TW200428691A - Method for producing lithium ion conductive solid electrolyte and totally solid type secondary cell using solid electrolyte produced thereby - Google Patents

Method for producing lithium ion conductive solid electrolyte and totally solid type secondary cell using solid electrolyte produced thereby Download PDF

Info

Publication number
TW200428691A
TW200428691A TW093110370A TW93110370A TW200428691A TW 200428691 A TW200428691 A TW 200428691A TW 093110370 A TW093110370 A TW 093110370A TW 93110370 A TW93110370 A TW 93110370A TW 200428691 A TW200428691 A TW 200428691A
Authority
TW
Taiwan
Prior art keywords
lithium
solid electrolyte
ion conductive
lithium ion
sulfide
Prior art date
Application number
TW093110370A
Other languages
Chinese (zh)
Inventor
Minoru Senga
Yoshikatsu Seino
Original Assignee
Idemitsu Petrochemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co filed Critical Idemitsu Petrochemical Co
Publication of TW200428691A publication Critical patent/TW200428691A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

This invention provides a method for producing a lithium ion conductive solid electrolyte, characterized in that it comprises reacting a lithium component, a sulfur component, and one or more components selected from the group consisting of phosphorus, silicon, boron and germanium in an organic solvent, preferably an aprotic organic solvent, more preferably N-methyl-2-pyroridone; and a totally solid type secondary cell using a solid electrolyte produced by the method. The method allows the production of a lithium ion conductive solid electrolyte without the use of a special apparatus, at a relatively low temperature, with ease, on a large scale, and thus, is commercially advantageous.

