / Au (150 nm) electrode was formed by vapor deposition. At this time, the shape of the electrode is a circle having a diameter of 100 μm. Thereafter, the electrodes were alloyed at 390 ° C. under N 2 atmosphere. An LED was manufactured by performing full cutting with a dicer and performing die bonding and wire bonding. When the light output of the light emitting diode having this structure was measured by an integrating sphere, the value was 0.3 mW when a current of 20 mA was supplied.
[0023]
(Example 2)
A light-emitting diode epitaxial wafer having a structure similar to that of the conventional example 2 was manufactured, and a portion immediately below the electrode on the high carrier concentration n-type contact layer was removed by RIE. The etched shape was a circle having a diameter of 90 μm, and the p-type layer was also etched by 0.05 μm. Thereafter, an electrode corresponding to the etched portion on the n-type GaN clad layer and the high carrier concentration n-type contact layer was deposited. At this time, the material is Ti / Al (300 ° / 1500 °), and the shape is a direct 120 μm circular shape. By depositing an electrode of this size, the electrode can contact both the high carrier concentration n-type contact layer and the p-type contact layer. When the light output of the LED fabricated in this manner was measured using an integrating sphere, the value was 0.6 mW at a current of 20 mA, twice the value of the conventional example.
[0024]
【The invention's effect】
As described above, according to the semiconductor light emitting device of the present invention, current dispersion is promoted, luminous efficiency is improved, and luminance can be increased. In addition, since heat generation due to contact resistance is reduced, deterioration of the device can be prevented, and the life of a high-brightness LED or the like requiring a larger current than a light-emitting diode can be drastically extended.
[Brief description of the drawings]
FIG. 1 illustrates one embodiment of a light emitting device of the present invention, and is an explanatory view of an example of application to a light emitting diode.
FIG. 2 shows another embodiment of the light emitting device of the present invention, and is an explanatory diagram of an example of application to a light emitting diode.
FIG. 3 is a view showing another embodiment of the light emitting device of the present invention, and is an explanatory view of an application example to a light emitting diode.
FIG. 4 is an explanatory diagram of light emission characteristics.
FIG. 5 is an explanatory view of a conventional example.
FIG. 6 is an explanatory view of a conventional example.
[Explanation of symbols]
1: n-type cladding layer 2: active layer 3: p-type cladding layer 4: p-type contact layer 5: n-type contact layers 6, 7: electrode 8: concave portion

Claims (9)

n型クラッド層の上に順次、活性層、p型クラッド層、p型コンタクト層およびn型コンタクト層が形成されてなり、前記n型コンタクト層から前記p型クラッド層にかけて凹部が形成され、該凹部内に前記n型コンタクト層と前記p型クラッド層の双方に接触する電極が形成されていることを特徴とする半導体発光デバイス。An active layer, a p-type cladding layer, a p-type contact layer and an n-type contact layer are sequentially formed on the n-type cladding layer, and a recess is formed from the n-type contact layer to the p-type cladding layer. A semiconductor light emitting device, wherein an electrode that contacts both the n-type contact layer and the p-type cladding layer is formed in the recess. 前記凹部は、前記n型コンタクト層を貫通し、前記p型コンタクト層の表面を底部とするように形成されている請求項1記載の半導体発光デバイス。2. The semiconductor light emitting device according to claim 1, wherein the recess penetrates the n-type contact layer and is formed so that a surface of the p-type contact layer is a bottom. 前記凹部は、前記n型コンタクト層を貫通し、前記p型コンタクト層の表面よりも食い込んだ面を底部とするように形成されている請求項1記載の半導体発光デバイス。2. The semiconductor light emitting device according to claim 1, wherein the concave portion is formed so as to penetrate the n-type contact layer and have a bottom portion that penetrates a surface of the p-type contact layer. 前記n型コンタクト層と前記電極とはオーム性接触が形成され、前記p型コンタクト層と前記電極とはショットキー性接触が形成されている請求項1記載の半導体発光デバイス。The semiconductor light emitting device according to claim 1, wherein an ohmic contact is formed between the n-type contact layer and the electrode, and a Schottky contact is formed between the p-type contact layer and the electrode. n型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層の上に順次、AlGaN(0≦x≦1、0≦y≦1、x+y=1)活性層、p型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層、p型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層およびn型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層が形成されている請求項1記載の半導体発光デバイス。n-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) in sequence on the cladding layer, Al x Ga y N (0 ≦ x ≦ 1 , 0 ≦ y ≦ 1, x + y = 1) active layer, p-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) cladding layer, p type Al x Ga y In z n ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) contact layer and n-type Al x Ga y In z n ( 0 ≦ x ≦ 1, 2. The semiconductor light emitting device according to claim 1, wherein 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) a contact layer is formed. n型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層の上に順次、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)活性層、p型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)クラッド層、p型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層およびn型AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)コンタクト層が形成されている請求項1記載の半導体発光デバイス。n-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) in sequence on the cladding layer, Al x Ga y In z N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) active layer, p-type Al x Ga y In z N ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) cladding layer, p-type Al x Ga y In z n ( 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1, x + y + z = 1) contact layer and n-type Al x Ga y In z 2. The semiconductor light emitting device according to claim 1, wherein an N (0≤x≤1, 0≤y≤1, 0≤z≤1, x + y + z = 1) contact layer is formed. 前記凹部はエッチング加工により形成されたものである請求項1記載の半導体発光デバイス。2. The semiconductor light emitting device according to claim 1, wherein the recess is formed by etching. 前記エッチング加工は、気相エッチング加工である請求項7記載の半導体発光デバイス。8. The semiconductor light emitting device according to claim 7, wherein the etching is a gas phase etching. 前記エッチング加工は、液相エッチング加工である請求項7記載の半導体発光デバイス。8. The semiconductor light emitting device according to claim 7, wherein the etching process is a liquid phase etching process.
JP2003114774A 2003-04-18 2003-04-18 Semiconductor light emitting device Expired - Fee Related JP4135550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114774A JP4135550B2 (en) 2003-04-18 2003-04-18 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114774A JP4135550B2 (en) 2003-04-18 2003-04-18 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004319912A true JP2004319912A (en) 2004-11-11
JP4135550B2 JP4135550B2 (en) 2008-08-20

