TW200414463A - Heat conductive sheet with magnetic wave absorption - Google Patents

Heat conductive sheet with magnetic wave absorption Download PDF

Info

Publication number
TW200414463A
TW200414463A TW92128180A TW92128180A TW200414463A TW 200414463 A TW200414463 A TW 200414463A TW 92128180 A TW92128180 A TW 92128180A TW 92128180 A TW92128180 A TW 92128180A TW 200414463 A TW200414463 A TW 200414463A
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
thermally conductive
electrically insulating
layer
sheet
Prior art date
Application number
TW92128180A
Other languages
Chinese (zh)
Other versions
TWI282156B (en
Inventor
Ikuo Sakurai
Takeshi Hashimoto
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW200414463A publication Critical patent/TW200414463A/en
Application granted granted Critical
Publication of TWI282156B publication Critical patent/TWI282156B/en

Links

Abstract

The present invention provides a kind of heat conductive sheet having magnetic wave absorption. In the invention, the electrically insulating electromagnetic wave absorbing heat conductive sheet is formed by laminating at least one electromagnetic wave absorbing layer in which soft metal powder is dispersed in a base polymer, and at least one electrically insulating heat conductive layer in which an electrically insulating heat conductive filler is dispersed in the base polymer. The sheet has a dielectric breakdown voltage larger than 1 kV in the direction of the sheet thickness. Because the invented electromagnetic wave absorbing heat conductive sheet is provided with high electromagnetic wave absorbing characteristic, high heat conduction characteristic and electric insulation, it can be fitted to an optimum place without consideration of an electrical short circuit of each component such as printed wiring board when mounted inside the electronic machine. Therefore, it can suppress electromagnetic wave noise in an electronic apparatus and the increased electromagnetic wave leakage amount radiated toward outside of the apparatus. In addition, it can radiate heat generated from components in the electronic apparatus to the outside of the apparatus.

Description

200414463 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於一種由電磁波吸收層與電絕緣性的導熱 層之疊層體組成之具柔軟性的電絕緣性之吸收電磁波性之 導熱性薄片。 【先前技術】 近年,隨廣播、移動體通訊、雷達、手機、無線局部 區域網路(LAN )等的電磁波使用之進展,於生活環境中 電磁波四處散射,電磁波受阻礙、電子機器的動作錯誤等 的問題經常發生。 而且,在個人電腦、手機等的內部所配置的CPU、 MPU、LSI等的電子機器構成要件的高密度化、高集積 化、以及朝印刷配線基板之電子機器構成要件的高密度封 裝化的進展,隨電磁波於機器內部放射,該電磁波於機器 內部反射且充滿機器內部,機器由於本身產生之電磁波引 起內部電磁波干擾的問題。 向來,在進行該等的電磁波干擾阻礙對策的情況,必 須具備應付雜訊的專門知識與經驗,其對策除需長時間, 且有預先確保對策零件的封裝空間的困難點。爲解決該等 問題,開始使用藉由吸收電磁波以減少反射波與透過波之 電磁波吸收體。 再者,伴隨CPU、MPU、LSI等的電子機器構成要件 的高密度化、高集積化,發熱量變大,若無法有效冷卻, -4 (2) (2)200414463 亦同時會有因熱散射而造成動作錯誤的問題。習知作爲將 熱有效率的釋放至外部的機構,係將充塡導熱性粉末之矽 滑脂(silicon grease )、矽氧橡膠設置於 C P U、Μ P U、 L S I等與散熱座之間,使接觸熱阻抗變小的方法。但是, 該方式不可能迴避上述機器內部的電磁干擾問題。 於是,電子機器內部,特別對CPU、MPU、LSI等的 電子機器構成要件的高密度化、高集積化的部位,必須具 有電磁波吸收功能、導熱功能的零件。作爲薄片零件,必 要時可靈活使用(1 )磁性粉末分散於基質聚合物中的吸 收電磁波性薄片、(2 )以氧化鋁爲代表之導熱性粉末分 散於基質聚合物中的導熱性薄片、(3 )以兩粉末共同充 塡兼具吸收電磁波功能與導熱功能之薄片等3種。 近來,以個人電腦爲代表之電子機器的信號處理速度 已非常地高速化,各元件的操作頻率在數百MHz至數 GHz者有逐漸增加之趨勢。但是,於電子機器內部產生之 電磁波雜訊的頻率亦在GHz區域逐漸增加。爲抑制該等 電磁波雜訊,雖考慮應用將錳鋅系鐵氧體(ferrite )、鎳 鋅系鐵氧體爲代表之尖晶石型立方晶鐵氧體的粉末,均勻 分散於基質聚合物中之薄片,但使用該鐵氧體薄片的效 果,主要MHz區域,在GHz區域的效果低。因此,現在 將在MHz至GHz區域效果大之金屬系軟磁性粉末均勻分 散於基質聚合物中之薄片成爲主流。 一般軟磁性金屬,因具導電性,其粉末均勻分散於基 質聚合物中之薄片的介電質破壞電壓(dielectric -5- (3) (3)200414463 breakdown voltage)小。因此,於電子機器內部裝設該薄 片的情況,需注意不使電子機器內部的各部分電性上短 路。 而且,兼具吸收電磁波功能與導熱功能之薄片,多爲 以夾隔於元件與放熱零件之間使用的情況,元件與放熱零 件間電連接成爲問題時,無法使用該薄片。在如此的情 況,使用僅具電絕緣性之導熱功能的薄片,夾隔於元件與 放熱零件間,散出來自元件的熱,同時在其周圍不產生電 的問題之各處配置僅具吸收電磁波性的薄片,以抑制電磁 波雜訊之如此繁雜的方法。 電子機器內部的電磁波雜訊產生處,係高速驅動的 CPU、MPU、LSI等的元件較多,亦有連接元件與印刷配 線圖形,所謂元件的接腳、印刷配線圖形成爲天線產生電 磁波雜訊的情況。於該情況,直接於該處包覆吸收電磁波 性的薄片較佳,然而,軟磁性金屬粉末均勻分散於基質聚 合物中之薄片,因薄片不具絕緣性,由於電路短路問題而 無法使用。 基本上,在軟磁性金屬粉末均勻分散於絕緣性基質聚 合物中之薄片,導電性的軟磁性金屬粉末彼此,藉由基質 聚合物使其互相絕緣,爲提高吸收電磁波功能,必須充塡 多量軟磁性金屬粉末,因使金屬粉末彼此的距離變近或接 觸,造成該薄片的介電質破壞電壓變小。 在曰本公開專利特開平11-45804號公報(專利文獻 1 ),揭露以矽烷系偶合(coupling )劑於金屬軟磁性粉 -6- (4) 200414463 在曰本公開專利特 ,揭露以長鏈烷基 生塗膜之電波吸收 獲得具充分的介電 號公報(專利文獻 組成之複合磁性體 擾抑制體,在曰本 利文獻4 ),揭露 之電磁波吸收層的 分子材料包覆之電 性的薄片,然而其 號公報(專利文獻 層之疊層體組成的 成之電絕緣性不明 平 1 1 -45 8 04號公 2001-308584 號公 平 1 1 - 1 95 8 93號公 末表面設置絕緣性塗膜之電波吸收體, 開2 00 1 -3 08 5 84號公報(專利文獻2 ) 矽烷於金屬軟磁性粉末表面設置絕緣1 體,但該等具有機基之分子塗膜,難以 質破壞電壓之吸收電磁波性的薄片。 在曰本公開專利特開平1 1 - 1 95 8 93 3 ),揭露在軟磁性粉末與有機結合劑 層的至少一面上設置絕緣層之電磁波干 公開專利特開2000-23 2297號公報(專 分散金屬磁性粉末於可撓性高分子材料 外表面以介電係數1 0以下的可撓性高 磁波吸收體,該等構成雖可製成電絕緣 導熱功能不足。 在曰本公開專利特開2002-76683 5 ),揭露電磁波吸收層與放熱層所疊 吸收電磁波性的放熱薄片,但是,該構 確,且其導熱功能不足。 【專利文獻1】日本公開專利特開 報 【專利文獻2】日本公開專利特開 報 【專利文獻3】日本公開專利特開 報 【專利文獻4】日本公開專利特開2〇〇(^232297號公 (5) (5)200414463 報 【專利文獻5】日本公開專利特開2 0 0 2 · 7 6 6 8 3號公 報 【發明內容】 〔發明所欲解決之課題〕 本發明有鑑於如此之問題,以提供兼具高電磁波吸收 功能與高導熱功能且具電絕緣性之吸收電磁波性之導熱性 薄片爲目的。 解決課題之手段以及發明的實施態樣 本發明人等,爲達成上述目的反覆專心硏究檢討的結 果,發現將至少一層軟磁性金屬粉末分散於基質聚合物中 之電磁波吸收層,以及至少一層電絕緣性導熱性充塡劑分 散於基質聚合物中之電絕緣性導熱層疊層,使薄片的厚度 方向的介電質破壞電壓在1 kV以上,可獲得兼具高電磁 波吸收功能與高導熱功能以及高電絕緣功能,可應用於各 種電子機器之電絕緣性的吸收電磁波性之導熱性薄片。 再者,於上述薄片的電磁波吸收層同時充塡軟磁性金 屬粉末以及電絕緣性導熱性充塡劑,發現可得高導熱率之 電絕緣性的吸收電磁波性之導熱性薄片,而成就本發明。 因此,本發明係提供一種將至少一層軟磁性金屬粉末 分散於基質聚合物中之電磁波吸收層,以及至少一層電絕 緣性導熱性充塡劑分散於基質聚合物中之電絕緣性導熱層 疊層,且薄片的厚度方向的介電質破壞電壓在I kV以上 -8- (6) (6)200414463 之電絕緣性的吸收電磁波性之導熱性薄片。 以下,更詳細說明本發明。 本發明的電絕緣性的吸收電磁波性之導熱性薄片,係 將至少一層軟磁性金屬粉末以及必要時電絕緣性的導熱性 充塡劑分散於基質聚合物中之電磁波吸收層,以及至少一 層電絕緣性導熱性充塡劑分散於基質聚合物中之電絕緣性 導熱層疊層而得。 於本發明的電絕緣性的吸收電磁波性之導熱性薄片所 包含之電絕緣性導熱性充塡劑,以電絕緣性物質之氧化 鋁、氧化矽、鐵氧體、氮化矽、氮化硼、氮化鋁的粉末較 佳。 以鐵氧體作爲導熱性充塡劑的情況,使用具高電絕緣 性之鎳鋅系、錳鋅系等的尖晶石型立方晶鐵氧體的粉末較 佳。該等軟磁性鐵氧體,因同時具有吸收電磁波的功能, 可補強本發明的軟磁性金屬粉末之吸收電磁波的功能,因 此較佳。 導熱性粉末,可使用單獨1種,亦可使用2種以上的 組合。 導熱性粉末的平均粒徑,係使用0.1 μηι以上100 μηι 以下較佳,特別是1 μιη以上50 μιη以下者更佳。粒徑不 足〇 · 1 μπι的情況,粒子的比表面積變得過大,恐難以達 到高充塡化,在相同的充塡率的情況,薄片的導熱率變 小。此外,粒徑超過1 0 0 μ m的情況,薄片的表面出現微 小的凹凸,接觸熱阻抗恐怕因此而變大。 -9- (7) (7)200414463 於導熱層的導熱性粉末的含量,佔導熱層全部的 30〜85體積% (體積。/。,指體積百分比,以下亦相同), 特別以40〜80體積%較佳。不足30體積。/。時,無法得到足 夠之導熱功能,超過85體積。/。時,導熱層恐怕變脆。 用於本發明的電磁波吸收層之軟磁性金屬粉末,從供 給安定性、價格等考量,含鐵者較佳。例如,羰基鐵、電 解鐵、鐵鉻系合金、鐵矽系合金、鐵鎳系合金、鐵鋁系合 金、鐵鈷系合金、鐵鋁矽系合金、鐵鉻矽系合金、鐵鉻鋁 系合金、鐵矽鎳系合金、鐵矽鉻鎳系合金等,但不限於該 等例示。於該情況,從價格等的觀點,以包含1 5重量% 的鐵較佳。 該等的軟磁性金屬粉末,可使用單獨1種,亦可使用 2種以上的組合。粉末的形狀,可使用扁平狀、粒狀單獨 任一種,或並用兩種皆可。 軟磁性金屬粉末的平均粒徑,係使用0.1 μιη以上 100 μιη以下較佳,特別是1 μιη以上50 μπι以下者更佳。 平均粒徑不足 〇 · 1 μπα的情況,粒子的比表面積變得過 大,恐難以達到高充塡化。此外,平均粒徑超過1 00 μιη 的情況,薄片的表面出現微小的凹凸,接觸熱阻抗恐怕因 此而變大。 於電磁波吸收層之軟磁性金屬粉末的含量,佔電磁波 吸收層全部的〜80體積%,特別以15〜70體積%較佳。 不足1 〇體積%時,無法得到足夠之吸收電磁波的功能, 超過80體積%時,電磁波吸收層恐怕變脆。 (8) (8)200414463 本發明的電絕緣性的吸收電磁波性之導熱性薄片,於 電磁波吸收層充塡軟磁性金屬粉末以及電絕緣性導熱性充 塡劑,可更進一步使導熱率提高,薄片的導熱率提高可擴 大其適用範圍。於該情況,作爲充塡於電磁波吸收層之導 熱性充塡劑,可使用上述例示之導熱性充塡劑,可以與用 於導熱層之導熱性充塡劑相同或相異。 於電磁波吸收層同時充塡軟磁性金屬粉末以及電絕緣 性導熱性充塡劑的情況,爲能得到既定之吸收電磁波的功 能,考慮與軟磁性金屬粉末的充塡率平衡,導熱性充塡劑 的調配比例,佔電磁波吸收層全部的1 0〜70體積%,特別 以2 0〜5 0體積%較佳。不足10體積%時,無法得到足夠之 導熱功能,超過70體積%時,使軟磁性金屬粉末的含有 率降低,恐無法得到足夠之吸收電磁波的功能。 用於本發明的電絕緣性的吸收電磁波性之導熱性薄片 之電磁波吸收層與導熱層的基質聚合物,舉例如有機聚矽 氧烷、丙烯酸酯橡膠、乙烯丙烯橡膠、氟橡膠等,可依照 所欲達目的之用途加以選擇。該基質聚合物,可使用單獨 1種,亦可混合2種以上使用。 於本發明,電磁波吸收層與導熱層的基質聚合物可以 使用不同種類,對強化層間的接合,使用相同種類較有 利。 於本發明,適合使用容易調整組成物的硬度、具耐熱 性之有機聚矽氧烷作爲基質聚合物。於該情況’作爲以有 機聚矽氧烷爲基質聚合物之組成物’可由未硫化油灰 -11 - (9) (9)200414463 (putty )狀矽氧樹脂組成物、硬化性有機聚矽氧烷爲基 質聚合物之矽凝膠組成物、加成反應型矽氧橡膠組成物或 過氧化物交鏈式砂氧橡膠組成物所構成,但無特別限制。 此處,上述未硫化油灰(putty )狀砂氧樹脂、砂氧 橡膠、或矽凝膠組成物的基質聚合物,可使用習知的有機 聚矽氧烷,該有機聚矽氧烷可使用下述之平均組成式 (1 )表示者。 R^SiOi 4-a) /2 ( 1 ) (式中,R1爲同一或異種的非取代或取代的一價碳氫 基,a爲1 .98〜2·02的正數。) 此處,R1爲同一或異種的非取代或取代的一價碳氫 基’以碳數1〜較佳,更佳者爲碳數1〜8,例如可選擇 甲基、乙基、異丙基、丁基、異丁基、第三級丁基、己 基、辛基等的烷基、環己基等的環烷基、乙烯基、烯丙基 等的烯基、苯基、甲苯基等的芳香基、苄基、苯乙基、苯 丙基等的芳烷基等的一價非取代碳氫基,再者該等基的與 碳結合的氫原子的一部分或全部,以鹵素原子、氰基等取 代之氯甲基、溴乙基、氰乙基等的鹵原子取代烷基、氰基 取代烷基等的一價取代碳氫基。其中,以甲基、苯基、乙 嫌基、三氟丙基較佳。而且,a爲1.98〜2.02的正數。作 爲該有機聚矽氧烷,一分子中含2個以上的烯基較佳,特 別R 1的0 · 0 0 1〜5莫耳%爲烯基較佳。 上述式(1 )的有機聚矽氧烷,其分子結構無特別限 制’但特別是其分子鏈末端以三有機砂院基封鎖者較佳, -12- (10) (10)200414463 特別是二甲基乙烯基矽烷基等的二有機乙烯基矽烷基封鎖 者較佳。而且,基本上以直鏈狀較佳,分子結構相異的1 種或2種以上之混合物亦可。 上述有機聚矽氧烷的平均聚合度100〜1 00,000,特別 是 100〜2,000較佳,此外,在 25 t:的黏度爲 100〜 100,000,000cs ( centistokes ;厘斯托克),特別是 100〜100,000 cs 較佳。 使用上述有機聚矽氧烷,調配加成反應型矽氧橡膠組 成物的情況,,使用一分子含2個以上的乙烯基等的烯基 者作爲上述有機聚矽氧烷,同時使用有機氫聚矽氧烷作爲 硬化劑以及加成反應觸媒。 作爲有機氫聚矽氧烷,以下平均組成式(2) b^cSlO ( 4-b-c) /2 (2) (式中,R2爲碳數1〜1 〇的非取代或取代一價碳氫基,且 滿足 b 爲 0$bS3’ 特別是 〇.7$bS2.1,〇:爲 0&lt;c$3, 特別是O.OOlScSl且b + c爲0&lt;b + cS3,特別是0.8$ b + c S 3之數) 表示常溫下爲液體者較佳。 此處’ R2爲碳數1〜1 〇,特別是碳數丨〜8的非取代或 取代一價碳氫基’可舉例如與上述Ri所例示基相同之 基’不含與脂肪族不飽和結合者,特別烷基、芳香基、芳 烷基、取代烷基、例如甲基、乙基、丙基、苯基、3,3,3_ 三氟丙基等較佳。作爲分子結構,以直鏈狀、環狀、分歧 狀、二次兀網狀的任一狀態皆可,SiH基存在於分子鏈末 (11) (11)200414463 端,或分子鏈中間亦可,存在於其兩側亦可。分子量並無 特別限制,於2 5 °C的黏度1〜1 0 〇 0 c s,特別在3〜5 0 0 c s的 範圍較佳。 作爲上述有機氫聚矽氧烷之具體例,例如1,1,3,3-四 甲基二矽氧烷、甲基氫環狀聚矽氧烷、甲基氫矽氧烷·二 甲基矽氧烷環狀共聚合物、兩末端以三甲基矽氧烷基封鎖 之甲基氫聚矽氧烷、兩末端以三甲基矽氧烷基封鎖之二甲 基矽氧烷·甲基氫矽氧烷共聚合物、兩末端以二甲基氫矽 氧烷基封鎖之二甲基聚矽氧烷、兩末端以二甲基氫砂氧烷 基封鎖之二甲基矽氧烷·甲基氫矽氧烷共聚合物、兩末端 以三甲基矽氧烷基封鎖之甲基氫矽氧烷·二苯基矽氧烷共 聚合物、兩末端以三甲基矽氧烷基封鎖之甲基氫矽氧烷· 二苯基矽氧烷·二甲基矽氧烷共聚合物、由(CH3 ) 2HSi01/2單元與Si04/2單元組成之共聚合物、由(CH3 ) 2HSi01/2單元、(CH3)3Si01/2單元與Si04/2單元組成之 共聚合物、由(CH3 ) 2HSi01/2單元、Si04/2單元與 (C6H5 ) 3Si01/2單元組成之共聚合物。 該有機氫聚矽氧烷之調配量,以有機氫聚矽氧烷中的 矽原子結合氫原子(即SiH基)的數目與基質共聚合物中 的矽原子結合烯基的數目的比率在0.1 : 1〜3 : 1組成的量 較佳,在0.2 : 1〜2 : 1組成的量更佳。 作爲加成反應觸媒,使用白金族金屬系觸媒,可使用 含白金族金屬作爲觸媒金屬之單體、化合物、以及其錯合 物等。具體地,例如鉑黑、四氯化鉑、氯化鉑、氯化鉑與 -14- (12) (12)200414463 一價醇的反應物、氯化鉑與烯烴類的錯合物、二乙醯乙酸 鉑等的白金系觸媒、四(三苯膦)鈀、二氯二(三苯膦) 鈀等的鈀系觸媒、氯三(三苯膦)铑、四(三苯膦)铑等 的鍺系觸媒等。且該加成反應觸媒之調配量,可以成爲觸 媒量,通常對上述含烯基之有機聚矽氧烷,以白金族金屬 0.1〜1 000 ppm較佳,1〜200 ppm更佳。不足0.1 ppm時組 成物的硬化無法充分進行的情形較多,超過1 0 0 0 p p m時 成本變高。 另一方面,矽氧橡膠組成物爲有機過氧化物硬化型的 情況,使用有機過氧化物作爲硬化劑。而且,有機過氧化 物硬化,在基質聚合物的有機矽氧烷的聚合度3 000以上 的橡膠狀的情況有效。作爲有機過氧化物,可使用習知物 質,例如過氧化二苯甲醯、2,4 -二氯過氧化二苯甲醯、p-甲基過氧化二苯甲醯、〇 -甲基過氧化二苯甲醯、2,4 -過氧 化二異丙苯、2,5 -二甲基-雙(2,5 -過氧化第三級丁基)己 烷、過氧化二第三級丁烷、過氧苯甲酸三級丁酯、1,1 -雙 (過氧化第三級丁基)3,3,5-三甲基環己烷(ij-bis (卜 butylperoxy ) 3,3,5 -1 r i m e t h y 1 c y c 1 o h e x a n e ) 、1,6-雙(過 氧化第二級丁基殘基)己院 (1 ? 6 - b i s ( t -butylperoxycarboxy) hexane )等。 有機過氧化物的調配量,對上述基質聚合物的有機矽 氧烷100重量部,以0.01〜10重量部較佳。 而且,於本發明電磁波吸收層與導熱層,於必要時均 可適當調配矽烷偶合劑等的粉末表面處理劑、難燃劑、交 -15- (13) (13)200414463 鏈劑、控制劑、交鏈促進劑等。 於本發明,構成電磁波吸收層與導熱層的組成物,藉 由分別混合軟磁性金屬粉末以及/或導熱性粉末、基質聚 合物、其他需要的成分可製造而得。此處,軟磁性金屬粉 末以及/或導熱性粉末、基質聚合物、其他需要的成分的 混合,可藉由均質攪拌機(homomixer )、捏合機 (kneader )、二軸滾輪、彳了星式攪拌機(planetary mixer )等的混合機使其均勻,但並無特別限制。 作爲電磁波吸收層與導熱層的疊層方法,舉例如使用 上述組成物,將電磁波吸收層與導熱層以塗布成形、衝壓 成形等預先成形後,其他層也以塗布成形、衝壓成形等之 疊層方法,將電磁波吸收層與導熱層兩層以共同押出、塗 布成形等成爲薄片形狀未硬化物後,再將該等重疊衝壓成 形之方法,將電磁波吸收層與導熱層以塗布成形、衝壓成 形等預先成形後’隔著黏著層接合之方法等,但並無特別 限制。而且,爲強化各層間的接合,疊層前於薄片的接合 面進行塗底層處理亦可。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的疊 層構造,例如圖1 ( a)所示一層電磁波吸收層1與一層 導熱層2疊層構成的二層構造,如圖1 (b)所示一層電 磁波吸收層1與其兩側面各一層導熱層2疊層構成的三層 構造,但並無特別限制。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的厚 度,係0.2 mm以上10 mm以下,特別以ο」mm以上3 -16- (14) (14)200414463 mm以下較佳,一層的導熱層的厚度係0·〇5 mm以上1 m m以下,特別以0 · 1 m m以上0.5 m m以下較佳。而且, 電磁波吸收層的厚度超過薄片全部厚度的5 0 %以上較佳, 更佳者爲薄片全部厚度的5 5〜9 8 %。本發明的電絕緣性的 吸收電磁波性之導熱性薄片的電磁波吸收層,因軟磁性金 屬粉末分散於基質聚合物中的構造,介電質破壞電壓小。 於是,薄片的電絕緣性,主要由導熱層的電絕緣性擔負, 導熱層的厚度不足〇.〇5 mm的情況,難以達到電子機器充 分擁有可使用程度的介電質破壞電壓1 kV。而且,成形 時孔洞的發生率變高,因爲由該孔洞之漏電流,無法確保 介電質破壞電壓爲1 kV。此外,導熱層的厚度超過1 mm 的情況,電磁波吸收層的厚度在薄片全部厚度的5 0%以下 時,無法獲得充分的吸收電磁波的功能。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的厚 度方向上的介電質破壞電壓,係1 kV以上,較佳者爲1.5 kV以上,更佳者爲2 kV以上。本發明的薄片中的電磁波 吸收層,因軟磁性金屬粉末分散於基質聚合物中的構造, 介電質破壞電壓小。因此,藉由與電絕緣性的導熱性充塡 劑分散於基質聚合物中的電絕緣性的導熱層疊層,可確保 在薄片厚度方向的介電質破壞電壓。介電質破壞電壓不足 1 kV的情況,在電子機器內會增加電路短路的危險,適 用範圍變窄。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的導 熱層的體積阻抗係數,係在1x10ό Ωπι以上,特別以 (15) (15)200414463 1 X 1 0 8 Ω m較佳,且在1 X 1 0 1 4 Ω m以下較佳。體積阻抗係 數比1 X 1 06 Ω m小的情況,薄片接觸印刷配線電路、各種 電極端子時,恐引起短路。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的導 熱率,係在0.7 W/mK以上,特別以1 W/mK以上較佳, 且在1 0 W/mK以上較佳。導熱率不足0.7 W/mK時,有導 熱功能不足的情況,因此而限制其用途。 而且,於電磁波吸收層充塡導熱性充塡劑的情況,薄 片整體的導熱率在1.5 W/mK以上較佳,在3 W/mK以上 更佳。 本發明的電絕緣性的吸收電磁波性之導熱性薄片的表 面層中,配置於至少一側的發熱物以及/或放熱零件的表 面之層的硬度,以Asker C硬度計測量時在70以下,特 別在60以下較佳。使薄片表面柔軟,薄片表面可依附發 熱物以及/或放熱零件的表面的微細凹凸變形,以微米觀 點兩者的接觸面積變大。結果,可使薄片與發熱物以及/ 或放熱零件的接觸熱阻抗變小。Asker C硬度大於70時, 薄片與發熱物以及/或放熱零件的接觸熱阻抗變大,可能 造成放熱特性不足。而且,電絕緣性的吸收電磁波性之導 熱性薄片的硬度的下限値,以Asker C硬度計測量時在1 以上較佳。 本發明的電絕緣性的吸收電磁波性之導熱性薄片,因 兼具高吸收電磁波性與高導熱性,且具電絕緣性,裝載於 電子機器內部時,無需考慮對於以印刷配線電路爲代表之 -18- (16) (16)200414463 各部分的電性短路,可於最適合處裝設。因此,可抑制習 知逐漸增加的電子機器內部的電磁波雜訊,同時可抑制朝 外部輻射之電磁波洩漏量。更進一步,可將從電子機器構 成要件產生的熱,朝機器外部放熱。 【實施方式】 〔實施例〕 以下,由實施例與比較例更具體說明本發明,但本發 明不限制於該等實施例。 〔實施例1〕 使用有機過氧化物硬化型的矽氧橡膠組成物,作爲基 質聚合物,導熱層於厚度100 μιη的PET上塗布成形。 將平均聚合度7000的二甲基乙烯基生橡膠88重量 部、含矽原子結合氫原子之有機聚矽氧烷12重量部作爲 導熱性充塡粉末的表面處理劑、平均粒徑1 8 μιη的氧化鋁 粉末(昭和電工(株)公司製,商品名:AS-30) 800重 量部以及平均粒徑4 μιη的氧化銘粉末(昭和電工(株) 公司製,商品名:AL-24 ) 400重量部作爲導熱性充塡 劑,於捏合機中均勻混合,製成導熱層的糊狀組成物。 對該糊狀組成物1〇〇重量部’將有機過氧化物之過氧 化二(4 -甲基苯甲醯)0.8重量部與甲苯40重量部,於均 質攪拌機中攪拌混合後塗布於厚度100 的ΡΕΤ上。再 者,爲除去甲苯,準備以40 °C · 5分鐘、80 °C · 5分鐘階 -19- (17) (17)200414463 段加熱步驟後,以1 5 0 °C · 5分鐘的條件,將塗布之薄片 交鏈·硬化,於P E T基板上得到厚度0. 1 m m的本發明的 電絕緣性的吸收電磁波性之導熱性薄片的導熱層。 然後,使用液狀加成反應式的矽氧橡膠組成物,作爲 基質聚合物,電磁波吸收層於上述導熱層上衝壓成形。 室溫下黏度爲30 Pa· s之兩末細以一甲基乙嫌基石夕 氧基封住之含乙烯基二甲基聚矽氧烷作爲基質聚合物,含 石夕原子結合氫原子之有機聚砂氧院作爲各種充塡粉末的表 面處理劑,相對該充塡粉末的總量1 0 0重量部,添加1重 量部,再者,加入平均粒徑10 μιη的球狀鐵-12 %鉻-3 %矽 軟磁性金屬粉末,以及作爲導熱性粉末之平均粒徑1 μπι 的粒狀氧化鋁粉末(昭和電工(株)公司製,商品名: A L - 4 7 - 1 )以行星式攪拌機於室溫下攪拌後,再一邊攪拌 一邊進行1 2 0 °C、1小時的熱處理,製成本發明的電絕緣 性的吸收電磁波性之導熱性薄片中的電磁波吸收層的糊狀 組成物。 然後’添加混合一分子中含2個以上與矽原子結合之 氫原子的有機氫聚矽氧烷、白金族金屬系觸媒、乙炔醇系 反應控制劑。有機氫聚矽氧烷的添加量,係使其氫原子的 莫耳數與電磁波吸收層的基質組成物中的二甲基矽氧基的 莫耳數比成爲0.7。最終的調配組成,對矽成分1〇〇重量 部’調整使軟磁性金屬粉末爲1 〇〇〇重量部,導熱性粉末 之氧化鋁粉末爲400重量部。將成爲該電磁波吸收層之組 成物,於導熱層上衝壓成形,! 2 0它、i 〇分鐘加熱硬化, (18) (18)200414463 將0 · 9 m m的電磁波吸收層疊層後,從導熱層側的P E T基 板離型,得到薄片總厚1 mm的本發明的電絕緣性的吸收 電磁波性之導熱性薄片。 〔實施例2〕 以平均粒徑30 μιη的扁平狀的鐵-5.5 %矽爲電磁波吸 收層的軟磁性金屬粉末,電磁波吸收層的最終調配組成, 對砂成分1 〇 〇重量部,調整使軟磁性金屬粉末爲9 0 0重量 部,導熱性粉末之氧化鋁粉末爲5 00重量部,此外其他與 實施例1相同,得到厚度1 mm的本發明的電絕緣性的吸 收電磁波性之導熱性薄片。 〔實施例3〕 電磁波吸收層的最終調配組成,對矽成分1 〇〇重量 部,調整使軟磁性金屬粉末爲900重量部,導熱性粉末之 氧化鋁粉末爲2 00重量部,此外其他與實施例2相同,得 到厚度1 mm的本發明的電絕緣性的吸收電磁波性之導熱 性薄片。 〔實施例4〕 以平均粒徑0.9 μιη的氮化鋁粉末作爲導熱性粉末 (三井化學(株)公司製,商品名:ΜΑΝ-2 ),此外其他 與實施例3相同,得到厚度1 mm的本發明的電絕緣性的 吸收電磁波性之導熱性薄片。 -21 - (19) 200414463 〔實施例5〕 以平均粒徑5 μιη的粒狀Ni-Zn鐵 業(株)公司製,商品名:BSN-714) 的氧化鋁,此外其他與實施例3相同, 本發明的電絕緣性的吸收電磁波性之導 〔實施例6〕 以平均粒徑30 μιη的扁平狀的鐵-收層的軟磁性金屬粉末,不添加導熱性 層的最終調配組成,相對矽成分1 00重 性金屬粉末爲700重量部,此外其他與 到厚度1 mm的本發明的電絕緣性的吸 性薄片。 〔實施例7〕 電磁波吸收層的組成與實施例2相 於120 °C、1〇分鐘加熱硬化,得到〇.6 層。 然後,作爲基質聚合物,相對在實 吸收層矽組成物1 〇 〇重量部,於導熱性 徑1 8 μιη的氧化鋁粉末(昭和電工( 名:AS-3 0 ) 600重量部以及平均粒徑4 (昭和電工(株)公司製,商品名: 氧體粉末(戶田工 取代電磁波吸收層 得到厚度1 mm的 熱性薄片。 5 · 5 %砂爲電磁波吸 粉末,電磁波吸收 量部,調整使軟磁 實施例1相同,得 收電磁波性之導熱 同,以衝壓成形, m m的電磁波吸收 施例1用於電磁波 充塡劑充塡平均粒 株)公司製,商品 μπι的氧化鋁粉末 AL-24 ) 3 00 重量 (20) (20)200414463 部,成爲導熱層組成物。該等以無溶劑塗布厚度〇.4 mm 於電磁波吸收層上之後,以1 2 〇 °C · 1 〇分鐘的條件交鏈· 硬化,得到厚度1 的本發明的電絕緣性的吸收電磁波 性之導熱性薄片。 〔實施例8〕 使用平均粒徑5 μπι的粒狀Ni-Zn鐵氧體,取代氧化 鋁作爲導熱層中的導熱性充塡劑(戶田工業(株)公司 製,商品名:BSN-714),相對基質聚合物1〇〇重量部, 充塡1 0 00重量部,此外其他與實施例7相同,得到厚度 1 mm的本發明的電絕緣性的吸收電磁波性之導熱性薄 片。 〔實施例9〕 與實施例1的導熱層相同組成的基質聚合物1 00重量 部、平均粒徑1 · 5 μπι的氮化硼粉末(三井化學(株)公 司製,商品名:ΜΒΝ-0 1 0 ) 2 00重量部、甲苯 3 00重量 部’於均質攪捽機均勻攪拌混合後,以厚度5 0 μπι的十字 玻璃作爲補強材料,首先塗布於一面上,以40 °C · 5分 鐘、8 0 °C · 5分鐘階段加熱後,以1 5 01 · 5分鐘的條件 交鏈·硬化。然後,塗布於十字玻璃的相對面,以相同條 件交鏈·硬化,得到厚度0.4 mm的導熱層。 於該導熱層上,與實施例2相同組成之電磁波吸收 層’以與實施例1相同條件衝壓成形,成爲厚度0.6 mm -23- (21) 200414463 的電磁波吸收層,得到總共厚度1 mm的本發B月的 性的吸收電磁波性之導熱性薄片。 〔實施例1 〇〕 與實施例1相同組成,以同樣方法製成厚度 的導熱層, 以該導熱層夾住兩側,與實施例2相同組成厚度 的電磁波吸收層,以衝壓成形疊層,其兩側爲導熱 層構造,得到總共厚度1 mm的本發明的電絕緣性 電磁波性之導熱性薄片。 〔實施例11〕 與實施例1相同組成,以同樣方法製成厚度 的導熱層,於該導熱層上,與實施例2相同組成1 mm的電磁波吸收層,以衝壓成形疊層。再者,於 吸收層上疊層與實施例7的導熱層同樣的厚度0.3 導熱層,成爲3層構造的疊層薄片,得到總共厚g 的本發明的電絕緣性的吸收電磁波性之導熱性薄片 〔實施例1 2〕 使用日信化學工業(株)公司製的丙烯酸酯橡 2 5 20,作爲電磁波吸收層的基質聚合物,相對該丙 橡膠1 0 0重量部,平均粒徑3 0 μπα的扁平狀的鐵· 的軟磁性金屬粉末1 200重量部,平均粒徑1 μπι的 電絕緣 0.1 mm 0.8 mm 層之3 的吸收 0.1 mm [度 〇·6 電磁波 mm 白勺 膠 RV- 烯酸酯 5 · 5 % 砂 氧化鋁 (22) (22)200414463 粉末(昭和電工(株)公司製,商品名:A L - 4 7 - 1 )以捏 合機均勻混合’成爲電磁波吸收層的糊狀組成物。相對該 糊狀組成物1 〇 〇重量部,以2軸滾輪混合有機過氧化物之 過氧化二(4 -甲基苯甲醯)〇·8重量部後,在150它.1〇 分鐘的條件衝壓成形,得到厚度〇 · 6 m m的電磁波吸收 層。 於電磁波吸收層上,以同樣條件疊層與實施例7的導 熱層相同組成厚度〇 · 3 mm的導熱層,得到總共厚度〗mm 的本發明的電絕緣性的吸收電磁波性之導熱性薄片。 〔比較例1〕 使用平均粒徑2 0 μ m的球狀銅粉,取代氧化鋁作爲導 熱層中的導熱性充塡劑(三井金屬礦業(株)公司製,商 品名:Μ A · C D - S ),此外其他與實施例1相同,得到總共 厚度1 m m的電磁波吸收層與導熱層組成的2層構造之本 發明的電絕緣性的吸收電磁波性之導熱性薄片。 〔比較例2〕 使導熱層的厚度爲0.0 3 mm與電磁波吸收層的厚度爲 0.9 7 mm,此外其他與實施例1相同,得到總共厚度1 mn] 的電磁波吸收層與導熱層組成的2層構造之本發明的電絕 緣性的吸收電磁波性之導熱性薄片。 〔比較例3〕 -25- (23) (23)200414463 0.9 5 m m電磁波吸收層與實施例6相同組成,以同樣 方法於厚度0.0 5 m m的P E T膜上成形·接合’得到總厚1 mm的電絕緣性的吸收電磁波性的薄片。 由實施例1〜12、比較例1〜3所得之薄片,作爲薄片 厚度方向的介電質破壞電壓、薄片厚度方向的導熱率、薄 片表面層的Asker C硬度以及電磁波吸收特性,以下述方 法,由放射電磁波衰減量、導熱層的體積阻抗係數評價, 結果表示於表1〜3。 _ 《介電質破壞電壓》 介電質破壞電壓的測量,根據HS C 2 1 1 0進行測量。 《體積阻抗係數》 導熱層的體積阻抗係數的測量,根據JIS K 6249進 行測量。 《導熱率》 導熱率,根據A S TM E 1 5 3 0進行測量。 《Asker C硬度》 製作薄片表面層單獨厚度6 mm的薄片,使氣泡不進 入其間的將2片該薄片重疊,成爲總厚12 mm的被測定 試樣。使用高分子計器(株)公司製的Asker C硬度計, 以負載1 kg的1 0秒後的讀出値作爲測量値。 -26- (24) (24)200414463 《放射電磁波衰減量》 評價放射電磁波哀減量的方法,如圖2所示。首先, 於電波暗室內,將被測定薄片纏繞會產生頻率2 G Η z電磁 波的雙極天線5,從該雙極天線5距離3公尺的位置設置 接收天線7。亦即,其與依據F C C的3公尺法一致。然 後,產生的電磁波由接收天線7與連接之屏蔽室4內的 Ε ΜI接收器(光譜分析儀)8測定之。圖2中的6係訊號 產生器。該測定結果與不設置本發明的吸收電磁波性組成 物時的電磁波產生量的差,作爲放射電磁波衰減量。