Description

200428691 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關鋰離子導電性固體電解質之製造方法及 使用該製法之全固體型畜電池者。更詳細者係有關本發明 藉由適用有機溶媒中之反應後,於較低溫下,無需特殊設 備可利於工業製造取得鋰離子導電性固體電解質之方法及 使用該製法之全固體型蓄電池者。 【先前技術】 以手提情報終端機、手提電子機器、家庭用小型電力 貯存裝置、馬達做爲電源之自動二輪車、混種電動車等做 爲主電源被利用之鋰電池需求增大。鋰電池做爲取得高能 量密度之電池者於各方面被熱烈硏討之,惟,現行鋰電池 所使用之固體電解質多半含有可燃性有機物,當電池出現 異常時恐造成起火等,被期待可確保電池之安全性者。更 爲提昇對衝擊、振動之信賴性、能量密度之提昇、及對於 地球環境之淸淨下高效能轉換系統之強烈要求下,被期待 開發使用以不燃性固體材料所構成固體電解質之全固體型 蓄電池者。 做爲鋰蓄電池所使用硫化物系固體電解質之製造方法 者如公知者之先行將原料硫化鋰與硫化磷等於坩堝內以乾 燥氮或氬氣氛、1 00 0 °c下進行加熱熔融後,藉由驟冷後製 造固體電解質玻璃之方法(特開2000-173588號公報、特開 平9 - 2 8 3 1 5 6號公報)者。惟,此等方法務必於乾燥氮或氬 (2) (2)200428691 氣氛、1 000 °c之高溫下,務必以特殊設備進行,因此,不 適於量產化者。 又’置入原料於碳塗層之矽管後進行真空封入後,於 7 00 °C下反應8小時之方法(特開平1]- 1 76 23 6號公報)亦爲 公知著。惟’此方法於真空下,進行高溫反應而務必爲特 殊設備亦不適於量產化者。 公知者更有將原料硫化鋰與硫化磷等於室溫下利用行 星型球磨機後,藉由機械耐縮絨之後製造固體電解質玻璃 之方法(特開平1 1 - 1 3 4 9 3 7號公報)者。惟,此法務必以強 能量之行星型球磨機做爲特殊設備者,以及務必反應20小 時以上因此不利工業之方法者。 【發明內容】 本發明鑑於上述問題點,而以提供一種無需特殊設備 ,於較低之反應溫度下易於使鋰離子導電性固體電解質進 行量產化者,利於工業之方法爲其目的者。且,以提供一 種使用該製法之全固體型鋰蓄電池爲其目的者。 本發明者爲達成該目的而進行精密硏討後結果發現’ 藉由適用有機溶媒反應後,可達成該目的’進而完成本發 明。 亦即,本發明之特徵係提供。 (1)將1種或2種以上選自鋰成份、硫黃成份、及單體 磷、單體矽、單體硼以及單體鍺所成群之成份於有機溶媒 中進行反應之鋰離子導電性固體電解質之製造方法, (3) (3)200428691 (2) 該有機溶媒爲非質子性有機溶媒之該(〗)所載鋰離 子導電性固體電解質之製造方法, (3) 該非質子性有機溶媒爲.甲基-2_吡咯烷酮之該(2) 所載鋰離子導電性固體電解質之製造方法。 (4) 該鋰成份爲硫化鋰之該(1)〜(3)中任意之鋰離子導 電性固體電解質之製造方法, (5) 該1種或2種以上選自硫黃成份、及單體磷、單體 石夕、單體硼以及單體鍺所成群之成份爲1種或2種以上選自 硫化憐、硫化矽、硫化硼及硫化鍺所成群之化合物之該 (1)〜(4)中任意之鋰離子導電性固體電解質之製造方法, (6) 將1種或2種以上選自第丨成份之氫硫化鋰、及第2 成份之單體硫黃、單體磷、單體矽、單體硼、單體鍺、硫 化磷、硫化矽、硫化硼及硫化鍺所成群之化合物於有機溶 媒中進行反應之鋰離子導電性固體電解質之製造方法, (7) 更於該反應時存在代表第3成份之鹽基性鋰化合物 之該(6)所載鋰離子導電性固體電解質之製造方法, (8 )代表該鹽基性之鋰化合物爲1種或2種以上選自n-丁鋰、次-丁鋰、第三-丁鋰、六丁鋰 '鋰烷氧化物所成群 化合物之該(7)所載鋰離子導電性固體電解質之製造方法 (9)更於該反應時存在1種或2種以上選自磷酸鋰、硼 酸鋰、矽酸鋰及硫酸鋰所成群化合物之該(1)〜(8)中任意之 鋰離子導電性固體電解質之製造方法, (1〇)更於該反應時存在聚合物成份之該(])〜(9)中任意 (4) (4)200428691 之鋰離子導電性固體電解質之製造方法, (1 1 )該鋰離子導電性固體電解質之分解電壓至少爲3 V 以上之該(1)〜(1 0)中任意之鋰離子導電性固體電解質之製 造方法, (12)使用該(1)〜(1 1)中任意之鋰離子導電性固體電解 質之全固體型蓄電池者。 【實施方式】 [發明實施之最佳形態] 本發明鋰離子導電性固體電解質之製造方法中,其第 1發明之方法係使用1種或2種以上選自原料之鋰成份,硫 黃成份、及單體磷、單體矽、單體硼及單體鍺所成群之成 份’此等成份於有機溶媒中反應後進行製造鋰離子導電性 固體電解質者。 第2發明之方法係使1種或2種以上第1成份之氫硫化鋰 、及第2成份之單體硫黃、單體磷、單體矽、單體硼、單 體鍺、硫化磷、硫化矽、硫化硼及硫化鍺所成群之化合物 於有機溶媒中進行反應後,製造鋰離子導電性固體電解質 者。 做爲本發明方法原料所使用之鋰成份未特別限定,一 般以使用高純度者宜。特別以硫化鋰及氫硫化鋰爲最佳者 〇 做爲硫化鋰之製造方法者公知者有以下(a)〜(f)之方法 者’惟’此等方法中又以(a)或(13)之方法爲特別理想者。 >7 - (5) (5)200428691 (a) 將氫氧化鋰與硫化氫於非質子性有機溶媒中以 0〜1 5 0 °C進行反應後生成氫硫化鋰後,再將此反應液於 150〜2 00 °C下進行脫硫化氫化之方法(特開平7-3 3 0 3 1 2號公 報)。 (b) 將氫氧化鋰與硫化氫於非質子性有機溶媒中以 1 5 0〜2 0 0 °C進行反應後,生成直接硫化鋰之方法(特開平7-3 3 03 1 2號公報)。 (〇於13 0〜44 5 °C之溫度下反應氫氧化鋰與氣體狀硫黃 源之方法(特開平9- 2 8 3 1 5 6號公報)。 (d) 於不活性氣體氣氛或減壓下使硫酸鋰以碳黑·石 墨粉末進行加熱還原之方法。 (e) 將硫化氫鋰乙醇化物於氫氣流中進行加熱分解之 方法。 (f) 將金屬鋰於硫化氫、硫黃蒸氣與常壓〜加壓下進行 加熱後,直接反應之方法。 做爲氫硫化鋰之製造法者可採用以非質子性有機溶媒 ,於氫氧化鋰中吹入硫化氫後進行反應之方法(特開平7-3 3 0 3 1 2號公報)者。具體例係於N -甲基-2 -吡咯烷酮中供給 氫氧化鋰/硫化氫(莫耳比)爲1 .80〜3.00,較佳者爲 1.95〜3.00之車E圍者’於溫度〇〜15〇C ,較佳者爲120〜]40 °C下進行反應之。 本發明方法1種或2種以上選自原料硫黃成份、及單體 磷、單體矽、單體硼及單體鍺所成群之成份亦可個別成份 使用之,亦可做成1種或2種以上選自硫化磷、硫化砂、硫 (6) (6)200428691 化硼及硫化鍺所成群之化合物使用之。此等個別成份或化 合物可使用限於高純度之市販製品者。 本發明方法之特徵係於有機溶媒中進行反應該原料者 。做爲有機溶媒者並未特別限定,特別以非質子性有機溶 媒爲最佳者。 做爲非質子性有機溶媒者一般以非質子性之極性有機 化合物(如:醯胺化合物、內醯胺化合物、脲化合物、有 機硫化合物、環式有機磷化合物等)做成單獨溶媒、或做 成混合溶媒,適於使用之。 此等非質子性極性有機化合物中,做爲該醯胺化合物 者如:N,N-二甲基甲醯胺、N,N-二乙基甲醯胺、N,N-二甲基乙醯醯胺、N,N-二乙基乙醯醯胺、N,N-二丙基 乙醯醯胺、N,N-二甲基苯甲酸醯胺等例。 做爲該內醯胺化合物例者如:己內醯胺、N -甲基己內 醯胺、N-乙基己內醯胺、N-異丙基己內醯胺、N-異丁基己 內醯胺、N-正丙基己內醯胺、N-正丁基己內醯胺、N-環己 基己內醯胺等之N -烷基己內醯胺類、N -甲基-2 -吡咯烷酮 (NMP)、N -乙基-2-吡咯烷酮、N-異丙基-2-口比咯烷酮、N-異丁基-2-D比咯烷酮、N-正丙基-2-吡咯烷酮、N-正丙基-2-吡咯烷酮、N-正丁基-2-吡咯烷酮、N-環己基-2-吡咯烷酮 、N-甲基·3_甲基-2_吡咯烷酮、N_乙基_3_甲基·2·吡咯烷 酮、N-甲基-3,4,5-三甲基,2-吡咯烷酮、N-甲基-2-哌啶 酮、N -乙基-2 -哌啶酮、N ·異丙基-2 -哌Π定酮、N -甲基-6 -甲 基-2 - _啶酮、I甲基-3 -乙基-2 -丨派啶酮、等例。 -9- (7) (7)200428691 做爲該脲化合物者如··四甲基脲、N,N -二甲基乙烯 脲、N,N-二甲基丙烯脲等例。 做爲該有機硫化合物例者如:二甲亞硕、二乙亞硕、 二苯擴、1-甲基-1-氧基砸、卜乙基-1·氧基硕、1-苯基-1-氧基硕等例。 又,做爲該環式有機磷化合物例者如:卜甲基-卜氧 基硕、1-正丙基-1-氧基碾、卜苯基-1·氧基硕等例。 此等各種非質子性極性有機化合物可分別單獨使用1 種,亦可混合2種以上使用之,更於不妨礙本發明目的下 ,可混合其他溶媒成份後,做爲該非質子性有機溶媒之使 用。 該各種非質子性有機溶媒中又以N-烷基己內酯及N-烷基-吼咯烷酮爲較佳者,特別以N-甲基-2-吡咯烷酮爲最 佳者。 理想之本發明實施形態係使1種或2種以上選自第1成 份之氫硫化鋰,及第2成份之單體硫黃、單體磷、單體矽 、單體硼、單體鍺、硫化磷、硫化矽、硫化硼及硫化鍺所 成群之化合物於有機溶媒,較佳者爲該非質子性有機溶媒 ,更佳者於N-甲基-2-吡咯烷酮中進行反應之。 本發明中,更可於該第1發明及第2發明之方法中反應 時,存在代表第3成份之鹽基性鋰化合物者。做爲鋰化合 物者並未特別限定,一般以反應時未出現副產物之水者宜 。f寸別理想之化合物例如:η - 丁鋰、次-丁鋰、第三-丁鋰 、己鋰、鋰烷氧化物例者。此等化合物可分別]種單獨使 -10- (8) (8)200428691 用,亦可混合2種以上使用之。 本發明中更可於該第1發明及第2發明方法中進行反應 時存在1種或2種以上選自磷酸鋰、硼酸鋰、矽酸鋰及硫酸 鋰所成群之化合物者。藉由此等化合物之存在後,可更易 於促進非晶化者。 本發明中更可於該第1發明及第2發明方法中進行反應 時存在聚合物成份者。藉由聚合物成份之存在後,可提昇 取得鋰離子導電性固體電解質之加工性者。加工性之提昇 較易使固體電解質進行薄薄片的成型。其結果可縮小適用 電池電極之間隔,因此,可構成更高能量密度之鋰離子蓄 電池者。 ®爲聚合物成份者可任意使用熱塑性樹脂、熱硬化性 樹脂者。理想之聚合物成份例如:聚乙烯、聚丙烯、聚四 氟乙燒(PTFE)、聚氟化亞乙烯(PVdf)、四氟乙烯-六氟乙 嫌共聚物、四氟乙烯-六氟丙烯共聚物(FEP)、四氟乙烯· 全氣院基***共聚物(PFA)、氟化亞乙烯-六氟丙烯共聚物 、氣化亞乙烯、氯三氟乙烯共聚物、乙烯-四氟乙烯共聚物 (ETFE樹脂)、聚氯三氟乙烯(pcTFE)、氟化亞乙烯-五氟 丙烧共聚物、丙烯-四氟乙烯共聚物、乙烯-氯三氟乙烯共 ^ % (EC:TFE)、氟化亞乙稀-六丙儀-四氟乙烯共聚物、 氯化亞乙稀-全氟甲基乙烯醚-四氟乙烯共聚物、乙烯-丙 稀酸共聚物或該材料之(Na + )離子交聯物、乙烯-四基丙烯 ^共^物或該材料(Na + )離子交聯物、乙烯-丙烯酸甲酯共 聚物或該好4、f u < ^ W枓,(Na + )離子交聯物、乙烯-甲基丙烯酸甲酯 -11 - 200428691 Ο) 共聚物或該材料之(Na + )離子交聯物例者。其中又以聚氟 化亞乙烯(PVDF)、聚四氟乙烯(PTFE)爲特別理想者。 該反應原料可依其目的形態之固體電解質組成進行適 當調整後,進行供給之。做爲鋰離子傳導性固體電解質形 態者以一般式 Li2S-P2S5、 Li2S-SiS2、 Li2S-B2S3、 Li2S-GeSJjf 代表者之外,有以 Li2S-P2S5-SiS2、Li2S-P2S5-GeS2 等所代表者。因此,製造一般式Li2S-P2S5所示之固體電 解質時,可使硫化鋰/ 5硫化2磷(莫耳比)以〇· 2〜10。較佳者 〇·5〜7,更佳者爲1〜5之範圍下進行供給後,混合之後進行 反應者。 反應係於有機溶媒中進行者,一般可依常法進行反應 之。如··第1發明之方法於有機溶媒中使1種或2種以上選 自鋰成份、硫黃成份、及單體磷、單體矽、單體硼、及單 體鍺所成群之成份進行攪拌之同時於50°C〜3 0 0。(:,較佳者 8 0°C〜2 5 0 °C,更佳者100°C〜2 00 °C之溫度下進行反應,當 溫度不足8 0 °C時,則反應速度明顯遲緩,合成時間拉長, 爲經濟面不佳者。反之,超出3 00 °C則溶媒沸點過高,合 成時務必使用壓力容器而經濟面亦不理想者。 反應壓力可爲常壓,亦可進行加壓者。反應時間通常 以0 · 1〜1 0小時,較佳以1〜5小時進行之。 第2發明方法亦可適用與上記相同之溫度、壓力、反 應時間者。 反應結束後,於反應生成物中投入沈澱劑、或飽去反 應溶媒後’析出固形物之後,進行洗淨、乾燥之後,可取 -12 - (10) (10)200428691 得粒徑均勻之固體電解質粉末者。 如此取得之本發明固體電解質於常溫下顯示離子傳導 度爲1(Γ5〜l(T3S/cm之高離子傳導性與低電子傳導性,及 氧化分解電壓爲3 V以上,較佳者爲5 V以上之良好電氣化 學特性。又,藉由變更原料組成後,可取得如上述之各種 組成之鋰離子傳導性固體電解質者。 藉由本發明方法取得之固體電解質裝入全固體型鋰蓄 電池時並未特別限定,可以公知之形態適用之。如:封口 板、絕緣包裝、極板群、正極板、正極導線、負極板、負 極導線、固體電解質、絕緣環所構成之蓄電池中,使固體 電解質呈薄片狀成型後,組裝於電池箱內可使用之。 做爲蓄電池之形狀者可任意適用硬幣型鈕扣型、薄片 型、層合型、圓筒型、偏平型、角型、用於電動車等之大 型者。 本發明方法取得之固體電解質可適用於手提情報終端 機、手提電子機器、家庭用小型電力貯存裝置、馬達做爲 電源之自動二輪車、電動汽車、混種電動汽車等全固體型 鋰離子蓄電池者,惟,並未受限於此等用途。 [實施例] 以下,藉由實施例進行本發明更詳細之說明,惟,本 發明並未受限於此等實施例中。 (硫化鋰之製造) -13- (11) (11)200428691 於10 1附攪拌翼之高壓鍋中置入3 3 26.4g(33.6莫耳)之 N -甲基-2-吡咯烷酮(NMP)與2 87.4g( 12莫耳)之氫氧化鋰, 於300rpm昇溫至130°C。昇溫後,於液中以3 1/分鐘之供 . 給速度、進行吹入硫化氫2小時後’取得(硫黃/LU莫耳比 ) = 0.9 9 6),高純度之氫硫化鋰(Li SH)。再將此反應液於氮 氣流下(200cc/分鐘)進行昇溫後,使反應之部份硫化氫進 行脫硫化氫化。昇溫之同時,藉由反應該硫化氫與氫氧化 鋰後開始蒸發副產物之水,而,此水藉由冷凝器凝縮後抽 0 出系外。將水餾去系外之同時反應液之溫度雖上昇,惟, 達到1 8 0 °C時停止昇溫後維持一定溫度。其結果,於約 5 0〜8 0分鐘結束脫硫化氫反應,於溶媒中析出固體之高純 度硫化鋰(Li2S)。冷卻後,減壓過濾,經NMP3次洗淨, 更以丙酮洗淨2次後,進行乾燥後,結果取得純度9 9 · 8 %以 上之白色粉末狀之硫化鋰(收量:92%)。 [實施例1] φ 於3 0 0ml之附攪拌器可分離燒瓶中,氮氣氛下置入 4.5 26g(0.09 8莫耳)之硫化鋰,5.4 74g(〇.〇25莫耳)之五硫化 二磷(Aldrich公司製)、200ml之N-甲基-2_吼咯烷酮(三菱 _ 化學股份公司製),充份攪拌混合之。將反應物進行加熱 - 後’液溫昇至1 5 〇 t,於i 5 〇它下反應3個小時。反應物呈 綠色之均勻溶液。以注射器抽取6 6 g之反應物後,移至充 滿氮氣之施嫩克瓶中。將固形份以甲苯重覆洗淨後,1 5 0 °C下進行真空乾燥5個小時後,取得3 · 〇 5 g固體之灰色粉末 -14- (12) (12)200428691 進行測定所取得固體之熱分析、X線衍射、離子傳導 度。熱分析中出現呈2 ] 0 °c之結晶化頂點。且,由X線衍 射未出現硫化鋰之頂點,硫化鋰藉由反應後,可確定完全 消失。又,測定常溫下之離子傳導度結果,熱處理前爲8 xl05S/cm’ 230C熱處理後爲4xl(T4S/cm者。由此證明 所取得之固體可有效做爲鋰離子導電性固體電解質之利用 [實施例2] 除實施例1中硫化鋰爲3.2 5 4g(0· 071莫耳),五硫化二 磷爲6 · 7 4 6 g ( 0 · 0 3 0莫耳)之外,同法進行製造之。結果取得 2.9 8 g之灰色粉末。熱分析中出現2 1 (TC之結晶化頂點。且 ,由X線衍射未出現硫化鋰之頂點,藉由反應後,硫化 鋰完全消失。又,測定常溫下之離子傳導度之結果於熱處 理前爲 7.9 X 1 (T5S/cin,23 0 t:熱處理後爲 3 X 1 (T4S/cm 者。 由此證明所取得之固體可有效做爲鋰離子導電性固體電解 質之利用。 [實施例3 ] 除實施例1中之硫化鋰做成2 · 3 6 6 g ( 0 . 〇 5 1莫耳),五硫 化二磷做成7 · 6 3 3 g ( 〇 . 〇 3 4莫耳)之外,同法製造之。結果取 得2.8 8 g之灰色粉末。熱分析中出現2 1 0 °C之結晶化頂點。 且,藉由X線衍射未出現硫化鋰之頂點,藉由反應後硫 -15- (13) (13)200428691 化鋰完全消失。又,測定常溫下之離子傳導度結果於熱處 理前爲 7.9xl(T5S/cni,2 3 0 °C 熱處理後爲 1.6xl(T4S/cm 者 。由此證明所取得之固體可有效做爲鋰離子導電性固體電 - 解質之利用。 _ [實施例4] 於300ml之附攪拌器可分離燒瓶中,氮氣氣氛下置入 2 10g溶解3.94 2 g氫硫化鋰之N-甲基-2-吡咯烷酮溶液,及 春 5.474g之五硫化二碟後,充份攪拌混合之。將反應物進行 加熱後,液溫昇至1 5 0 °C後,1 5 (TC下進行反應3個小時。 反應物呈綠色之均勻溶液。將反應物冷卻至5 0 °C後,加入 63ml之1.6莫耳/1之η-丁鋰己烷溶液後,再度昇溫至150 °C。以注射器抽取8 0g反應物後,移至充滿氮氣之施嫩克 瓶。此溶液中置入150ml甲苯後,析出固形物。以甲苯重 覆洗淨固形份後,1 5 〇 °C下真空乾燥5個小時後,取得 3.12g固體之灰色粉末。 · 所取得固體進行熱分析,離子傳導度測定。熱分析中 出現2 04 °C之結晶化頂點。且,測定常溫下之離子傳導度 結果,熱處理前爲6 X 1 〇_5S/cm,2 3 0 °C熱處理後爲2 X 1 (Γ4 ' S/cm者。由此證明所取得固體可有效做爲鋰離子導電性 - 固體電解質之利用。 [實施例5] 使用實施例1取得顆粒狀固體電解質後,製作全固體 *16- (14) (14)200428691 型鋰蓄電池。正極使用鈷酸鋰、負極使用銦金屬。甯 度5 ΟμΑ/cm2下,進行定電流充放電測定後,可充放窜 ,充放電效率爲1 00%,顯示良好循環特性者。 [產業上可利用性] 錯由本發明’未使用特殊設備,利用一般伦學^ $蘧卞 所泛用之反應槽等機器,於300 °C下以下之較低溫p I > 可使鋰離子導電性固體電解質有效進行量產化者。 又,所取得之固體電解質可做成其組成爲均暂、, "—/、劳,粉 末粒徑亦呈均勻之良好固體電解質材料者,常溫下之離+ 傳導度爲10-5〜l(T3S/cm、氧化分解電壓爲3¥以上,較佳 者爲5V以上之高性能固體電解質者。因此,藉由本發曰^ 方法所取得之固體電解質於全固體型鋰蓄電池等各種製品 中可適於做爲高性能固體電解質之用%。 -17-200428691 (1) 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for manufacturing a lithium ion conductive solid electrolyte and an all-solid-state animal battery using the manufacturing method. More detailed information is related to the present invention. By applying a reaction in an organic solvent, at a lower temperature, no special equipment is required to facilitate industrial manufacturing to obtain a lithium ion conductive solid electrolyte, and an all-solid-state battery using the manufacturing method. [Previous Technology] The demand for lithium batteries using mobile information terminals, portable electronic devices, small household electrical storage devices, motors as power sources, and hybrid electric vehicles as the main power source has increased. Lithium batteries have been enthusiastically criticized in many respects as those who have achieved high energy density. However, most of the solid electrolytes used in current lithium batteries contain flammable organic compounds, which may cause fire when the battery is abnormal. It is expected to ensure that Battery safety. Under the strong requirements of improving the reliability of shock and vibration, the improvement of energy density, and the high-efficiency conversion system for the cleanliness of the global environment, it is expected to develop the use of solid electrolytes made of non-combustible solid materials. Battery person. As a method for manufacturing a sulfide-based solid electrolyte used in a lithium battery, as known, the raw materials lithium sulfide and phosphorus sulfide are equal to the content of a crucible in a dry nitrogen or argon atmosphere, and then heated and melted at 1000 ° C. A method for manufacturing a solid electrolyte glass after quenching (Japanese Patent Application Laid-Open No. 2000-173588, Japanese Patent Application Laid-Open No. 9-2 8 3 1 56). However, these methods must be performed under dry nitrogen or argon (2) (2) 200428691 atmosphere and high temperature of 1 000 ° c, and must be performed with special equipment, so it is not suitable for mass production. In addition, a method of placing a raw material in a carbon-coated silicon tube and vacuum-sealing it, and reacting at 700 ° C for 8 hours (Japanese Patent Application Laid-Open No. 1) -1 76 23 6 is also known. However, this method must be a special equipment for carrying out high temperature reaction under vacuum, and it is not suitable for mass production. A known method is a method of manufacturing a solid electrolyte glass by using a planetary ball mill at room temperature and mechanically resistant to raw materials after using lithium sulfide and phosphorus sulfide as raw materials (Japanese Patent Application Laid-Open No. 1 1-1 3 4 9 3 7). . However, this method must use a high-energy planetary ball mill as a special equipment, and must react for more than 20 hours, which is not a good way for industry. [Summary of the Invention] In view of the above problems, the present invention aims to provide a method that does not require special equipment and is easy to mass-produce a lithium ion conductive solid electrolyte at a low reaction temperature, and is advantageous to industrial methods. And, it is an object of providing an all-solid-state lithium battery using the manufacturing method. The present inventors conducted detailed investigations to achieve the object and found that ‘the object can be achieved by applying an organic solvent reaction’, and the present invention has been completed. That is, the features of the present invention are provided. (1) Lithium ion conduction in which one or two or more components selected from the group consisting of lithium component, sulfur component, and monomer phosphorus, monomer silicon, monomer boron, and monomer germanium are reacted in an organic solvent (3) (3) 200428691 (2) The organic solvent is an aprotic organic solvent, the method for producing the lithium ion conductive solid electrolyte (), (3) The aprotic organic solvent The solvent is a method for producing a lithium ion conductive solid electrolyte carried in (2) of methyl-2-pyrrolidone. (4) The manufacturing method of the lithium ion conductive solid electrolyte of any one of (1) to (3) in which the lithium component is lithium sulfide, (5) The one or two or more kinds are selected from sulfur components and monomers The composition of the group consisting of phosphorus, monomer stone, monomer boron, and monomer germanium is one or two or more compounds selected from the group consisting of sulfur sulfide, silicon sulfide, boron sulfide, and germanium sulfide. (1) ~ (4) A method for producing any of the lithium ion conductive solid electrolytes, (6) One or two or more kinds of lithium hydrogen sulfide selected from the first component and the monomer sulfur, the monomer phosphorus, and the second component A method for producing a lithium ion conductive solid electrolyte in which a group of compounds consisting of monomer silicon, monomer boron, monomer germanium, phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide are reacted in an organic solvent, (7) more than In the reaction, there is a method for producing the lithium ion conductive solid electrolyte carried in (6), which is a salt-based lithium compound representing the third component. (8) One or two or more kinds of lithium compounds representing the salt-based lithium compound are selected. Compounds from n-butyllithium, s-butyllithium, tertiary-butyllithium, and hexabutyllithium 'lithium alkoxides (7) In the method (9) for producing a lithium ion conductive solid electrolyte, one or two or more compounds selected from the group consisting of lithium phosphate, lithium borate, lithium silicate, and lithium sulfate are present in the reaction (1) to (8). (1) A method for producing a lithium ion conductive solid electrolyte according to any one of (), (10), and (4) (4) 200428691 of any of (4) (4) 200428691 where a polymer component exists in the reaction. A method for producing a solid electrolyte, (1 1) A method for producing a lithium ion conductive solid electrolyte in which the decomposition voltage of the lithium ion conductive solid electrolyte is at least 3 V or more, (12) ) All solid-state batteries using the lithium ion conductive solid electrolyte of any of (1) to (1 1). [Embodiment] [The best form of implementing the invention] In the method for producing a lithium ion conductive solid electrolyte of the present invention, the method of the first invention uses one or two or more lithium components selected from raw materials, sulfur components, And monomer phosphorus, monomer silicon, monomer boron, and monomer germanium. These components are reacted in an organic solvent to produce a lithium ion conductive solid electrolyte. The method of the second invention is to use one or two or more kinds of lithium hydrogen sulfide of the first component and monomer sulfur, monomer phosphorus, monomer silicon, monomer boron, monomer germanium, phosphorus sulfide, A group of compounds composed of silicon sulfide, boron sulfide, and germanium sulfide is reacted in an organic solvent to produce a lithium ion conductive solid electrolyte. The lithium component used as the raw material for the method of the present invention is not particularly limited, and generally, it is preferable to use high purity. In particular, lithium sulfide and lithium hydrosulfide are the best. As a method for producing lithium sulfide, the following methods (a) to (f) are known, but in these methods, (a) or (13) ) Method is particularly desirable. > 7-(5) (5) 200428691 (a) Lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent at 0 to 150 ° C to generate lithium hydrosulfide, and then the reaction solution is Method for performing desulfurization and hydrogenation at 150 ~ 200 ° C (Japanese Patent Application Laid-Open No. 7-3 3 0 3 12). (b) A method for producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent at 150 to 200 ° C (Japanese Patent Application Laid-Open No. 7-3 3 03 1 2) . (〇 Method for reacting lithium hydroxide with a gaseous sulfur source at a temperature of 13 0 to 44 5 ° C (Japanese Patent Application Laid-Open No. 9- 2 8 3 1 5 6). (D) Under an inert gas atmosphere or under reduced pressure Method for heating reduction of lithium sulfate with carbon black and graphite powder. (E) Method for thermal decomposition of lithium hydrogen sulfide ethanolate in a hydrogen stream. (F) Metal lithium in hydrogen sulfide, sulfur vapor, and atmospheric pressure. ~ A method of directly reacting after heating under pressure. As a manufacturing method of lithium hydrogen sulfide, an aprotic organic solvent can be used to blow hydrogen sulfide into lithium hydroxide and then react (Japanese Patent Application Laid-Open No. 7- 3 3 0 3 1 2). A specific example is the supply of lithium hydroxide / hydrogen sulfide (molar ratio) in N-methyl-2-pyrrolidone from 1.80 to 3.00, preferably 1.95 to 3.00. The car E Weizhe 'is reacted at a temperature of 0 ~ 15 ° C, preferably 120 ~] 40 ° C. One or two or more kinds of the method of the present invention are selected from raw sulfur components, and monomer phosphorus, The components of monomer silicon, monomer boron, and monomer germanium can also be used individually, or they can be made into one or two or more kinds. Phosphorous sulfide, sand sulfide, sulfur (6) (6) 200428691 Boron and germanium sulfide compounds are used in clusters. These individual ingredients or compounds can be used in high purity commercial products. The method of the present invention is characterized by Those who react the raw materials in organic solvents. Those who are organic solvents are not particularly limited, especially those who are aprotic organic solvents are the best. Those who are aprotic organic solvents generally use aprotic polar organic compounds (such as : Amine compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organic phosphorus compounds, etc.) are suitable for use as a single solvent or a mixed solvent. Among these aprotic polar organic compounds, Examples of the amidine compound include: N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethyl Examples of acetamidine, N, N-dipropylacetamide, N, N-dimethylbenzoate, and other examples. Examples of the lactam compounds are: caprolactam, N-formyl Caprolactam, N-ethylcaprolactam, N-isopropylcaprolactam, N-isobutyl N-alkylcaprolactam, N-methyl-caprolactam, N-n-propylcaprolactam, N-n-butylcaprolactam, N-cyclohexylcaprolactam, N-methyl- 2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N-isopropyl-2-oriprolidone, N-isobutyl-2-D-pyrrolidone, N-n-propyl- 2-pyrrolidone, N-n-propyl-2-pyrrolidone, N-n-butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3_methyl-2_pyrrolidone, N_ethyl 3-methyl-2-pyrrolidone, N-methyl-3,4,5-trimethyl, 2-pyrrolidone, N-methyl-2-piperidone, N-ethyl-2-piperidine Ketones, N-isopropyl-2-piperidinone, N-methyl-6-methyl-2-pyridinone, Imethyl-3 -ethyl-2-pyridinone, and the like. -9- (7) (7) 200428691 As examples of the urea compound, tetramethylurea, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and the like are examples. Examples of the organic sulfur compound are: dimethyl arsenic, diethyl arsenic, diphenyl expansion, 1-methyl-1-oxyl, ethyl-1, oxyl, 1-phenyl-1- Oxygen and other examples. In addition, examples of the cyclic organic phosphorus compound include p-methyl-p-oxo, 1-n-propyl-1-oxo, and p-phenyl-1.oxy. These various aprotic polar organic compounds can be used individually or in combination of two or more kinds. Furthermore, other solvent ingredients can be mixed and used as the aprotic organic solvent without hindering the purpose of the present invention. . Among the various aprotic organic solvents, N-alkylcaprolactone and N-alkyl-gallidone are preferred, and N-methyl-2-pyrrolidone is particularly preferred. An ideal embodiment of the present invention is one or two or more kinds of lithium hydrogen sulfide selected from the first component, and monomer sulfur, monomer phosphorus, monomer silicon, monomer boron, monomer germanium, Compounds of phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide are reacted in an organic solvent, preferably the aprotic organic solvent, and more preferably in N-methyl-2-pyrrolidone. In the present invention, when reacting in the method of the first invention and the second invention, there is a salt-based lithium compound representing the third component. The lithium compound is not particularly limited, and it is generally suitable to use water in which no by-products appear during the reaction. Examples of compounds with an ideal size of f are: η-butyllithium, hypo-butyllithium, tertiary-butyllithium, hexyllithium, and lithium alkoxides. These compounds can be used individually] -10- (8) (8) 200428691, or two or more kinds can be used in combination. In the present invention, one or more compounds selected from the group consisting of lithium phosphate, lithium borate, lithium silicate, and lithium sulfate may be present when the reaction is performed in the methods of the first invention and the second invention. With the presence of these compounds, it is easier to promote amorphization. In the present invention, a polymer component may be present when the reaction is performed in the methods of the first invention and the second invention. With the presence of the polymer component, the processability of the lithium ion conductive solid electrolyte can be improved. Improved processability It is easier to form thin sheets of solid electrolyte. As a result, the interval between the applicable battery electrodes can be reduced, so that a lithium ion battery with a higher energy density can be constructed. ® For polymer components, thermoplastic resins and thermosetting resins can be used arbitrarily. Ideal polymer composition such as: polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdf), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene · gas-based ether copolymer (PFA), fluorinated vinylene-hexafluoropropylene copolymer, gasified vinylene, chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (pcTFE), fluorinated ethylene-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene (EC: TFE), fluorine Ethylene vinylene-hexapropene meter-tetrafluoroethylene copolymer, ethylene chloride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or (Na +) ion of the material Cross-linked product, ethylene-tetrayl propylene co-product or the material (Na +) ion cross-linker, ethylene-methyl acrylate copolymer or the good 4, fu < ^ W 枓, (Na +) ion cross-linker Examples of conjugates, ethylene-methyl methacrylate-11-200428691 0) copolymers or (Na +) ion cross-linking materials of this material. Among them, polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) are particularly desirable. This reaction raw material can be supplied after suitably adjusting the solid electrolyte composition according to its intended form. As the lithium ion conductive solid electrolyte, those with the general formula Li2S-P2S5, Li2S-SiS2, Li2S-B2S3, Li2S-GeSJjf, and Li2S-P2S5-SiS2, Li2S-P2S5-GeS2, etc. . Therefore, when manufacturing the solid electrolyte shown by the general formula Li2S-P2S5, the lithium sulfide / 5 phosphorous sulfide (molar ratio) can be made 0.2 to 10. The preferred range is 0.5 to 7, and the more preferred range is a range of 1 to 5, followed by mixing and then reacting. If the reaction is carried out in an organic solvent, the reaction can generally be carried out according to a conventional method. For example, in the method of the first invention, one or two or more kinds of components selected from the group consisting of lithium component, sulfur component, and monomer phosphorus, monomer silicon, monomer boron, and monomer germanium are grouped in an organic solvent. Stir at 50 ° C ~ 300 ° C. (:, Preferably 80 ° C ~ 250 ° C, more preferably 100 ° C ~ 200 ° C, when the temperature is less than 80 ° C, the reaction rate is significantly slower, and the synthesis If the time is long, it is the one with poor economical surface. On the other hand, if the temperature exceeds 300 ° C, the boiling point of the solvent is too high. It is necessary to use a pressure vessel when synthesizing and the economical surface is not ideal. The reaction pressure can be normal pressure or pressurization. The reaction time is usually from 0 · 1 to 10 hours, preferably from 1 to 5 hours. The method of the second invention can also be applied to the same temperature, pressure, and reaction time as described above. After the reaction is completed, the reaction is generated. If a precipitating agent is added to the solution, or the solid is precipitated after the reaction solvent has been saturated, and then washed and dried, -12-(10) (10) 200428691 can be obtained to obtain a solid electrolyte powder with a uniform particle diameter. The solid electrolyte of the invention shows a good electrical conductivity at room temperature with an ionic conductivity of 1 (Γ5 ~ l (T3S / cm) and high ionic conductivity and low electron conductivity, and an oxidative decomposition voltage of 3 V or more, preferably 5 V or more Chemical properties, and by changing the composition of the raw materials, Those who have obtained lithium ion conductive solid electrolytes of various compositions as described above. The solid electrolyte obtained by the method of the present invention is not particularly limited when it is installed in an all-solid-state lithium battery, and can be applied in a known form. For example, a sealing plate and an insulation package In the storage battery composed of the electrode plate group, the positive plate, the positive lead, the negative plate, the negative lead, the solid electrolyte, and the insulating ring, the solid electrolyte is formed into a sheet shape and then assembled in a battery box to be used. The shape can be arbitrarily applied to large types of coin-type button type, sheet type, laminated type, cylindrical type, flat type, angle type, used for electric vehicles, etc. The solid electrolyte obtained by the method of the present invention can be applied to portable information terminals. , All-solid-state lithium-ion batteries, such as portable electronic equipment, household small power storage devices, and motors as power sources, but not limited to these uses. [Example ] Hereinafter, the present invention will be described in more detail through examples, but the present invention is not limited to these examples. (Production of lithium sulfide) -13- (11) (11) 200428691 Put 3 3 26.4g (33.6 mol) of N-methyl-2-pyrrolidone (NMP) in a 10 1 pressure cooker with stirring wings With 2 87.4g (12 mol) of lithium hydroxide, the temperature was raised to 300 ° C at 300 rpm. After the temperature was raised, the solution was supplied at a rate of 3 1 / minute in the liquid. After the hydrogen sulfide was blown in for 2 hours, it was obtained ( Sulfur / LU mole ratio) = 0.9 9 6), high-purity lithium hydrogen sulfide (Li SH). After the reaction solution was heated under a nitrogen flow (200cc / min), a part of the hydrogen sulfide was reacted. Desulfurization and hydrogenation. At the same time of heating, the by-product water begins to evaporate by reacting the hydrogen sulfide and lithium hydroxide, and this water is condensed by a condenser and pumped out of the system. Although the temperature of the reaction solution was increased while the water was distilled off, the temperature was maintained at a constant temperature when the temperature was stopped at 180 ° C. As a result, the dehydrosulfide reaction was completed in about 50 to 80 minutes, and solid high-purity lithium sulfide (Li2S) was precipitated in the solvent. After cooling, it was filtered under reduced pressure, washed three times with NMP, and washed twice with acetone, and then dried. As a result, a white powdery lithium sulfide with a purity of 99. 8% or more was obtained (yield: 92%). [Example 1] φ In a 300 ml separable flask with a stirrer, 4.5 26 g (0.098 mol) of lithium sulfide and 5.4 74 g (0.025 mol) of diphosphorus pentasulfide (Aldrich) were placed under a nitrogen atmosphere. (Manufactured by the company), 200 ml of N-methyl-2_sparrolidone (manufactured by Mitsubishi _ Chemical Co., Ltd.), and thoroughly stirred and mixed. The reaction was heated-after that, the temperature of the solution was raised to 1500 t, and the reaction was carried out at i 50 for 3 hours. The reaction was a homogeneous green solution. After taking 6 6 g of the reactant with a syringe, it was transferred to a Schlenk bottle filled with nitrogen. The solid content was repeatedly washed with toluene, and then vacuum-dried at 150 ° C for 5 hours, and then 3.05 g of a solid gray powder was obtained. 14- (12) (12) 200428691 The solid obtained by measurement Thermal analysis, X-ray diffraction, ion conductivity. Thermal analysis showed a crystalline apex of 2] 0 ° c. Moreover, the apex of lithium sulfide did not appear from X-ray diffraction, and it was confirmed that lithium sulfide completely disappeared after the reaction. In addition, the results of measuring the ion conductivity at normal temperature were 8 x 105 S / cm 'before heat treatment and 4 x 1 (T4S / cm after heat treatment. This proves that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte [ Example 2] Except that the lithium sulfide in Example 1 was 3.2 5 4 g (0.071 mol) and the phosphorus pentasulfide was 6. 7 4 6 g (0 · 0 3 0 mol), it was produced in the same manner. Results A gray powder of 2.98 g was obtained. The crystalline apex of 2 1 (TC appeared in thermal analysis. Moreover, the apex of lithium sulfide did not appear by X-ray diffraction. After the reaction, the lithium sulfide completely disappeared. Also, it was measured at room temperature. The result of ion conductivity before heat treatment is 7.9 X 1 (T5S / cin, 23 0 t: after heat treatment is 3 X 1 (T4S / cm). It is proved that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte [Example 3] Except that the lithium sulfide in Example 1 was made into 2.36 66 g (0.051 mole), and phosphorus pentasulfide was made into 7.33 g (0.03 mol). Ear), manufactured in the same way. As a result, a gray powder of 2.88 g was obtained. A thermal analysis of 2 10 ° C The crystallized apex. Moreover, the apex of lithium sulfide did not appear by X-ray diffraction, and the sulfur-15- (13) (13) 200428691 lithium sulfide completely disappeared after the reaction. In addition, the measurement of the ion conductivity at room temperature was performed on the heat treatment. The former is 7.9xl (T5S / cni, 1.6 xl (T4S / cm after heat treatment at 230 ° C. This proves that the obtained solid can be effectively used as a lithium ion conductive solid electro-decomposition. _ [ Example 4] In a 300 ml separable flask with a stirrer, put 2 10 g of a solution of 3.94 2 g of lithium hydrogen sulfide in N-methyl-2-pyrrolidone and 2.474 g of spring pentasulfide in a nitrogen atmosphere. , Fully stirred and mixed. After heating the reactants, the liquid temperature rose to 150 ° C, and the reaction was performed at 15 ° C for 3 hours. The reactants were a green uniform solution. The reactants were cooled to 5 After 0 ° C, add 63 ml of a 1.6 mol / 1 η-butyllithium hexane solution, and then raise the temperature again to 150 ° C. After 80 g of the reactant is drawn with a syringe, move it to a Schnecker bottle filled with nitrogen. After placing 150 ml of toluene in the solution, a solid was precipitated. The solid was repeatedly washed with toluene, and then dried under vacuum at 150 ° C. 5 Hours later, 3.12 g of a solid gray powder was obtained. · The obtained solid was subjected to thermal analysis and ion conductivity measurement. Thermal analysis showed a crystallization apex of 2 04 ° C. Furthermore, the results of measuring the ion conductivity at room temperature were measured before heat treatment. It is 6 X 1 〇_5S / cm, and 2 X 1 (Γ4 'S / cm) after heat treatment at 230 ° C. This proves that the obtained solid can be effectively used as a lithium ion conductive-solid electrolyte. [Example 5] After obtaining a granular solid electrolyte using Example 1, an all-solid * 16- (14) (14) 200428691 lithium battery was produced. Lithium cobaltate was used as the positive electrode and indium metal was used as the negative electrode. After the constant current charge and discharge measurement is performed at a temperature of 5 ΟμΑ / cm2, the charge and discharge can be performed, and the charge and discharge efficiency is 100%, which shows good cycle characteristics. [Industrial Applicability] By the present invention, 'there is no special equipment, and the general reactor ^ $ 蘧 卞 is used for reaction tanks and other machines, lower temperatures below 300 ° C p I > can make lithium ions The conductive solid electrolyte is effective for mass production. In addition, the solid electrolyte obtained can be made into a good solid electrolyte material whose composition is homogeneous, " — /, labor, and the particle size of the powder is also uniform, the ionization at normal temperature + conductivity is 10-5 ~ l (T3S / cm, oxidative decomposition voltage of 3 ¥ or more, preferably 5 V or higher high-performance solid electrolyte. Therefore, the solid electrolyte obtained by the method described in this article can be used in various products such as all-solid lithium batteries. Suitable for use as a high-performance solid electrolyte% -17-

Claims (1)

(1) (1)200428691 拾、申請專利範圍 1 · 一種鋰離子導電性固體電解質之製造方法,其特徵 係使1種或2種以上選自鋰成份、硫黃成份、及單體磷、單 體砂、單體硼以及單體鍺所成群之成份於有機溶媒中進行 反應者。 2 ·如申請專利範圍第丨項之鋰離子導電性固體電解質 之製造方法’其中該有機溶媒爲非質子性有機溶媒者。 3 ·如申請專利範圍第2項之鋰離子導電性固體電解質 之製造方法,其中該非質子性有機溶媒爲N -甲基-2 -吡咯 院酮者。 4 .如申請專利範圍第1項至第3項中任一項之鋰離子導 電性固體電解質之製造方法,其中該鋰成份爲硫化鋰者。 5 ·如申請專利範圍第1項至第4項中任一項之鋰離子導 電性固體電解質之製造方法,其中該1種或2種以上選自硫 黃成份,及單體磷、單體矽、單體硼以及單體鍺所成群之 成份係1種或2種以上選自硫化磷、硫化矽、硫化硼及硫化 鍺所成群之化合物者。 6 · —種鋰離子導電性固體電解質之製造方法,其特徵 係使1種或2種以上選自第1成份之氫硫化鋰、及第2成份之 單體硫黃、單體磷、單體矽、單體硼、單體鍺、硫化磷、 硫化砂、硫化硼及硫化鍺所成群之化合物於有機溶媒中進 行反應者。 7 ·如申請專利範圍第6項之鋰離子導電性固體電解質 之製造方法,其中於該反應時,更可存在代表第3成份之 -18- (2) (2)200428691 鹽基性鋰化合物者。 8. 如申請專利範圍第7項之鋰離子導電性固體電解質 之製造方法,其中該代表鹽基性鋰化合物者爲〗種或2種以 上選自η - 丁鋰、次-丁鋰、第三-丁鋰 '己鋰、鋰烷氧化物 所成群之化合物者。 9. 如申g靑專利範圍第]項至第8項中任一項之鋰離子導 電性固體電解質之製造方法,其中於該反應時,更存在! 種或2種以上選自憐酸鋰、硼酸鋰、砂酸鋰及硫酸鋰所成 群之化合物者。 1 〇 ·如申g靑專利範圍第1項至第9項中任一項之鋰離子 導電性固體電解質之製造方法’其中於該反應時,更存在 聚合物成份者。 1 1 .如申請專利範圍第1項至第1 0項中任一項之鋰離子 導電性固體電解質之製造方法,其中該鋰離子導電性固體 電解質之分解電壓至少爲3 V以上者。 1 2 · —種全固體型蓄電池’其特徵係使用如申請專利 範圍第1項至第1 1項中任一項之鋰離子導電性固體電解質 者。 -19- 200428691 柒、(一) (二) 、本案指定代表圖為:無 、本代表圖之元件代表符號簡單說明: te(1) (1) 200428691 Scope of patent application1. A method for manufacturing a lithium ion conductive solid electrolyte, characterized in that one or two or more kinds are selected from the group consisting of a lithium component, a sulfur component, and a monomer phosphorus and a single Groups of body sand, monomer boron, and monomer germanium react in organic solvents. 2 · The method for manufacturing a lithium ion conductive solid electrolyte according to item 丨 of the application, wherein the organic solvent is an aprotic organic solvent. 3. The method for manufacturing a lithium ion conductive solid electrolyte according to item 2 of the application, wherein the aprotic organic solvent is N-methyl-2 -pyrrolidinone. 4. The method for manufacturing a lithium ion conductive solid electrolyte according to any one of claims 1 to 3 in the scope of the patent application, wherein the lithium component is lithium sulfide. 5 · The method for manufacturing a lithium ion conductive solid electrolyte according to any one of items 1 to 4 of the scope of the patent application, wherein the one or two or more kinds are selected from sulfur components, monomer phosphorus and monomer silicon The composition of the group consisting of monomer boron and monomer germanium is one or two or more compounds selected from the group consisting of phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide. 6 · A method for producing a lithium ion conductive solid electrolyte, characterized in that one or two or more kinds of lithium hydrogen sulfide selected from the first component and the monomer sulfur, the phosphorus, and the monomer of the second component are selected Compounds of silicon, monomer boron, monomer germanium, phosphorus sulfide, sand sulfide, boron sulfide, and germanium sulfide are reacted in an organic solvent. 7 · If the method for manufacturing a lithium ion conductive solid electrolyte according to item 6 of the patent application scope, during the reaction, there may be -18- (2) (2) 200428691 salt-based lithium compounds that represent the third component. . 8. The method for manufacturing a lithium ion conductive solid electrolyte as claimed in item 7 of the patent application, wherein the representative lithium-based compound is one or more selected from η-butyllithium, s-butyllithium, third -Lithium butyl lithium, hexalithium and lithium alkoxides. 9. The method for manufacturing a lithium ion conductive solid electrolyte according to any one of items [1] to [8] in the scope of the patent application, wherein during the reaction, there is even more! One or two or more compounds selected from the group consisting of lithium phosphonate, lithium borate, lithium oxalate, and lithium sulfate. 10. The method for producing a lithium ion conductive solid electrolyte according to any one of items 1 to 9 of the patent scope, as described above, wherein a polymer component is further present during the reaction. 1 1. The method for manufacturing a lithium ion conductive solid electrolyte according to any one of claims 1 to 10 in the scope of the patent application, wherein the lithium ion conductive solid electrolyte has a decomposition voltage of at least 3 V or more. 1 2 · —A kind of all-solid-state storage battery 'is characterized by using a lithium ion conductive solid electrolyte as described in any one of claims 1 to 11 of the scope of patent application. -19- 200428691 柒, (a) (b), the designated representative figure in this case is: None, the component representative symbol of this representative figure is simply explained: te 拓J、本案若 式: Μ j \\\ 有化學式時,請揭示最能顯示發明特徵的化學Top J. If this formula is: Μ j \\\ If there is a chemical formula, please disclose the chemistry that best shows the characteristics of the invention -3 --3-
TW093110370A 2003-04-15 2004-04-14 Method for producing lithium ion conductive solid electrolyte and totally solid type secondary cell using solid electrolyte produced thereby TW200428691A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109841 2003-04-15

Publications (1)

Publication Number Publication Date
TW200428691A true TW200428691A (en) 2004-12-16

Family

ID=33295932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093110370A TW200428691A (en) 2003-04-15 2004-04-14 Method for producing lithium ion conductive solid electrolyte and totally solid type secondary cell using solid electrolyte produced thereby

Country Status (3)

Country Link
JP (1) JP4621139B2 (en)
TW (1) TW200428691A (en)
WO (1) WO2004093099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
KR101442306B1 (en) * 2007-10-11 2014-09-22 이데미쓰 고산 가부시키가이샤 Method for producing lithium ion conductive solid electrolyte
JP2010241643A (en) * 2009-04-07 2010-10-28 Toyota Motor Corp Method for producing lithium ion conductive sulfide-based crystallized glass and method for producing formed body of lithium ion conductive sulfide-based crystallized glass
JP5599573B2 (en) 2009-04-10 2014-10-01 出光興産株式会社 Glass and lithium battery comprising solid electrolyte particles
JP5729940B2 (en) * 2010-08-13 2015-06-03 出光興産株式会社 Solid electrolyte glass and method for producing the same
JP5708467B2 (en) * 2011-03-18 2015-04-30 トヨタ自動車株式会社 Slurry, solid electrolyte layer manufacturing method, electrode active material layer manufacturing method, and all solid state battery manufacturing method
WO2012163900A2 (en) * 2011-05-27 2012-12-06 Chemetall Gmbh Process for preparing lithium sulfide
JP5842918B2 (en) * 2011-06-20 2016-01-13 トヨタ自動車株式会社 Method for producing solid electrolyte fine particles
JP6234665B2 (en) 2011-11-07 2017-11-22 出光興産株式会社 Solid electrolyte
JP6243103B2 (en) 2012-06-29 2017-12-06 出光興産株式会社 Positive electrode composite
US9673482B2 (en) 2012-11-06 2017-06-06 Idemitsu Kosan Co., Ltd. Solid electrolyte
JP5692266B2 (en) * 2013-03-15 2015-04-01 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
JP6259617B2 (en) 2013-04-24 2018-01-10 出光興産株式会社 Method for producing solid electrolyte
JP6236220B2 (en) * 2013-05-02 2017-11-22 出光興産株式会社 Method for producing sulfide solid electrolyte
JP6302901B2 (en) 2013-05-31 2018-03-28 出光興産株式会社 Method for producing solid electrolyte
JP6425426B2 (en) * 2014-06-10 2018-11-21 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte and method for producing sulfide solid electrolyte
KR102287814B1 (en) 2013-10-02 2021-08-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
JP2016006798A (en) * 2015-10-07 2016-01-14 出光興産株式会社 Sulfide-based solid electrolyte for lithium ion secondary battery
JP6320983B2 (en) 2015-12-01 2018-05-09 出光興産株式会社 Method for producing sulfide glass ceramics
CN113677620B (en) * 2019-01-25 2022-12-02 索利得动力公司 Solid electrolyte material synthesis method
KR102590896B1 (en) 2020-12-22 2023-10-19 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528402B2 (en) * 1996-03-13 2004-05-17 松下電器産業株式会社 Lithium ion conductive solid electrolyte and all-solid lithium secondary battery using the same
JP3510420B2 (en) * 1996-04-16 2004-03-29 松下電器産業株式会社 Lithium ion conductive solid electrolyte and method for producing the same
JP4028920B2 (en) * 1997-11-06 2008-01-09 日本無機化学工業株式会社 Method for synthesizing lithium ion conductive solid electrolyte
JP3433173B2 (en) * 2000-10-02 2003-08-04 大阪府 Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP4174816B2 (en) * 2001-02-28 2008-11-05 住友電気工業株式会社 Inorganic solid electrolyte and lithium battery member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery

Also Published As

Publication number Publication date
JP4621139B2 (en) 2011-01-26
JPWO2004093099A1 (en) 2006-07-06
WO2004093099A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
TW200428691A (en) Method for producing lithium ion conductive solid electrolyte and totally solid type secondary cell using solid electrolyte produced thereby
US10090558B2 (en) Solid electrolyte
AU2010218963B2 (en) Sulfide solid electrolyte material
JP5158008B2 (en) All solid battery
US20150162614A1 (en) Positive electrode mix
JP6139864B2 (en) SOLID ELECTROLYTE MOLDED BODY, ITS MANUFACTURING METHOD, AND ALL SOLID BATTERY
CN108258303B (en) Sulfide solid electrolyte, preparation method thereof and all-solid-state lithium secondary battery
JP6077740B2 (en) Solid electrolyte
JP2010033732A (en) Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same
JP5615551B2 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
JP2016134316A (en) Solid electrolyte
CN100567142C (en) The preparation method of lithium iron phosphate series composite oxides
JP6073107B2 (en) Solid electrolyte
JP2011060649A (en) Electrode active material layer, all solid battery, manufacturing method for electrode active material layer, and manufacturing method for all solid battery
JP2014086222A (en) Method for manufacturing secondary battery
JP2014096391A (en) Manufacturing method of lithium ion conductive solid electrolyte
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
CN1559889A (en) Preparation process of lithium ferrous phosphate for positive pole of lithium ion cell
CN107093739B (en) Potassium manganese oxide for potassium ion battery anode material and preparation method thereof
CN109904408B (en) MoS2Preparation method and application of composite material with nanosheet embedded in carbon substrate
CN102867944A (en) Mesoporous carbon/silicon composite anode material and preparation method thereof
CN102867947A (en) Method for preparing carbon/silicon composite anode material based on oligomeric silsesquioxane
CN102683665A (en) Lithium-vanadium oxide over-long nano wire and preparation method and application thereof
JP2013080637A (en) Composite electrode material and method for producing the same, and lithium battery manufactured using the composite electrode material
CN110112412A (en) A kind of selenium sulphur solid solution cathode material and its preparation method and application