Family

ID=33474246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114774A Expired - Fee Related JP4135550B2 (en) 2003-04-18 2003-04-18 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4135550B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038665A1 (en) * 2004-10-01 2006-04-13 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element and method for manufacturing the same
JP2007235122A (en) * 2006-02-02 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor light-emitting apparatus, and its manufacturing method
JP2009033157A (en) * 2007-07-12 2009-02-12 Osram Opto Semiconductors Gmbh Semiconductor chip and method of manufacturing the same
JP2015162631A (en) * 2014-02-28 2015-09-07 サンケン電気株式会社 Light emitting element

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241038B2 (en) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション Optical method and system for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
EP2333521B1 (en) 2001-04-30 2019-12-04 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
GB2408797B (en) 2001-05-01 2006-09-20 Gen Hospital Corp Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
EP2319404B1 (en) 2003-01-24 2015-03-11 The General Hospital Corporation System and method for identifying tissue low-coherence interferometry
US7567349B2 (en) 2003-03-31 2009-07-28 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
ES2310744T3 (en) 2003-06-06 2009-01-16 The General Hospital Corporation SOURCE OF TUNING LIGHT IN WAVE LENGTHS.
EP2293031B8 (en) 2003-10-27 2024-03-20 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
US7447408B2 (en) 2004-07-02 2008-11-04 The General Hospital Corproation Imaging system and related techniques
JP5053845B2 (en) 2004-08-06 2012-10-24 ザ ジェネラル ホスピタル コーポレイション Method, system and software apparatus for determining at least one position in a sample using optical coherence tomography
EP1989997A1 (en) 2004-08-24 2008-11-12 The General Hospital Corporation Process, System and Software Arrangement for Measuring a Mechanical Strain and Elastic Properties of a Sample
EP1793731B1 (en) 2004-08-24 2013-12-25 The General Hospital Corporation Imaging apparatus comprising a fluid delivery arrangement and a pull-back arrangement
EP1787105A2 (en) 2004-09-10 2007-05-23 The General Hospital Corporation System and method for optical coherence imaging
EP1804638B1 (en) 2004-09-29 2012-12-19 The General Hospital Corporation System and method for optical coherence imaging
EP2278266A3 (en) 2004-11-24 2011-06-29 The General Hospital Corporation Common-Path Interferometer for Endoscopic OCT
WO2006058346A1 (en) 2004-11-29 2006-06-01 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
ATE451669T1 (en) 2005-04-28 2009-12-15 Gen Hospital Corp EVALUATION OF IMAGE FEATURES OF AN ANATOMIC STRUCTURE IN OPTICAL COHERENCE TOMOGRAPHY IMAGES
US7859679B2 (en) 2005-05-31 2010-12-28 The General Hospital Corporation System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging
US7872759B2 (en) 2005-09-29 2011-01-18 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
EP1945094B1 (en) 2005-10-14 2018-09-05 The General Hospital Corporation Spectral- and frequency- encoded fluorescence imaging
WO2007082228A1 (en) 2006-01-10 2007-07-19 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
EP2289397A3 (en) 2006-01-19 2011-04-06 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
EP1986545A2 (en) 2006-02-01 2008-11-05 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
EP2306141A1 (en) 2006-02-24 2011-04-06 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
US7742173B2 (en) 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US8175685B2 (en) 2006-05-10 2012-05-08 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
WO2007133964A2 (en) 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
WO2008024948A2 (en) 2006-08-25 2008-02-28 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
EP2662674A3 (en) 2007-01-19 2014-06-25 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadbend light
EP2102583A2 (en) 2007-01-19 2009-09-23 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
WO2008121844A1 (en) 2007-03-30 2008-10-09 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US8045177B2 (en) 2007-04-17 2011-10-25 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy
WO2008137637A2 (en) 2007-05-04 2008-11-13 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy
WO2009018456A2 (en) 2007-07-31 2009-02-05 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US8040608B2 (en) 2007-08-31 2011-10-18 The General Hospital Corporation System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
JP5607610B2 (en) 2008-05-07 2014-10-15 ザ ジェネラル ホスピタル コーポレイション Apparatus for determining structural features, method of operating apparatus and computer-accessible medium
JP5795531B2 (en) 2008-06-20 2015-10-14 ザ ジェネラル ホスピタル コーポレイション Fused fiber optic coupler structure and method of using the same
EP2309923B1 (en) 2008-07-14 2020-11-25 The General Hospital Corporation Apparatus and methods for color endoscopy
WO2010068764A2 (en) 2008-12-10 2010-06-17 The General Hospital Corporation Systems, apparatus and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