200414463 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a flexible, electrically insulating, electromagnetic wave-absorbing heat conduction composed of a laminated body of an electromagnetic wave absorbing layer and an electrically insulating thermally conductive layer. Sex flakes. [Previous technology] In recent years, with the development of the use of electromagnetic waves in broadcasting, mobile communications, radar, mobile phones, wireless local area networks (LAN), etc., electromagnetic waves have scattered around in the living environment, electromagnetic waves have been blocked, and electronic devices have malfunctioned. Problems often occur. In addition, electronic devices such as CPUs, MPUs, and LSIs, which are arranged inside personal computers, mobile phones, and the like, are becoming denser and more integrated, and progress is being made toward high-density packaging of electronic device components such as printed wiring boards. As the electromagnetic wave is radiated inside the machine, the electromagnetic wave is reflected inside the machine and fills the inside of the machine, and the internal electromagnetic wave interference caused by the machine due to the electromagnetic wave itself. In the past, in the case of countermeasures against such electromagnetic wave interference, it is necessary to have expertise and experience in dealing with noise. The countermeasures require a long time, and it is difficult to ensure the packaging space of countermeasure components in advance. In order to solve these problems, an electromagnetic wave absorber that absorbs electromagnetic waves to reduce reflected waves and transmitted waves has begun to be used. In addition, with the increase in the density and integration of electronic components such as CPUs, MPUs, and LSIs, the amount of heat generation will increase. If it cannot be effectively cooled, -4 (2) (2) 200414463 will also be caused by heat scattering. Problems causing movement errors. Conventionally, as a mechanism for efficiently releasing heat to the outside, a silicon grease or silicone rubber filled with a thermally conductive powder is placed between a CPU, a MCU, an LSI, and a heat sink to make contact. Method for reducing thermal resistance. However, this method cannot avoid the electromagnetic interference problem inside the machine. Therefore, parts that have high density and high integration of electronic equipment, such as CPUs, MPUs, and LSIs, must have components that absorb electromagnetic waves and conduct heat. As sheet parts, (1) electromagnetic wave-absorbing sheets in which magnetic powder is dispersed in a matrix polymer, (2) thermally conductive sheets in which a thermally conductive powder represented by alumina is dispersed in a matrix polymer, ( 3) The two powders are used to fill three kinds of flakes with both electromagnetic wave absorption and heat conduction functions. Recently, the signal processing speed of electronic devices such as personal computers has been extremely high, and the operating frequency of each component has a tendency to increase gradually from several hundred MHz to several GHz. However, the frequency of electromagnetic noise generated inside electronic equipment has also gradually increased in the GHz region. In order to suppress such electromagnetic noise, the use of manganese-zinc-based ferrites and nickel-zinc-based ferrites as representative spinel-type cubic ferrite powders is evenly dispersed in the matrix polymer. The effect of using the ferrite sheet is mainly in the MHz region and the effect in the GHz region is low. Therefore, flakes in which a metal-based soft magnetic powder having a large effect in the MHz to GHz region is uniformly dispersed in a matrix polymer are now mainstream. Generally, because of the conductivity of soft magnetic metal, the dielectric breakdown voltage (dielectric -5- (3) (3) 200414463 breakdown voltage) of the flakes whose powder is uniformly dispersed in the matrix polymer is small. Therefore, when the thin film is installed inside the electronic device, care must be taken not to electrically short the parts inside the electronic device. In addition, the sheet that has both the function of absorbing electromagnetic waves and the function of heat conduction is often used between the element and the heat-emitting part. When the electrical connection between the element and the heat-emitting part becomes a problem, the sheet cannot be used. In such a case, a sheet having only a thermally conductive function with electrical insulation is sandwiched between the element and the heat-dissipating part to dissipate the heat from the element, and at the same time, it is arranged everywhere that does not cause the problem of electricity to only absorb electromagnetic waves. Such a complicated method to suppress the electromagnetic wave noise. There are many components of electromagnetic wave noise inside electronic equipment, such as high-speed driving CPU, MPU, LSI, etc. There are also connected components and printed wiring patterns. The so-called component pins and printed wiring patterns become antennas that generate electromagnetic noise. Happening. In this case, it is better to cover the electromagnetic wave-absorbing sheet directly there. However, the sheet in which the soft magnetic metal powder is uniformly dispersed in the matrix polymer cannot be used because the sheet is not insulating due to a short circuit problem. Basically, in the sheet where the soft magnetic metal powder is uniformly dispersed in the insulating matrix polymer, the conductive soft magnetic metal powders are insulated from each other by the matrix polymer. In order to improve the electromagnetic wave absorption function, a large amount of soft The magnetic metal powder reduces the dielectric breakdown voltage of the sheet because the distance between the metal powders is reduced or brought into contact with each other. Japanese Unexamined Patent Publication No. 11-45804 (Patent Document 1) discloses a silane-based coupling agent for a metal soft magnetic powder-6- (4) 200414463 Japanese Unexamined Patent Publication discloses a long chain The radio wave absorption of the alkyl raw coating film has obtained a sufficient dielectric number bulletin (a composite magnetic interference suppressor composed of a patent document, in Japanese Patent Document 4), which discloses the electrical properties of the molecular material coating of the electromagnetic wave absorbing layer. Sheet, however, the electrical insulation properties of its patent publication (the laminated body of the patent document layer are unknown) 1 1 -45 8 04 No. 2001-308584 Fair 1 1-1 95 8 93 Radio wave absorber of coating film, No. 2 00 1 -3 08 5 84 (Patent Document 2) Silane is provided with an insulator 1 on the surface of a metal soft magnetic powder, but these molecular coating films with a mechanical base are difficult to destroy voltage in a qualitative manner. The electromagnetic wave-absorbing sheet. In Japanese Patent Application Laid-Open No. Hei 11-195 95 93 93), the electromagnetic wave stem disclosed with an insulating layer on at least one side of the soft magnetic powder and the organic binder layer is disclosed in Japanese Patent Laid-Open No. 2000- 23 Number 2297 (Specifically dispersing metallic magnetic powder on the outer surface of flexible polymer materials with a flexible high magnetic wave absorber having a dielectric constant of 10 or less, although these structures can be made into insufficient electrical insulation and heat conduction functions. Open 2002-76683 5), exposing the electromagnetic wave absorbing heat radiating sheet stacked by the electromagnetic wave absorbing layer and the heat radiating layer, but the structure is correct and its heat conduction function is insufficient. [Patent Document 1] Japanese Patent Publication [Patent Document 2] Japanese Patent Publication [Patent Document 3] Japanese Patent Publication [Patent Document 4] Japanese Patent Publication No. 2000 (^ 232297) (5) (5) 200414463 [Patent Document 5] Japanese Laid-Open Patent Publication No. 2 0 0 2 · 7 6 6 8 3 [Summary of the Invention] [Problems to be Solved by the Invention] The present invention has been made in view of such problems In order to provide a thermally conductive sheet that has both high electromagnetic wave absorption function and high thermal conductivity function and electrical insulation and electromagnetic wave absorption. The solution to the problem and the inventor of the sample of the implementation of the invention, etc., repeatedly focus on achieving the above goals 硏As a result of the review, it was found that at least one electromagnetic wave absorbing layer in which the soft magnetic metal powder was dispersed in the matrix polymer, and at least one electrically insulating and thermally conductive laminating agent in which the electrically insulating and thermally conductive filler was dispersed in the matrix polymer, The dielectric breakdown voltage in the thickness direction of the sheet is above 1 kV, and it can obtain both high electromagnetic wave absorption function, high thermal conductivity function, and high electrical insulation function. It can be applied to the electrically insulating and electromagnetically absorbing thermally conductive sheet of various electronic devices. Furthermore, the electromagnetic wave absorbing layer of the sheet is simultaneously filled with a soft magnetic metal powder and an electrically insulating and thermally conductive filler, and found to be high The present invention achieves the present invention by electrically conducting an electrically insulating sheet that absorbs electromagnetic waves. Therefore, the present invention provides an electromagnetic wave absorbing layer in which at least one layer of soft magnetic metal powder is dispersed in a matrix polymer, and at least one layer of electrical insulation. Electrically conductive thermally conductive fillers are dispersed in a matrix polymer and are electrically insulating and thermally conductive laminated layers, and the dielectric breakdown voltage in the thickness direction of the sheet is above 1 kV. 8- (6) (6) 200414463 Electromagnetic wave-absorbing thermally conductive sheet. Hereinafter, the present invention will be described in more detail. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is filled with at least one layer of soft magnetic metal powder and, if necessary, electrically insulating thermal conductivity. An electromagnetic wave absorbing layer in which the agent is dispersed in the matrix polymer, and at least one electrically insulating and thermally conductive filler is dispersed in the matrix polymer The electrically insulating and thermally conductive laminating agent included in the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is made of electrically insulating materials such as alumina, silicon oxide, and iron. Oxygen, silicon nitride, boron nitride, and aluminum nitride powders are preferred. When ferrite is used as a thermally conductive filler, nickel-zinc-based, manganese-zinc-based spinels with high electrical insulation properties are used. Stone type cubic ferrite powder is preferred. These soft magnetic ferrites also have the function of absorbing electromagnetic waves and can reinforce the function of absorbing electromagnetic waves of the soft magnetic metal powder of the present invention, so they are preferred. It is possible to use one kind alone or a combination of two or more kinds. The average particle diameter of the thermally conductive powder is preferably from 0.1 μm to 100 μm, and more preferably from 1 μm to 50 μm. When the particle diameter is less than 0.1 μm, the specific surface area of the particles becomes too large, and it is difficult to achieve high charge. At the same charge rate, the thermal conductivity of the sheet becomes small. In addition, when the particle diameter exceeds 100 μm, minute irregularities appear on the surface of the sheet, and thus the contact thermal resistance may increase. -9- (7) (7) 200414463 The content of the thermally conductive powder in the thermally conductive layer accounts for 30 to 85% by volume of the total thermally conductive layer (volume. /., Refers to the percentage by volume, the same applies hereinafter), especially 40 to 80 % By volume is preferred. Less than 30 volumes. /. At this time, sufficient thermal conductivity cannot be obtained, exceeding 85 volumes. /. As a result, the thermally conductive layer may become brittle. The soft magnetic metal powder used in the electromagnetic wave absorbing layer of the present invention is preferably iron-containing in consideration of supply stability, price, and the like. For example, carbonyl iron, electrolytic iron, iron chromium alloy, iron silicon alloy, iron nickel alloy, iron aluminum alloy, iron cobalt alloy, iron aluminum silicon alloy, iron chromium silicon alloy, iron chromium aluminum alloy , FeSi-Ni alloy, FeSi-Ni alloy, etc., but not limited to these examples. In this case, it is preferable to include 15% by weight of iron from the viewpoint of price and the like. These soft magnetic metal powders may be used alone or in combination of two or more. The shape of the powder may be either flat or granular, or a combination of both. The average particle diameter of the soft magnetic metal powder is preferably from 0.1 μm to 100 μm, and more preferably from 1 μm to 50 μm. When the average particle diameter is less than 0.1 μπα, the specific surface area of the particles becomes too large, and it is difficult to achieve high charge. In addition, when the average particle diameter exceeds 100 μm, minute irregularities appear on the surface of the sheet, and the contact thermal resistance may increase accordingly. The content of the soft magnetic metal powder in the electromagnetic wave absorbing layer accounts for ~ 80 vol% of the entire electromagnetic wave absorbing layer, and particularly preferably 15 to 70 vol%. If it is less than 10% by volume, a sufficient function of absorbing electromagnetic waves cannot be obtained, and if it exceeds 80% by volume, the electromagnetic wave absorption layer may become brittle. (8) (8) 200414463 The electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention is filled with a soft magnetic metal powder and an electrically insulating thermally conductive filler in the electromagnetic wave absorbing layer, which can further improve the thermal conductivity. The increase of the thermal conductivity of the sheet can expand its application range. In this case, as the thermally conductive filler to be charged in the electromagnetic wave absorbing layer, the thermally conductive filler exemplified above may be used, and may be the same as or different from the thermally conductive filler used in the thermally conductive layer. In the case where the electromagnetic wave absorbing layer is simultaneously filled with soft magnetic metal powder and an electrically insulating and thermally conductive filler, in order to obtain a predetermined function of absorbing electromagnetic waves, consider the balance with the charge rate of the soft magnetic metal powder, and the thermally conductive filler The blending ratio accounts for 10 to 70% by volume of the entire electromagnetic wave absorption layer, and particularly preferably 20 to 50% by volume. When the content is less than 10% by volume, sufficient heat conduction function cannot be obtained. When the content exceeds 70% by volume, the content of the soft magnetic metal powder is lowered, and sufficient functions for absorbing electromagnetic waves may not be obtained. The matrix polymer used for the electromagnetic wave absorbing layer and the thermally conductive layer of the electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention, for example, organic polysiloxane, acrylate rubber, ethylene propylene rubber, fluorine rubber, etc. Choose what you want to achieve. This matrix polymer may be used singly or in combination of two or more kinds. In the present invention, different types of matrix polymers of the electromagnetic wave absorbing layer and the thermally conductive layer can be used. For the bonding between the reinforcing layers, it is advantageous to use the same type. In the present invention, it is suitable to use an organopolysiloxane which is easy to adjust the hardness and heat resistance of the composition as a matrix polymer. In this case, 'as a composition using an organopolysiloxane as a matrix polymer', an unvulcanized putty-11-(9) (9) 200414463 (putty) -like silicone resin composition, a hardening organic polysiloxane It is composed of a silicone polymer composition of a matrix polymer, an addition reaction type silicone rubber composition, or a peroxide crosslinked sand rubber composition, but it is not particularly limited. Here, as the matrix polymer of the above-mentioned putty-like putty sandy resin, sandy rubber, or silicone gel composition, a conventional organic polysiloxane can be used. The organic polysiloxane can be used under The average composition formula (1) described above. R ^ SiOi 4-a) / 2 (1) (In the formula, R1 is the same or different kind of unsubstituted or substituted monovalent hydrocarbon group, and a is a positive number from 1.98 to 2.02.) Here, R1 The same or different type of unsubstituted or substituted monovalent hydrocarbon group is preferably 1 to 8 carbon atoms, more preferably 1 to 8 carbon atoms. For example, methyl, ethyl, isopropyl, butyl, Isobutyl, tertiary butyl, hexyl, octyl and other alkyl groups, cyclohexyl and other cycloalkyl groups, vinyl, allyl and other alkenyl groups, phenyl and tolyl aromatic groups and benzyl groups Monovalent non-substituted hydrocarbon groups such as aralkyl groups such as phenethyl, phenylpropyl, and the like, and a part or all of the carbon-bonded hydrogen atoms of these groups are substituted with halogen atoms, cyano groups, etc. A monovalent substituted hydrocarbon group such as a halogen atom such as a methyl group, a bromoethyl group, or a cyanoethyl group is substituted with an alkyl group, or a cyano group is substituted with an alkyl group. Of these, methyl, phenyl, ethyl, and trifluoropropyl are preferred. In addition, a is a positive number from 1.98 to 2.02. As the organic polysiloxane, it is preferable to contain 2 or more alkenyl groups in one molecule, and it is particularly preferable that 0 to 0 mol% of R 1 is 5 to 5 mol. The molecular structure of the organopolysiloxane according to the above formula (1) is not particularly limited, but it is particularly preferable that the molecular chain end is blocked with three organic sand bases, -12- (10) (10) 200414463, especially two Diorganovinylsilyl blockers such as methylvinylsilyl are preferred. In addition, it is preferably linear, and a mixture of one or two or more different molecular structures may be used. The average degree of polymerization of the above-mentioned organopolysiloxane is 100 to 100,000, especially 100 to 2,000 is preferred. In addition, the viscosity at 25 t: 100 to 100,000,000 cs (centistokes; centistock), especially 100 to 100,000. cs is better. When the above-mentioned organic polysiloxane is used to formulate an addition reaction type silicone rubber composition, one molecule containing an alkenyl group such as two or more vinyl groups is used as the above-mentioned organic polysiloxane, and an organic hydrogen polymer is also used at the same time. Siloxane acts as a hardener and an addition reaction catalyst. As an organohydrogenpolysiloxane, the following average composition formula (2) b ^ cSlO (4-bc) / 2 (2) (where R2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms) And satisfy b is 0 $ bS3 ', especially 0.7 $ bS2.1, 〇: 0 &lt; c $ 3, especially O.OOlScSl and b + c is 0 &lt; b + cS3, especially 0.8 $ b + c S 3) means that it is liquid at normal temperature. Here, 'R2 is an unsubstituted or substituted monovalent hydrocarbon group having a carbon number of 1 to 10, especially a carbon number of 1 to 8'. For example, the same group as the group exemplified above for Ri may be used. Among them, an alkyl group, an aromatic group, an aralkyl group, and a substituted alkyl group such as a methyl group, an ethyl group, a propyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are particularly preferred. The molecular structure may be any of linear, cyclic, bifurcated, and secondary network shapes. SiH groups may exist at the end of the molecular chain (11) (11) 200414463, or in the middle of the molecular chain. It may exist on both sides. The molecular weight is not particularly limited, and the viscosity at 25 ° C is preferably 1 to 100 cs, especially in the range of 3 to 50 cs. As specific examples of the above-mentioned organic hydrogen polysiloxane, for example, 1,1,3,3-tetramethyldisilazane, methyl hydrogen cyclic polysiloxane, methyl hydrosiloxane, dimethyl silicon Oxane cyclic copolymer, methylhydrogen polysiloxane blocked with trimethylsilyl groups at both ends, dimethylsiloxane · methylhydrogen blocked with trimethylsilyl groups at both ends Siloxane copolymer, dimethylpolysiloxane blocked with dimethylhydrosilyl groups at both ends, dimethylsiloxane · methyl blocked with dimethylhydrosyloxy groups at both ends Hydrosilane copolymer, methyl hydrosiloxane-diphenylsiloxane copolymer blocked at both ends with trimethylsiloxy, copolymer of trimethylsiloxy group blocked at both ends Hydroxysiloxane, diphenylsiloxane, dimethylsiloxane copolymer, copolymer consisting of (CH3) 2HSi01 / 2 units and Si04 / 2 units, (CH3) 2HSi01 / 2 units , A copolymer consisting of (CH3) 3Si01 / 2 units and Si04 / 2 units, a copolymer consisting of (CH3) 2HSi01 / 2 units, Si04 / 2 units and (C6H5) 3Si01 / 2 units. The blending amount of the organic hydrogen polysiloxane is such that the ratio of the number of silicon atoms to hydrogen atoms (ie, SiH groups) in the organic hydrogen polysiloxane to the number of silicon atoms to alkenyl groups in the matrix copolymer is 0.1. The amount of the composition of 1 to 3: 1 is preferable, and the amount of the composition of 0.2 to 1 to 2: 1 is more preferable. As the addition reaction catalyst, a platinum group metal-based catalyst is used, and monomers, compounds, and complexes containing the platinum group metal as the catalyst metal can be used. Specifically, for example, platinum black, platinum tetrachloride, platinum chloride, platinum chloride and -14- (12) (12) 200414463 reactants of monovalent alcohols, complexes of platinum chloride and olefins, diethyl Platinum catalysts such as platinum acetate, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium-based catalysts such as palladium, chlorotris (triphenylphosphine) rhodium, tetra (triphenylphosphine) rhodium And other germanium-based catalysts. In addition, the addition amount of the addition reaction catalyst can be the amount of the catalyst. Generally, for the alkenyl-containing organic polysiloxane, the platinum group metal is preferably 0.1 to 1 000 ppm, and more preferably 1 to 200 ppm. When it is less than 0.1 ppm, the hardening of the composition may not be sufficiently performed, and when it exceeds 100 p p m, the cost becomes high. On the other hand, when the silicone rubber composition is an organic peroxide curing type, an organic peroxide is used as a curing agent. In addition, the organic peroxide is hardened and is effective in the case of a rubbery polymer having a degree of polymerization of the organosiloxane of the matrix polymer of 3,000 or more. As the organic peroxide, conventional substances can be used, such as, for example, benzophenazine peroxide, 2,4-dichlorobenzophenazine peroxide, p-methylbenzophenazine peroxide, and 0-methyl peroxide. Dibenzamidine, 2,4-dicumyl peroxide, 2,5-dimethyl-bis (2,5 -tertiary butyl) hexane, ditertiary butane, Tert-butyl peroxybenzoate, 1,1-bis (tertiary butyl peroxide) 3,3,5-trimethylcyclohexane (ij-bis (butylperoxy) 3,3,5 -1 rimethy 1 cyc 1 o hexane), 1,6-bis (peroxidized second butyl residue) hexane (1-6-bis (t -butylperoxycarboxy) hexane) and the like. The blending amount of the organic peroxide is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the organosiloxane of the matrix polymer. In addition, in the electromagnetic wave absorbing layer and the heat-conducting layer of the present invention, a powder surface treatment agent such as a silane coupling agent, a flame retardant, a cross-linking agent, a control agent, Cross-linking accelerators, etc. In the present invention, the composition constituting the electromagnetic wave absorbing layer and the thermally conductive layer can be produced by mixing a soft magnetic metal powder and / or a thermally conductive powder, a matrix polymer, and other required components, respectively. Here, the soft magnetic metal powder and / or the thermally conductive powder, the matrix polymer, and other required components can be mixed by a homomixer, a kneader, a two-axis roller, and a star mixer ( A mixer such as a planetary mixer) makes it uniform, but it is not particularly limited. As a method for laminating the electromagnetic wave absorbing layer and the thermally conductive layer, for example, the above composition is used, and the electromagnetic wave absorbing layer and the thermally conductive layer are previously formed by coating molding, press molding, etc., and other layers are also laminated by coating molding, press molding, etc. Method: Extruding and coating two layers of electromagnetic wave absorbing layer and thermally conductive layer together to form a sheet-shaped unhardened object, and then superimposing the two layers by stamping and forming. The electromagnetic wave absorbing layer and thermally conductive layer are coated, stamped, etc. There is no particular limitation on the method of 'joining via an adhesive layer after the pre-forming'. Furthermore, in order to strengthen the bonding between the layers, a primer layer may be applied to the bonding surface of the sheet before lamination. The laminated structure of the electrically insulating and electromagnetically absorbing thermally conductive sheet of the present invention is, for example, a two-layer structure in which an electromagnetic wave absorbing layer 1 and a thermally conductive layer 2 are laminated as shown in FIG. 1 (a), as shown in FIG. 1 (b The three-layer structure in which one electromagnetic wave absorbing layer 1 and one thermally conductive layer 2 on each of its two sides are laminated as shown in the figure) is not particularly limited. The thickness of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is 0.2 mm or more and 10 mm or less, and more preferably ο "mm or more 3 -16- (14) (14) 200414463 mm or less. The thickness of the layer is preferably from 0.05 mm to 1 mm, and particularly preferably from 0.1 mm to 0.5 mm. In addition, the thickness of the electromagnetic wave absorbing layer is preferably more than 50% of the total thickness of the sheet, and more preferably 5 to 98% of the total thickness of the sheet. The electromagnetic wave absorbing layer of the electrically insulating and electromagnetic wave absorbing thermally conductive sheet of the present invention has a small dielectric breakdown voltage due to the structure in which the soft magnetic metal powder is dispersed in the matrix polymer. Therefore, the electrical insulation of the sheet is mainly borne by the electrical insulation of the thermally conductive layer. If the thickness of the thermally conductive layer is less than 0.05 mm, it is difficult to achieve a dielectric breakdown voltage of 1 kV that is sufficient for electronic equipment. In addition, the occurrence rate of holes during molding is high, because the leakage current of the holes cannot ensure a dielectric breakdown voltage of 1 kV. In addition, when the thickness of the heat conductive layer exceeds 1 mm, when the thickness of the electromagnetic wave absorbing layer is 50% or less of the total thickness of the sheet, a sufficient electromagnetic wave absorbing function cannot be obtained. The dielectric breakdown voltage in the thickness direction of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is 1 kV or more, preferably 1.5 kV or more, and more preferably 2 kV or more. The electromagnetic wave absorbing layer in the sheet of the present invention has a small dielectric breakdown voltage due to the structure in which the soft magnetic metal powder is dispersed in the matrix polymer. Therefore, an electrically insulating thermally conductive laminated layer dispersed in a matrix polymer with an electrically insulating thermally conductive filler can ensure a dielectric breakdown voltage in the thickness direction of the sheet. If the dielectric breakdown voltage is less than 1 kV, the danger of short circuit in the electronic device will increase, and the applicable range will become narrower. The volume resistivity of the thermally conductive layer of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is more than 1x10ό Ωπι, particularly (15) (15) 200414463 1 X 1 0 8 Ω m, and preferably 1 X 1 0 1 4 Ω m or less is preferred. If the volume impedance coefficient is smaller than 1 X 1 06 Ω m, the sheet may cause a short circuit when it contacts the printed wiring circuit or various electrode terminals. The thermal conductivity of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is 0.7 W / mK or more, particularly preferably 1 W / mK or more, and more preferably 10 W / mK or more. If the thermal conductivity is less than 0.7 W / mK, the thermal conductivity may be insufficient, which limits its use. When the electromagnetic wave absorbing layer is filled with a thermally conductive filler, the thermal conductivity of the entire sheet is preferably 1.5 W / mK or more, and more preferably 3 W / mK or more. In the surface layer of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention, the hardness of the surface layer of the heat-generating object and / or the heat-emitting component disposed on at least one side is 70 or less when measured with an Asker C hardness meter, Especially, it is preferably 60 or less. The surface of the sheet is made soft, and the surface of the sheet can be deformed by the minute unevenness of the surface of the heat-generating object and / or the exothermic part, and the contact area of the two becomes larger in terms of micrometers. As a result, the contact thermal resistance between the sheet and the heat-generating object and / or the heat-emitting component can be reduced. When the Asker C hardness is greater than 70, the contact thermal resistance between the sheet and the heat-generating object and / or exothermic part becomes large, which may cause insufficient heat dissipation characteristics. The lower limit 値 of the hardness of the electrically insulating electromagnetic wave absorbing heat conductive sheet is preferably 1 or more when measured with an Asker C hardness meter. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention has both high electromagnetic wave absorption and high thermal conductivity, and has electrical insulation. When it is installed in an electronic device, it is not necessary to consider the representative of printed wiring circuits. -18- (16) (16) 200414463 The electrical short of each part can be installed at the most suitable place. Therefore, it is possible to suppress the electromagnetic wave noise inside the electronic device which is conventionally increasing, and at the same time, to suppress the amount of electromagnetic wave leakage to the outside. Furthermore, it is possible to dissipate the heat generated from the electronic components to the outside of the device. [Embodiments] [Examples] Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. [Example 1] An organic peroxide-curable silicone rubber composition was used as a base polymer, and a thermally conductive layer was coated and formed on PET having a thickness of 100 µm. 88 parts by weight of dimethyl vinyl raw rubber with an average polymerization degree of 7000, and 12 parts by weight of organopolysiloxane containing silicon atoms and hydrogen atoms were used as surface treatment agents for thermally conductive powders, and the average particle size was 18 μm. Alumina powder (manufactured by Showa Denko Corporation, trade name: AS-30) 800 parts by weight and oxide powder with an average particle size of 4 μm (manufactured by Showa Denko Corporation, trade name: AL-24) 400 weight As a thermally conductive filler, the part is uniformly mixed in a kneader to prepare a paste-like composition of a thermally conductive layer. For 100 parts by weight of this paste composition, 0.8 parts by weight of organic peroxide bis (4-methylbenzidine) and 40 parts by weight of toluene were stirred and mixed in a homomixer and applied to a thickness of 100. On the PET. Furthermore, in order to remove toluene, a heating step of -19- (17) (17) 200414463 was prepared at 40 ° C · 5 minutes, 80 ° C · 5 minutes, and then at 150 ° C · 5 minutes. The coated sheet was cross-linked and hardened to obtain a thermally conductive layer of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention having a thickness of 0.1 mm on a PET substrate. Then, a liquid addition reaction type silicone rubber composition was used as a matrix polymer, and the electromagnetic wave absorbing layer was press-formed on the heat conductive layer. At room temperature, the viscosity is 30 Pa · s. The organic polymer containing vinyl dimethyl polysiloxane sealed with monomethylethoxyloxy group is used as the matrix polymer. As a surface treatment agent for various filling powders, Polysand Oxygen Institute adds 1 part by weight to 100 parts by weight of the filling powder, and adds spherical iron with an average particle size of 10 μm-12% chromium. -3% silicon soft magnetic metal powder, and granular alumina powder with an average particle size of 1 μm as a thermally conductive powder (manufactured by Showa Denko Corporation, trade name: AL-4 7-1) After stirring at room temperature, heat treatment was performed at 120 ° C for 1 hour while stirring to prepare a paste-like composition of an electromagnetic wave absorbing layer in the electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention. Then, an organic hydrogen polysiloxane containing two or more hydrogen atoms bonded to silicon atoms, a platinum group metal catalyst, and an acetylene alcohol reaction control agent are added and mixed in one molecule. The addition amount of the organohydrogenpolysiloxane is such that the mole ratio of the hydrogen atom to the mole ratio of the dimethylsiloxy group in the matrix composition of the electromagnetic wave absorbing layer is 0.7. The final composition was adjusted to 1,000 parts by weight of the silicon component so that the soft magnetic metal powder was 1,000 parts by weight, and the thermally conductive alumina powder was 400 parts by weight. The component that will become the electromagnetic wave absorption layer is stamped and formed on the heat conductive layer! It was hardened by heating for 20 minutes. (18) (18) 200414463 After the electromagnetic wave absorption layer of 0.9 mm was laminated, the PET substrate was released from the heat-conducting layer side to obtain a sheet having a total thickness of 1 mm. Insulating electromagnetic wave-absorbing thermally conductive sheet. [Example 2] A soft magnetic metal powder having flat iron-5.5% silicon with an average particle diameter of 30 μm as an electromagnetic wave absorbing layer, and the final composition of the electromagnetic wave absorbing layer. The 1,000 weight part of the sand component was adjusted to make it soft. The magnetic metal powder was 900 parts by weight, and the alumina powder of the thermally conductive powder was 5,000 parts by weight. Other than the same as in Example 1, an electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention having a thickness of 1 mm was obtained. . [Example 3] The final composition of the electromagnetic wave absorbing layer was adjusted to 900 parts by weight of the silicon component, and 900 parts by weight of the soft magnetic metal powder, and 200 parts by weight of the alumina powder of the thermally conductive powder. In the same manner as in Example 2, an electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention having a thickness of 1 mm was obtained. [Example 4] An aluminum nitride powder having an average particle diameter of 0.9 μm was used as a thermally conductive powder (manufactured by Mitsui Chemicals Co., Ltd., trade name: MN-2), and otherwise the same as Example 3 was performed to obtain a 1 mm thick The electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention. -21-(19) 200414463 [Example 5] Alumina made with granular Ni-Zn iron industry Co., Ltd. (trade name: BSN-714) with an average particle diameter of 5 μm, and the others are the same as in Example 3 Example of the electrically insulating electromagnetic wave absorbing property of the present invention [Example 6] A flat iron-clad soft magnetic metal powder having an average particle diameter of 30 μm, the final composition without the addition of a thermally conductive layer, compared to silicon The component 100 is a heavy metal powder of 700 parts by weight, and the other has an electrically insulating absorbent sheet having a thickness of 1 mm. [Example 7] The composition of the electromagnetic wave absorbing layer was the same as that of Example 2 at 120 ° C and heat-hardened for 10 minutes to obtain a 0.6 layer. Then, as a matrix polymer, 600 parts by weight of alumina powder (Showa Denko (name: AS-3 0)) with a thermal conductivity of 18 μm and an average particle diameter of 1,000 parts by weight of the silicon composition of the solid absorption layer were used. 4 (Manufactured by Showa Denko Co., Ltd., trade name: Oxygen powder (Toda Kogyo replaces the electromagnetic wave absorption layer to obtain a thermal sheet with a thickness of 1 mm. 5 · 5% sand is an electromagnetic wave absorption powder, and the electromagnetic wave absorption amount is adjusted to make the soft magnetic Example 1 is the same, the same heat conductivity as electromagnetic wave is obtained, and it is formed by stamping. The electromagnetic wave absorption of mm is used in Example 1. It is used for electromagnetic wave filling agent filling average particles. 00 weight (20) (20) 200414463 parts, which becomes a heat conductive layer composition. These are coated with a solvent-free thickness of 0.4 mm on the electromagnetic wave absorption layer, and then cross-linked under the conditions of 120 ° C · 10 minutes · Hardened to obtain an electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention having a thickness of 1. [Example 8] A granular Ni-Zn ferrite having an average particle diameter of 5 μm was used instead of alumina as the thermally conductive layer. Thermal conductivity Tincture (manufactured by Toda Industry Co., Ltd., trade name: BSN-714), 100 parts by weight relative to the matrix polymer, 100 parts by weight, and the same as in Example 7 to obtain a thickness of 1 mm of the electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention. [Example 9] Nitridation of a matrix polymer having the same composition as that of the thermally conductive layer of Example 1 with a weight of 100 and an average particle diameter of 1.5 μm Boron powder (manufactured by Mitsui Chemicals, Inc., trade name: ΜΒΝ-0 1 0) 2 00 parts by weight and 3,00 parts by weight of toluene were homogeneously stirred and mixed in a homomixer, and cross glass with a thickness of 50 μm was used as The reinforcing material is first coated on one side, heated at 40 ° C · 5 minutes, 80 ° C · 5 minutes, and then crosslinked and hardened under the conditions of 15 01 · 5 minutes. Then, coated on the opposite side of the cross glass The surface was cross-linked and hardened under the same conditions to obtain a thermally conductive layer having a thickness of 0.4 mm. On this thermally conductive layer, an electromagnetic wave absorbing layer having the same composition as in Example 2 was press-formed under the same conditions as in Example 1 to have a thickness of 0.6 mm- 23- (21) 200414463 Electromagnetism The absorbing layer has a total thickness of 1 mm, which is a thermally conductive sheet that absorbs electromagnetic waves of the present invention. [Example 1 〇] The same composition as in Example 1 was used, and a thermally conductive layer having a thickness was prepared by the same method, and the thermal conductivity was performed. The two layers sandwich the two sides, and the electromagnetic wave absorbing layer with the same composition thickness as in Example 2 is laminated by punching. The two sides are structured with a heat conductive layer. A total thickness of 1 mm of the electrically insulating electromagnetic wave heat conductive sheet of the present invention is obtained. [Example 11] A thermally conductive layer having the same composition as in Example 1 was prepared in the same manner, and an electromagnetic wave absorption layer of 1 mm was formed on the thermally conductive layer in the same manner as in Example 2 to form a laminate by punching. Furthermore, a heat-conducting layer having a thickness of 0.3, which is the same as that of the heat-conducting layer of Example 7, was laminated on the absorbing layer to form a laminated sheet having a three-layer structure, thereby obtaining a total thickness of g of the electrically insulating electromagnetic wave-absorbing thermal conductivity of the present invention. Sheet [Example 1 2] An acrylic rubber 2 5 20 manufactured by Nissin Chemical Industry Co., Ltd. was used as the matrix polymer of the electromagnetic wave absorbing layer, and the average particle diameter was 30 μπα relative to 100 parts by weight of the acrylic rubber. Flat iron · Soft magnetic metal powder 1 200 parts by weight, electrical insulation 0.1 mm 0.8 mm with an average particle diameter of 0.8 mm Layer 3 absorption 0.1 mm [degree 〇 · 6 electromagnetic wave mm RV-acrylate 5.5% sand alumina (22) (22) 200414463 powder (manufactured by Showa Denko Corporation, trade name: AL-4 7-1) was uniformly mixed with a kneader to become a paste-like composition of an electromagnetic wave absorption layer. With respect to 1,000 parts by weight of the pasty composition, bis (4-methylbenzidine) peroxide, which is an organic peroxide, was mixed with a 2-axis roller in an amount of 0.8 parts by weight, and the conditions were 150 and 0.1 minutes. Press forming to obtain an electromagnetic wave absorption layer having a thickness of 0.6 mm. On the electromagnetic wave absorbing layer, a thermally conductive layer having the same composition thickness as that of the conductive layer of Example 7 was 0.3 mm under the same conditions to obtain an electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention having a total thickness of〗 mm. [Comparative Example 1] Spherical copper powder having an average particle diameter of 20 μm was used instead of alumina as a thermally conductive filler in a thermally conductive layer (manufactured by Mitsui Metals Mining Co., Ltd., trade name: Μ A · CD- S), other than the same as in Example 1, an electrically insulating electromagnetic wave absorbing thermally conductive sheet of the present invention having a two-layer structure consisting of an electromagnetic wave absorbing layer and a thermally conductive layer having a total thickness of 1 mm was obtained. [Comparative Example 2] The thickness of the thermally conductive layer was 0.0 3 mm and the thickness of the electromagnetic wave absorbing layer was 0.9 7 mm, and the others were the same as in Example 1 to obtain a total thickness of 1 mn.] The electromagnetic wave absorbing layer and the thermally conductive layer were composed of two layers. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet of the present invention is structured. [Comparative Example 3] -25- (23) (23) 200414463 0.9 5 mm electromagnetic wave absorbing layer has the same composition as in Example 6, and was formed and bonded on a PET film having a thickness of 0.0 5 mm in the same manner to obtain a film having a total thickness of 1 mm. An electrically insulating sheet that absorbs electromagnetic waves. The sheets obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were used as the dielectric breakdown voltage in the thickness direction of the sheet, the thermal conductivity in the thickness direction of the sheet, the Asker C hardness of the sheet surface layer, and the electromagnetic wave absorption characteristics by the following methods. The radiation electromagnetic wave attenuation and the volume resistivity of the heat conductive layer were evaluated. The results are shown in Tables 1 to 3. _ "Dielectric breakdown voltage" The dielectric breakdown voltage is measured in accordance with HS C 2 110. << Volume impedance coefficient >> The volume impedance coefficient of the thermally conductive layer is measured in accordance with JIS K 6249. << thermal conductivity >> The thermal conductivity is measured in accordance with A S TM E 1530. "Asker C Hardness" A sheet having a thickness of 6 mm in the surface layer of the sheet alone was prepared, and two sheets of the sheet were superimposed so that air bubbles did not enter therebetween, and a total thickness of 12 mm was measured. An Asker C hardness tester manufactured by Polymer Meter Co., Ltd. was used, and the readout 値 after 10 seconds of a load of 1 kg was used as the measurement 値. -26- (24) (24) 200414463 "Amount of attenuation of radiated electromagnetic waves" The method for evaluating the amount of attenuation of radiated electromagnetic waves is shown in Figure 2. First, in a darkened room with radio waves, a dipole antenna 5 having a frequency of 2 G Η z electromagnetic waves is wound around a sheet to be measured, and a receiving antenna 7 is provided at a distance of 3 meters from the dipole antenna 5. That is, it is consistent with the 3-meter method according to F C C. Then, the generated electromagnetic wave is measured by the receiving antenna 7 and the EMI receiver (spectrum analyzer) 8 in the shielded room 4 connected thereto. The 6-series signal generator in Figure 2. The difference between the measurement result and the amount of electromagnetic wave generated when the electromagnetic wave absorbing composition of the present invention is not provided is taken as the amount of radiation electromagnetic wave attenuation.

•27- (25) 200414463 [表i] 實施例 1 2 3 4 5 6 電磁波 基質聚合物 種類 矽 矽 矽 矽 矽 矽 吸收層 調配(重量部) 100 100 100 100 100 100 軟磁性金屬粉 組成 鐵-12% 鐵-5.5%矽 鐵·5.5%矽 鐵-5.5%矽 鐵-5.5%矽 鐵-5.50砸 形狀 鉻-3%矽 扁平 扁平 扁平 扁平 扁平 調配(重量部) 球狀 900 900 900 900 700 1000 導熱性充塡劑 種類 氧化鋁 氧化鋁 氧化鋁 氮化鋁 鎳鋅-鐵氧體 無 調配(重量部) 400 500 200 200 (ferrite) 200 厚度(_) 0.9 0.9 0.9 0.9 0.9 0.9 導熱層1 基質聚合物 種類 矽 矽 矽 矽 矽 矽 調配(重量部) 100 100 100 100 100 100 導熱性充塡劑 種類 氧化鋁 氧化鋁 氧化鋁 氧化鋁 氧化鋁 氧化鋁 調配(重量部) 1200 1200 1200 1200 1200 1200 體積阻抗係數(Ω m) l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 厚度(mm) 0.1 0.1 0.1 0.1 0.1 0.1 導熱層2 基質聚合物 種類 調配(重量部) 無 無 無 無 無 無 導熱性充塡劑 種類 調配(重量部) 體積阻抗係數(Ω m) 厚度(mm) 介電質破 壞電壓 (kV) 2.5 2.6 2.5 2.6 2.3 2.3 導熱率 3.6 3.2 2.1 3.0 1.8 1.0 (W/mK) Asker C 硬 硬度70以下的表面層名稱 30 60 50 60 50 50 度 電磁波 電磁波 電磁波 電磁波 電磁波 電磁波 吸收層 吸收層 吸收層 吸收層 吸收層 吸收層 電磁波吸 收功能 (dB) @2GHz 3.5 6.3 7.5 7.8 8.5 8.2 -28- (26)200414463 [表2] 實施例 7 8 9 10 11 12 電磁波 基質聚合物 種類 矽 矽 矽 矽 矽 矽 吸收層 調配(重量部) 100 100 100 100 100 100 軟磁性金屬粉 組成 鐵·5.5% 鐵-5.5%矽 鐵-12% 鐵-5.5%矽 鐵-5.5%矽 鐵-5.5%矽 形狀 矽 扁平 鉻-3%矽 扁平 扁平 扁平 調配(重量部) 扁平 900 球狀 900 900 1200 900 1000 導熱性充塡劑 種類 氧化鋁 氧化鋁 氧化鋁 氧化鋁 氧化鋁 氧化鋁 調配(重量部) 500 500 400 500 500 300 厚度(mm) 0.6 0.6 0.6 0.8 0.6 0.6 導熱層1 基質聚合物 種類 矽 矽 矽 矽 矽 矽 調配(重量部) 100 100 100 100 100 100 導熱性充塡劑 種類 氧化鋁 鎳鋅·鐵氧 氮化硼 氧化鋁 氧化鋁 氧化鋁 調配(重量部) 900 體(ferrite) 200 1200 1200 900 1000 體積阻抗係數(.Ω m) l.OOxlO10 1.00x109 l.OOxlO12 l.OOxlO11 l.OOxlO11 l.OOxlO10 厚度(mm) 0.4 0.4 0.4 0.1 0.1 0:4 導熱層2 基質聚合物 種類 無 無 無 矽 矽 無 調配(重量部) 100 100 導熱性充塡劑 種類 氧化鋁 氧化鋁 調配(重量部) 1200 900 體積阻抗係數(Ω m) l.OOxlO11 l.OOxlO10 厚度(mm) 0.1 0.3 介電質破 壞電壓 (kV) 8.1 2.2 11.3 4.1 10.5 7.3 導熱率 3.1 2.3 3.8 3.3 3.3 3.3 (W/mK) Asker C硬 硬度70以下的表面層名稱 20 20 30 無 10 10 度 導熱層 導熱層 電磁波 導熱層2 導熱層 60 60 吸收層 電磁波 電磁波 吸收層 吸收層 電磁波吸 收功能 (dB) @2GHz 5.1 8.0 2.8 5.7 5.5 7.3 -29- (27)200414463 [表3] 比較例 1 2 3 電磁波吸收層 基質聚合物 種類 矽 矽 矽 調配(重量部) 100 100 100 軟磁性金屬粉 組成 鐵-12% 鉻-3% 鐵-12% 鉻-3% 鐵-5.5%i夕 形狀 矽 矽 扁平 調配(重量部) 球狀 球狀 700 1000 1000 導熱性充塡劑 種類 氧化鋁 氧化鋁 無 調配(重量部) 400 400 厚度(mm) 0.9 0.97 0.95 導熱層1 基質聚合物 種類 矽 矽 PET膜 調配(重量部) 100 100 導熱性充塡劑 種類 銅 氧化鋁 調配(重量部) 1200 1200 體積阻抗係數(Ω m) 無法測定 l.OOxlO11 厚度(mm) 0.1 0.03 0.05 導熱層2 基質聚合物 種類 調配(重量部) 無 無 無 導熱性充塡劑 種類 調配(重量部) 體積阻抗係數(Ω m) 厚度(mm) 介電質破壞電壓(kV) 0.1 0.4 7.7 導熱率(W/mK) 2.7 3.6 0.6 Asker C硬度 硬度70以下的表面層名稱 30 30 無 電磁波 電磁波 吸收層 吸收層 電磁波吸收功能(dB) @2GHz 3.1 3.6 8.5• 27- (25) 200414463 [Table i] Example 1 2 3 4 5 6 Electromagnetic Wave Matrix Polymer Type Silicon Silicon Silicon Silicon Silicon Absorptive Layer Preparation (weight part) 100 100 100 100 100 100 Soft magnetic metal powder composed of iron- 12% iron-5.5% ferrosilicon5.5% ferrosilicon-5.5% ferrosilicon-5.5% ferrosilicon-5.50 chrome shape-3% silicon flat flat flat flat deployment (weight part) spherical 900 900 900 900 700 1000 Thermal conductivity filler type alumina alumina alumina aluminum nitride nickel zinc-ferrite no blending (weight part) 400 500 200 200 (ferrite) 200 thickness (_) 0.9 0.9 0.9 0.9 0.9 0.9 thermal conductive layer 1 matrix polymerization Type of material Silicon Silicon Silicon Silicon Silicon compound (weight part) 100 100 100 100 100 100 Thermal conductivity filler type Alumina alumina alumina alumina alumina alumina compounding (weight part) 1200 1200 1200 1200 1200 1200 Volume impedance Coefficient (Ω m) l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 l.OOxlO11 Thickness (mm) 0.1 0.1 0.1 0.1 0.1 0.1 Thermally conductive layer 2 Type of matrix polymer (weight part) No No No No No Thermal conductivity Filler type (weight part) Volume resistivity (Ω m) Thickness (mm) Dielectric breakdown voltage (kV) 2.5 2.6 2.5 2.6 2.3 2.3 Thermal conductivity 3.6 3.2 2.1 3.0 1.8 1.0 ( W / mK) Asker C Name of surface layer with hardness less than 70 30 60 50 60 50 50 degrees Electromagnetic wave Electromagnetic wave Electromagnetic wave Electromagnetic wave Electromagnetic wave Absorption layer Absorption layer Absorption layer Absorption layer Absorption layer Electromagnetic wave absorption function (dB) @ 2GHz 3.5 6.3 7.5 7.8 8.5 8.2 -28- (26) 200414463 [Table 2] Example 7 8 9 10 11 12 Electromagnetic Wave Matrix Polymer Type Silicon Silicon Silicon Silicon Silicon Absorptive Layer Preparation (weight part) 100 100 100 100 100 100 Soft magnetic metal powder Composition Iron · 5.5% Iron-5.5% Ferrosilicon-12% Iron-5.5% Ferrosilicon-5.5% Ferrosilicon-5.5% Silicon Shape Silicon Flat Chrome-3% Silicon Flat Flat Flat Deployment (weight part) Flat 900 Spherical 900 900 1200 900 1000 Thermally conductive filler type Alumina alumina alumina alumina alumina alumina blending (weight part) 500 500 400 5 00 500 300 Thickness (mm) 0.6 0.6 0.6 0.8 0.6 0.6 Thermally conductive layer 1 Type of matrix polymer Silicon Silicon Silicon Silicon Silicon compound (weight part) 100 100 100 100 100 100 Thermal conductivity filler type Alumina nickel zinc ferrite Boron Nitride Aluminium Oxide Aluminium Oxide Blend (weight part) 900 Body (ferrite) 200 1200 1200 900 1000 Volume resistivity (.Ω m) l.OOxlO10 1.00x109 l.OOxlO12 l.OOxlO11 l.OOxlO11 l.OOxlO10 Thickness (mm) 0.4 0.4 0.4 0.1 0.1 0: 4 Thermally conductive layer 2 Type of matrix polymer None Silicone Silicone No blending (weight part) 100 100 Thermal conductivity filler type Alumina alumina blending (weight part) 1200 900 Volume impedance Coefficient (Ω m) l.OOxlO11 l.OOxlO10 thickness (mm) 0.1 0.3 dielectric breakdown voltage (kV) 8.1 2.2 11.3 4.1 10.5 7.3 thermal conductivity 3.1 2.3 3.8 3.3 3.3 3.3 (W / mK) Asker C hardness less than 70 Surface layer name of 20 20 30 without 10 10 degree heat conduction layer heat conduction layer electromagnetic waveguide heat layer 2 heat conduction layer 60 60 absorption layer electromagnetic wave electromagnetic wave absorption layer Absorbing electromagnetic wave absorption function (dB) @ 2GHz 5.1 8.0 2.8 5.7 5.5 7.3 -29- (27) 200414463 [Table 3] Comparative Example 1 2 3 Electromagnetic wave absorbing layer matrix polymer type Silicon Silicon Silicon formulation (weight part) 100 100 100 Soft magnetic metal powder composition Iron-12% Chromium-3% Iron-12% Chromium-3% Iron-5.5% i Shape Silicon Silicon Flat formulation (weight part) Spherical spherical 700 1000 1000 Type of thermally conductive filler oxidation Aluminium-aluminum oxide-free formulation (weight part) 400 400 Thickness (mm) 0.9 0.97 0.95 Thermally conductive layer 1 Matrix polymer type Silicon-silicone PET film formulation (weight part) 100 100 Thermally conductive filler type Copper-alumina compounding (weight part) 1200 1200 Volume resistivity (Ω m) Unable to measure 1.OOxlO11 Thickness (mm) 0.1 0.03 0.05 Thermally conductive layer 2 Formulation of matrix polymer type (weight part) No No or non-thermal conductivity filler formulation (weight part) Volume resistivity (Ω m) Thickness (mm) Dielectric breakdown voltage (kV) 0.1 0.4 7.7 Thermal conductivity (W / mK) 2.7 3.6 0.6 Asker C Surface layer name below 70 hardness 30 30 None Electromagnetic wave Electromagnetic wave Absorption layer Absorption layer Electromagnetic wave absorption function (dB) @ 2GHz 3.1 3.6 8.5

•30- (28) (28)200414463 由表1,本發明之實施例1〜1 2,介電質破壞電壓在1 kV以上之高,導熱率亦0.7 W/mK以上之高,電磁波吸收 功能以本評價方法得到2 dB以上的値,視爲具充分的電 磁波吸收功能。 實施例1〜5、7〜1 2與實施例6比較,藉由在電磁波吸 收層同時充塡軟磁性金屬粉與導熱性充塡劑,可得1 . 5 W/mK以上的導熱率,得知導熱率可更提高。 實施例1與比較例1比較時,於導熱層充塡導電性的 導熱性充塡劑的情況,無法得到1 kV以上之介電質破壞 電壓,得知會限制適用的場所。 實施例1與比較例2比較時,導熱層不足0.05 mm的 情況,無法得到1 kV以上之介電質破壞電壓,得知會限 制適應的場所。 由比較例3,於電磁波吸收層疊層絕緣之PET膜’不 阻礙電磁波吸收功能,可使介電質破壞電壓變大,但與實 施例6比較時,因與導熱性差的樹脂膜疊層,導熱率變大 造成損壞。 〔發明的效果〕 本發明的吸收電磁波性之導熱性薄片’因兼具高Π及$ 電磁波性與高導熱性,且具電絕緣性,裝載於電子機器內 部時,無需考慮對於以印刷配線電路爲代表之各部分的電 性短路,可於最適合處裝設。因此,可抑制習知逐漸增加 的電子機器內部的電磁波雜訊,同時可抑制朝外部福射之 -31 - (29) (29)200414463 電磁波洩漏量。更進一步,可將從電子機器構成要件產生 的熱,朝機器外部放熱。 於是,對習知需要吸收電磁波性薄片與導熱性薄片2 種薄片的處所’可簡單地以一種薄片對應。在空間小的地 方,可同時具應付電磁波雜訊與放熱的方法,可使電子機 器更小型化。 [圖式簡單說明】 圖1表示本發明的吸收電磁波性之導熱性薄片的構造 之槪略剖面圖,(a )表示二層構造的吸收電磁波性之導 熱性薄片’ (b )表示三層構造的吸收電磁波性之導熱性 薄片, 圖2表示放射電磁波衰減量的測定方法的方塊圖。 【符號說明】 1 :電磁波吸收層 2 :導熱層 3 :電波暗室 4 =屏蔽室 5 :雙極天線 6 :訊號產生器 7 :接收天線 8 : EMI接收器• 30- (28) (28) 200414463 From Table 1, Examples 1 to 12 of the present invention, the dielectric breakdown voltage is higher than 1 kV, the thermal conductivity is also higher than 0.7 W / mK, the electromagnetic wave absorption function A chirp of more than 2 dB is obtained by this evaluation method, which is considered to have a sufficient electromagnetic wave absorption function. Example 1 ~ 5, 7 ~ 1 2 Compared with Example 6, by simultaneously filling the electromagnetic wave absorption layer with a soft magnetic metal powder and a thermally conductive filler, a thermal conductivity of 1.5 W / mK or more can be obtained. It is known that the thermal conductivity can be further improved. When Example 1 is compared with Comparative Example 1, when the conductive layer is filled with a conductive thermally conductive filler, a dielectric breakdown voltage of 1 kV or more cannot be obtained, and it is known that the application place is limited. When Example 1 is compared with Comparative Example 2, if the thermally conductive layer is less than 0.05 mm, a dielectric breakdown voltage of 1 kV or more cannot be obtained, and it is known that the place where the adaptation is restricted. In Comparative Example 3, the PET film insulated from the electromagnetic wave absorbing layer does not hinder the electromagnetic wave absorbing function and can increase the dielectric breakdown voltage. However, when compared with Example 6, it is laminated with a resin film with poor thermal conductivity to conduct heat. The rate becomes larger, causing damage. [Effects of the Invention] The electromagnetically absorbing thermally conductive sheet according to the present invention has both high electromagnetic conductivity and high thermal conductivity, and has electrical insulation. When it is mounted in an electronic device, it is not necessary to consider printed wiring circuits. It can be installed at the most suitable place to represent the electrical short of each part. Therefore, it is possible to suppress the electromagnetic wave noise inside the electronic device which has been gradually increasing, and at the same time, it is possible to suppress the amount of electromagnetic waves leaking toward the outside -31-(29) (29) 200414463. Furthermore, it is possible to dissipate the heat generated from the components of the electronic device to the outside of the device. Therefore, it is possible to simply cope with one type of premises of two types of sheets that are conventionally required to absorb electromagnetic waves and thermally conductive sheets. In a small space, it is possible to cope with electromagnetic wave noise and heat radiation at the same time, which can make electronic machines more compact. [Brief description of the drawings] FIG. 1 is a schematic cross-sectional view showing the structure of an electromagnetic wave-absorbing thermally conductive sheet according to the present invention. (A) shows a two-layer structure of the electromagnetic wave absorbing thermally conductive sheet. (B) shows a three-layer structure. FIG. 2 is a block diagram showing a method for measuring the amount of attenuation of a radiated electromagnetic wave. [Symbol description] 1: Electromagnetic wave absorption layer 2: Thermally conductive layer 3: Radio wave dark room 4 = Shielded room 5: Bipolar antenna 6: Signal generator 7: Receiving antenna 8: EMI receiver

Claims (1)

200414463 Π) 拾、申請專利範圍 1、 一種電絕緣性的吸收電磁波性之導熱性薄片,係 至少一層由軟磁性金屬粉末分散於基質聚合物中之電磁波 吸收層’以及至少一層由電絕緣性導熱性充塡劑分散於基 質聚合物中之電絕緣性導熱層所疊層而得,且在該薄片厚 度方向的介電質破壞電壓在1 kV以上。 2、 如申請專利範圍第1項之電絕緣性的吸收電磁波 性之導熱性薄片,其中,該薄片之導熱率係在〇.7 W/mK 以上。 3 '如申請專利範圍第1項或第2項之電絕緣性的吸 收電磁波性之導熱性薄片,其中,於電磁波吸收層同時充 塡軟磁性金屬粉末以及電絕緣性導熱性充塡劑。 4、 如申請專利範圍第3項之電絕緣性的吸收電磁波 性之導熱性薄片,其中,該薄片之導熱率係在1.5 W/mK 以上。 5、 如申請專利範圍第1項至第4項中任一項之電絕 緣性的吸收電磁波性之導熱性薄片,其中,該電絕緣性導 熱性充塡劑爲至少一種選自氧化鋁、氧化矽、鐵氧體 (ferrite )、氮化矽、氮化硼、氮化鋁所成群之化合物。 6、 如申請專利範圍第1項至第5項任一項之電絕緣 性的吸收電磁波性之導熱性薄片,其中,含於電磁波吸收 層中的軟磁性金屬粉末,係包含鐵元素1 5重量%的金 屬。 7、 如申請專利範圍第1項至第6項中任一項之電絕 -33- (2) (2)200414463 緣性的吸收電磁波性之導熱性薄片,其中’基質聚合物係 選自有機聚矽氧烷、丙烯酸酯橡膠、乙烯丙烯橡膠、氟橡 膠所成群的1種或2種以上的混合物。 8、 如申請專利範圍第1項至第7項中任一項之電絕 緣性的吸收電磁波性之導熱性薄片,其中,該薄片整體的 厚度係0.2 mm以上1〇 mm以下,一層導熱層的厚度係 0·〇5 mm以上1 mm以下’電磁波吸收層的厚度超過該薄 片整體厚度的50%以上。 9、 如申請專利範圍第1項至第8項中任一項之電絕 緣性的吸收電磁波性之導熱性薄片,其中,該導熱層的體 積阻抗係數,係在1x1 〇6 Ωιη以上。 1 〇、如申請專利範圍第1項至第9項中任一項之電絕緣 性的吸收電磁波性之導熱性薄片’其中,於該薄片表面層 的至少一側的裝載面配置之層的硬度,以Asker c硬度計 測定時在70以下。200414463 Π) Application and patent application scope 1. An electrically insulating electromagnetic wave absorbing thermally conductive sheet, which is at least one layer of electromagnetic wave absorbing layer dispersed by a soft magnetic metal powder in a matrix polymer, and at least one layer is electrically conductive and thermally conductive An electrically insulating filler is dispersed in a matrix polymer, and an electrically insulating and thermally conductive layer is laminated, and the dielectric breakdown voltage in the thickness direction of the sheet is above 1 kV. 2. For example, the electrically insulating and electromagnetic wave-absorbing thermally conductive sheet of the first patent application range, wherein the thermal conductivity of the sheet is above 0.7 W / mK. 3 'As for the electrically insulating and electromagnetically absorbing thermally conductive sheet of item 1 or 2 of the scope of the patent application, the electromagnetic wave absorbing layer is filled with soft magnetic metal powder and electrically insulating and thermally conductive filler. 4. For the electrically insulating and electromagnetic wave absorbing thermally conductive sheet of item 3 of the scope of patent application, the thermal conductivity of the sheet is above 1.5 W / mK. 5. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet according to any one of the items 1 to 4 of the scope of patent application, wherein the electrically insulating and thermally conductive filler is at least one selected from the group consisting of alumina, oxidation Compounds of silicon, ferrite, silicon nitride, boron nitride, and aluminum nitride. 6. The electrically insulating and electromagnetic wave-absorbing thermally conductive sheet according to any one of the scope of claims 1 to 5, wherein the soft magnetic metal powder contained in the electromagnetic wave absorbing layer contains iron element 15 weight %Metal. 7. If the electrical insulation of any one of items 1 to 6 of the scope of application for patents -33- (2) (2) 200414463 Marginal electromagnetic wave-absorbing thermally conductive sheet, wherein the 'matrix polymer is selected from organic One or more mixtures of polysiloxane, acrylate rubber, ethylene propylene rubber, and fluorine rubber. 8. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet according to any one of the items 1 to 7 of the scope of the patent application, wherein the overall thickness of the sheet is 0.2 mm or more and 10 mm or less. The thickness is greater than or equal to 0.05 mm and less than or equal to 1 mm. The thickness of the electromagnetic wave absorbing layer exceeds 50% of the thickness of the entire sheet. 9. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet according to any one of items 1 to 8 of the scope of application for a patent, wherein the volume resistivity of the thermally conductive layer is above 1x106 Ωιη. 10. The electrically insulating electromagnetic wave-absorbing thermally conductive sheet according to any one of claims 1 to 9 of the scope of the patent application, wherein the hardness of the layer arranged on the loading surface on at least one side of the surface layer of the sheet When measured by Asker c hardness meter, it is below 70.
TW92128180A 2002-10-11 2003-10-09 Heat conductive sheet with magnetic wave absorption TWI282156B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298301A JP2004134604A (en) 2002-10-11 2002-10-11 Electromagnetic wave absorbing heat conductive sheet

Publications (2)

Publication Number Publication Date
TW200414463A true TW200414463A (en) 2004-08-01
TWI282156B TWI282156B (en) 2007-06-01

Family

ID=32287764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128180A TWI282156B (en) 2002-10-11 2003-10-09 Heat conductive sheet with magnetic wave absorption

Country Status (3)

Country Link
JP (1) JP2004134604A (en)
KR (1) KR100743819B1 (en)
TW (1) TWI282156B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254229B (en) * 2013-06-25 2017-08-08 汉高知识产权控股有限责任公司 Heat transfer dielectric interface
CN104802479B (en) * 2014-01-24 2018-05-22 汉高知识产权控股有限责任公司 Heat conduction EMI composite inhibitings

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764220B2 (en) * 2005-03-30 2011-08-31 地方独立行政法人 大阪市立工業研究所 Thermally conductive sheet
JP4859028B2 (en) * 2006-02-20 2012-01-18 北川工業株式会社 Electromagnetic wave prevention sheet, electromagnetic wave prevention sheet manufacturing method, and electromagnetic wave prevention structure of electronic component
US7952861B2 (en) 2006-02-23 2011-05-31 Lg Chem, Ltd. Display apparatus, heat conductive adhesive sheet for display apparatus, and process for preparing the same
KR100888048B1 (en) * 2007-05-31 2009-03-10 두성산업 주식회사 Electromagnetic wave shielding and absorbing sheet and preparation method thereof
KR100884387B1 (en) * 2007-07-24 2009-02-25 주식회사 아원 Electromagnetic absorber sheet enhanced thermal conductivity
JP5438337B2 (en) * 2009-02-12 2014-03-12 デクセリアルズ株式会社 Thermally conductive sheet and manufacturing method thereof
JP2010186856A (en) * 2009-02-12 2010-08-26 Sony Chemical & Information Device Corp Heat conductive sheet
KR101131489B1 (en) 2010-05-11 2012-03-30 두성산업 주식회사 Multifunctional electromagnetic wave absorption sheet simultaneouly with excellent electromagnetic wave absorption and thermal dissipation, and method of making the same
WO2011158561A1 (en) * 2010-06-14 2011-12-22 シャープ株式会社 Electromagnetic wave-absorbing sheet, display device, and television receiver
US9999158B2 (en) * 2013-01-03 2018-06-12 Henkel IP & Holding GmbH Thermally conductive EMI suppression compositions
EP2897164B1 (en) * 2014-01-17 2020-01-01 Henkel IP & Holding GmbH Thermally-conductive interface pad for EMI-suppression
KR102323182B1 (en) * 2015-04-29 2021-11-09 주식회사 아모센스 Shielding unit for complex-antenna unit and complex-transmission module comprising the same
KR102123392B1 (en) * 2017-04-13 2020-06-29 헨켈 아이피 앤드 홀딩 게엠베하 Thermally conductive emi suppression compositions
KR102534991B1 (en) 2018-02-23 2023-05-22 삼성전자 주식회사 Electronic device including a heat transfer member having a metal plate and a thermal interface material coupled to the metal plate
KR20190119260A (en) 2018-04-12 2019-10-22 공주대학교 산학협력단 Fe-Al-X SYSTEM ALLOY FOR ELECTROMAGENTIC WAVE ABSORPTION WITH HIGH THERMAL CONDUCTIVITY AND MAGNETISM, AND METHOD FOR MANUFACTURING POWDER OF SAID ALLOY
KR102280257B1 (en) * 2019-10-29 2021-07-21 에스케이씨 주식회사 Wireless charging pad, wireless charging device, and electric vehicle comprising same
KR102280259B1 (en) * 2019-10-29 2021-07-21 에스케이씨 주식회사 Wireless charging pad, wireless charging device, and electric vehicle comprising same
KR102521564B1 (en) * 2021-01-14 2023-04-12 성균관대학교산학협력단 Composite material capable of heat dissipation and shielding electromagnetic wave, electronic device package having the composite material, and method of manufacturing the composite material
JP7293522B1 (en) * 2021-11-10 2023-06-19 デンカ株式会社 Heat dissipation sheet
KR102644508B1 (en) * 2022-04-13 2024-03-08 (주)트러스 Composite sheet with thermal conductivity and electromagnetic wave absorbing property and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076683A (en) 2000-08-23 2002-03-15 Nitto Shinko Kk Electromagnetic wave absorbing radiating sheet
JP2002198686A (en) 2000-12-27 2002-07-12 Sony Corp Sheet for electronic component and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254229B (en) * 2013-06-25 2017-08-08 汉高知识产权控股有限责任公司 Heat transfer dielectric interface
CN104802479B (en) * 2014-01-24 2018-05-22 汉高知识产权控股有限责任公司 Heat conduction EMI composite inhibitings

Also Published As

Publication number Publication date
KR100743819B1 (en) 2007-07-30
KR20040033257A (en) 2004-04-21
JP2004134604A (en) 2004-04-30
TWI282156B (en) 2007-06-01

Similar Documents

Publication Publication Date Title
TW200414463A (en) Heat conductive sheet with magnetic wave absorption
TWI327322B (en)
KR100570248B1 (en) Electromagnetic Wave Absorbing Silicone Rubber Composition
JP3608612B2 (en) Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method
JP4623244B2 (en) Electromagnetic wave absorbing heat conductive silicone rubber composition
TWI278278B (en) Electromagnetic waves absorber
TWI330400B (en)
KR20140108133A (en) Thermal conductive composite silicone rubber sheet
JP2006310812A (en) Thermally conductive sheet
TWI285528B (en) Extrudable crosslinked grease-like electromagnetic waves absorbent
JP3944741B2 (en) Electromagnetic wave absorbing heat conductive silicone composition and molded article thereof
JP2006135118A (en) Electromagnetic wave absorbing heat radiation sheet
WO2020250493A1 (en) Thermally conductive electromagnetic-wave-absorbing composition and sheet of same
JP2001044687A (en) Wave absorber and its manufacture
KR100884387B1 (en) Electromagnetic absorber sheet enhanced thermal conductivity
JP2002076683A (en) Electromagnetic wave absorbing radiating sheet
JP6737979B1 (en) Electromagnetic wave absorbing heat conductive composition and sheet thereof
JP2000294977A (en) Electromagnetic interference repressor and production thereof
JP2016086133A (en) Radio wave absorber, and electronic apparatus including radio wave absorber, automatic toll collection system, and on-vehicle radar device
JP2004103673A (en) Radio wave absorptive heat radiating sheet
JP2001036280A (en) Radio absorptive material and manufacture thereof
JP2024039712A (en) Electromagnetic wave absorption heat dissipation sheet

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees