TW200407884A - Manufacturing method of master disc for optical recording medium and manufacturing method of optical recording medium - Google Patents

Manufacturing method of master disc for optical recording medium and manufacturing method of optical recording medium Download PDF

Info

Publication number
TW200407884A
TW200407884A TW92125388A TW92125388A TW200407884A TW 200407884 A TW200407884 A TW 200407884A TW 92125388 A TW92125388 A TW 92125388A TW 92125388 A TW92125388 A TW 92125388A TW 200407884 A TW200407884 A TW 200407884A
Authority
TW
Taiwan
Prior art keywords
optical recording
laser beam
recording medium
master
imaginary
Prior art date
Application number
TW92125388A
Other languages
Chinese (zh)
Inventor
Syuji Tsukamoto
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Publication of TW200407884A publication Critical patent/TW200407884A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • G11B7/24088Pits for storing more than two values, i.e. multi-valued recording for data or prepits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

The object of the present invention is to provide a manufacturing method of master disc for optical recording medium where an imaginary recording cell is divided into 2<SP>N</SP> pits of different sizes to allow 2<SP>N</SP> different types of luminous reflectivity in the imaginary recording cell. The present invention includes the steps of irradiating a laser beam to expose a photo-resist master disc and forming patterns on the photo-resist master disc, producing a master disc for optical recording medium by transferring the patterns formed on the photo-resist master disc, and determining the exposure power of the laser beam applied on the photo-resist master disc which reflects the maximum luminous reflectivity and/or the minimum luminous reflectivity distributed into the imaginary recording cell of the optical recording medium.

Description

200407884 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關於光.記錄媒體用原盤之製造方法及光記 錄媒體之製造方法,更詳言之,係有關於在光記錄媒體的 假想記錄格(cell)內,劃分2N種類之大小互異的凹坑,而 可使假想記錄格的光反射率成2N階變化之光記錄媒體用 原盤之製造方法,以及在假想記錄格(cell)內,劃分2N種 類之大小互異的凹坑,且假想記錄袼的光反射率被變化成 2N階的光記錄媒體之製造方法。 【先前技術】 先前以.來,用來記錄數位資料的記錄媒體,有CD和 DVD爲代表之光記錄媒體被廣泛利用。這些光記錄媒體 ,可大致分爲如CD-ROM和DVD-ROM這類不可追記或袜 寫之類型的光記錄媒體(ROM型光記錄媒體)..,CD-R和 DVD-R這類雖可追記資料但無法抹寫資料之類型.的光記 錄媒體(追記型光記錄媒體),以及CD-RW和DVD-RW 這類可抹寫資料之類型的光記錄媒體(抹寫型光記錄媒體 )。這些光記錄媒體中,作爲資料記錄的方式,被廣泛採 周者有’將欲記錄之資料,調變成沿著軌跡之凹坑及空白 領域之長度的方式。 近年來,伴隨著資料的高密度記錄需求,將光記錄媒 體的軌跡’在假想上’分割成具有所定長度的假想記錄格 (cell),並在假想記錄格內,形成2n種類(N爲2以上的 -4- (2) (2)200407884 整數)之互異的任一記錄記號,以記錄N位元之資料的 所謂「多位準記錄方式(multi-level record)」.被提案。 在多位準記錄方式的構成,是將2N種類的凹坑之其 中一個形成假想記錄格,以記錄N位元的資料。其結果 爲,假想記錄格會具有反映被形成之凹坑種類的光反射率 ,因此,形成了不同之凹坑的假想記錄格,由於對雷射光 束具有不同的光反射率,故藉由將雷射光束沿著光記錄媒 體的軌跡照射、偵測被假想記錄格所反射之雷射光束的光 量,就可再生資料。 使用此種多位準記錄方式,各假想記錄格內,爲了製 作記錄有位元資料之R 〇 Μ型光記錄媒體’要求在假想記 錄格內,劃分2Ν種類之大小不同的凹坑’使假想記錄格 的光反射率會有2Ν種類之變化,因此,光記錄媒體用原 盤的製作,也要求在假想記錄格內,能夠劃分:2Ν種類之 大小不同的凹坑,以使假想記錄格的光反射率有2 Ν·種類 之變化。 【發明內容】^ ^ : 因此,本發明的目的在於,提供光記錄媒體用原盤的 製造方法,可在假想記錄格內,劃分2 Ν種類之大小不同 的凹坑,以使假想記錄格的光反射率有2Ν種類之變化。 本發明的其他目的在於’提供光記錄媒體的製造方法 ,可在假想記錄格內,劃分種類之大小不同的凹坑, 以使假想記錄格的光反射率有種類之變化。 -5- (3) 200407884 本發明人,爲了達到本發明所論 入硏究的結果,發現一旦改變用以使 的雷射光束的曝光功率,則會改變雷 盤的照射時間,與光記錄媒體之假想 關係;當用以使光阻原盤曝光所照射 率越高,即使將高的最大反射率分配 記錄格內,雷射光束照射至光阻原盤 生太大的變化,而在假想記錄格中, ’使記錄位準不同之資料可被記錄; 原盤曝光所照射的雷射光束的曝光功 最小反射率分配在光記錄媒體之假想 照射至光阻原盤的照射時間也不會發 假想記錄格中,形成大小互異之凹坑 資料可被記錄。 本發明是以所論之觀點爲基礎, 發明的前記目的,可藉由一種光記錄 法,係屬於爲了製造在假想設定之老 內,形成2N種類之凹坑(pi〇,並記彳 料的光記錄媒體的光記錄媒體用原盤 爲具備:照射雷射光束,使光阻原盤 盤上形成圖案的工程;及將前記光阻 轉印,以製作光記錄媒體用原盤之工 錄媒體之前記虛擬記錄格所分配之最 小光反射率,設定照射在前記光阻原 之目的,經過再三深 光阻原盤曝光所照射 射光束照射至光阻原 記錄格的光反射率之 的雷射光束的曝光功 在光記錄媒體之假想 的照射時間也不會發 形成大小互異之凹坑 反之,當用以使光阻 率越低,即使將低的 §己錄格內,雷射光束 生太大的變化y而在 ’使記錄位準不同之 若根據本發明,則本 媒體原盤之製造方 [數假想記錄格(cell) 彔有2位元以上之資 之製造方法,其特徵 曝光’在前記光阻原 原盤上所形成的圖案 程;且呼應前記光記 大光反射率及/或最 盤上的前記雷射光束 -6 - (4) (4)200407884 的曝光功率而達成。 本發明之其他理想實施形態中,前記光記錄媒體之前 記假想記錄格所分配之最大光反射率越高,就將照射在前 記光阻原盤上的前記雷射光束的曝光功率設定在越高的位 準。 本發明之其他理想實施形態中,前記光記錄媒體之前 記假想記錄格所分配之最小光反射率越低,就將照射在前 記光阻原盤上的前記雷射光束的曝光功率設定在越低的位 準。 本發明之其他理想實施形態中,前記光記錄媒體之前 記假想記錄格所分配之最大光反射率越高,就將照射在前 δ己先阻原盤上的]III 蕾射光束的曝光功率設定在越局的位 準,且將最大相對光反射率 RRaH與最小相對光反射率 RRhH,設定成滿足 1 00- RRaH&lt;RRhH。 本發明之其他理想實施形態中,前記光記錄媒體之前 記假想記錄格所分配之最小光反射率越低,就將照射在前 記光阻原盤上的前記雷射光束的曝光功率設定在越低的位 準,且將最大祖對光反射率RRaL與最小相對光反射率 RRhL,設定成滿足 1 00'RRaL&lt;RRhL。 甚至’本發明人,爲了達成本發明之前記目的,經過 再三深入硏究的結果,發現在光記錄媒體的假想記錄格內 ,形成同樣大小的凹坑,以記錄相同記錄位準之資料時, 無關於照射在光阻原盤上的雷射光束的線速度,藉由將照 射在光阻原盤上的雷射光束之曝光功率及/或曝光功率的 -7- (5) (5)200407884 脈沖寬度設定成實質上同一,就可在各假想記錄格內記錄 2位元以上之資料。 本發明係以所論之觀點爲基礎,若根據本發明,則本 發明的前記目的,復可藉由一種光記錄媒體用原盤之製造 方法,係屬於爲了製造在假想設定之複數假想記錄格內, 形成2N種類之凹坑,並記錄有2位元以上之資料的光記 錄媒體的光記錄媒體用原盤之製造方法,其特徵爲具備: 照射雷射光束,使光粗原盤曝光,在前記光阻原盤上形成 圖案的工程;及將前記光阻原盤上所形成的圖案轉印,以 製作光記錄媒體用原盤之工程;在前記光記錄媒體之前記 假想記錄格內,形成同樣大小的凹坑,記錄同樣記錄位準 的之資料時,無關於照射在前記光姐原盤之雷射3¾束的線 速度,將照射在前記光阻原盤上之雷射光束的曝光功率及 /或曝光功率的脈沖寬度設定成實質上同一而達成。、 本發明之理想實施形態中,前記光記錄媒體之前記假 想記錄格內,形成伺樣大小之凹坑,並記錄同樣記錄位準 之資料時,無關於照射在前記光阻原盤之雷射光束的線速 度,將照射在前記光阻原盤上之雷射光束的曝光功率及曝 光功率的脈沖寬度設定成實質上同一,而控制照射在前記 光阻原盤之雷射光束的曝光功率。 本發明之理想實施形態中,將照射在前記光阻原盤上 之雷射光束的曝光功率之位準、假想記錄格長度L,以及 照射於前記光阻原盤上的雷射光束的線速度V,設定成:. 使照射於前記光阻原盤上的雷射光束的線速度V、假想記 -8- (6) (6)200407884200407884 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for manufacturing an optical disc for a recording medium and a method for manufacturing an optical recording medium. More specifically, it relates to a method for manufacturing an optical recording medium. In a virtual recording cell, a 2N type of pits with different sizes are divided, so that the optical reflectance of the virtual recording cell can be changed to a 2N order. The manufacturing method of the original disk for the optical recording medium, and the virtual recording cell. ), A method of manufacturing a 2N type of pits with mutually different sizes, and the optical reflectance of the hypothetical recording pad is changed to a 2N-order optical recording medium. [Prior Art] Previously, optical recording media such as CDs and DVDs were widely used as recording media for recording digital data. These optical recording media can be roughly divided into non-recordable or rewritable optical recording media such as CD-ROM and DVD-ROM (ROM-type optical recording media). Although CD-R and DVD-R Types of optical recording media (write-once optical recording media) that can record data but not rewritable data, and types of optical recording media (rewritable optical recording media) such as CD-RW and DVD-RW ). Among these optical recording media, as a method of data recording, there are widely adopted methods for adjusting the data to be recorded into a pit along a track and a length of a blank area. In recent years, with the demand for high-density recording of data, the track of an optical recording medium has been "hypothesized" into imaginary recording cells (cells) of a predetermined length, and 2n types (N = 2) Any of the above -4- (2) (2) 200407884 integers) is different from each other, and a so-called "multi-level record" that records N-bit data is proposed. In the multi-level recording method, one of 2N types of pits is formed into an imaginary record cell to record N-bit data. As a result, the imaginary recording grid will have a light reflectance that reflects the type of pits that are formed. Therefore, the imaginary recording grids having different pits are formed, and have different light reflectances to the laser beam. The laser beam is irradiated along the track of the optical recording medium, and the light amount of the laser beam reflected by the imaginary recording frame is detected to reproduce the data. Using this multi-level recording method, in order to create a ROM type optical recording medium with bit data recorded in each hypothetical recording cell, it is required to divide 2N types of pits of different sizes in the hypothetical recording cell to make hypothetical The light reflectance of the recording grid will change by 2N. Therefore, the production of the original disk for optical recording media also requires that the pits of different sizes can be divided into the imaginary recording grid to make the light of the imaginary recording grid. The reflectance varies by 2N · type. [Summary of the Invention] ^ ^: Therefore, an object of the present invention is to provide a method for manufacturing an original disk for an optical recording medium, which can divide pits of different sizes of 2N types in the virtual recording cell to make the light of the virtual recording cell The reflectance varies by 2N. Another object of the present invention is to provide a method for manufacturing an optical recording medium, which can divide pits of different types in the virtual recording grid so that the light reflectance of the virtual recording grid changes in kind. -5- (3) 200407884 The inventor, in order to achieve the results of the research discussed in the present invention, found that once the exposure power of the laser beam used to change the exposure time of the laser disk, it will change Imaginary relationship; when the exposure rate used to expose the photoresist master is higher, even if a high maximum reflectance is assigned to the recording grid, the laser beam is irradiated to the photoresist master to cause too much change. In the imaginary record, 'Make data with different recording levels can be recorded; the minimum reflectance of the exposure power of the laser beam irradiated by the original disk exposure is allocated in the optical recording medium's imaginary irradiation time to the photoresist original disk. Data forming pits of different sizes can be recorded. The present invention is based on the point of view. The previous purpose of the invention is to use an optical recording method to create a 2N type of pit (pi0) in a hypothetical setting. The optical disk for the recording medium is provided with a master disk for irradiating a laser beam to form a pattern on the master disk of the photoresist; and transferring a pre-printed photoresist to make a virtual recording of a recording medium for a master disk for the optical recording medium. The minimum light reflectance assigned by the grid is set for the purpose of irradiating the photoresist on the previous record. After repeated deep photoresist master exposure, the exposure of the laser beam to the photoreflection of the photoresist record grid is the function of the laser beam. The imaginary irradiation time of the optical recording medium will not cause the formation of pits of different sizes. On the contrary, when used to make the photoresistivity lower, the laser beam will change too much even if the § is lower. In the case of "different recording levels, if according to the present invention, the manufacturer of the original media of this media [the number of imaginary recording cells (cells) has a manufacturing method with more than 2 digits of capital, its characteristics are exposed" The pattern path formed on the original plate of the photoresist is achieved in response to the large light reflectance of the preface light record and / or the exposure power of the preface laser beam on the most disc-6-(4) (4) 200407884. In other preferred embodiments, the higher the maximum light reflectance assigned to the pre-recorded optical recording medium in the pre-recorded optical recording medium is, the higher the exposure power of the pre-recorded laser beam irradiated on the pre-printed photoresist master is set. In another preferred embodiment of the present invention, the lower the minimum light reflectance assigned to the pre-recorded optical recording medium in the pre-recorded optical recording medium, the lower the exposure power of the pre-recorded laser beam irradiated on the pre-recorded photoresist master is set to a lower value. In other desirable embodiments of the present invention, the higher the maximum light reflectance assigned to the imaginary recording cell before the pre-recorded optical recording medium, the higher the exposure of the first δ and the first disc will be exposed. III Laser beam exposure The power is set at the level of the bureau, and the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set to satisfy 100-RRaH &lt; RRhH. Other desirable embodiments of the present invention In the state, the lower the minimum light reflectance allocated to the pre-recorded virtual recording cell of the pre-recorded optical recording medium, the lower the exposure power of the pre-recorded laser beam irradiated on the pre-recorded photoresist master is set to a lower level, and the maximum The light reflectance RRaL and the minimum relative light reflectance RRhL of the ancestors are set to satisfy 100 'RRaL &lt; RRhL. Even the inventor, in order to achieve the goal before the invention, after in-depth research, it was found that the light record In the imaginary recording grid of the media, pits of the same size are formed to record data of the same recording level. Regardless of the linear velocity of the laser beam irradiated on the photoresist master, the The exposure power of the laser beam and / or the exposure power is -7- (5) (5) 200407884 The pulse width is set to be substantially the same, and more than 2 bits of data can be recorded in each imaginary record cell. The present invention is based on the point of view. According to the present invention, the former purpose of the present invention is a method for manufacturing an original disk for an optical recording medium, which belongs to manufacturing in a plurality of imaginary record cells which are supposed to be set, A method for manufacturing a master disk for an optical recording medium, which forms a pit of 2N type and records data of more than two bits, is characterized in that the method includes: irradiating a laser beam, exposing a rough optical disk, and recording a photoresist in advance The process of forming a pattern on the original disc; and the process of transferring the pattern formed on the former photoresist master disc to make an original disc for the optical recording medium; the imaginary recording cell is formed before the preceding optical recording medium to form a pit of the same size, When recording data at the same recording level, there is no relation to the linear velocity of the 3¾ beam of the laser beam irradiated on the original disc, and the exposure power and / or pulse width of the exposure power of the laser beam to be irradiated on the original disc. It is set to be substantially the same. In an ideal embodiment of the present invention, in the pre-recorded optical recording medium, the imaginary recording grid is formed before the pits of the sample size are formed, and the data of the same recording level is recorded. There is no concern about the laser beam irradiated on the pre-printed photoresist master The line speed is set to substantially the same exposure power and pulse width of the exposure power of the laser beam irradiated on the original photoresist master disc, and the exposure power of the laser beam irradiated on the original photoresist master disc is controlled. In a preferred embodiment of the present invention, the level of the exposure power of the laser beam irradiated on the original photoresist master disc, the imaginary record length L, and the linear velocity V of the laser beam irradiated on the original photoresist master disc, Set to:. Make the linear velocity V of the laser beam irradiated on the original photoresist master, imaginary record -8- (6) (6) 200407884

錄格長度L,以及假想記錄格的光反射率呈實質上飽和所 需之照射光阻原盤的雷射光束照射時間Ts,滿足TsS L/V 〇 本發明之上記及其他目的和特徵,可藉由以下描述及 對應圖面而明瞭。 【實施方式】 以下將根據圖面,詳細說明本發明之理想實施形態。 第1圖係本發明之理想實施形態所論之光記錄媒體的 略斜視圖。第2圖係第1圖所示光記錄媒體的虛線圓圈部 份之放大槪略剖面圖。 如第l·圖與第2圖所示,本實施形態所論光記錄媒體 1,是以CD-ROM型之光記錄媒體的方式構成,具備透光 性基板1 1,及設於透光性基板1 1上的光反射層22及保 護層2 3 〇 如第1圖所示,透光性基板1 1是以透光牲樹脂形成 圓盤狀。 形成透光性基板1 1·所用的透光性樹脂,只要是對用 來再生資料的雷射光束具有高穿透率者,並無特別限定, 但理想可使用聚碳酸酯。 第2圖中,在透光性基板1 1的下面,構成有雷射光 束入射面,如第2圖所示,在透光性基板1 1的上面,從 其中心部往外緣部,形成有8種之大小互異的複數凹坑 Pa、Pb、Pc、Pd、Pe、Pf、Pg、Pho -9- (7) (7)200407884 反射層22,係當將記錄在透光性基板i !之資料進行 再生時,用來反射穿透透光性基板11之雷射光束的薄膜 層,是採用金、銀等金屬爲主的成份,以職鍍法形成。 如第2圖所示,爲了保護反射層22,保護層23是被 形成爲覆蓋在反射層22的表面上。 本實施形態中,透光性基板1 1分別爲具有約1.2mm 之厚度。 如第2圖所示,光記錄媒體1的軌跡,係在假想上被 分割成具有所定長度之複數假想記錄格S、S、…,各假 想記錄格S構成資料記錄單位。 第3圖係光記錄媒體1之複數假想記錄格S內所形成 之凹坑 P a、P b、P c、P d、P e、P f、P g、P h,和各假想言己 錄格S的光反射率之關係圖。 如第3圖所示,假想記錄格S、S、…,其沿軌跡&gt; 方 向長度L,是被假想性地設定爲小於雷射光束的束徑D。 如圖3靳示,形成在假想記錄格S的凹坑H ( k = a〜 h )的尺寸越小者,則假想記錄格S的光反射率越大。本' 實施形態中,由於在假想記錄格S內形成了大小互異之8 種類的凹坑,故於光記錄媒體1中,記錄著3位元的資料 〇 以上構成之光記錄媒體1,是如下述過程所製造。 首先,製作用以製造透光性基板11的光記錄媒體用 原盤,亦即製作壓模(stumper)。 第4圖係本發明理想實施形態所論之光記錄媒體用原 -10- (8) (8)200407884 盤之製造方法中所使用之刻錄機。 如第4圖所示,本實施形態所論之刻錄機1 00,具備 :產生雷射光束101之雷射產生裝置102,及利用光電效 果的光調變器(EOM: Electro Optic Modulator) 103’ 及 劈光器104、106,及光調變單元105,及光學頭107,及 轉盤1 08。 轉盤1 0 8上,載置著光阻原盤1 1 〇。 光阻原盤1 1 〇,係具備玻璃基板1 1 〇a,及被層積在玻 璃基板1 l〇a上之感光性材料層1 l〇b之圓盤狀原盤,是用 來當作製造光記錄媒體用原盤的模型。 又,如第 4圖所示,光調變單元1 〇 5具備:透鏡 10 5a、光調變器l〇5b以及透鏡l〇5c,光學頭:107具備: 鏡子l〇7a及透鏡l〇7b。 如此構成的刻錄機1 〇〇中,如下述,雷射光束1〇ί被 聚光在光陧原盤1 1 〇的感光性材料層1 1 〇b,使光姐原盤 1 1 0的感光性材料層1 1 〇b曝光,其結果爲,在感光性材 料層1 10b ·.中,形成了欲對應於假想記錄格S而形成之凹 坑Pk之對應潛像:110c。 首先,將對應於欲形成在光阻原盤Π 0之感光性材料 層110b上之潛像110c的圖案的脈沖信號列105d,輸入 光調變單元的光調變器同時一邊使載置有光 阻原盤11 0的轉盤1 08旋轉,—邊令光學頭107在光阻原 盤1 ] 〇的半徑方向上移動。 由雷射產生裝置102所產生之雷射光束101,藉由光 -11 - (9) (9)200407884 調變器1 03將其功率調變成適合於感光性材料層n ob的 曝光程度後,經由劈光器104、劈光器l〇6gef 鏡子107a的反射,藉由透鏡i〇7b聚光在光阻原盤丨10上 〇 其結果爲,脈沖狀的雷射光束1 0 1,照射在光阻原盤 110的感光性材料層Π Ob,對應於欲形成在假想記錄格S 內之凹坑Pk之潛像1 1 0c,被形成在感光性材料層1 1 Ob 中c 第5圖(a)至(f),係表示光記錄媒體用原盤之製程的 工程圖。 首先,如第5圖(a)所示,準備了具有玻璃基板1 l〇a ,及形成在玻璃基板1 l 〇a上的厚度爲100至1 5.0nm的感 光性材料層1 1 的光阻原盤1 1 0。在玻璃.基板11 0a與感 光性材料層1 1 〇b之間,亦可形成用以提高接著牲的接著 層。 接著,、如第5圖(b)所示,藉由光調變器lOSb,功率 經過調變的雷射光束101,藉由透鏡107b聚光在光阻原 盤1 1 0的感光性材料層11 〇b領域。感光性材料層1 1 〇b的 曝光領域之寬度與深度,是由雷射光束101的照射能量所 決定。 如此,感光性材料層π 0b內,便形成了對應於欲形 成在假想記錄格s內之凹坑Pk之潛像1 1 0C。 接著,在光阻原盤11 0的感光性材料層110b的曝光 領域上,噴灑一層氫氧化鈉溶液等之顯影液,如第5圖 -12- 200407884 (ίο) (C)所示,形成在感光性材料層1 1 0 b的潛像1 1 0 C便會顯 影,對應於潛像1 l〇c的凹部202便會形成。 如此,對應於欲形成在假想記錄格S內之凹坑Pk的 複數凹部202,一旦被形成於感光性材料層1 1 〇b上,緊 接著,如第5涵(d)所示,在經過顯影處理的感光性材料 層11 Ob上,藉由無電解電鍍法或蒸著法,形成鎳等金屬 薄膜203 〇 接著,將金屬薄膜203的表面當作陰極,以鎳等做爲 陰極的厚膜電鍍法,’如第5圖(e)所示,在金屬薄膜2 〇 3 上,形成厚度約0.3 // m的金屬膜204。 接著,將光阻原盤1 1 0 '從金屬薄膜2 0 3剝離,施以洗 淨及必要之加工,如第5圖(f)所示,製作光記錄..媒體用 原盤 2 0 5。 …' 如第5 ·圖(f)所示,在如此製作成之光記錄媒體用原 盤2 0 5上,轉印有被形成在感光性材料層丨丨〇b之複數凹 部202的圖案,形成複數之凸部206。 接著,使用光記錄媒體甩原盤20 5,如下述般製作在 各假想記錄格S內形成有凹坑:Pk的光記錄媒,體q。 第6圖(a)至(c ),係表示光記錄媒體1之製程的工程 圖。 首先’如第6圖(a)所示,使用光記錄媒體用原盤205 ,以射出成形法,射出成形厚約1 .2mm的透光性基板1 1 c 其結果爲’形成在光記錄媒體用原盤2 0 5的表面上的 -13- (11) (11)200407884 複數凸部206,被轉印至透光性基板1 1表面,製作表面 具有複數凹部、亦即製作形成有多數凹坑的透光性基板 11° 接著,如第6圖(b )所示,在透光性基板11的凹坑p k 形成側的表面上,形成反射層22。反射層22,係例如可 藉由使用將含有反射層2 2的構成元素的化學種的氣相成 長法來形成。氣相成長法可列舉如真空蒸著法、濺鍍法等 〇 接著,如第6圖(c)所示:,在反射層22的表面上,形 成保護層23。保護層23,係可藉由例如將聚丙烯系的紫 外線硬化性樹脂或環氧系的紫外線硬化性樹脂,.溶解於溶 劑中,調製成樹脂溶液V,藉由旋轉鍍膜法,:在反射層,2 2 上塗佈樹脂溶液,而彤成。 如上述,製作出在各假想記錄格S內,形成有凹坑 P k的光記錄媒體1'。 、 如上述,在光記錄媒體1的各假想記錄格S內,爲了 記錄3位元的資料,在光記錄媒體1上,必須形成大小互 異的8種凹坑,。 因此,如上述由於欲形成在光記錄媒體1的假想記 錄格S之凹坑Pk,是由形成在光記錄媒體用原盤2 05之 複數凸部206所轉印、形成的;形成在光記錄媒體用原盤 2 0 5的複數凸部2 0 6,是由形成在光阻原盤1 1 0的感光性 材料層1 1 Ob上的複數凹部202所轉印、形成的;故爲了 在光記錄媒體1上形成大小互異的8種凹坑,必須在光阻 -14- (12) (12)200407884 原盤1 1 0的感光性材料層1 1 Ob上,形成對應於欲形成在 假想記錄格s內之大小互異之凹坑Pk的複數凹部202。 如上述,感光性材料層1 1 Ob的曝光領域的寬度與深 度,亦即,凹部202的大小,是由照射在感光性材料層 1 l 〇b之該領域的雷射光束101的能量所決定,故爲了在 光記錄媒體1的各假想記錄格S內記錄3位元的資料,必 須要將照射在對應於光記錄媒體1之假想記錄格S的光阻 原盤110的感光性材料層]l〇b的假想領域S’的雷射光束 101的能量,作8階段控制。 第7圖係照射在對應於光記錄媒體1之假想記錄格S 的光阻原盤110的感光性材料層ll〇b的假想領域s’的雷‘ 射光束〗0 1的功率調猶波形之圖示。 如第7圖所示,照射在對應於光記錄媒體1的假想記 錄袼S之光阻原盤1 1 0的感光性材料層1 1 〇b的假想領域 S,上的雷射光束1 01的功率,是在曝光功率Pw與基底功 率Pb之間選擇牲地調變,且對應著欲形成在感光性材料 層110b的假想領域S,之凹部202的大小,以設定使雷射 光束功率在曝光功率Pw的時間Ta、Tb、Tc、Te、Tf ' Tg、Th。此處,雷射光束1 〇 1的功率調變波形,是對應 於輸入光調變器l〇5b之脈沖信號列1〇5 d ° 第8圖係在光記錄媒體之假想記錄格內’形成最小凹 坑P a之方法的工程圖。 首先,如第8圖所示,欲照射在感光性材料層1 1 0 b 的雷射光束1 〇 1的脈沖寬度被設定在最小寬度亦即T a ° -15- (13) (13)200407884 接著,雷射光束1 〇 1會照射光阻原盤11 〇的感光性材 料層1 1 〇b的假想領域s’。此處,由於照射在感光性材料 層1 1 0 b的雷射光束1 〇 1的能量爲最小,因此形成在感光 性材料層1 1 0 b的潛像1 1 〇 C之尺寸亦爲最小。 接著,將如此形成於光阻原盤11 〇的感光性材料層 1 1 0 b的假想領域S ’上的潛像1 1 0 C顯影,便在感光性材料 層1 1 Ob的假想領域S ’上形成最小的凹部2 02。 接著,在經過顯影處理之感光性材料層1 1 〇b上,藉 由無電解電鍍法或蒸著法,形成鎳等金屬薄膜(未圖示) ,又在金屬薄膜上,形成金屬膜之後,將光阻原盤Η 〇從 金屬薄膜剝離,施以洗淨等必要加工,如第8圖(d.)所示 ’製作成光記錄媒體用原盤205。 接著,使甩光記錄媒體用原盤205,藉由射出成形祛 ’射出成形厚_ 1.2mm的透光性基板1 1,如第8圖(已)所 示’製作形成有最小凹坑Pa之透光性基板1 1。 如此,藉由將照射在光祖原盤 Η 0的感光性材料層 1 I 〇b之假想領域S ’的雷射光束1 0 1的脈沖寬度設定在最 小寬度之Ta,便可在光記,錄媒體1的假想記錄格S:中形. 成最小凹坑Pa,使得假想領域內,被分配成最大光反 射率。 第9圖係在光記錄媒體之假想記錄格內,形成最大凹 坑Ph之方法的工程圖。 首先,如第9圖(a)所示,欲照射在感光性材料層 〇b的雷射光束1〇1的脈沖寬度被設定在最大寬度亦即 -16- (14) (14)200407884The length L of the frame and the laser beam irradiation time Ts required to illuminate the photoresist master disk required for the optical reflectance of the imaginary recording frame to be substantially saturated, satisfy TsS L / V. Other purposes and features mentioned in the present invention can be borrowed It will be clear from the following description and corresponding drawings. [Embodiment] An ideal embodiment of the present invention will be described in detail below with reference to the drawings. Fig. 1 is a schematic perspective view of an optical recording medium according to a preferred embodiment of the present invention. Fig. 2 is an enlarged cross-sectional view of a dotted circle portion of the optical recording medium shown in Fig. 1. As shown in FIGS. 1 and 2, the optical recording medium 1 according to this embodiment is configured as a CD-ROM type optical recording medium, and includes a light-transmitting substrate 11 and a light-transmitting substrate. The light reflecting layer 22 and the protective layer 2 3 on 11 are as shown in FIG. 1, and the light-transmitting substrate 11 is formed in a disc shape from a light-transmitting resin. The light-transmitting resin used to form the light-transmitting substrate 11 is not particularly limited as long as it has a high transmittance to a laser beam used to reproduce data, but polycarbonate is preferably used. In FIG. 2, a laser beam incident surface is formed on the lower surface of the light-transmitting substrate 11. As shown in FIG. 2, an upper surface of the light-transmitting substrate 11 is formed from the center portion to the outer edge portion. Eight different types of plural pits Pa, Pb, Pc, Pd, Pe, Pf, Pg, Pho -9- (7) (7) 200407884 The reflective layer 22 is for recording on a light-transmitting substrate i! When the data is reproduced, the thin film layer used to reflect the laser beam that penetrates the light-transmitting substrate 11 is formed by using metals such as gold and silver, and is formed by a professional plating method. As shown in Fig. 2, in order to protect the reflective layer 22, the protective layer 23 is formed so as to cover the surface of the reflective layer 22. In this embodiment, each of the light-transmitting substrates 11 has a thickness of about 1.2 mm. As shown in Fig. 2, the trajectory of the optical recording medium 1 is virtually divided into a plurality of imaginary recording cells S, S, ... having a predetermined length, and each of the imaginary recording cells S constitutes a data recording unit. FIG. 3 shows the pits P a, P b, P c, P d, P e, P f, P g, and P h formed in the plurality of virtual recording cells S of the optical recording medium 1. Diagram of the light reflectance of the grid S. As shown in Fig. 3, the imaginary record cells S, S, ..., the length L along the trajectory &gt; direction are imaginarily set to be smaller than the beam diameter D of the laser beam. As shown in Fig. 3, the smaller the size of the pits H (k = a to h) formed in the virtual recording cell S, the larger the light reflectance of the virtual recording cell S is. In the present embodiment, since eight types of pits of different sizes are formed in the imaginary recording cell S, the optical recording medium 1 records 3 bits of data. The optical recording medium 1 having the above structure is Manufactured as follows. First, a master disk for an optical recording medium for manufacturing the light-transmitting substrate 11 is produced, that is, a stumper is produced. Fig. 4 is a recorder used in the manufacturing method of an original -10- (8) (8) 200407884 disc for an optical recording medium according to an ideal embodiment of the present invention. As shown in FIG. 4, the burner 100 according to this embodiment includes a laser generating device 102 for generating a laser beam 101, and an optical modulator (EOM: Electro Optic Modulator) 103 'using a photoelectric effect. The splitters 104, 106, and the light modulation unit 105, the optical head 107, and the turntable 108. On the turntable 108, a photoresist original plate 110 is placed. The photoresist original disk 1 1 0 is a disk-shaped original disk provided with a glass substrate 1 1 0a and a photosensitive material layer 1 10b laminated on the glass substrate 1 10a. Original model for recording media. As shown in FIG. 4, the light modulation unit 105 includes a lens 105a, a light modulator 105b, and a lens 105c. The optical head 107 includes: a mirror 107a and a lens 107b. . In the recorder 100 constructed as described above, as described below, the laser beam 1〇ί is focused on the photosensitive material layer 1 1 0b of the optical master disk 1 1 0, and the photosensitive material of the optical master disk 1 1 0 is made. Layer 1 1 0b was exposed, and as a result, in the photosensitive material layer 1 10b ·., A corresponding latent image of the pit Pk to be formed corresponding to the virtual recording cell S was formed: 110c. First, a pulse signal sequence 105d corresponding to the pattern of the latent image 110c to be formed on the photosensitive material layer 110b of the photoresist original disk Π 0 is input to the light modulator of the light modulation unit while a photoresist is placed thereon. The turntable 108 of the original plate 110 is rotated, and the optical head 107 is caused to move in the radial direction of the photoresist original plate 10]. After the laser beam 101 generated by the laser generating device 102 is adjusted to an exposure level suitable for the photosensitive material layer nob by the light -11-(9) (9) 200407884 modulator 1 03, Through the reflection from the splitter 104 and the splitter 106gef mirror 107a, the light is focused on the photoresist master disk 10 by the lens 107b. As a result, a pulsed laser beam 101 is irradiated on the light The photosensitive material layer Π Ob of the resist disc 110 is formed in the photosensitive material layer 1 1 Ob corresponding to the latent image 1 1 0c of the pit Pk to be formed in the imaginary recording cell S. FIG. 5 (a) (F) to (f) are engineering drawings showing the manufacturing process of the original disk for the optical recording medium. First, as shown in FIG. 5 (a), a photoresist having a glass substrate 1 10a and a photosensitive material layer 1 1 having a thickness of 100 to 15.0 nm formed on the glass substrate 1 10a is prepared. Original 1 1 0. An adhesive layer may be formed between the glass substrate 110a and the photosensitive material layer 110b to improve adhesion. Next, as shown in FIG. 5 (b), the laser modulator 101 whose power is modulated by the optical modulator lOSb and focused by the lens 107b on the photosensitive material layer 11 of the photoresist master 1 1 0 〇bsphere. The width and depth of the exposure area of the photosensitive material layer 1 10b are determined by the irradiation energy of the laser beam 101. Thus, in the photosensitive material layer? 0b, a latent image 1 1 0C corresponding to the pit Pk to be formed in the virtual recording cell s is formed. Next, a developing solution such as a sodium hydroxide solution is sprayed on the exposure area of the photosensitive material layer 110b of the photoresist master 110, as shown in Fig. 5-12-200407884 (ίο) (C), and formed on the photosensitive layer. The latent image 1 1 0 C of the material layer 1 1 0 b is developed, and a recess 202 corresponding to the latent image 1 10 c is formed. In this way, the plurality of recesses 202 corresponding to the pits Pk to be formed in the virtual recording cell S are once formed on the photosensitive material layer 1 1 0b, and then, as shown in FIG. 5 (d), A metal thin film 203 such as nickel is formed on the photosensitive material layer 11 Ob under development by electroless plating or evaporation method. Next, the surface of the metal thin film 203 is used as a cathode, and nickel or the like is used as a thick film of the cathode. In the plating method, as shown in FIG. 5 (e), a metal film 204 having a thickness of about 0.3 // m is formed on the metal thin film 203. Next, the photoresist master 1 10 ′ is peeled from the metal thin film 230, and then subjected to cleaning and necessary processing. As shown in FIG. 5 (f), an optical recording .. media master 2 05 is produced. … 'As shown in Fig. 5 (f), a pattern of a plurality of recesses 202 formed on the photosensitive material layer 丨 丨 b was transferred onto the optical recording medium original disk 205 produced in this manner to form A plurality of convex portions 206. Next, the original disk 20 5 was shaken using an optical recording medium, and an optical recording medium having a pit: Pk formed in each virtual recording cell S was prepared as follows. Figures 6 (a) to (c) are engineering drawings showing the manufacturing process of the optical recording medium 1. First, as shown in FIG. 6 (a), a light-transmitting substrate 1 1 c having a thickness of about 1.2 mm is formed by an injection molding method using an original recording disk 205 for an optical recording medium. As a result, it is formed on an optical recording medium. -13- (11) (11) 200407884 plural convex portions 206 on the surface of the original disk 2 0 5 are transferred to the surface of the light-transmitting substrate 11 and the production surface has a plurality of concave portions, that is, a plurality of concave portions are formed. Transparent substrate 11 ° Next, as shown in FIG. 6 (b), a reflective layer 22 is formed on the surface on the side where the pits pk of the transparent substrate 11 are formed. The reflective layer 22 can be formed, for example, by a vapor phase growth method using a chemical species containing constituent elements of the reflective layer 22. Examples of the vapor phase growth method include a vacuum evaporation method and a sputtering method. Next, as shown in FIG. 6 (c), a protective layer 23 is formed on the surface of the reflective layer 22. The protective layer 23 can be prepared by, for example, dissolving a polypropylene-based ultraviolet curable resin or an epoxy-based ultraviolet curable resin in a solvent to prepare a resin solution V. By the spin coating method, the reflective layer is applied to the reflective layer. , 2 2 coated with a resin solution, and Tongcheng. As described above, an optical recording medium 1 'having pits P k formed in each of the virtual recording cells S is produced. As described above, in order to record 3-bit data in each virtual recording cell S of the optical recording medium 1, eight kinds of pits of different sizes must be formed on the optical recording medium 1. Therefore, as described above, the pits Pk of the imaginary recording cell S to be formed on the optical recording medium 1 are transferred and formed by the plurality of convex portions 206 formed on the optical recording medium master disc 05; formed on the optical recording medium The plurality of convex portions 2 0 6 of the original disk 2 0 5 are transferred and formed by the plurality of concave portions 202 formed on the photosensitive material layer 1 1 Ob of the photoresist original disk 1 1 0; 8 kinds of pits of different sizes must be formed on the photosensitive material layer 1 1 Ob of the photoresist -14- (12) (12) 200407884 original disk 1 1 0, corresponding to the desired formation in the imaginary recording grid s The plurality of recesses 202 having mutually different pits Pk. As described above, the width and depth of the exposure area of the photosensitive material layer 1 1 Ob, that is, the size of the recess 202 is determined by the energy of the laser beam 101 irradiating the photosensitive material layer 1 l 0b in the area. Therefore, in order to record 3-bit data in each virtual recording cell S of the optical recording medium 1, it is necessary to irradiate the photosensitive material layer of the photoresist original disk 110 corresponding to the virtual recording cell S of the optical recording medium 1.] The energy of the laser beam 101 in the imaginary area S ′ is controlled in 8 stages. FIG. 7 is a diagram of a power modulation waveform of a light field irradiated by a light field imaginary area s' of the photosensitive material layer 110b of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1. Show. As shown in FIG. 7, the power of the laser beam 101 on the imaginary area S of the photosensitive material layer 1 1 0 b corresponding to the photoresist master 1 1 0 of the virtual recording medium 袼 S of the optical recording medium 1 Is to select a modulation between the exposure power Pw and the base power Pb, and corresponds to the size of the recess 202 to be formed in the imaginary area S of the photosensitive material layer 110b to set the laser beam power at the exposure power Pw time Ta, Tb, Tc, Te, Tf 'Tg, Th. Here, the power modulation waveform of the laser beam 1 〇1 corresponds to the pulse signal sequence 105 d ° of the input optical modulator 105b. Fig. 8 is formed in the imaginary recording grid of the optical recording medium. Engineering drawing of the method of minimum pit Pa. First, as shown in FIG. 8, the pulse width of the laser beam 1 〇1 to be irradiated on the photosensitive material layer 1 1 0 b is set to the minimum width, that is, T a ° -15- (13) (13) 200407884 Next, the laser beam 1001 irradiates the virtual area s' of the photosensitive material layer 11b of the photoresist master 11o. Here, since the energy of the laser beam 101 which is irradiated on the photosensitive material layer 1 10 b is the smallest, the size of the latent image 1 10 C formed on the photosensitive material layer 1 1 0 b is also the smallest. Next, the latent image 1 1 0 C on the imaginary area S 'of the photosensitive material layer 1 1 0 b formed in the photoresist master 11 〇 is developed, and then is placed on the imaginary area S' of the photosensitive material layer 1 1 Ob. Form the smallest dimples 2 02. Next, a metal thin film (not shown) such as nickel is formed on the photosensitive material layer 1 1 0b subjected to the development process by an electroless plating method or a vapor deposition method, and a metal film is formed on the metal thin film. The photoresist master disk Η is peeled from the metal film, and necessary processing such as washing is performed, and as shown in FIG. 8 (d.), A master disk 205 for an optical recording medium is produced. Next, the original disc 205 for the light-rejecting recording medium was subjected to injection molding to remove the light-transmitting substrate 11 having a thickness of 1.2 mm, as shown in FIG. 8 (already), to form a transparent lens having a minimum pit Pa. Optical substrate 1 1. In this way, by setting the pulse width of the laser beam 1 0 1 in the imaginary area S ′ of the photosensitive material layer 1 I 〇b of the optical ancestor original disk Η 0 to the minimum width Ta, the The imaginary record grid S: Medium of the medium 1 is formed into a minimum pit Pa so that the maximum light reflectance is allocated in the imaginary area. Fig. 9 is an engineering drawing of a method for forming the largest pit Ph in an imaginary recording grid of an optical recording medium. First, as shown in Fig. 9 (a), the pulse width of the laser beam 10 to be irradiated on the photosensitive material layer 〇b is set to the maximum width, which is -16- (14) (14) 200407884

Th 〇 接著,雷射光束l 〇 l會照射光阻原盤11 0的感光性材 料層1 1 Ob的假想領域S ’。此處,由於照雷射光束1 〇 1的 脈沖寬度被設定在最大寬度Th,故照射在感光性材料層 1 1 0 b的雷射光束1 〇 1的能量爲最大’因此形成在感光性 材料層1 1 0 b的潛像1 1 0 C之尺寸亦爲最大。 接著,將如此形成於光阻原盤110的感光性材料層 1 1 0 b的假想領域S ’上的潛像1 1 〇 C顯影,便在感光性材料 層1 10b的假想領域S’上形成最大的凹部202。、 接著,在經過顯影處理之感光性材料層1 1 〇b上,藉 由無電解電鍍法或蒸著法,形成鎳等金屬薄膜(未圖示) ,又在金屬薄膜上,形成金屬膜之後,將光阻原盤11 〇從 金屬薄膜剝離,施以洗淨等必要加工,如第9圖(d)所示 ,製作成光記錄媒體用原盤205。 接著,使用光記錄媒體用原盤2 0 5,藉由射出成形祛 ,射出成形厚約1 .2mm的透光性基板1 1,如第.9圖(€)所 示,製作形成有最大凹坑Ph之透光性基板11。 如此,藉由將照射在光阻原盤1 1 〇的感光性材料層 ll〇b之假想領域S切雷射光束101的脈沖寬度設定在最 大寬度之Th,便可在光記錄媒體1的假想記錄格S.中形 成最大凹坑Ph,使得假想領域S1內,被分配成最小光反 射率。 同樣地,藉由將照射在光阻原盤1 1 0的感光性材料層 1 10b的假想領域S’的雷射光束101的脈沖寬度,分別設 -17- (15) (15)200407884 定在Tb、Tc、Te、Tf、Tg,便可在假想記錄格S內分別 形成具有對應之尺寸的Pb、Pc、Pd、Pe、Pf、Pg,並將 對應之光反射率,分配給假想記錄格S。 •第1 〇圖係在對應於光阻原盤 Π 〇之感光性材料層 1 1 〇b之假想記錄格S的假想記錄領域S ’上,照射了功率 被設定爲曝光功率Pw之雷射光束1 1 0之時間,與使用光 阻原盤1 1 〇製作成光記錄媒體]之假想記錄格S的光反射 率之關係圖。 如上述,由於對應於光阻原盤1 1 〇之感光性材料層 1 l〇b之假想記錄格S的假想領域S’上,功率被設定爲曝 光功率P w之雷射光束1 1 〇之照射時間被設定越長,亦即, 光阻原盤:1 1 〇的脈沖寬度越大,所以形成在光記錄媒體1 之假想記錄格S的凹坑Pk也越大,使得假想記錄格S的 光反射率下降。 因此,藉由被設定在曝光功率Pw之雷射咣束10:1,· 照射在對應於光阻原盤1 1 0之感光性材料層0A之假想 記錄格S的假想領域S’上的時間爲Ta,以將最短時的假 想記錄格s的光反射率:Ra,分配給假想記錄格S的光反 射率以做爲最大光反射率;同時,被設定在曝光功率Pw 之雷射光束1 01,照射在對應於光阻原盤110之感光性材 料層nob之假想記錄格S的假想領域S1上的時間爲Til, 以將最長時的假想記錄格S的光反射率Rh ’分配給假想 記錄格s的光反射率以做爲最小光反射率;並決定6種互 異之光反射率Rb、Rc、Rd、Re、Rf、Rg,做爲凹坑Pk -18- (16) (16)200407884 之大小互異的假想記錄格S的光反射率而分配’將假想記 錄格S之光反射率成Ra、Rb、Rc、Rd、Re、Rf、Rg、Rh 所需之照射在感光性材料層1 1 Ob的假想領域S’上的曝光 功率Pw之雷射光束1 〇 1的照射時間——決定;反映於欲 形成在光記錄媒體〗之假想記錄格S之凹坑Pk的尺寸’ 將雷射光束1 〇 1照射在對應於光阻原盤1 1 〇之感光性材料 層ll〇b之假想記錄格S的假想領域S’上,使得在光記錄 媒體1之各假想記錄格S內,可以記錄3位元之資料。 但是,照射在‘對應於光姐原盤.110之感光1生材料層 ll〇b之假想記錄格S的假想領域S'的雷射光束】〇1的最 大照射時間Tmax是等於L/V (此處,L爲對應於感光性 材料層1 1 0 b之假想記錄格S的假想領域S ’的長度,亦即 假想記錄格S的長度;V爲刻錄機100的線速度),故爲 了使假想記錄格S具有最小光反射率Rh,必頌將用已在 假想記錄格S內形成最大凹坑Ph之雷射光束1 0 1的照射 時間Th,設定在Tmax·以下。 如第Γ0圖所示,光記錄媒體1的假想記錄格S的光 反射率,在照射至感光性材料層ll〇b之假想領域S’之被 設定爲曝光功率Pw的雷射光束1 0 1的照射時間爲未滿第 一所定時間之領域A內時,即使增大雷射光束101的照 射時間也不會有太大變化,旦當到達第一所定時間以上、 且未滿第二所定時間之領域B時,隨著照射時間增大而略 呈線性下降,而當被設定爲曝光功率Pw的雷射光束1〇1 的照射時間達到第二所定時間以上之領域C畤,即使增大 -19- (17) (17)200407884 雷射光束1 〇 1的照射時間也不會有太大變化,光反射率會 到達RS。這是因爲感光性材料層11 Ob,具有以下性質: 光阻原盤1 1 0之感光性材料層1 1 Ob在被設定爲曝光功率 Pw的雷射光束101照射後瞬間,便發生些微的變質,且 若自設定爲曝光功率Pw的售射光束1 〇 1照射開始起,經 過第一靳定時間,則感光性材料層1 1 Ob的變質程度,會 隨著雷射光束1 0 1的照射時間增大,而呈線性增大;而經 過第二所定時間後,即使增大雷射光束1 〇 1的照射時間, 感光性材料層1 1 〇b的變質程度也幾手不會增大。 因此,不只領域B的光反射率,連領域A與領域C 內的光反射率也是,當被分配做爲假想記錄格S的光反射 率時,使用領域B內的光反射率,在假想記錄格i S內形 成大小互異的凹坑,以記錄不同記錄位準之資料的情況, 與使用領域A及領域C內的光反射率,在假想記錄格S 內形成大小互異的凹坑,以記錄不同記錄位準之資料的情 況相比較,由於後者對感光性材料層1 1 Ob的假想領域S’ 照射被設定爲曝光功率Pw的雷射光束101之照射時間必 須要有較大的變化,敢將第1 0圖所示的領域B內的光反 射率,做爲假想領域S’之光反射率而分配之,以使假想記 錄格S的光反射率‘就會像所分配之値一樣地,來照射至控 制感光性材料層1 l〇b之假想領域S’之設定爲曝光功率Pw 的雷射光束1 〇 1的照射時間,以在光記錄媒體1之假想記 錄格S內,形成大小互異之凹坑,以記錄不同記錄位準之 資料者爲理想。 -20- (18) (18)200407884 旦在此同時,將第1 0圖所示的領域B內的光反射率 ,做爲假想領域S ’之光反射率而分配之,以使假想記錄格 s的光反射率就會像所分配之値一樣地,來照射至控制感 光性材料層110b之假想領域Y之設定爲曝光功率Pw的 雷射光束1 0 1的照射時間,以在光記錄媒體1之假想記錄 格S內,形成大小互異之凹坑,以記錄不同記錄位準之資 料的情況下,最大反射率Ra,及最小反射半Rh的差異無 法十分明顯,其結果爲,很難獲得具有足夠寬廣Z時序車E 圍的再生信號。 因此,即便不使設定爲曝光功率Pw的雷射光束101 之照射時間有很大的變化,也能在光記錄媒體1的假想記 錄格S內形成大小互異的凹坑,,並在記錄不同記錄位準之 資料的可能範圍肉,使假想記錄格S的最大光反射率v Ra ,盡量接近未形成記錄標記之假想記錄格S.的光反射率 R〇,且使假想記錄格S的最小光反射率Rh,盡量接近飽 和光反射率Rs,以此方式分配各假想記錄格S的光反射 率,並決定設定爲曝光功率Pw的雷射光束1 〇 1照射至感 光性材料層1 1 〇b之假想領域S ’的照射時間的最大値與最 小値,這對再生具有寬廣時序範圍之信號而言爲理想。 於是,本發明人經過再三深入硏究,發現一旦照射在 感光性材料層ll〇b之假想領域S’之雷射光束101的曝光 功率P w的位準發生變化,則如第1 〇圖所示對應於光阻 原盤1 1 0之感光性材料層Π Ob之假想記錄格S的假想領 域S ’上,設定爲曝光功率Pw的雷射光束1 〇 1的照射時間 -21 - (19) (19)200407884 ,和使用光阻原盤11 〇製作成的光記錄媒體1之假想記錄 格S的光反射率之關係會產生變化,雷射光束1 01的曝光 功率Pw的位準越高,即使在假想領域s ’內分配較高的最 大反射率,也不必使設定爲曝光功率Pw的雷射光束101 的照射時間有太大的變化,就可在假想記錄格s內,形成 大小互異的凹坑,記錄不同記錄位準之資料;反之,雷射 光束1 0 1的曝光功率PW的位準越低,即使在假想領域S· 內分配較低的最小反射率,也不必使設定爲曝光功率Pw 的雷射光束1 0 1的照射時間有太大的變化,就可在假想記 錄格S內,形成大小互異的凹坑,記錄不同記錄位準之資 料。 第1 1 .圖所示。若根據本發明人的硏究,若將感光性 材料層1 i Ob的曝光所用的雷射光束1 0 1的曝光功率P W 設定爲高位準,:光記錄媒體1的假想記錄袼S的光反射率 ,會從設定爲曝光功率Pw的雷射光束1 0 1開始照射後的 短時間內,:換言之,在光反射率爲高的階段下,:隨著雷射 光束1 0 1的照射時間增大,而呈略線形下降,而且在早期 階段,換言之,在光反射率還未降至很低的階段下,即使 雷射光束1 0 1的照射時間增大,光反射率也無太大變化, 因此認定爲到達飽和光反射率Rs ;反之,若將感光性材 料層1 1 0 b的曝光所用的雷射光束1 0 1的曝光功率p w設 定爲低位準,光記錄媒體1的假想記錄格S的光反射率, 會從設定爲曝光功率P w的雷射光束1 〇 1開始照射經過比 較長的時間後,即使雷射光束1 0 1的照射時間增大,也無 -22- (20) (20)200407884 太大變化,而到了光反射率比較低的階段時,髓著雷射光 束1 〇 1的照射時間增大,光反射率會呈略線形下降,且一 直到達即使雷射光束1 〇 1的照射時間增大光反射率也無太 大變化爲止的所需時間長,光反射率變得十分的低,因此 認定即使一開始雷射光束1 〇 1的照射時間增大,光反射库 也不會發生太大的變化。 因此,若將感光性材料層1 1 〇b的曝光所用的雷射光 束1 0】.的曝光功率PW設定爲高位準,則即使分配給假想 記錄格S的最大光反射率設定在很高的値,設定爲曝光功 率PW的雷射光束1 0 1的照射畤間不必有太大的變化··,就 可在假想記錄格S內形成大小互異的凹坑”記錄不同記錄 位準的資料,故當將感光性材料層1 1 Ob的曝光所用的雷 射光束101的曝光功率PW設定爲PwH時,可分配給假想 記錄格 S的最大光反射率RaH及最大相對光反射率 RRaH(%),以及當將感光性材料層1 I 〇b的曝光所用的雷 射光束1 01的曝光功率P w設定爲P wL(P WL &lt;: P wH)時,; 可分配給假想記錄格S的最大光反射率RaL及最大相對 光反射率RRaL(%),滿足下式:Th 〇 Next, the laser beam 10 l irradiates the imaginary area S 'of the photosensitive material layer 1 1 Ob of the photoresist master 110. Here, since the pulse width of the laser beam 1 〇1 is set to the maximum width Th, the energy of the laser beam 1 〇1 which is irradiated on the photosensitive material layer 1 1 0 b is the largest, and thus is formed in the photosensitive material. The size of the latent image 1 1 0 C of layer 1 1 0 b is also the largest. Next, the latent image 1 1 0C on the imaginary area S 'of the photosensitive material layer 1 1 0 b thus formed on the photoresist master 110 is developed to form a maximum on the imaginary area S' of the photosensitive material layer 1 10b.的 垂 部 202。 The recess 202. Then, on the photosensitive material layer 1 10b subjected to the development process, a metal thin film (not shown) such as nickel is formed by an electroless plating method or a vapor deposition method, and a metal film is formed on the metal thin film. Then, the photoresist master disc 110 is peeled from the metal film, and necessary processing such as washing is performed. As shown in FIG. 9 (d), a master disc 205 for an optical recording medium is produced. Next, the original disc 2 for the optical recording medium was used for injection molding to form a transparent substrate 11 having a thickness of about 1.2 mm by injection molding, as shown in FIG. 9 (€), and the largest pit was formed. Ph 之 transparent substrate 11. In this way, by setting the pulse width of the imaginary field S-cut laser beam 101 of the photosensitive material layer 110 of the photoresist master 1 10 to the maximum width Th, the imaginary recording on the optical recording medium 1 can be performed. The largest pit Ph is formed in the grid S. so that the minimum light reflectance is allocated in the imaginary area S1. Similarly, the pulse width of the laser beam 101 irradiated on the imaginary area S 'of the photosensitive material layer 1 10b of the photoresist master 1 10 is set to -17- (15) (15) 200407884 at Tb. , Tc, Te, Tf, Tg, Pb, Pc, Pd, Pe, Pf, Pg with corresponding sizes can be formed in the imaginary record cell S, and the corresponding light reflectance is assigned to the imaginary record cell S . • Figure 10 shows the laser beam 1 with the exposure power Pw set on the imaginary recording area S ′ of the imaginary recording grid S of the photosensitive material layer 1 1 〇b corresponding to the photoresist master disk Π 〇 The relationship between the time of 10 and the light reflectance of the imaginary recording cell S produced by using the photoresist original disk 110 as an optical recording medium]. As described above, the power is set to the irradiation of the laser beam 1 1 〇 of the exposure power P w due to the imaginary field S ′ of the imaginary recording grid S corresponding to the photosensitive material layer 1 1 0 b of the photoresist master 1 1 〇. The longer the time is set, that is, the larger the pulse width of the photoresist master: 1 10, the larger the pits Pk of the imaginary recording cell S formed in the optical recording medium 1 are, so that the light reflection of the imaginary recording cell S is reflected. The rate drops. Therefore, with the laser beam 10: 1 set at the exposure power Pw, the time irradiated on the imaginary area S 'of the imaginary record grid S of the photosensitive material layer 0A corresponding to the photoresist master 1 1 0 is Ta, the light reflectance of the shortest imaginary record grid s: Ra, is assigned to the light reflectance of the imaginary record grid S as the maximum light reflectance; at the same time, the laser beam 1 set at the exposure power Pw The time irradiated on the imaginary field S1 of the imaginary recording cell S corresponding to the photosensitive material layer nob of the photoresist master 110 is Til, so that the light reflectance Rh 'of the imaginary recording cell S at the longest time is assigned to the imaginary recording cell. The light reflectance of s is used as the minimum light reflectance; and 6 different light reflectances Rb, Rc, Rd, Re, Rf, and Rg are determined as the pits Pk -18- (16) (16) 200407884 The light reflectances of the hypothetical record cell S with different sizes are assigned. 'The light reflectance of the hypothetical record cell S is Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh. Irradiate the photosensitive material layer. 1 1 Ob's imaginary field S ′ of the laser beam of exposure power Pw 1 〇1 irradiation time-decided; reflected in the desire The size of the pit Pk of the imaginary recording cell S formed in the optical recording medium 'is a imaginary recording cell S of the imaginary recording cell S irradiating the laser beam 1 〇1 on the photosensitive material layer 110b corresponding to the photoresist master 1 1 〇 In the field S ′, 3-bit data can be recorded in each of the virtual recording cells S of the optical recording medium 1. However, the laser beam irradiated on the imaginary field S of the imaginary recording grid S corresponding to the photosensitivity material layer 110 of the optical master disk 110 is used.] The maximum irradiation time Tmax is equal to L / V (this Where L is the length of the imaginary field S ′ corresponding to the imaginary record grid S of the photosensitive material layer 1 1 0 b, that is, the length of the imaginary record grid S; V is the linear velocity of the recorder 100), so in order to make the imaginary The recording grid S has a minimum light reflectance Rh. Bisson will use the irradiation time Th of the laser beam 1 0 1 which has formed the largest pit Ph in the imaginary recording grid S, and set it below Tmax ·. As shown in FIG. Γ0, the light reflectance of the virtual recording cell S of the optical recording medium 1 is set to the laser beam 1 0 1 set to the exposure power Pw in the virtual region S ′ irradiated onto the photosensitive material layer 110b. When the irradiation time in the area A is less than the first predetermined time, even if the irradiation time of the laser beam 101 is increased, it will not change much. Once it reaches the first predetermined time or more, and less than the second predetermined time, In the area B, the area decreases slightly linearly with the increase of the irradiation time, and when the irradiation time of the laser beam 100 set to the exposure power Pw reaches the area C 畤 which is more than the second predetermined time, even if it increases- 19- (17) (17) 200407884 The irradiation time of the laser beam 1 〇1 will not change much, and the light reflectivity will reach RS. This is because the photosensitive material layer 11 Ob has the following properties: The photosensitive material layer 1 1 Ob of the photoresist master 1 1 0 is slightly deteriorated immediately after being irradiated with the laser beam 101 set to the exposure power Pw. In addition, if the first set time has passed since the irradiation of the sales beam 1 〇1 set to the exposure power Pw, the degree of deterioration of the photosensitive material layer 1 1 Ob will follow the irradiation time of the laser beam 1 0 1 It increases linearly. However, after the second predetermined time passes, even if the irradiation time of the laser beam 1 〇1 is increased, the degree of deterioration of the photosensitive material layer 1 1 〇b does not increase by a few hands. Therefore, not only the light reflectance in area B, but also the light reflectance in areas A and C. When assigned as the light reflectance of the hypothetical record cell S, the light reflectance in area B is used to record in the hypothetical record. Different sizes of pits are formed in the grid i S to record data of different recording levels, and the use of light reflectance in the areas A and C is used to form different sizes of pits in the virtual record grid S. Compared with the case of recording data of different recording levels, the irradiation time of the laser beam 101 set to the exposure power Pw by the latter to the imaginary area S ′ of the photosensitive material layer 1 1 Ob must be changed greatly. , Dare to assign the light reflectance in the area B shown in FIG. 10 as the light reflectance of the imaginary area S ′, so that the light reflectance of the imaginary record cell S will be like the allocated one. Similarly, the irradiation time of the laser beam 1 〇1 set to the imaginary area S ′ controlling the photosensitive material layer 1 10b is set to the exposure power Pw so as to be within the imaginary recording cell S of the optical recording medium 1, Form pits of different sizes to record differences It is ideal to record the level of data. -20- (18) (18) 200407884 At the same time, the light reflectance in the area B shown in Fig. 10 is assigned as the light reflectance of the imaginary area S ', so that the imaginary record grid The light reflectance of s will be irradiated to the laser beam 1 0 1 with the exposure power Pw set to the imaginary area Y controlling the photosensitive material layer 110b as the assigned 値, so that the light is recorded on the optical recording medium. In the imaginary recording grid S, pits of different sizes are formed to record data of different recording levels. The difference between the maximum reflectance Ra and the minimum reflection half Rh cannot be very obvious. As a result, it is difficult. Obtain a regeneration signal with a sufficiently wide Z-circle car E periphery. Therefore, even if the irradiation time of the laser beam 101 set to the exposure power Pw is not greatly changed, pits of different sizes can be formed in the imaginary recording grid S of the optical recording medium 1 and different recordings can be made. The possible range of the recording level data is such that the maximum light reflectance v Ra of the hypothetical record cell S is as close as possible to the light reflectance R0 of the hypothetical record cell S. where no recording mark is formed, and the minimum of the hypothetical record cell S is minimized. The light reflectance Rh is as close as possible to the saturated light reflectance Rs. In this way, the light reflectance of each imaginary record S is allocated, and a laser beam 1 〇1 set to an exposure power Pw is irradiated to the photosensitive material layer 1 1 〇 The maximum 値 and minimum 値 of the irradiation time of the imaginary area S ′ of b are ideal for reproducing signals having a wide timing range. Therefore, the present inventors have repeatedly studied and found that once the level of the exposure power P w of the laser beam 101 irradiated on the imaginary area S ′ of the photosensitive material layer 110 b changes, as shown in FIG. 10 Shows the irradiation time of the laser beam 1 〇1 set to the exposure power Pw on the imaginary area S ′ of the imaginary recording grid S of the photosensitive material layer Π Ob of the photoresist master 1 1 0-21-(19) ( 19) 200407884 and the light reflectance of the imaginary recording cell S of the optical recording medium 1 produced using the photoresist master 11 〇 will change. The higher the level of the exposure power Pw of the laser beam 1 01, In the imaginary area s', a higher maximum reflectance is allocated, and the irradiation time of the laser beam 101 set to the exposure power Pw does not need to be changed too much. In the imaginary recording grid s, concaves of different sizes can be formed. Pit to record data at different recording levels; conversely, the lower the exposure power PW of the laser beam 1 0 1 is, the lower the minimum reflectivity in the hypothetical area S ·, it is not necessary to set the exposure power Irradiation time of Pw laser beam 1 0 1 Too much change, can be recorded in the virtual grid within S, pits are formed mutually different sizes, different recording level of the recording material resources. Figure 1 1. According to the inventor's research, if the exposure power PW of the laser beam 1 0 1 used for the exposure of the photosensitive material layer 1 i Ob is set to a high level, the light reflection of the virtual recording 袼 S of the optical recording medium 1 Rate, a short time after the laser beam 1 0 1 set to the exposure power Pw is irradiated: in other words, in a stage where the light reflectance is high, as the irradiation time of the laser beam 1 0 1 increases Large, but slightly linear decline, and in the early stage, in other words, at a stage where the light reflectance has not yet been reduced to a very low level, even if the irradiation time of the laser beam 1 0 1 increases, the light reflectance does not change much Therefore, it is considered to reach the saturated light reflectance Rs. Conversely, if the exposure power pw of the laser beam 1 0 1 used for the exposure of the photosensitive material layer 1 1 0 b is set to a low level, the virtual recording grid of the optical recording medium 1 The light reflectance of S will be irradiated from the laser beam 1 〇1 set to the exposure power P w after a relatively long time, even if the irradiation time of the laser beam 1 0 1 increases, there will be no -22- (20 ) (20) 200407884 Too much change, and the comparison of light reflectance When the irradiation time of the laser beam 1 〇1 increases, the light reflectance decreases slightly linearly, and the light reflectance does not change much even if the irradiation time of the laser beam 1 〇1 increases. It takes a long time until the light reflectance becomes very low. Therefore, even if the irradiation time of the laser beam 101 is increased at the beginning, the light reflection library does not change much. Therefore, if the exposure power PW of the laser beam 10 used for the exposure of the photosensitive material layer 1 1 0b is set to a high level, the maximum light reflectance allocated to the virtual recording cell S is set to a high level. Alas, the laser beam set to the exposure power PW of the irradiation of the laser beam 1 0 1 does not need to be changed much..., The pits of different sizes can be formed in the imaginary recording cell S. Recording data of different recording levels Therefore, when the exposure power PW of the laser beam 101 used for the exposure of the photosensitive material layer 1 1 Ob is set to PwH, the maximum light reflectance RaH and the maximum relative light reflectance RRaH (% ), And when the exposure power P w of the laser beam 1 01 used for the exposure of the photosensitive material layer 1 I OB is set to P wL (P WL &lt;: P wH), it can be assigned to the virtual record cell S The maximum light reflectance RaL and the maximum relative light reflectance RRaL (%) satisfy the following formula:

RaL &lt; RaHRaL &lt; RaH

RRaL &lt; RRaH 此處,令絕對光反射率爲 Ri時的相對光反射率 -23- (21) (21)200407884 RRi (%) = {(Ri - Rs) / (R〇 - Rs) } x 100 如此,藉由反映分配給假想記錄格S之最大光反射率 R a及最大相對光反射率R R a (% ),來設定感光性材料層 110b曝光所用的雷射光束1〇1的曝光功率pw之位準,·使 得即使分配給假想記錄格S的最大光反射率R a及最大相 對光反射率 RRa (%)設定爲很高的値,設定爲曝光功率 Pw的售射光束1〇 1的照射時間也不必有很大的變化,就 可在假想記錄格S內形成大小互異的凹坑,記錄不周記錄 位準的資料,且可獲得具有廣時序範圍的再生信號。 ; 反之,若將感光性材料層11:〇13的曝光所用的雷射光 束I 〇1的曝光功率Pw設定爲低位準,則即使分配給假想 記錄格S的最小光反射率設定在很低的値,設定爲曝光功 率p W的雷射光束1 〇 1的照射時間不必有太大的“變化,就 可在假想記錄格S內形成大小互異的凹坑,記錄不同記錄 位準的資料,故當將感光性材料層1 1〇b的曝光所用的雷 射光束101的曝兇功率?〜設定爲?^^時,可分配給假想 記錄格 S的最小光反射率 RhL及最小相對光反射率 RRhH(%),以及當將感光性材料層丨10b的曝光所用的雷 射光束101.的曝光功率Pw設定爲pwL(PwL &lt; PwH)時, 可分配給假想記錄格S的最大光反射率RhL及最大相對 光反射率RRhL(%),滿足下式: -24- (22) (22)200407884RRaL &lt; RRaH Here, the relative light reflectance when the absolute light reflectance is Ri -23- (21) (21) 200407884 RRi (%) = {(Ri-Rs) / (R〇- Rs)} x 100 In this way, the exposure power of the laser beam 101 used for the exposure of the photosensitive material layer 110b is set by reflecting the maximum light reflectance R a and the maximum relative light reflectance RR a (%) allocated to the virtual recording cell S. The level of pw is such that even if the maximum light reflectance R a and the maximum relative light reflectance RRa (%) assigned to the imaginary record frame S are set to a high value 値, the sales light beam 101 set to the exposure power Pw It is not necessary to have a large change in the irradiation time, so that pits of different sizes can be formed in the imaginary recording cell S, and data of poor recording levels can be recorded, and a reproduction signal with a wide timing range can be obtained. Conversely, if the exposure power Pw of the laser beam I 〇1 used for the exposure of the photosensitive material layer 11: 〇13 is set to a low level, the minimum light reflectance allocated to the imaginary recording cell S is set to a very low level. Alas, the irradiation time of the laser beam 1 set to the exposure power p W does not need to be changed too much, so that pits of different sizes can be formed in the imaginary recording grid S, and data of different recording levels can be recorded. Therefore, when the exposure power of the laser beam 101 used for the exposure of the photosensitive material layer 1 10b is set to? ^^, the minimum light reflectance RhL and the minimum relative light reflection that can be assigned to the imaginary recording frame S Rate RRhH (%), and the maximum light reflection that can be allocated to the hypothetical recording cell S when the exposure power Pw of the laser beam 101. used for the exposure of the photosensitive material layer 10b is set to pwL (PwL &lt; PwH) Ratio RhL and maximum relative light reflectance RRhL (%), satisfying the following formula: -24- (22) (22) 200407884

RaL &lt; RaHRaL &lt; RaH

RRaL &lt; RRaH 如此,藉由反映分配給假想記錄格S之最小光反射率 Rh及最小相對光反射率RRh (%),來設定感光性材料層 110b曝光所用的雷射光束101的曝光功率Pw之位準,使 得即使分配給假想記錄格S的最小光反射率Rh及最小相 對光反射率RRh (%)設定爲很低的値,設定爲曝光功率: Pw的雷射光束101的照射時間也不必有很大的變化,.就 可在假想記錄格s內形成大小互異的凹坑,記錄不同記錄 位準的資料,且可獲得具有廣.時序範圍的再生信號V . 再者,如第1 1圖所示,將感先性材料層1 1 Ob的曝光 所用的雷射光束1 (Π的曝光功率Pw設定爲高位.準時,光 記錄媒體1的假想記錄格S的先反射率,在光反谢率位準 比較高的階段下,隨著雷射光束101的照射诗間增大,而 呈略線形下降;反之,光記錄媒體1的假想記錄袼s的光 反射率,.在光反射率還未降至足夠低之準位的階段下,即 使令雷射光束1 0 1的照射時間增大,也幾乎沒有變化.,故 爲了要提高分配至假想記錄格S的光反射率,當感光性材 料層1 1 Ob的曝光靳用的雷射光束1 0 1的曝光功率Pvv,設 定爲高位準PwH時,分配給假想記錄格S的最大相對光 反射率R R a Η及最小相對光反射率R R h Η,需要被決定成 滿足下式: -25- (23) (23)200407884RRaL &lt; RRaH In this way, the exposure power Pw of the laser beam 101 used for the exposure of the photosensitive material layer 110b is set by reflecting the minimum light reflectance Rh and the minimum relative light reflectance RRh (%) allocated to the virtual recording cell S. The level is such that even if the minimum light reflectance Rh and the minimum relative light reflectance RRh (%) assigned to the imaginary record frame S are set to be very low, the exposure power is set to: the irradiation time of the laser beam 101 of Pw It is not necessary to make great changes. Different sizes of pits can be formed in the imaginary recording grid s, and data of different recording levels can be recorded, and a reproduction signal V with a wide timing range can be obtained. Furthermore, as described in section As shown in FIG. 11, the exposure power Pw of the laser beam 1 (Π used for the exposure of the proactive material layer 1 1 Ob is set to a high position. On time, the first reflectance of the virtual recording cell S of the optical recording medium 1 is in At a stage where the optical reflection rate is relatively high, as the irradiation of the laser beam 101 increases, it decreases slightly linearly; on the contrary, the optical reflectance of the hypothetical recording 袼 s of the optical recording medium 1 At a stage where the reflectivity has not fallen sufficiently low, Even if the irradiation time of the laser beam 1 01 is increased, there is almost no change. Therefore, in order to improve the light reflectance allocated to the virtual recording cell S, the laser used for the exposure of the photosensitive material layer 1 1 Ob When the exposure power Pvv of the beam 1 0 1 is set to a high level PwH, the maximum relative light reflectance RR a Η and the minimum relative light reflectance RR h 分配 allocated to the hypothetical record frame S need to be determined to satisfy the following formula:- 25- (23) (23) 200407884

100 - RRaH &lt; RRhH 當將感光性材料層1 1 Ob的曝光所用的雷射光束1 0 1 的曝光功率PW設定爲PwH時,藉由上述式子決定分配給 假想記錄格S的最大相對光反射率RRaH及最小相對光反 射率RRhH,可使雷射光束101的曝光功率Pw爲PwH時 ,即使設定爲曝光功率Pw的雷射光束101的照射時間也 不必有很大的變化,就可在假想記錄格S內形成大小互異 的凹坑,記錄不同記錄位準的資料的可能範圍內,可個別 分配假想記錄格S的最大相對光反射率&amp;1^:1^及最小相對 光反射率RRhH。· 相對於此,將感光性材料層1 l〇b的曝光所用的雷射 光朿1 01的曝光功率Pw設定爲低位準時,如第1 .1圖所 示,光記錄媒體1的假想記錄格S的光反射率,在光反射 率位準比較低的階段下,·隨著雷射光束1 〇 1的照射時間增 大,也不會呈略線形下降;反之,光記錄媒體1的假想記 錄格S的光反射率,在光反射率還未降至足夠低之準位的 階段下,隨著雷射光束的照射時間增大,而呈赂線形 下降,故爲了要分配至假想記錄格S的光反射率,當感光 性材料層1 1 Ob的曝光所甩的雷射光束1 0 1的曝光功率Pw 設定爲低位準PwL時,分配給假想記錄格S的最大相對 光反射率RRaL及最小相對光反射率RRhL,需要被決定 成滿足下式: -26- (24) 200407884100-RRaH &lt; RRhH When the exposure power PW of the laser beam 1 0 1 used for the exposure of the photosensitive material layer 1 1 Ob is set to PwH, the maximum relative light allocated to the hypothetical record cell S is determined by the above formula. The reflectance RRaH and the minimum relative light reflectance RRhH allow the exposure power Pw of the laser beam 101 to be PwH. Even if the exposure time of the laser beam 101 is set to the exposure power Pw, the irradiation time does not need to be greatly changed. Different sizes of pits are formed in the imaginary record cell S, and the maximum relative light reflectance &amp; 1 ^: 1 ^ and the minimum relative light reflection of the imaginary record cell S can be individually assigned within the possible range of data of different recording levels. Rate RRhH. On the other hand, when the exposure power Pw of the laser light 朿 101 used for the exposure of the photosensitive material layer 1 10b is set to a low level, as shown in FIG. 1.1, the virtual recording cell S of the optical recording medium 1 At a stage where the light reflectance level is relatively low, as the irradiation time of the laser beam 101 increases, it will not decrease slightly linearly; otherwise, the imaginary recording grid of the optical recording medium 1 The light reflectance of S is at a stage where the light reflectance has not fallen to a sufficiently low level. As the irradiation time of the laser beam increases, it decreases in a brittle manner. Therefore, in order to allocate to the virtual record cell S, Light reflectance, when the exposure power Pw of the laser beam 1 0 1 thrown by the exposure of the photosensitive material layer 1 1 Ob is set to a low level PwL, the maximum relative light reflectance RRaL and the minimum relative The light reflectance RRhL needs to be determined to satisfy the following formula: -26- (24) 200407884

100 - RRaL &lt; RRhL 當將感光性材料層1 1 Ob的曝光所用的雷射 的曝光功率Pw設定爲PwL時,藉由上述式子決 假想記錄格S的最大相對光反射率RRaL及最小 射率RRhL,可使雷射光束101的曝光功率Pw ; ,即使設定爲曝光功率Pw的雷射光束101的照 不必有很大的變化,就可在假想記錄格S內形成 的凹坑,記錄不同記錄位準的資料的可能範圍內 分配假想記錄格S的最大相對光反射率RRaL及 光反射率RRhL。 〃 按照以上的基本考量,反映著分配至假想記 最大光反射率Ra及最大相對光反射率RRa以及 射率Rh及最小相對光反射率RRh,來選擇光阻 之感光性材料層1 1 Ob的曝光所用的雷射光束1 ( 功率 P w,並根據其他特性,例如,資料再生時 ,從所選擇之雷射光束101的曝光功库Pw中, 佳曝光功率Pw。 接著,將最大光反射率Ra與最小光反射率 的光反射率略分成7等分,決定6種彼此互異的 Rb、Rc、Rd、Re、Rf、Rg,作爲不同位準之記 假想記錄格S的光反射率而分配之,並使假想記 光反射率成爲 Ra、Rb、Rc、Rd、Re、Rf、Rg、 之欲照射在感光性材料層110b的假想領域 光束101 定分配給 相對光反 i PwL 時 射時間也 大小互異 ,可個別 最小相對 錄格S的 最小光反 原盤1 10 &gt;1的爆光 的錯誤率 決定出最 Rh之間 光反射率 錄資料的 錄格s的 Rh所需 雷射光束 -27- (25) (25)200407884 101的曝光功率Pw之最佳位準,與設定爲最佳曝光功率 Pw的雷射光束1〇1對感光性材料層uob之假想領域S·的 照射時間,按照凹坑大小互異的假想領域s’而分別決定之 ’產生曝光條件設定用資料。 若根據本實施形態,因爲是分配至假想記錄格S的最 大光反射率R a及最大相對光反射率R R a (%)越局’貝I[將 光阻原盤1 Γ0之感光性材料層1 1 Ob的曝光所用的雷射光 束1 0 1的曝光功率Pw設定爲越高位準之構成,故即使分 配至假想記錄格S的最大光反射率Ra與最大相對光反射 率RRa (%)是很高的値,設定爲曝光功率pw的雷射光束 1 〇 1的照射時間也不必有太大變化,就可在假想記錄格S 內齡成大··小互異的凹坑,記錄不同記錄位準的資料,且可 獲得具有廣時序範圍的再生信號。 又’若根據本實施形態,因爲是分配至假想記錄格S 的最小光反射率Rh及最小相對光反射率RRh (%)越低, 則將光阻原盤1 ] 0之感光性材料層1 10b的曝光所兩的雷 射光束1 〇 1的曝光功率Pw設定爲越低位準之構成,故即 使分配至假想記錄格S的最小光反射率Rh與最小相對光 反射率RRh (%)是很低的値,設定爲曝光功率pw的雷 射光束1 〇 1的照射時間也不必有太大變化,就可在假想記 錄格S內形成大小互異的凹坑,記錄不同記錄位準的資料 ,且可獲得具有廣時序範圍的再生信號。 再者’若根據本實施形態,爲了提高分配至假想記錄 格S的最大光反射率,而將感光性材料層〗1 0b的曝光所 -28- (26) (26)200407884 用的雷射光束101的曝光功率Pw設定爲高位準PwH時, 由於分配給假想記錄格S的最大相對光反射率RRaH及最 小相對光反射率RRhH,是以滿足下式而決定,所以當將 感光性材料層1 l〇b的曝光所用的雷射光束101的曝光功 率Pw設定爲PwH時,即使設定爲曝光功率Pw的雷射光 束1 0 1的照射時間也不必有很大的變化,就可在假想記錄 格S內形成大小互異的凹坑,記錄不同記錄位準的資料的 可能範圍內,、可個別分配假想記錄格S的最大相對光反射 率RRaH及最小相對光反射率RRhH。100-RRaL &lt; RRhL When the exposure power Pw of the laser used for the exposure of the photosensitive material layer 1 1 Ob is set to PwL, the maximum relative light reflectance RRaL and minimum radiation of the hypothetical record cell S are determined by the above formula. The rate RRhL can make the exposure power Pw of the laser beam 101; even if the exposure of the laser beam 101 set to the exposure power Pw does not need to be greatly changed, the pits formed in the imaginary recording grid S can be recorded differently. The maximum relative light reflectance RRaL and light reflectance RRhL of the hypothetical record cell S are allocated within the possible range of the data of the recording level. 〃 According to the basic considerations above, the photoresist material layer 1 1 Ob that is allocated to the imaginary record of the maximum light reflectance Ra and the maximum relative light reflectance RRa and the emissivity Rh and the minimum relative light reflectance RRh is selected. The laser beam 1 (power P w used for exposure), and according to other characteristics, for example, during data reproduction, from the exposure power bank Pw of the selected laser beam 101, the optimal exposure power Pw. Next, the maximum light reflectance The light reflectance of Ra and the minimum light reflectance are slightly divided into 7 equal parts. Six different Rb, Rc, Rd, Re, Rf, and Rg are determined, which are used as the light reflectance of the hypothetical record cell S at different levels. Allocate and make the imaginary light reflectance Ra, Rb, Rc, Rd, Re, Rf, Rg, the imaginary field beam 101 to be irradiated on the photosensitive material layer 110b, and assign it to the relative light reflection i PwL. The sizes are also different, and the minimum optical error rate of the minimum relative to the record S of the original disc 1 10 &gt; 1 determines the required laser beam for the Rh of the record s of the recorded data s between the most Rh- 27- (25) (25) 200 407 884 101 Exposure Power The optimum level of Pw is different from the irradiation time of the laser beam 101 set to the optimal exposure power Pw on the imaginary area S · of the photosensitive material layer uob according to the imaginary area s' where the pit sizes are different from each other. The decision “produces data for setting the exposure conditions. According to this embodiment, it is the maximum light reflectance R a and the maximum relative light reflectance RR a (%) that are allocated to the imaginary record grid S, and it ’s I ’ll The photoresist material layer 1 Γ0 resists the original material 1 Γ0. The exposure power Pw of the laser beam 1 0 1 used for the exposure is set to a higher level. Therefore, even if the maximum light reflectance Ra and The relative light reflectance RRa (%) is very high. The irradiation time of the laser beam 1 set to the exposure power pw does not need to be changed much, so that the age in the imaginary record grid S can be large or small. Different pits record data at different recording levels, and can obtain reproduced signals with a wide timing range. Also, according to this embodiment, because it is the minimum light reflectance Rh and the minimum relative value assigned to the virtual recording cell S The lower the light reflectance RRh (%), the The resist plate 1] 0 is exposed to the photosensitive material layer 1 10b. The exposure power Pw of the laser beam 1 〇1 is set to a lower level. Therefore, the minimum light reflectance Rh assigned to the virtual recording cell S is set. The minimum relative light reflectance RRh (%) is very low, and the irradiation time of the laser beam 1 〇1 set to the exposure power pw does not need to change much, and the sizes in the imaginary record grid S can be different from each other. The pits record data at different recording levels, and can obtain reproduced signals with a wide timing range. Furthermore, according to this embodiment, in order to increase the maximum light reflectance allocated to the virtual recording cell S, the exposure layer of the photosensitive material layer [0b] -28- (26) (26) 200407884 is used for the laser beam. When the exposure power Pw of 101 is set to a high level PwH, the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH assigned to the hypothetical record cell S are determined to satisfy the following formula. Therefore, when the photosensitive material layer 1 is When the exposure power Pw of the laser beam 101 used for the exposure of lOb is set to PwH, even if the irradiation time of the laser beam 1 0 1 set to the exposure power Pw does not need to be changed greatly, the Different sizes of pits are formed in S, and the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH of the imaginary record grid S can be individually assigned within the possible range of recording data of different recording levels.

100 - RRaH &lt; RRhH 又,若根據本實施形態,爲了降低分配至假想記錄袼 S的最小光反射率,而將感光性材料層1 1 Ob的曝光所用 的雷射光束】〇 1的曝光功率Pw設定爲低位準p wL畤,由 於分配給假想記錄格s的最大相對光反射率RRaL及最小 相對光反射率RRhL,是以滿足下式而決定,所以當將感 光性材料層11 〇 b的;爆光所甩的雷射光束1 〇 1的曝光功率 Pw設定爲PwL.時,即使設定爲曝光功率Pw的雷射光束 1 0 1的照射時間也不必有很大的變化,就可在假想記錄格 S內形成大小互異的凹坑,記錄不同記錄位準的資料的可 能範圍內,可個別分配假想記錄格S的最大相對光反射率 RRaL及最小相對光反射率RRhL。 -29- (27) (27)200407884100-RRaH &lt; RRhH According to this embodiment, in order to reduce the minimum light reflectance allocated to the virtual recording 袼 S, the laser beam used for the exposure of the photosensitive material layer 1 1 Ob] 〇1 exposure power Pw is set to a low level p wL 畤. Since the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL assigned to the hypothetical record grid s are determined to satisfy the following formula, when the photosensitive material layer 11 〇b ; When the exposure power Pw of the laser beam 1 〇1 thrown by the exposure light is set to PwL. Even if the exposure time of the laser beam 1 0 1 set to the exposure power Pw does not need to change greatly, it can be recorded in the hypothesis. Different sizes of pits are formed in the grid S, and the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL of the imaginary record grid S can be individually assigned within the possible range of recording data of different recording levels. -29- (27) (27) 200407884

1 00 - RRaH &lt; RRhH 第1 2圖係本發明之其他實施形態所論之光記錄媒體 用原盤2 0 5的製造方法中所用之,照射在對應光記錄媒體 1的假想記錄格S之光阻原盤1 1 〇的感光性材料層1 1 〇b 的假想領域S,上的雷射光束1 0 1的功率之調變波形圖。 第12圖中,對應於光記錄媒體1的假想記錄格S之 光阻原盤1 1 0的感光性材料層1 1 〇b的假想領域S ’之長度 ,是以雷射光束101通過假想記錄格S所需時間,亦即最 大照射時間Tmax的形式來表示。 如上述,雷射光束1 0 1對光阻原盤Η 0的感光牲材料 層i l〇b的假想領域〃 最大照射時間Tmax,·爲等於. L/V (此處,l爲對應於:感光性材料層ll〇b之假想記錄格 S的假想領域S ’的長度,亦即假想記錄格S的長度V爲 刻錄機1 00的線速度),故爲了使假想記錄格S具有最小 光反射率Rh,必須將用以在假想記錄格S內形成最大凹 坑Ph之雷射充束1〇1的照射時間丁^設定在丁如打以下 c .· 例如,當假想記錄格S的長度爲60(him,刻錄機1〇〇 的線速度V爲基準速度的χΐ也就是i.2m/sec時,如第12 圖所示’爲了在假想領域S,內,形成對應於最大凹坑Ph 之潛像1 1 〇c之雷射光束〗〇丨的照射時間Th,必須設定爲 5 0〇nsec以下;而當刻錄機1〇〇的線速度v爲二倍速之χ2 也就是2.4m/sec時,如第12圖所示,爲了在假想領域s, -30- (28) 200407884 內,形成對應於最大凹坑Ph之潛像110c之雷射光束ι〇1 的照射時間Th,必須設定爲25 0nsec以下;而當刻錄機 100的線速度V爲四倍速之x4也就是4.8m/sec時,如第 1 2圖所示,爲了在假想領域S ’內,形成對應於最大凹坑 Ph之潛像1 10c之雷射光束101的照射時間Th,必須設定 爲12 5 nsec以下。1 00-RRaH &lt; RRhH FIG. 12 is a photoresist used in a method for manufacturing a master disc 2 for an optical recording medium according to another embodiment of the present invention. The photoresist is irradiated onto a virtual recording cell S corresponding to the optical recording medium 1. Waveform diagram of the modulation of the power of the laser beam 101 on the imaginary area S, of the photosensitive material layer 110 of the original disk 110. In FIG. 12, the length of the imaginary field S ′ of the photosensitive material layer 1 1 0b of the photoresist master 1 1 0 of the imaginary recording cell S of the optical recording medium 1 passes through the imaginary recording cell 101 with the laser beam 101. The time required for S is expressed in the form of the maximum irradiation time Tmax. As described above, the imaginary field of the photoresistive material layer il0b of the laser beam 101 on the photoresist original disk Η 0 is the maximum irradiation time Tmax, which is equal to. L / V (here, l is corresponding to: photosensitivity The length of the imaginary field S ′ of the imaginary record cell S of the material layer 110b, that is, the length V of the imaginary record cell S is the linear velocity of the recorder 100), so in order to make the imaginary record cell S have the minimum light reflectance Rh It is necessary to set the irradiation time D1 of the laser beam 101 for forming the largest pit Ph in the imaginary record grid S to Dingru below c. For example, when the length of the imaginary record grid S is 60 ( him, when the linear velocity V of the recorder 100 is χΐ of the reference velocity, i.2 m / sec, as shown in FIG. 12 'in order to form a latent image corresponding to the maximum pit Ph in the imaginary area S, 1 1 〇c laser beam irradiation time Th, must be set to less than 500nsec; and when the linear velocity v of the recorder 100 is twice the speed of χ2, which is 2.4m / sec, such as As shown in FIG. 12, in order to form a laser beam corresponding to the latent image 110c of the largest pit Ph in the imaginary area s, -30- (28) 200407884. The irradiation time Th of 〇1 must be set to less than 250 nsec; and when the linear velocity V of the recorder 100 is four times the speed x4 which is 4.8 m / sec, as shown in FIG. Here, the irradiation time Th of the laser beam 101 forming the latent image 1 10c corresponding to the maximum pit Ph must be set to 12 5 nsec or less.

又,由第1 〇圖可知,各假想記錄格S的光反射率之 分配,必須要使假想記錄格S的最大光反射率Ra,盡量 接近未形成記錄標記之假想記錄格S的光反射率..r〇,且 假想記錄格S的最小光反射率Rh,要盡量接近光反射率 爲實質飽和之飽和反光率Rs,以決定光阻原盤1 1〇之感 光性材料層1 1 〇b之曝光所用之設定爲曝光功率Pw的雷 射光束的照射時間的景大値與最小値,這是爲了獲得具有 廣時序範圍的再生信號而言的理想狀況。:It can also be seen from FIG. 10 that the distribution of the light reflectance of each hypothetical record cell S must be such that the maximum light reflectance Ra of the hypothetical record cell S is as close as possible to the light reflectance of the hypothetical record cell S where no recording mark is formed. ..r0, and the minimum light reflectance Rh of the imaginary recording grid S should be as close as possible to the saturated light reflectance Rs of which the light reflectance is substantially saturated, in order to determine the photoresist material layer 1 1 0b of the photoresist master 1 10 The scene size and minimum size of the exposure time of the laser beam used for the exposure power Pw are set for exposure, which is ideal for obtaining a reproduction signal with a wide timing range. :

因此,理想狀祝爲,設定光粗原盤1 1 0的感光性材料 層 1 1 0 b之曝光用之雷射光束的曝光功率Pw的位準、假 想記錄格的長度L及刻錄機1 〇〇的線速度V,使得刻錄機 1 〇〇的線速度爲最大’時的Tm ax,亦即L/V [是在「爲了在 假想記錄格S內形成使假想記錄格S的光反射率爲飽和光 反射率Rs之尺寸的凹坑,照射至光阻原盤1 10之感光性 材料層1 l〇b之假想領域S’上的雷射光束101之雷射光束 的必須照射時間Τ s」以下,亦即,滿足下式:Therefore, the ideal state is to set the level of the exposure power Pw of the laser beam for exposure of the photosensitive material layer 1 1 0 b of the light rough original disk 1 10 b, the length L of the virtual recording frame, and the recorder 1 〇〇 The linear velocity V is the Tm ax when the linear velocity of the recorder 100 is the maximum, that is, L / V [is to "saturate the light reflectance of the hypothetical record cell S in order to form it in the hypothetical record cell S The pits of the size of the light reflectance Rs are required to irradiate the laser beam 101 of the laser beam 101 on the imaginary area S ′ of the photosensitive material layer 1 10b of the photoresist original disk 1 10 or less, That is, the following formula is satisfied:

Tmax = L/Vniax 〇 -31 - (29) (29)200407884 如第12圖所示,照射在光阻原盤110之感光性材料 層1 l〇b之假想領域s’上的雷射光束101之功率,是在曝 光功率p w與基底功率p b之間選擇性地調變,且對應於 欲形成在假想記錄格s內之凹坑Pa、Pb、Pc、Pd、Pe、 P f、P g、P h,設定雷射光束1 〇 1的功率設定爲曝光功率 Pw的時間,亦即曝光功率Pw的脈沖寬度Ta、Tb、Tc、 Td、Te、Tf、Tg、Th 〇 如第12圖所示,雷射光東1 0 1對光阻原盤1 1 〇之感 光性材料層1 1 Ob之假想領域S’的最大照射時間Tmax,是 隨著刻錄機100的線速度越高而越短,在本實施形態中’ 在記錄線速度爲最大之四倍速x4之情況下,亦設定用以 使光阻原盤:1 1 Ό的感光性材料層1 1 〇b曝光之雷射光束的 曝光功率Pw以及假想記錄格S的長度L,以使得、’Tma:x 大於用以在假想記錄格S內形成最大凹坑Ph而使雷射光 束1 〇 1對假想領域’ S1的照射時間Th,即用以使假想記錄/ 格S的光反射率爲最小所需之雷射光束1 〇 1對假想領域S ’ 的照射時間Th,亦即滿足Th ^ Tmax。 因此,如第1 2圖所示,無關於刻錄機1 00的線速度 V,藉由使用一定之調變波形,來調變用以使光阻原盤 1 1 〇的感光性材料層1 10b曝光之雷射光束的功率,就可 如所望般地在假想記錄格S內,形成大小互異的凹坑Pa 、Pb、Pc、Pd、Pe、Pf、Pg、Ph° 第1 3圖係使照射在對應於光阻原盤i i 〇的感光性材 -32- (30) (30)200407884 料層110b的假想記錄格s之假想領域s’上的雷射光束 1 〇 1之曝光功率P w發生變化時的雷射光束1 ο 1的照射時 間,與使用光阻原盤1 1 0製作成光記錄媒體1之假想記錄 格s的光反射率的關係圖。 如上述,若將感光性材料層Π Ob曝光所用之雷射光 束101的曝光功率PW設定爲高位準,則光記錄媒體1之 假想記錄格s之光反射率,會從設定爲曝光功率Pw的雷 射光束1 〇 1開始照射後的短時間內,換言之,在光反射率 爲高的階段下,隨著雷射光束1 〇 1的照射時間增大,而呈 略線形下降,而且在早期階段,換言之,在光反射率還未 降至很低的階段下,即使雷射光束1 〇1的照射時間增大, 光反射率也無太大變.化,因此認定爲到達飽和光反射率 Rs ;反之,若將感光性材料層1 1 〇b的曝光所用的雷射光V 束1 0 1的曝光功率Pw設定爲低位準,光記錄媒體Γ的假 想記錄格S的光反射率,會從設定爲曝光功率:Pw的雷射. 光束 1 〇 1開始照射經過比較長的時間後,即使雷射光束 1 0 1的照射時間增大,也無太大變化,而到了光反射率比 較低的階段時,隨著雷射光束1 01的照射時間增大,光反〃 射率會呈略線形下降,且一直到達即使雷射光束101的照 射時間增大光反射率也無太大變化爲止的所需時間長,光 反射率變得十分的低,因此認定即使一開始雷射光束1 0 1 的照射時間增大,光反射率也不會發生太大的變化。 因此,如第1 3圖所示,使光記錄媒體1之假想記錄 格S之光反射率實質上達到飽和光反射率Rs所須之雷射 -33- (31) (31)200407884 光束1 0 1對感光性材料層1 1 0 b的照射時間T s ’是感光性 材料層1 1 0 b的曝光所用之雷射光束1 0 1的曝光功率P w 位準越高而越短,光記錄媒體1之假想記錄格S之光反射 率達到最小光反射率所需之雷射光束1 0 1對感光性材料層 1 1 0 b的照射時間Th,亦是感光性材料層1 1 〇 b的曝光所用 之雷射光束丨〇 1的曝光功率p w位準越高而越短;反之, 由於照射至對應於假想記錄格s之感光性材料層110b的 假想領域s '的雷射光束1 〇 1的最大照射時間Tm ax,是依 存著假想記錄格S的長度L與刻錄機100的線速度V ’故 必須要將感光性材料層1 1 〇b曝光用雷射光束1 0 1之曝光 功率Pw的位準、假想記錄格S的長度L集刻錄機1 00的 •線速度V,設定成滿足Th4 Tmax = L/Vmax者爲理想。 若根據本實施形態,藉由將感光性材料層11 〇b曝光 用雷射光束1 01之曝光功率P w:的位準、假想記錄格S的 長度L集刻錄機1 〇〇的線速度V,設定成滿:足ThSTmax =L/Vmax或Ts:麵T.max = : L/Vmax,無關於刻錄機1 〇〇的 線速度V,藉由將光阻原盤1 1 〇之感光性材料層1 ! 〇b曝 光用雷射光束1 σ 1.的曝光功率pw及曝光功率pw的脈沖 寬度設定成同一:,、使雷射光束101照射感光性材料層 1 1 〇 b的假想領域S ’,就可在假想記錄格內,形成同樣的 凹坑Pk,以相同的記.錄位準記錄資料,以極爲簡易的操 作,就可在相同的光記錄媒體1內,以不同的刻錄機1 〇 〇 線速度V,記錄3位元之資料。 本發明並不侷限於以上實施形態,在申請專利範圍所 -34- (32) (32)200407884 記載的範圍內可有各種變更,當然這些亦都包含在本發明 的範圍內。 例如,前記實施形態中,雖然只說明了在光記錄媒體 1的各假想記錄格S內,記錄3位元資料之情形,但本發 明並不侷限於在光記錄媒體1的各假想記錄格S內,記錄 3位元資料之情形,而可廣泛地適用於在光記錄媒體1的 各假想記錄格S內,記錄2.位元以上之資料的情形。 又,前記實施形態中,雖然只說明了在CD-ROM型 的光記錄媒體]的各假想記錄格S內,記錄3位元資料之 情形,但本發明並不侷限於在CD-ROM型的光記錄媒體1 的各假想記錄格S內,記錄3位元資料之情形,而可廣泛 地適用於至少一部份含有ROM ,領域之光記錄媒體內,記 錄2位元以上之資料的情形。 甚至,如第1 1圖與第12圖所示的實施形態中,雖然 在光記錄媒體1的假想記錄格S內形成同樣大小的凹坑 Pk,記錄同樣位準之資料時,無關於刻錄機1 00的線速度 V,設定光阻原盤1 1 〇之感光性材料層1 1 〇b曝光用雷射: 光束1 〇 1的功率以使得雷射先束1 0 1的曝光功率P w及曝 光功率Pw的脈沖寬度成爲同一,但光記錄媒體1的假想 記錄格S內形成同樣大小的凹坑Pk’記錄同樣位準之資 料時,並不一定要設定光阻原盤1 1 0之感光性材料層 1 10b曝光用雷射光束101的功率以使得曝光功率Pw及曝 光功率PW的脈沖寬度成爲同一 ° 又,前記實施形態中,雖然當雷射光束101到達對應 -35- (33) (33)200407884 於光記錄媒體1之假想記錄格S之起始點的感光牲材料層 1 1 〇b之假想領域s’的起始點之時間點上,雷射光束101 的功率,會從基底功率Pb上揚至曝光功率Pw,但使雷射 光束101的功率從從基底功率Pb上揚至曝光功率Pw的 時機可以任意決定。 甚至,第1圖至第11圖所示之實施形態.中,雖然說 明了在光記錄媒體1的各假想記錄格S內,記錄3位元資 料之情況下,設定了分配至假想記錄格S的最大光反射率 Ra與最大相對光反射率RRa以及最小光反射率Rh與最 小相對光反射率RRh ’並在最大光反射率Ra與最小光反 射率Rh之:間,或最大相對光反射率RRa與最小相對·光反 射率RRh之間,略分成七等分,以決定6種彼此互異之 光反射率 R b、R c、R d、R e、P、f、R g,但並無一定要設定. 分配至假想:記錄格S的最大光反射率Ra與最大相對光反 射半RRa以及最小光反射率Rh與最小相對光反.射率RRh ,而是設定分配至假想記錄格S之最大光反射率Ra與最 大相對光反射率RRa或者最小光反射率Rh與最小相對光 反射率RRh,並且以分配至假想記錄格s的最大光反射率 Ra與最大相對光反射率RRa或者最小光反射率Rh與最 小相對光反射率RRh爲基準,只要以在形成有大小互異 之凹坑、記錄有不同記錄位準之資料的假想記錄格s內, 偵測由假想記錄格S所反射之雷射光束,以進行資料再生 之際,可以識別出資料記錄位準不同的光反射率差或相對 先反射率差’來逐一分配相異的光反射率或相對光反射率 -36- (34) (34)200407884 即可。 又,在前記實施形態中,雖然透光性基板11 ’係使 用光記錄媒體用原盤2 0 5 ’藉由射出成形法所製作’但透 光性基板11並不一定要使用射出成形法製作’而# $使 用光記錄媒體用原盤205,藉由光硬化法(2P法)製作。 若根據本發明,可提供光記錄媒體用原盤的製造方法 ,可在假想記錄格內’劃分2N種類之大小不伺的凹坑, 以使假想記錄格的光反射率有2N種類之變化。 又,若根據本發明,可提供光記錄媒體的製造方法, 可在假想記錄格內,劃分2N種類之大小不同的凹坑,以 使假想記錄格的光反射率有種類之變化。Tmax = L / Vniax 〇-31-(29) (29) 200407884 As shown in FIG. 12, the laser beam 101 irradiated on the imaginary area s' of the photosensitive material layer 1 10b of the photoresist master 110 The power is selectively adjusted between the exposure power pw and the base power pb, and corresponds to the pits Pa, Pb, Pc, Pd, Pe, P f, P g, P that are to be formed in the virtual recording cell s. h, the time for which the power of the laser beam 1 〇1 is set to the exposure power Pw, that is, the pulse widths Ta, Tb, Tc, Td, Te, Tf, Tg, and Th of the exposure power Pw are as shown in FIG. 12, The maximum irradiation time Tmax of the imaginary area S ′ of the photoresist material layer 1 1 Ob of the photoresist master 1 1 〇 of the laser light east 1 0 is shorter as the linear speed of the recorder 100 is higher. In the form, when the recording linear velocity is four times the maximum speed x4, the exposure power Pw of the laser beam and the virtual recording for exposing the photoresist master: 1 1 Ό of the photosensitive material layer 1 1 〇b are set. The length L of the grid S is such that 'Tma: x is greater than that used to form the maximum pit Ph in the hypothetical record grid S so that the laser beam 1 〇1 is false. Field 'of S1 irradiation time Th, i.e., for causing the virtual recording / S cell light reflectance of the laser beam required minimum of one pair of an imaginary square field S' irradiation time Th, i.e. to meet Th ^ Tmax. Therefore, as shown in FIG. 12, the linear velocity V of the recorder 100 is not adjusted by using a certain modulation waveform to modulate the photosensitive material layer 1 10b for exposing the photoresist master 1 1 0. The power of the laser beam can form pits Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph ° with different sizes in the imaginary recording cell S as expected. The exposure power P w of the laser beam 1 〇1 on the imaginary field s' of the imaginary recording grid s of the material layer 110b of the photosensitive material -32- (30) (30) 200407884 corresponding to the photoresist master ii 〇 changes. The relationship between the irradiation time of the laser beam 1 ο 1 at this time and the light reflectance of the imaginary recording grid s of the optical recording medium 1 made using the photoresist master 1 1 0. As described above, if the exposure power PW of the laser beam 101 used for the exposure of the photosensitive material layer Π Ob is set to a high level, the light reflectance of the virtual recording cell s of the optical recording medium 1 will be changed from that set to the exposure power Pw. In a short time after the laser beam 1 〇1 starts to be irradiated, in other words, at a stage where the light reflectivity is high, as the irradiation time of the laser beam 1 〇1 increases, it decreases slightly linearly, and at an early stage In other words, at a stage where the light reflectance has not fallen to a very low level, even if the irradiation time of the laser beam 10 is increased, the light reflectance does not change much. Therefore, it is considered to reach the saturated light reflectance Rs. On the other hand, if the exposure power Pw of the laser light V beam 1 0 1 used for the exposure of the photosensitive material layer 1 1 0b is set to a low level, the light reflectance of the virtual recording cell S of the optical recording medium Γ will be changed from the setting Exposure power: Laser of Pw. After a relatively long period of time when the light beam 〇1 starts to irradiate, even if the irradiation time of the laser beam 101 increases, there is not much change, and the stage of light reflectance is relatively low With the laser beam 1 01 Increasing the irradiation time, the light reflectance will decrease slightly linearly, and it takes a long time until the light reflectance does not change much even if the irradiation time of the laser beam 101 is increased, and the light reflectance becomes very high. Therefore, even if the irradiation time of the laser beam 1 0 1 is increased at the beginning, the light reflectance does not change much. Therefore, as shown in FIG. 13, the laser required for the light reflectance of the virtual recording cell S of the optical recording medium 1 to substantially reach the saturated light reflectance Rs -33- (31) (31) 200407884 Beam 1 0 The exposure time T s' of 1 pair of photosensitive material layers 1 1 0 b is the laser beam 1 0 1 used for exposure of the photosensitive material layer 1 1 0 b. The higher and shorter the exposure power P w is, the light recording is. The laser beam 1 required for the light reflectance of the imaginary recording grid S of the medium 1 to reach the minimum light reflectance 1 0 1 on the photosensitive material layer 1 1 0 b is also the same as that of the photosensitive material layer 1 1 〇b. Laser beam used for exposure 丨 〇1 The higher the exposure power pw level is, the shorter it is; conversely, since the laser beam 1 is irradiated to the virtual area s' corresponding to the photosensitive material layer 110b of the virtual recording cell s 〇1 The maximum irradiation time Tm ax depends on the length L of the virtual recording cell S and the linear velocity V of the recorder 100. Therefore, the exposure power Pw of the laser beam 1 0 1 for exposing the photosensitive material layer 1 1 b Level, the length of the hypothetical record frame L, the linear velocity V of the recorder 100, and set to satisfy Th4 Tmax = L / Vmax Ideal. According to this embodiment, the length L of the virtual record cell S is set by the level L of the linear speed V of the recorder 1 by the level of the exposure power P w: of the laser beam 1 01 for exposure of the photosensitive material layer 11 〇b. , Set to full: full ThSTmax = L / Vmax or Ts: surface T.max =: L / Vmax, irrespective of the linear velocity V of the recorder 1 〇, by the photosensitive material layer of the photoresist master 1 1 〇 1! 〇b Exposure laser beam 1 σ 1. The exposure power pw and the pulse width of the exposure power pw are set to be the same :, and the laser beam 101 is irradiated to the imaginary area S ′ of the photosensitive material layer 1 1 〇b, In the imaginary recording grid, the same pits Pk can be formed, and the data can be recorded with the same recording and recording level. With extremely simple operation, it can be in the same optical recording medium 1 with different recorders 1 〇 〇Line speed V, record 3 bits of data. The present invention is not limited to the above embodiments, and various changes may be made within the scope described in the patent application range of -34- (32) (32) 200407884. Of course, these are also included in the scope of the present invention. For example, in the foregoing embodiment, only the case where three-bit data is recorded in each virtual recording cell S of the optical recording medium 1 has been described, but the present invention is not limited to each virtual recording cell S of the optical recording medium 1. In the case where three-bit data is recorded, it can be widely applied to the case where data of 2. bit or more is recorded in each of the imaginary recording cells S of the optical recording medium 1. Moreover, in the foregoing embodiment, the case where 3-bit data is recorded in each of the imaginary recording cells S of the CD-ROM type optical recording medium has been described, but the present invention is not limited to the case of the CD-ROM type. The case where three bits of data are recorded in each of the imaginary record cells S of the optical recording medium 1 can be widely applied to the case where at least a part of the optical recording medium containing ROM and the field records two or more bits of data. Even in the embodiment shown in FIGS. 11 and 12, although the pits Pk of the same size are formed in the virtual recording cell S of the optical recording medium 1 and the same level of data is recorded, there is no relation to the recorder. The linear velocity V of 100 is set to the photosensitive material layer 11 of the photoresist master 1 10. The laser for exposure: the power of the light beam 10 is such that the exposure power P w of the laser first beam 101 and the exposure The pulse width of the power Pw is the same, but when the same size pits Pk 'are formed in the virtual recording cell S of the optical recording medium 1, it is not necessary to set a photosensitive material of the photoresist master 1 1 0 Layer 1 10b The power of the exposure laser beam 101 for exposure is such that the pulse widths of the exposure power Pw and the exposure power PW are the same °. In the previous embodiment, although the laser beam 101 reaches the corresponding -35- (33) (33) 200407884 The power of the laser beam 101 at the time point of the starting point of the imaginary field s' of the photoreceptor material layer 1 1 0b of the imaginary recording cell S of the optical recording medium 1 will be from the base power Pb Up to the exposure power Pw, but the power of the laser beam 101 The timing of rising from the base power Pb to the exposure power Pw can be arbitrarily determined. Furthermore, in the embodiments shown in FIGS. 1 to 11, although it has been explained that in the case of recording three-bit data in each of the virtual recording cells S of the optical recording medium 1, the allocation to the virtual recording cells S is set. Between the maximum light reflectance Ra and the maximum relative light reflectance RRa and the minimum light reflectance Rh and the minimum relative light reflectance RRh 'and between the maximum light reflectance Ra and the minimum light reflectance Rh: RRa and the minimum relative and light reflectance RRh are slightly divided into seven equal parts to determine 6 different light reflectances R b, R c, R d, Re e, P, f, R g, but It is not necessary to set. Assign to the hypothetical: the maximum light reflectance Ra and the maximum relative light reflection half RRa of the record grid S and the minimum light reflectance Rh and the minimum relative light reflectance RRh, but set to allocate to the virtual record grid S The maximum light reflectance Ra and the maximum relative light reflectance RRa or the minimum light reflectance Rh and the minimum relative light reflectance RRh, and the maximum light reflectance Ra and the maximum relative light reflectance RRa or minimum assigned to the imaginary record s Light reflectivity Rh and minimum relative light reflectance RRh As a reference, as long as the laser beams reflected by the imaginary recording cell S are detected in the imaginary recording cell s formed with pits of different sizes and data of different recording levels are recorded for data reproduction, You can identify the light reflectance difference or relative first reflectance difference 'at different data recording levels to assign different light reflectances or relative light reflectances -36- (34) (34) 200407884 one by one. In the foregoing embodiment, although the translucent substrate 11 ′ is made using the original disk 2 5 5 for optical recording media, and is produced by the injection molding method, the translucent substrate 11 is not necessarily produced by the injection molding method. On the other hand, # $ is produced by the optical hardening method (2P method) using the original disk 205 for the optical recording medium. According to the present invention, it is possible to provide a method for manufacturing a master disc for an optical recording medium, which can divide 2N types of pits in the imaginary recording cell, so that the light reflectance of the imaginary recording cell changes by 2N. In addition, according to the present invention, a method for manufacturing an optical recording medium can be provided, and pits of 2N types with different sizes can be divided in a virtual recording cell so that the light reflectance of the virtual recording cell changes in type.

........ V 【圖式簡單說明】 第]圖係本發明之理想實施形態所論之光記錄媒體的 略斜視圖。 :^ ^ : 第2圖係第1圖所示光記錄媒體的虛線圓圈部份之放 大槪略剖面圖。^ 第3圖係光記錄媒體1之複數假想記錄格S內所形成 之凹坑 Pa、. Pb、Pc、Pd、Pe、Pf、Pg、Ph,和各假想記 錄格S的光反射率之關係圖。 第4圖係本發明理想賓施形態所論之光記錄媒體用原 盤之製造方法中所使用之刻錄機。 第5圖(a)至(f),係表示光記錄媒體用原盤之製程的 工程圖。 -37- (35) (35)200407884 第6圖(a)至(c),係表示光記錄媒體1之製程的工程 圖。 第7圖係照射在對應於光記錄媒體的假想記錄格之光 阻原盤的感光性材料層之假想領域上之雷射光束的功率調 變波形之圖示。 第8圖係在光記錄媒體之假想記錄格內,形成最小凹 坑Pa之方法的工程圖。 第9圖係在光記錄媒體之假想記錄格內,形成最大凹 坑Ph之方法的工程圖^ …^ , 第1 〇圖係在對應於光阻原盤之感光性材料層之假想 記錄格的假想記錄領域上,照射了功率被設定爲曝光功率 之雷射光束之時間,與使周光阻原盤製作成光記錄媒體之〃 假想記錄格的光反射率之關係圖。 第1 1圖係令照射在對應於光阻原盤的感光性材料層' 之假想記錄格之假想領域上的雷射光束的曝光功率Pw改 變時,雷射光束的照射時間與與使用光阻原盤製作成光記 錄媒體之假想記錄格的光反射率之關係圖。‘ 第1 2圖係本發明之其他竇施形態所論之光記錄媒體' 周原盤的製造方法中所用之’照射在對應光記錄媒體的假 想記錄袼之光阻原盤的感光性材料層的假想領域上的雷射 光束的功率之調變波形圖。 第1 3圖令照射在對應於光阻原盤的感光性材料層之 假想記錄格之假想領域上的雷射光束的曝光功率Pw改變 時,雷射光束的照射時間與與使用光阻原盤製作成光記錄 -38- (36) (36)200407884 媒體之假想記錄格的光反射率之關係圖。 主要元件對照表 1 :光記錄媒體 100 :刻錄機 101 :雷射光束 102 :雷射產生裝置 103 :光調變器 104,106 :劈光器 105 :光調變單元 105a 、 105c :透鏡 I 〇5b :光調變器: 105d :.脈沖信號列 ]07 :光學頭 l〇7a :鏡子 l〇7b :透鏡 108 :轉盤 II :透光性基板 . 11〇 :光阻原盤. ll〇a :玻璃基板 1 1 0 b :感光性材料層 1 1 0 c :潛像 2 0 2 :凹部 203 :金屬薄膜 -39- (37)200407884 204 :金屬膜 205 :光記錄媒體用原盤 206 :凸部 2 2 :反射層 2 3 :保護層 Pa〜Ph :凹坑....... V [Brief Description of Drawings] FIG.] Is a schematic perspective view of an optical recording medium according to an ideal embodiment of the present invention. : ^ ^: Fig. 2 is an enlarged cross-sectional view of a circled part of a dotted line of the optical recording medium shown in Fig. 1. ^ Figure 3 shows the relationship between the pits Pa,. Pb, Pc, Pd, Pe, Pf, Pg, Ph, and the light reflectance of each of the imaginary recording cells S in the optical recording medium 1 of the optical recording medium 1. Illustration. Fig. 4 is a recorder used in a method for manufacturing a master disc for an optical recording medium according to an ideal Binsch form of the present invention. Figures 5 (a) to (f) are engineering drawings showing the manufacturing process of the original disk for the optical recording medium. -37- (35) (35) 200407884 Figures 6 (a) to (c) are engineering drawings showing the manufacturing process of the optical recording medium 1. Fig. 7 is a graph showing a power modulation waveform of a laser beam irradiated on a virtual area of a photosensitive material layer of a photoresist master disc corresponding to a virtual recording grid of an optical recording medium. Fig. 8 is an engineering drawing of a method for forming the smallest pit Pa in an imaginary recording grid of an optical recording medium. FIG. 9 is an engineering drawing of a method for forming the largest pit Ph in an imaginary recording grid of an optical recording medium, and FIG. 10 is an imaginary recording grid of an imaginary recording grid corresponding to a photosensitive material layer of a photoresist master disk. In the field of recording, the relationship between the time when the laser beam irradiated with the power set to the exposure power and the light reflectance of the imaginary recording grid on which the peripheral photoresist master is made into an optical recording medium is plotted. Figure 11 shows the exposure time of the laser beam and the use of the photoresist master when the exposure power Pw of the laser beam irradiated on the imaginary field of the imaginary recording grid corresponding to the photosensitive material layer of the photoresist master is changed. A graph of the relationship between the light reflectance of an imaginary recording grid of an optical recording medium is made. 'Figure 12 shows the optical recording medium used in the production method of the other sinus morphology of the present invention' used in the production method of Zhou Yuanyuan ', which is a imaginary field of a photosensitive material layer irradiated on the optical recording medium corresponding to the virtual recording medium of the optical recording medium The waveform diagram of the modulation of the power of the laser beam. FIG. 13 shows that when the exposure power Pw of the laser beam irradiated on the imaginary field of the imaginary recording grid of the photosensitive material layer corresponding to the photoresist master is changed, the irradiation time of the laser beam and the photoresist master are produced using the photoresist master. Optical Recording -38- (36) (36) 200407884 The relationship between the light reflectance of the imaginary record grid of the media. Main component comparison table 1: optical recording medium 100: recorder 101: laser beam 102: laser generating device 103: light modulator 104, 106: splitter 105: light modulation unit 105a, 105c: lens I 5b: optical modulator: 105d: pulse signal sequence] 07: optical head 107a: mirror 107b: lens 108: turntable II: light-transmitting substrate. 11〇: photoresist original disk. 110: glass Substrate 1 1 0 b: Photosensitive material layer 1 1 0 c: Latent image 2 0 2: Recess 203: Metal film-39- (37) 200407884 204: Metal film 205: Optical recording medium master 206: Projection 2 2 : Reflective layer 2 3: Protective layer Pa ~ Ph: Pit

Ta〜Th :雷射光束照射時間 R a :最大反射率 Rh :最小反射率 S z假想記錄格 S’ :假想領域 L :假想記錄格S的長度 V :刻錄機100的線速度 RRa :最大相對反射率 RRh :最小相對反射率 Pw :曝光功率 Pb :基底功率 D :雷射光束半徑Ta to Th: Laser beam irradiation time R a: Maximum reflectance Rh: Minimum reflectance S z Hypothetical record grid S ′: Hypothetical field L: Length of hypothetical log grid S V: Linear velocity RRa of the recorder 100: Maximum relative Reflectance RRh: Minimum relative reflectivity Pw: Exposure power Pb: Base power D: Laser beam radius

-40--40-

Claims (1)

(1) (1)200407884 拾、申請專利範圍 1 · 一種光記錄媒體用原盤之製造方法,係屬於爲了 製造在假想設定之複數假想記錄格(cell)內,形成2N種類 之凹坑(pit),並記錄有2位元以上之資料的光記錄媒體的 光記錄媒體用原盤之製造方法,其特徵爲具備: 照射雷射光束,使光阻原盤曝光,在前記光阻原盤上 形成圖案的工程;及 將前記光阻原盤上所形成的圖案轉印,以製作光記錄 媒體用原盤之工程;且 呼應前記光記錄媒體之前記虛擬記錄格所分配之最大, 光反射率及/或最小光反射率,設定照射在前記光阻原盤 上的前記雷射光束的曝光功率。、. 2 ·如申請專利範圍第1項之光記錄媒體用原盤:之製 造方法,其中 前記光記錄媒體之前記假想記錄格所分配之最大光反 射率越高,就將照射在前記光阻原盤上的前記雷射光束的 曝光功率設定在越局的位準。 3 .如申請專利範圍第1項之光記錄媒體用原盤之製 造方法,其中 前記光記錄媒體之前記假想記錄格所分配之最小光反 射率越低,就將照射在前記光阻原盤上的前記雷射光束的 曝光功率設定在越低的位準。 4 .如申請專利範圍第2項之光記錄媒體用原盤之製 造方法,其中 -41 - (2) (2)200407884 前記光記錄媒體之前記假想記錄格所分配之最大光反 射率越高,就將照射在前記光阻原盤上的前記雷射光束的 曝光功率設定在越高的位準, 且將最大相對光反射率RRaH與最小相對光反射率 RRhH,設定成滿足 100- RRaH&lt;RRhH。 5 .如申請專利範圍第3項之光記錄媒體用原盤之製 造方法,其中 前記光記錄媒體之前記假想記錄格所分配之最小光反 射率越低,就將照射在前記光阻原盤上的前記雷射光束的 曝光功率設定在越低的位準, 且將最大相對光反射率RRaL與最小相對光反射率 RRhL,設定成滿足 1 00- RRaL&lt;RRhL。 6 · —種光記錄媒體用原盤之製造方法,係屬於爲了 製造在假想設定之複數假想記錄格(cell)內·,形成2N種類 之凹坑(pit),並記錄有2位元以上之資料的光記錄媒體的 光記錄媒體用原盤之製造方法,其特徵爲具備:..) 照射雷射光束,使光阻原盤曝光,在前記光阻原盤上 形成圖案的工程;及 將前記光阻原盤上所形成的圖案轉印,以製作光記錄 媒體用原盤之工程; 在前記光記錄媒體之前記假想記錄格內,形成同樣大 小的凹坑,記錄同樣記錄位準的之資料時,無關於照射在 前記光阻原盤之雷射光束的線速度,將照射在前記光阻原 盤上之雷射光束的曝光功率及/或曝光功率的脈沖寬度設 -42 - (3) 200407884 定成實質上同一。 7.如申請專利範圍第6項之光記錄媒體用原盤之製 造方法,其中前記光記錄媒體之前記假想記錄格內’形成 同樣大小之凹坑,並記錄同樣記錄位準之資料時’無關於 照射在前記光阻原盤之雷射光束的線速度,將照射在前記 光阻原盤上之雷射光束的爆光功率及曝光功率的脈沖寬度 設定成實質上同一。 8 .如申請專利範圍第6或7項之光記錄媒體用原盤 之製造方法,其中:將照射在前記光狙原盤上之雷射光束 的曝光功率之位準、假想記錄格長度L,以及照射於前記 光阻原盤上的雷射光束的線速度V,設定成:使照射於前 記光阻原盤上的雷射光束的線速度V、假想記錄格長度:L ,以及假想記錄格的光反射率呈實質上飽和所需之照射光: 阻原盤的雷射光束照射時間Ts,滿足Ts S LAV。 , 9. 一種光記錄媒體之製造方法,係屬於在基板士,: 於假想設定之複數假想記錄格(cell)內,形成:2N種類之凹; 坑(pit),並記錄有2位元以上之資料的光記錄媒體的光記 錄媒體用原盤之製造方法,其特徵爲具備:.夂t 照射雷射光束,使光阻原盤曝光,在前記光阻原盤上 形成圖案的工程;及 將前記光阻原盤上所形成的圖案轉印,以製作光記錄 媒體用原盤之工程;及 將被轉寫至前記光阻光記錄媒體用原盤之前記圖案轉 印,以製作前記基板之工程;且 -43- (4) (4)200407884 呼應前記光記錄媒體之前記虛擬記錄格所分配之最大 光反射率及/或最小光反射率,設定照射在前記光阻原盤 上的前記雷射光束的曝光功率。 1 〇.如申請專利範圍第9項之光記錄媒體之製造方法 ,其中 前記光記錄媒體之前記假想記錄格所分配之最大光反 射率越高,就將照射在前記光阻原盤上的前記雷射光束的 曝光功率設定在越高的位準 1 1 .如申請專利範僵第9項之光記錄媒體之製造方法 ,其中 前記光記錄媒體之前記假想記錄格所分配之最小光反 射率越低,就將照射在前記光姐原盤上的前記霜射光束的 曝光功率設定在猶低的位準。:… ].2·如申請專利範圍第10項之光記錄媒體之製造方 法,其中 , : :. -. .· 前記光記錄媒體之前記假想記錄格所分配:之最大光反 射率越高,就將照射在前:記光阻原盤上的前記雷射光束的 ; r&quot; : ; ; 曝光功率設定在越高:的位準, 且將最大相對光反射率RRaH與最小相對光反射率 RRliH,設定成滿足 100- RRaH&lt;RRhH 〇 1 3 .如申請專利範圍第1 1項之光記錄媒體之製造方 法,其中 前記光記錄媒體之前記假想記錄格所分配之最小光反 射率越低,就將照射在前記光阻原盤上的前記雷射光束的 -44 - (5) (5)200407884 曝光功率設定在越低的位準, 且將最大相對光反射率RRaL與最小相對光反射率 RRhL,設定成滿足 1 00- RRaL&lt;RRhL ° 14. 一種光記錄媒體之製造方法,係屬於在基板上, 於假想設定之複數假想記錄格(cell)內,形成2N種顏之凹 坑(pit),並記錄有2位元以上之資料的光記錄媒體之製造 方法,其特徵爲具備: 照射雷射光束,使光阻原盤曝光,在前記光阻原盤土 形成圖案的工程;及 將前記光阻原盤上所形成的圖案轉印,以製作光記錄 媒體用原盤之工程:及 將被轉寫至前記光阻光記錄媒體用原盤之前記圖案轉 印,以製作前記基板之工程;且 在前記光記錄媒體之前記假想記錄格內,形成同樣大 小的凹坑,記錄同樣記錄位準的之資料時,無關於照射在 前記光阻原盤之雷射光束的線速度,將照射在前記光阻原 盤上之雷射光束的曝光功率及/或曝光功率的脈沖寬度設 定成實質上同一。 1 5 ·如申請專利範圍第】4項之光記錄媒體之製造方 法,其中前記光記錄媒體之前記假想記錄格內,形成同樣 大小之凹坑,並記錄同樣記錄位準之資料時,無關於照射 在前記光阻原盤之雷射光束的線速度,將照射在前記光阻 原盤上之雷射光束的曝光功率及曝光功率的脈沖寬度設定 成實質上同一。 (6) 200407884 1 6 ·如申請專利範圍第1 4或1 5項之光記錄媒體之製 造方法,其中:將照射在前記光阻原盤上之雷射光束的曝 光功率之位準、假想記錄格長度L,以及照射於前記光阻 原盤上的雷射光束的線速度V,設定成:使照射於前記光 阻原盤上的雷射光束的線速度V、假想記錄格長度L,以 及假想記錄格的光反射率呈實質上飽和所需之照射光阻原 盤的雷射光束照射時間Ts,滿足L/V。 -46 -(1) (1) 200407884 Scope of patent application1 · A method for manufacturing a master disc for optical recording media belongs to the manufacture of 2N pits formed in a plurality of imaginary recording cells that are supposed to be set A method for manufacturing a master disk for an optical recording medium, and an optical recording medium in which data of more than 2 bits are recorded, is characterized in that it includes: a process of irradiating a laser beam, exposing the resist master, and forming a pattern on the former resist master ; And the process of transferring the pattern formed on the original photoresist master disk to make the original disk for optical recording media; and echoing the maximum, light reflectance and / or minimum light reflection assigned to the previous virtual recording cell of the previous optical recording medium Set the exposure power of the pre-laser laser beam irradiated on the pre-photoresist master. · 2 · If the original optical disk for optical recording media: the manufacturing method of the patent application scope item 1, in which the higher the maximum light reflectance assigned to the imaginary recording cell before the previous optical recording medium, the higher the original photoresist original disk will be irradiated The exposure power of the laser beam on the previous note is set at the off-level. 3. If the manufacturing method of the original disk for optical recording media according to item 1 of the patent application scope, wherein the lower the minimum light reflectance assigned to the imaginary recording cell before the pre-recorded optical recording medium, the pre-recorded light on the pre-recorded photoresist original disk will be irradiated. The lower the exposure power of the laser beam is set. 4. For the manufacturing method of the original disc for optical recording media according to item 2 of the scope of patent application, in which -41-(2) (2) 200407884 pre-recorded optical recording media, the higher the maximum light reflectance allocated to the imaginary recording cell, the The exposure power of the preceding laser beam irradiated on the preceding photoresist master is set to a higher level, and the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set to satisfy 100-RRaH &lt; RRhH. 5. If the method of manufacturing a master disk for an optical recording medium according to item 3 of the patent application scope, wherein the lower the minimum light reflectance assigned to the hypothetical recording cell before the pre-recording optical recording medium, the pre-recording of the pre-recording photoresist on the original disc will be irradiated. The exposure power of the laser beam is set to a lower level, and the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL are set to satisfy 100-RRaL &lt; RRhL. 6-A method for manufacturing a master disk for an optical recording medium belongs to a plurality of imaginary recording cells that are supposed to be set to form 2N types of pits and record data of more than 2 bits The method for manufacturing a master disk for an optical recording medium of the optical recording medium is characterized in that: it comprises the steps of: irradiating a laser beam, exposing the resist master, and forming a pattern on the former resist master; and forming the former resist master The process of transferring the pattern formed on the above to make a master disk for optical recording media; before the optical recording medium is recorded, the pits of the same size are formed in the imaginary recording cell, and the information of the same recording level is recorded, there is nothing about the irradiation For the linear velocity of the laser beam of the former photoresist master, the exposure power and / or the pulse width of the exposure power of the laser beam irradiated on the former resist master is set to -42-(3) 200407884 to be substantially the same. 7. For the manufacturing method of the original disc for optical recording media according to item 6 of the scope of patent application, the pre-recorded optical recording medium is recorded in the imaginary recording box before the formation of pits of the same size and recording the same recording level information. The linear velocity of the laser beam irradiated on the former photoresist master is set to substantially the same pulse width as the burst power and exposure power of the laser beam irradiated on the former resist master. 8. A method for manufacturing a master disk for an optical recording medium as claimed in item 6 or 7 of the patent application scope, wherein: the level of the exposure power of the laser beam irradiated on the master disk, the imaginary record length L, and the irradiation The linear velocity V of the laser beam on the original photoresist master is set such that the linear velocity V of the laser beam irradiated on the original photoresist master, the virtual recording cell length: L, and the light reflectance of the virtual recording cell The irradiation light required to be substantially saturated: the laser beam irradiation time Ts of the original disk is blocked, and Ts S LAV is satisfied. 9. A method for manufacturing an optical recording medium, which belongs to a substrate: In a plurality of imaginary recording cells (imaginarily set), forming: 2N type of pits; pits, and more than 2 bits are recorded The method for manufacturing a master disk for an optical recording medium of an optical recording medium of data is characterized by: a process of irradiating a laser beam, exposing the resist master, and forming a pattern on the former resist master; and The process of resisting the transfer of the pattern formed on the master disc to produce the master disc for the optical recording medium; and the process of transferring the former pattern to the former master of the photoresistive optical recording medium to make the precursor substrate; and -43 -(4) (4) 200407884 In response to the maximum optical reflectance and / or minimum optical reflectance assigned to the pre-recorded virtual recording cell of the pre-recorded optical recording medium, set the exposure power of the pre-recorded laser beam irradiated on the pre-recorded photoresist master. 1 〇. The manufacturing method of the optical recording medium according to item 9 of the scope of patent application, wherein the higher the maximum light reflectance allocated to the imaginary recording cell before the pre-recording optical recording medium, the higher the pre-recording thunder will be irradiated on the pre-recording photoresist master disc. The exposure power of the light beam is set to a higher level 1 1. For example, in the method of manufacturing the optical recording medium of item 9 of the patent application, the minimum optical reflectance assigned to the pre-recorded optical recording medium before the hypothetical recording cell is lower , The exposure power of the pre-exposure frost beam irradiated on the original disc of the pre-exposure light sister is set at a still low level. : ...]. 2 · If the method of manufacturing an optical recording medium according to item 10 of the patent application scope, wherein: ::--.. · Pre-recorded optical recording media: The higher the maximum light reflectance assigned to the imaginary recording cell, The front exposure: the previous laser beam on the photoresist master; r &quot;:;; The exposure power is set to a higher level: and the maximum relative light reflectance RRaH and the minimum relative light reflectance RRliH, It is set to satisfy 100- RRaH &lt; RRhH 〇 1 3. As in the manufacturing method of the optical recording medium of item 11 of the patent application scope, the lower the minimum light reflectance assigned to the imaginary recording cell before the previous optical recording medium, the lower the The -44-(5) (5) 200407884 of the pre-recorded laser beam irradiated on the pre-printed photoresist master is set to a lower level, and the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL are set to Cheng satisfies 1 00- RRaL &lt; RRhL ° 14. A method for manufacturing an optical recording medium, which belongs to a substrate, and forms 2N pits of various colors in a plurality of imaginary recording cells that are supposed to be set, and There are 2 records A method for manufacturing an optical recording medium with data of more than one bit is characterized in that: the process of irradiating a laser beam, exposing the photoresist master disk, and forming a pattern on the former photoresist master disk; and forming the former photoresist master disk The process of pattern transfer to make a master disk for optical recording media: and the process of transferring a pre-master pattern to a pre-printed light-blocking optical recording medium to make a pre-master substrate; and a hypothesis before the pre-recorded optical recording medium In the recording grid, pits of the same size are formed. When recording data of the same recording level, the linear velocity of the laser beam irradiated on the former photoresist master is not related to the linear velocity of the laser beam irradiated on the former resist master. The exposure power and / or the pulse width of the exposure power are set to be substantially the same. 15 · If the method of manufacturing an optical recording medium according to item 4 of the scope of the patent application, the pre-recorded optical recording medium is previously recorded in an imaginary recording grid to form pits of the same size, and records the same recording level information. The linear velocity of the laser beam irradiated on the former resist master is set to substantially the same exposure power and pulse width of the exposure power of the laser beam on the former resist master. (6) 200407884 1 6 · If the method of manufacturing an optical recording medium according to item 14 or 15 of the scope of patent application, wherein: the exposure power level of the laser beam irradiated on the original photoresist master, the hypothetical recording grid The length L, and the linear velocity V of the laser beam irradiated on the former photoresist master, are set such that the linear velocity V of the laser beam irradiated on the former photoresist master, the virtual record length L, and the virtual record grid The light reflectance is the laser beam irradiation time Ts required to irradiate the photoresist master disk, which is substantially saturated, and satisfies L / V. -46-
TW92125388A 2002-09-13 2003-09-15 Manufacturing method of master disc for optical recording medium and manufacturing method of optical recording medium TW200407884A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268973A JP2004110889A (en) 2002-09-13 2002-09-13 Method of manufacturing master disk for optical recording medium and method of manufacturing optical recording medium

Publications (1)

Publication Number Publication Date
TW200407884A true TW200407884A (en) 2004-05-16

Family

ID=31986801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92125388A TW200407884A (en) 2002-09-13 2003-09-15 Manufacturing method of master disc for optical recording medium and manufacturing method of optical recording medium

Country Status (4)

Country Link
JP (1) JP2004110889A (en)
AU (1) AU2003266510A1 (en)
TW (1) TW200407884A (en)
WO (1) WO2004025641A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452209C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-exponent read-only mother disc
CN100347775C (en) * 2005-03-08 2007-11-07 清华大学 Multi-level read-only optical disc and method of production
CN100452208C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-level read-only optical disc
CN100452203C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage read-only master
CN100369140C (en) * 2005-03-08 2008-02-13 北京保利星数据光盘有限公司 Multistep read-only optical disk and its making method
CN100452204C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage CDROM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111229A (en) * 1990-08-31 1992-04-13 Toshiba Corp Information reproducing device
JPH06124450A (en) * 1992-10-12 1994-05-06 Toshiba Corp Information storage medium
JPH08124167A (en) * 1994-10-19 1996-05-17 Hitachi Ltd Method for recording and reproducing optical information and device therefor
JP2001184649A (en) * 1999-10-14 2001-07-06 Tdk Corp Optical recording system and optical recording medium
JP2001250280A (en) * 2000-03-02 2001-09-14 Sony Corp Recording medium, method of manufacturing recording medium, method of manufacturing master disk for manufacture of recording medium, device for manufacture of recording medium and device for manufacture of master disk for manufacture of recording medium
JP2001256646A (en) * 2000-03-15 2001-09-21 Hitachi Ltd Optical information recording and reproducing method
JP2003233932A (en) * 2002-02-07 2003-08-22 Ricoh Co Ltd Optical information recording medium, optical disk device, and method for manufacturing master disk

Also Published As

Publication number Publication date
AU2003266510A1 (en) 2004-04-30
JP2004110889A (en) 2004-04-08
WO2004025641A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
WO2002037483A1 (en) Optical recording medium, optical recording medium production method, optical recording medium production apparatus, program, and medium
WO2002084658A1 (en) Stamper for optical disk, method of manufacturing optical disk, and optical disk
TW200407884A (en) Manufacturing method of master disc for optical recording medium and manufacturing method of optical recording medium
JPH0714221A (en) Manufacture of optical recording medium
JPH11120626A (en) Production of master disk for manufacture of optical disk
JP4810453B2 (en) Optical information recording medium
JP2007133970A (en) Optical recording medium and manufacturing method of the same
JP2003006919A (en) Optical recording medium and method for producing the same
JPH10106047A (en) Production of optical recording medium
JP2512042B2 (en) Optical recording medium and optical recording method
JPH01208737A (en) Novel optical recording medium and production thereof
JP2001148140A (en) Rewritable compact disk and manufacturing method thereof
JP2002279694A (en) Optical disk, manufacturing method therefor, optical disk device suitable for optical disk and information recording and reproducing method
JP2596477B2 (en) Optical information recording medium
JPS5968848A (en) Optical disc medium
JP2596475B2 (en) Optical information recording medium
JPH02201748A (en) Optical recording medium
JP2006024245A (en) Rom type optical recording medium and stamper for manufacturing rom type optical recording medium
JPH02266978A (en) Optical information recording medium
JPS59215036A (en) Optical disk medium
JP2002184032A (en) Optical disk and its manufacturing method
JP4356048B2 (en) optical disk
TW556175B (en) Optical recording method and optical recording medium
JP4277812B2 (en) Optical disc recording medium and disc manufacturing method
JP2512045B2 (en) Optical recording medium and optical recording method