EP2382456A4 (en) 2009-01-26 2012-07-25 Gen Hospital Corp System, method and computer-accessible medium for providing wide-field superresolution microscopy
WO2010091190A2 (en) 2009-02-04 2010-08-12 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
WO2010105197A2 (en) 2009-03-12 2010-09-16 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measuring at least one mechanical property of tissue using coherent speckle techniques(s)
JP5819823B2 (en) 2009-07-14 2015-11-24 ザ ジェネラル ホスピタル コーポレイション Device for measuring the flow and pressure inside a blood vessel and method of operating the device
PT2542145T (en) 2010-03-05 2020-11-04 Massachusetts Gen Hospital Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
EP2575598A2 (en) 2010-05-25 2013-04-10 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
WO2012058381A2 (en) 2010-10-27 2012-05-03 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US8721077B2 (en) 2011-04-29 2014-05-13 The General Hospital Corporation Systems, methods and computer-readable medium for determining depth-resolved physical and/or optical properties of scattering media by analyzing measured data over a range of depths
JP2014523536A (en) 2011-07-19 2014-09-11 ザ ジェネラル ホスピタル コーポレイション System, method, apparatus and computer-accessible medium for providing polarization mode dispersion compensation in optical coherence tomography
WO2013029047A1 (en) 2011-08-25 2013-02-28 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
WO2013148306A1 (en) 2012-03-30 2013-10-03 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
EP2852315A4 (en) 2012-05-21 2016-06-08 Gen Hospital Corp Apparatus, device and method for capsule microscopy
EP2888616A4 (en) 2012-08-22 2016-04-27 Gen Hospital Corp System, method, and computer-accessible medium for fabrication minature endoscope using soft lithography
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
JP6378311B2 (en) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション Methods and systems for characterizing objects
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
WO2015009932A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
EP3021735A4 (en) 2013-07-19 2017-04-19 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
EP3025173B1 (en) 2013-07-26 2021-07-07 The General Hospital Corporation Apparatus with a laser arrangement utilizing optical dispersion for applications in fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
ES2907287T3 (en) 2014-07-25 2022-04-22 Massachusetts Gen Hospital Apparatus for imaging and in vivo diagnosis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038665A1 (en) * 2004-10-01 2006-04-13 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element and method for manufacturing the same
JP2007235122A (en) * 2006-02-02 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor light-emitting apparatus, and its manufacturing method
JP2009033157A (en) * 2007-07-12 2009-02-12 Osram Opto Semiconductors Gmbh Semiconductor chip and method of manufacturing the same
JP2015162631A (en) * 2014-02-28 2015-09-07 サンケン電気株式会社 Light emitting element

Also Published As

Publication number Publication date
JP4135550B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4135550B2 (en) Semiconductor light emitting device
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
US6537838B2 (en) Forming semiconductor structures including activated acceptors in buried p-type III-V layers
JP5167127B2 (en) Optoelectronic semiconductor chip
US20050179045A1 (en) Nitride semiconductor light emitting diode having improved ohmic contact structure and fabrication method thereof
JP2005286338A (en) 4 h-type polytype gallium nitride-based semiconductor element formed on 4 h-type polytype substrate
JP2007305851A (en) Nitride semiconductor light emitting device
JP2010521059A (en) Deep ultraviolet light emitting device and method for manufacturing the same
JP2004023050A (en) GaN-SYSTEM SEMICONDUCTOR DEVICE
TW201010145A (en) Light-emitting diode and method for forming the same
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH1032347A (en) Semiconductor light emitting element of compound of nitrogen and group iii element
JP5568009B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100661960B1 (en) Light emitting diode and manufacturing method thereof
US8431936B2 (en) Method for fabricating a p-type semiconductor structure
KR100960277B1 (en) Manufacturing method of ?-nitride semiconductor light emitting device
KR100820836B1 (en) Method for manufacturing light emitting diode
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
KR101018280B1 (en) Vertical Light Emitting Diode and manufacturing method of the same
JP2002353503A (en) Gallium-nitride based compound semiconductor light- emitting element
JP2007214378A (en) Nitride-based semiconductor element
KR101337615B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR AND THE FABRICATION METHOD THEREOF
JP3577463B2 (en) III-nitride semiconductor light emitting diode
KR100786102B1 (en) Light emitting diode
JP3978581B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees