TR201800657A2 - A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING - Google Patents

A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING Download PDF

Info

Publication number
TR201800657A2
TR201800657A2 TR2018/00657A TR201800657A TR201800657A2 TR 201800657 A2 TR201800657 A2 TR 201800657A2 TR 2018/00657 A TR2018/00657 A TR 2018/00657A TR 201800657 A TR201800657 A TR 201800657A TR 201800657 A2 TR201800657 A2 TR 201800657A2
Authority
TR
Turkey
Prior art keywords
graphene
paraffin
thermo
boron
elements
Prior art date
Application number
TR2018/00657A
Other languages
Turkish (tr)
Inventor
Ünlüaslan Faruk
Varol Murat
Original Assignee
Kirpart Otomotiv Parcalari Sanayi Ve Ticaret A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirpart Otomotiv Parcalari Sanayi Ve Ticaret A S filed Critical Kirpart Otomotiv Parcalari Sanayi Ve Ticaret A S
Priority to TR2018/00657A priority Critical patent/TR201800657A2/en
Priority to PCT/TR2019/050002 priority patent/WO2019240702A2/en
Publication of TR201800657A2 publication Critical patent/TR201800657A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation

Abstract

Mevcut buluş, içerisindeki parafinin ısıl iletkenlik katsayısı yüksek olan grafen ile karışması sonucu artan ısıl iletkenlik katsayısı sayesinde termo-elemanların tepki süresinde kayda değer bir iyileşme sağlayan aynı zamanda içerisindeki borun karışımın grafeni yeterince ıslatmasını sağlayan parafin içerisindeki ıslatma (wetting) etkisi ve grafenin nano ölçeklerdeki yapısı sayesinde homojene yakın bir dağılım gösteren böylece hem ısı transfer yüzeyi boyunca ısı transferinin hızlanmasına hem de içerisinde kullanıldıkları termo-elemanların tepki süresinde sağladıkları iyileşmenin uzun kullanımlar boyunca değişmeden sürdürülebilirliğine olanak veren bir hidrolik sıvı karışımıyla ilgilidir. Termo-elemanların tepki sürelerinde iyileşme sağlamak üzere bilinen teknikte parafin bileşeni içerisine eklenen grafit, expanded grafit ve organic modified expanded grafit malzemelerine kıyasla grafen malzemesi çok daha yüksek ısıl iletkenlik katsayısına sahiptir. Ayrıca bahsedilen grafit, expanded grafit ve organic modified expanded grafit malzemelerinin yapılarının mikro ölçeklerde olması bu malzemelerin parafin bileşeni içerisinde yeterince homojen bir karışım oluşturmalarını engelleyerek bu durum ileriki zamanlarda parafin-eklenen malzeme ayrışmasıyla sonuçlanmakta, bu yüzden bahsedilen malzemelerle oluşturulan hidrolik karışımları ihtiva eden termo-elemanların başlangıçta sağladıkları iyileşme zaman geçtikçe azalmaktadır.The present invention provides a significant improvement in the reaction time of the thermo-elements thanks to the increased thermal conductivity coefficient as a result of mixing of paraffin with graphene with a high thermal conductivity coefficient, and the wetting effect in the paraffin that allows the mixture to wet the graphene sufficiently and the structure of graphene in nanoscale. It is related to a hydraulic fluid mixture, which has a near homogeneous distribution, thus allowing both the acceleration of the heat transfer across the heat transfer surface and the improvement in the reaction time of the thermo-elements in which they are used, without changing over long periods of use. Compared to graphite, expanded graphite and organic modified expanded graphite materials, which are added to the paraffin component in the known technique to improve the reaction times of thermo-elements, the graphene material has a much higher thermal conductivity coefficient. In addition, the micro-scales of the structures of the graphite, expanded graphite and organic modified expanded graphite materials prevent these materials from forming a sufficiently homogeneous mixture in the paraffin component, resulting in the separation of the paraffin-added material in the future, so the thermo-elements containing the hydraulic mixtures formed with the their initial improvement decreases over time.

Description

TARIFNAME TERMAL ELEMANLARIN TEPKI SÜRESINDE IYILESME SAGLAYAN VE IYILESMENIN SÜRDÜRÜLEBILIRLIGINE OLANAK VEREN BIR HIDROLIK sivi KARISIMI Teknik Alan Bulus, termal elemanlarin tepki süresinde kayda deger bir iyilesme saglayan ve bu iyilesmenin termal elemanin kullanim ömrü boyunca sürdürülebilir olmasina olanak veren bir hidrolik sivi karisimiyla ilgilidir. DESCRIPTION PROVIDING IMPROVEMENT IN THE RESPONSE TIME OF THE THERMAL ELEMENTS AND A HYDRAULIC LIQUID MIX THAT ENABLES SUSTAINABILITY Technical Area The invention provides a remarkable improvement in the response time of the thermal elements and this improvement a hydraulic fluid that allows the thermal element to be sustainable over its lifetime it's about the mix.

Daha belirgin olarak mevcut bulus, içerisindeki parafinin isil iletkenlik katsayisi yüksek olan grafen ile karismasi sonucu artan isil iletkenlik katsayisi sayesinde termo-elemanlarin tepki süresinde kayda deger bir iyilesme saglayan ayni zamanda içerisindeki borun karisimin grafeni yeterince islatmasini saglayan parafin içerisindeki islatma (wetting) etkisi ve grafenin nano ölçeklerdeki yapisi sayesinde homojene yakin bir dagilim gösteren böylece hem isi transfer yüzeyi boyunca isi transferinin hizlanmasina hem de içerisinde kullanildiklari termo-elemanlarin tepki süresinde sagladiklari iyilesmenin uzun kullanimlar boyunca degismeden sürdürülebilirligine olanak veren bir hidrolik sivi karisimiyla ilgilidir. More specifically, the present invention is graphene with a high thermal conductivity coefficient of paraffin in it. In the reaction time of thermo-elements, thanks to the thermal conductivity coefficient increasing as a result of mixing with At the same time, the graphene of the boron mixture in it, which provides a remarkable improvement, is sufficiently The wetting effect in paraffin, which makes it wet, and the effect of graphene on nanoscales. Thanks to its structure, it shows a distribution close to homogeneous, so that heat is transferred both along the heat transfer surface. speed of the transfer and the reaction time of the thermo-elements in which they are used. a method that allows the sustainability of the improvement they provide without changing over long periods of use. relates to the hydraulic fluid mixture.

Teknigin Bilinen Durumu Oda sicakliginda kati halde bulunan parafin görece yüksek sicakliklarla birlikte hal degistirerek sivi hale geçmekte ve bu hal degisimi sirasinda ortaya çikan hacim degisimi termal elemanlarin çalisma prensibini olusturmaktadir. Esnek yapidaki diyafram bir kapakla perçinlenerek agiz kismi kapatilmis hazne içine hapsedilen parafin sicakligin artmasiyla (sivi hale geçerek) genlesmekte ve böylece diyafram bu basinci dengelemek üzere disariya dogru gerilmektedir. Sicakligin düsmesiyle (kati hale geçerek) hacmi küçülen parafin diyafram yapisinin dolayisiyla pistonun tekrar eski pozisyonuna gelmesini saglar. Sicakligin artmasiyla disari dogru gerilen diyafram yapisi diyafram üzerindeki girinti içine yerlestirilmis piston yapisinin ileri hareketini saglarken ayni sekilde sicakligin düsmesi sonucu içeriye dogru büzülen diyafram yapisi piston yapisinin geri hareketini saglamaktadir. Özellikle motor sogutma sistemlerindeki kullanimiyla otomotiv sektöründe büyük bir yer bulan termostatlarin iç yapisinda kullanilan termo-elemanlarin sicakliga duyarli tepki vermesi ve bu tepkinin nerdeyse Iineere yakin bir karakter göstermesi termo-elemanlarin iç haznesinde kapali halde bulunan parafinin fiziksel özellikleri sayesinde saglanmaktadir. State of the Art Paraffin, which is solid at room temperature, changes state with relatively high temperatures and becomes liquid. and the volume change that occurs during this state change is the result of thermal elements. constitutes the working principle. The flexible diaphragm is riveted with a cover and the mouth part The paraffin imprisoned in the sealed chamber expands (by becoming liquid) with the increase in temperature and so the diaphragm is stretched outward to balance this pressure. With the temperature dropping Due to the paraffin diaphragm structure, the volume of which is reduced (by becoming solid), the piston is restored to its old state. allows it to come into position. Diaphragm structure that is stretched outward with increasing temperature diaphragm While providing the forward movement of the piston structure placed in the recess on the The diaphragm structure, which shrinks inward as a result of its falling, prevents the backward movement of the piston structure. it provides. Especially with its use in engine cooling systems, it has a great place in the automotive sector. The temperature-sensitive response of the thermo-elements used in the internal structure of the thermostats and this The reaction has a character close to almost linear and closed in the inner chamber of the thermo-elements. It is provided by the physical properties of the paraffin in the form.

Her ne kadar parafinin isiya karsi fiziksel hal ve hacim degisikligiyle cevap veren özelligi motor sogutma sistemlerinin sogutma ihtiyacini belirleyerek termostatin uygun sogutmayi saglayacak tepkiyi vermesini saglasa da parafinin isil iletkenlik özelliginin çok düsük olmasindan dolayi bu tepkinin süresinde oldukça gecikmeler meydana gelmektedir. Teknigin bilinen durumunda termo- elemanlarin tepki süresinde iyilesme saglayacak oldukça farkli çalismalar sergilenmektedir. Although the feature of paraffin that responds to heat with physical state and volume changes, motor By determining the cooling need of the cooling systems, the thermostat will ensure proper cooling. Although it allows the paraffin to react, this is due to the very low thermal conductivity of paraffin. There is considerable delay in the response time. In the state of the art, thermo- There are quite different studies that will provide improvement in the response time of the elements.

Uygulamalar arasinda parafinin isil iletkenlik özelligini arttirmak üzere parafin içerisine alüminyum, bakir, grafit (toz halleri) gibi isil iletkenligi yüksek olan maddelerin eklendigi çesitli hidrolik sivi karisimlarinin kullanildigi ve/veya hidrolik sivinin içerisinde bulundugu haznenin hidrolik siviyla temas ettigi isi iletim yüzey alaninin genisletildigi çözümler mevcuttur. Among the applications, to increase the thermal conductivity of the paraffin, aluminum into the paraffin, Various hydraulic fluids to which materials with high thermal conductivity such as copper, graphite (powder forms) are added with the hydraulic fluid of the reservoir in which the mixtures are used and/or the hydraulic fluid is in. There are solutions in which the heat conduction surface area it contacts is extended.

Metalurji alaninda saglanan teknolojik gelismelerin isil iletkenligi daha iyi olan malzemelerin üretilmesine imkan vermesiyle elde edilen isil karakteristigi yüksek malzemeler halihazirda kullanilan teknolojiye uygulanarak teknik açidan çok daha islevsel ürünler elde edilmeye baslamistir. Örnegin grafitin çesitli islemlerden geçmesiyle elde edilen expanded (genisletilmis) grafit grafite göre çok daha iletken bir karaktere sahiptir. DE10322358 B4 referansli patent dokümaninda expanded grafitin parafin içerisine belli oranlarda eklenmesiyle termo-elemanlarin tepki sürelerinde kayda deger gelismelerin saglandigi bir yöntemden bahsedilmistir. Ayrica expanded grafitin parafinin yogunluguna çok yakin bir yogunluga sahip olmasi sayesinde kullanimi süresince parafin ve expanded grafitin birbirinden ayrismasi durumunun teknigin bilinen durumunda parafin içerisine eklenen diger malzemelere kiyasla nispeten daha az oldugu böylece uzun kullanimlar boyunca termo-elemanlarin tepki sürelerinin degismeden sürdürülebilirliginin saglandigina deginilmistir. Technological developments in the field of metallurgy have resulted in materials with better thermal conductivity. Materials with high thermal characteristics obtained by allowing the production of By applying the technology used, it is aimed to obtain more functional products from a technical point of view. has started. For example, expanded graphite obtained by going through various processes. Graphite has a much more conductive character than graphite. Patent with reference DE10322358 B4 In the document, the thermo-elements are formed by adding expanded graphite into paraffin in certain proportions. A method in which remarkable improvements in response times is achieved is mentioned. Moreover Since expanded graphite has a density very close to that of paraffin, its use In the state of the art, the separation of paraffin and expanded graphite from each other during Compared to other materials added to paraffin, it is relatively less and thus long the sustainability of the reaction times of the thermo-elements throughout their use. It has been mentioned that it is provided.

Her ne kadar expanded grafit yogunluk açisindan parafin ile çok benzer yapida oldugu için uzun kullanimlar boyunca termo-elemanlarin tepki sürelerinin degismeden sürdürülebilir olmasini saglasa da US 8658052 nolu patent dokümaninda parafinin organik grafitin ise inorganik olmasindan dolayi expanded grafiti parafin içerisine karistirmanin zor bir prosedür oldugu belirtilmis ve bu durumu asmak üzere parafinin içerisine expanded grafitin organik yapiya modifiye edilmis halinin (organic modified expanded graphite) karistirildigi bir yöntemden bahsedilmistir. Although expanded graphite has a very similar structure to paraffin in terms of density, it has a long history. ensuring that the response times of the thermo-elements remain unchanged throughout their use. Although it provides, it is stated in the patent document numbered US 8658052 that paraffin is organic and graphite is inorganic. It has been stated that mixing expanded graphite into paraffin is a difficult procedure because of its and in order to overcome this situation, expanded graphite was modified into organic structure in paraffin. A method in which organic modified expanded graphite is mixed is mentioned.

Teknigin bilinen durumunda parafin içerisinde kullanilan grafit, expanded grafit, organic modified expanded grafit gibi isil iletken maddelere göre isil iletkenlik katsayisi katbekat yüksek olan grafenin üretimi ise 1940'dan beri teorik olarak mümkün oldugu halde gerçekten üretebilmesi ancak yakin tarihlerde mümkün olmustur. Grafen maddesi ilk kez Manchester Üniversitesi'nden Andre Geim ve Konstantin Novoselov tarafindan 2004 yilinda üretilebilmistir. Zayif Van der Waals kuvvetlerinin bir arada tuttugu grafitin üç boyutlu yapisinda bulunan zayif katmanlarin kesilmesiyle elde edilen grafen, kasifi olan bu iki Rus bilim adamina 2010 Nobel Fizik Ödülü'nü kazandirmistir. Graphite, expanded graphite, organic modified, used in paraffin in the state of the art The thermal conductivity coefficient is many times higher than the thermal conductive materials such as expanded graphite. The production of graphene, on the other hand, has been theoretically possible since 1940, but it is only possible to actually produce it. became possible in the near future. Graphene material was first discovered by Andre of the University of Manchester. It was produced by Geim and Konstantin Novoselov in 2004. Weak Van der Waals by cutting the weak layers in the three-dimensional structure of graphite held together by the forces of The resulting graphene earned these two Russian scientists the 2010 Nobel Prize in Physics.

Elmas ve grafit gibi grafen de bir karbon alotropudur (bir elementin atomlarinin farkli biçimde baglanmis sekilleri). Altigen düzendeki karbon atomlarinin olusturdugu tek katmanli saydam yapisiyla grafen bilinen en ince ve hafif malzemedir. Ayrica çelikten 100 ile 300 kat arasi daha fazla saglam olmasi, su ana kadar bilinen en iyi iletken olmasi ve esnek olmasi özellikleri ile bilim insanlarinin ilgi odagi, birçok bulusun ise ana malzemesi konumuna gelmistir. alanda bulusun gerçeklesmesine öncülük eden grafen malzemesi özellikle Iityum bataryalarin dokümaninda lityum bataryalarin kapasitesini ve döngü kararliligini iyilestirmek üzere Iityum bataryalarin elektrotlari için nano grafen takviyeli kompozit parçaciklarin üretildigi bir yöntemden bahsedilmektedir. Like diamond and graphite, graphene is an allotrope of carbon (differently shaped atoms of an element). connected shapes). A single layer of transparent carbon atoms in a hexagonal arrangement. Graphene is the thinnest and lightest material known. Also 100 to 300 times more than steel science with its robustness, being the best conductor known so far and being flexible. It has become the focus of attention of people and the main material of many inventions. Graphene material, which pioneered the realization of the invention in the field, especially lithium batteries Lithium to improve the capacity and cycle stability of lithium batteries. from a method in which nano graphene-reinforced composite particles are produced for the electrodes of batteries. is mentioned.

Sonuç olarak termo-elemanlarin tepki sürelerinde iyilesme saglamak üzere parafin içerisine grafit, expanded grafit, organic expanded grafit vb. göre isil iletkenlik katsayisi daha yüksek olan grafenin eklenmesine ve homojen bir karisim elde etmek üzere karisimin grafeni daha iyi islatmasini saglayacak olan borun islatma etkisinden yararlanmak için parafin içirisine grafenin yani sira belli bir miktarda bor eklenmesine olan gereksinim mevcut bulus konusu çözümün ortaya çikmasina neden olmustur. As a result, graphite into paraffin to improve the reaction times of thermo-elements, expanded graphite, organic expanded graphite etc. Graphene with a higher thermal conductivity than added and the mixture wetting the graphene better to obtain a homogeneous mixture. In order to take advantage of the wetting effect of boron, which will provide the need to add an amount of boron has led to the emergence of the present invention solution. has caused.

Bulusun Amaci ve Kisa Açiklamasi Bulusun amaci, içerisindeki parafinin isil iletkenlik katsayisi yüksek olan grafen ile karismasi sonucu artan isil iletkenlik katsayisi sayesinde termo-elemanlarin tepki süresinde kayda deger bir iyilesme saglayan ayni zamanda içerisindeki borun karisimin grafeni yeterince islatmasini saglayan parafin içerisindeki islatma (wetting) etkisi ve grafenin nano ölçeklerdeki yapisi sayesinde homojene yakin bir dagilim gösteren böylece hem isi transfer yüzeyi boyunca isi transferinin hizlanmasina hem de içerisinde kullanildiklari termo-elemanlarin tepki süresinde sagladiklari iyilesmenin uzun kullanimlar boyunca degismeden sürdürülebilirligine olanak veren bir hidrolik sivi karisimi ortaya koymaktir. Purpose and Brief Description of the Invention The aim of the invention is to mix the paraffin in it with graphene, which has a high thermal conductivity coefficient. There is a remarkable improvement in the reaction time of thermo-elements thanks to the increased thermal conductivity coefficient as a result of which provides healing but also allows the mixture of boron in it to sufficiently wet the graphene. Thanks to the wetting effect in paraffin and the nanoscale structure of graphene showing a distribution close to homogeneous, so that both the heat transfer along the heat transfer surface acceleration and the reaction time of the thermo-elements in which they are used. a hydraulic fluid that allows the recovery to be maintained unchanged over long periods of use to reveal the mix.

Bulusun bir baska amaci, parafin içerisine bakir tozuna (bilinen teknikte isil iletkenligi arttirmak üzere parafin içerisinde sikça kullanilan madde) kiyasla oldukça yüksek isil iletkenlik katsayisi olan grafen maddesini ekleyerek hidrolik sivi karisiminin isil iletim hizini arttirmak böylece termo- elemanlarin tepki süresinde iyilesme saglamaktir. Another object of the invention is to add copper powder (to increase thermal conductivity in the prior art) into paraffin. material that is frequently used in paraffin, such as Increasing the thermal transmission rate of the hydraulic fluid mixture by adding the graphene material, thus increasing the thermo- It is to improve the response time of the elements.

Bulusun bir baska amaci, termo-elemanlarin sicaklik degisimine es zamanliya yakin tepkiler vermesini saglayarak arabalarin motor sogutma sistemlerinde sicakligin hassas kontrolüne böylece verimliligin artmasina olanak vermektir. Another object of the invention is near-simultaneous responses to the temperature change of the thermo-elements. thus enabling precise control of temperature in the engine cooling systems of cars. to allow for increased productivity.

Bulusun bir baska amaci, parafin içerisine bilinen teknikte parafin içerisine eklenen malzemelere (bakir, alüminyum, grafit, expanded grafit) kiyasla daha küçük (nano) ölçekte malzeme ekleyerek homojene yakin bir dagilim gösteren hidrolik karisim olusturmaktir. Another object of the invention is to add materials to paraffin in the prior art. (copper, aluminum, graphite, expanded graphite) by adding material on a smaller (nano) scale compared to is to create a hydraulic mixture showing a homogeneous distribution.

Bulusun bir baska amaci, borun parafin içerisindeki islatma (wetting) etkisinden yararlanarak karisimin grafeni yeterince islatmasi saglamak ve böylece homojene yakin bir dagilim gösteren hidrolik karisim olusturmaktir. Another object of the invention is to exploit the wetting effect of boron in paraffin. to allow the mixture to sufficiently wet the graphene so that it exhibits a nearly homogeneous distribution. to form a hydraulic mixture.

Bulusun bir baska amaci ise, homojene yakin bir hidrolik karisim olusturarak zamanla olusabilecek parafin-eklenen malzeme ayrismasini minimuma indirmek böylece termo-elemanlarin tepki süresinin uzun kullanimlar boyunca degismeden sürdürülmesini saglamaktir. Another aim of the invention is to form a nearly homogeneous hydraulic mixture, which can be formed over time. minimizing paraffin-added material separation so that the thermo-elements react It is to ensure that its duration is maintained unchanged over long periods of use.

Sekillerin Kisa Açiklamasi Sekil 1'de özdes havuz kanallari içerisindeki özdes sicaklik degisimlerine maruz birakilan ve her biri farkli hidrolik karisimlar ihtiva eden termostatlarin sicaklik degisimi karsisinda gösterdikleri yüzdelik açilma degerlerinin zaman bazinda birbiriyle karsilastirildigi bir grafik verilmistir. Grafik üzerinde B olarak isaretlenen egri, içerisinde bulus konusu hidrolik sivi karisimini içeren termostat tertibatina ait yüzdelik açilma orani-zaman degerlerine karsilik gelmektedir. P olarak gösterilen egri ise içerisinde referans hidrolik sivi (saf parafin) ihtiva eden özdes termostat tertibatina ait açilma orani-zaman degerlerine karsilik gelmektedir. Brief Description of Figures In Figure 1, the samples exposed to identical temperature changes within the identical pool channels and Thermostats, one of which contains different hydraulic mixtures, show against temperature changes. A graph is given in which the percentage open values are compared with each other on a time basis. Graphic The curve marked B on it is the thermostat containing the hydraulic fluid mixture of the invention. corresponds to the percentage opening rate-time values of the device. curve shown as P On the other hand, the opening of the identical thermostat assembly containing the reference hydraulic liquid (pure paraffin) corresponds to the ratio-time values.

Referans Numaralari B. Bor + grafen karisimi C. Bakir tozu karisimi G. Grafen karisimi P. Saf parafin Bulusun Detayli Açiklamasi Mevcut bulus, içerisindeki parafinin isil iletkenlik katsayisi yüksek olan grafen ile karismasi sonucu artan isil iletkenlik katsayisi sayesinde termo-elemanlarin tepki süresinde kayda deger bir iyilesme saglayan ayni zamanda içerisindeki borun karisimin grafeni yeterince islatmasini saglayan parafin içerisindeki islatma (wetting) etkisi ve grafenin nano ölçeklerdeki yapisi sayesinde homojene yakin bir dagilim gösteren böylece hem isi transfer yüzeyi boyunca isi transferinin hizlanmasina hem de içerisinde kullanildiklari termo-elemanlarin tepki süresinde sagladiklari iyilesmenin uzun kullanimlar boyunca degismeden sürdürülebilirligine olanak veren bir hidrolik sivi karisimidir. Reference Numbers B. Boron + graphene mixture C. Copper powder mix G. Graphene blend P. Pure paraffin Detailed Description of the Invention The present invention results from the mixing of paraffin with graphene, which has a high thermal conductivity coefficient. a remarkable improvement in the response time of the thermo-elements, thanks to the increased thermal conductivity coefficient paraffin, which also ensures that the boron mixture in it wets the graphene sufficiently. It is close to homogeneous thanks to the wetting effect and the nanoscale structure of graphene. thus, both the acceleration of the heat transfer along the heat transfer surface and The improvement in the reaction time of the thermo-elements in which they are used It is a hydraulic fluid mixture that allows its sustainability without change throughout.

Bilinen en iyi iletken malzeme olan grafen 2004'ten bu yana teknolojinin birçok alanina uygulanmaya baslamis ve fiziksel özelliklerinin sagladigi islevsellik sayesinde teknolojiyi birkaç adim ileri tasimistir. Örnek olarak bataryalarin ultra hizli sarj edilmesi, hizli hafizalar, bataryalarin yerini alabilecek süper kapasitörler, dogrudan vücuttaki nöronlara baglanabilen biyonik cihazlar, küçük ve verimli sensörler verilebilir. Mevcut bulus ise grafenin vaks (parafin) bazli termo- elemanlarin teknolojisinde kullanildigi böylece termo-elemanlarin tepki süresinde çok büyük iyilesmelerin saglandigi ayrica parafin-eklenen malzeme ayrisma riskinin en aza indirildigi bir yöntem ve buna iliskin bir hidrolik karisim ortaya koyarak teknolojiye katki saglamayi amaçlamaktadir. elemanlarin sicakliga tepki vermesini saglayan parafinin tek basina isil iletkenlik katsayisi çok düsüktür. Isil iletkenlik katsayisinin düsük olmasi parafinin sicakligi çok geç algilamasina, gecikmis bir hal/hacim degisimi göstermesine sebep oldugu için termo-elemanlarin iç yapisinda tek basina kullanilma durumunda termo-elemanlarin tepki süresinin çok yavaslamasina, dolayisiyla motor sogutma sisteminin verimsiz çalismasina yol açmaktadir. Parafinin düsük olan isil iletkenlik katsayisindan kaynaklanan isiyi geç algilama problemini çözmek üzere teknigin bilinen durumunda termo-elemanlarin iç yapisinda sadece parafin kullanmak yerine parafin içerisine isil iletkenlik katsayisi yüksek malzemelerin tozlarinin farkli oranlarda eklendigi hidrolik karisimlar kullanilmaktadir. Bunlara örnek olarak bakir, alüminyum, grafit, expanded grafit, organic modified expanded grafit gibi maddelerin toz hallerinin eklenmesiyle elde edilen hidrolik karisimlar sayilabilir. Graphene, the best known conductor material, has been used in many areas of technology since 2004. started to be implemented and thanks to the functionality provided by its physical features, it has changed the technology in a few step forward. For example, ultra-fast charging of batteries, fast memories, supercapacitors that can replace it, bionic devices that can be connected directly to neurons in the body, small and efficient sensors can be given. The present invention is that graphene is wax (paraffin) based thermo- It is used in the technology of the elements so that the reaction time of the thermo-elements is very large. A method where improvements are achieved and the risk of paraffin-added material separation is minimized. to contribute to technology by introducing a method and a hydraulic mixture related to it. aims. The thermal conductivity coefficient of paraffin, which allows the elements to react to temperature, is very high. is low. The low thermal conductivity coefficient causes the paraffin to detect the temperature too late, delayed alone in the internal structure of thermo-elements, as it causes a state/volume change to occur. In case of use, the reaction time of the thermo-elements becomes very slow, therefore the engine It causes inefficient operation of the cooling system. The low thermal conductivity of paraffin In the state of the art to solve the problem of late detection of heat caused by the coefficient of thermal conductivity into paraffin instead of using only paraffin in the internal structure of thermo-elements Hydraulic mixtures in which the powders of high coefficient materials are added at different rates is used. Examples of these are copper, aluminum, graphite, expanded graphite, organic modified Hydraulic mixtures obtained by adding powder forms of materials such as expanded graphite can be counted.

Mevcut bulus konusu hidrolik sivi karisimi saf parafin (P), grafen ve bor malzemesi bilesenlerini içermektedir. Bulus konusu karisimin agirlikça %5 ile %25 araliginda degisebilen grafen katkisi, karisimin isil iletkenligini oransal olarak arttirmaktadir. Agirlikça %3'e kadar degisebilen bor ilavesiyle ise karisimin grafeni islatma etkisi oransal olarak artmaktadir. Bulusun termo-elemanlarin tepki süresinde sagladigi iyilesmeyi anlamamizi saglayacak olan bir deney üzerinden devam edersek bulus konusu yenilik ve sagladigi teknik avantajlar daha iyi anlasilacaktir. Her biri birbirinden farkli hidrolik sivi veya hidrolik sivi karisimi ihtiva eden özdes termostat tertibatlari özdes havuz kanallari içerisindeki özdes sicaklik degisimlerine maruz birakilmis ve tamamen kapali durumdan tamamen açik duruma kadarki açma süreleri ölçülüp kaydedilmistir. The hydraulic fluid mixture of the present invention consists of pure paraffin (P), graphene and boron material components. contains. Graphene additive, which can vary between 5% and 25% by weight of the mixture, which is the subject of the invention, increases the thermal conductivity of the mixture proportionally. Boron, which can vary up to 3% by weight With the addition of the mixture, the effect of wetting the graphene increases proportionally. Invention of thermo-elements Continuing through an experiment that will allow us to understand the improvement in reaction time If we do this, the innovation that is the subject of the invention and the technical advantages it provides will be better understood. Each one Identical thermostat assemblies containing different hydraulic fluids or hydraulic fluid mixtures Exposed to identical temperature changes in identical pool channels and completely closed The opening times from state to fully open were measured and recorded.

Açilma Orani B C P G 1,596 2 s 5 s 8 s 4 5 Yukaridaki tablo verilerinden de anlasildigi gibi deney 4 farkli hidrolik sivi için tekrarlanmis ve bunlarin içlerinde bulunduklari termostat tertibatlarinin tepki sürelerine olan etkileri gözlemlenmistir. Opening Ratio B C P G 1,596 2 h 5 h 8 h 4 5 As can be seen from the above table data, the experiment was repeated for 4 different hydraulic fluids and The effects of these on the reaction times of the thermostat assemblies in which they are located have been observed.

Içerisinde yalnizca saf parafin (P) (katki maddesi olmayan) içeren termostat tertibatinin sicaklik degisimi karsisinda gösterdigi tepkiler (açilma orani-zaman) referans olarak alinmis ve saf parafin (P) içerisine çesitli oranlarda farkli maddeler (bakir tozu, grafen, bor) eklenerek elde edilen 3 hidrolik sivi karisiminin içlerinde bulunduklari termostat tertibatlarinin tepki sürelerinde nasil bir iyilestirme sagladiklari gösterilmistir. The temperature of the thermostat assembly containing only pure paraffin (P) (without additives) The reaction (opening rate-time) to the change of the paraffin was taken as a reference and pure paraffin wax was used as a reference. 3 obtained by adding different substances (copper powder, graphene, boron) into (P) in various proportions. How does the hydraulic fluid mixture affect the response times of the thermostat assemblies in which they are located? have been shown to provide improvement.

Karisim oranlari (agirlikça - by weight) asagidaki gibidir; Saf parafin (P) = Referans Hidrolik Sivi Bakir tozu karisimi (C) = Bakir (%50) + Saf parafin (%50) Grafen karisimi (G) = Grafen (%19) + Saf parafin (%81) Bor + grafen karisimi (B) = Bor (%1) + grafen (%19) + Saf parafin (%80) Tablo verilerinden de anlasildigi gibi içerisinde saf parafin (P) bulunan termostat tertibati sicaklik degisimi karsisinda oldukça geç tepki vermektedir. Bunun sebebi parafinin isil iletkenlik katsayisinin çok düsük olmasidir. Saf parafin (P) içeren termostat tertibati 80'inci saniyede %50, parafin (P) içeren termostat tertibati için elde edilen açilma orani-zaman degerleri referans degerler olarak kullanilacaklari için söz konusu diger 3 hidrolik sivi karisiminin içlerinde bulunduklari termostat tertibatlarina sagladiklari tepki süresindeki iyilesmeyi degerlendirmemizde ve mukayese etmemizde belirleyici ve faydali olacaklardir. Mixing ratios (by weight - by weight) are as follows; Pure paraffin (P) = Reference Hydraulic Fluid Copper powder mix (C) = Copper (50%) + Pure paraffin (50%) Graphene mixture (G) = Graphene (19%) + Pure paraffin (81%) Boron + graphene mixture (B) = Boron (1%) + graphene (19%) + Pure paraffin (80%) As can be seen from the table data, the thermostat assembly with pure paraffin (P) reacts quite late to the change. The reason for this is the thermal conductivity of paraffin. coefficient is very low. Thermostat assembly containing pure paraffin (P) 50% in the 80th second, The opening rate-time values obtained for the thermostat assembly containing paraffin (P) are reference values the other 3 hydraulic liquid mixtures in question, as they will be used as In our evaluation and comparison of the improvement in response time they provide to the thermostat assemblies They will be decisive and beneficial for us.

Saf parafin (P) içerisine agirlikça %50 oraninda bakir tozu eklenmesiyle elde edilen bakir tozu karisimi (C) içeren termostat tertibati ise içerisinde yalnizca saf parafin (P) içeren termostat tertibatina göre sicaklik degisimine daha hizli tepki vermektedir. Bunun sebebi isil iletkenlik katsayisi düsük olan saf parafinin (P) içerisine bakir tozu eklenmesiyle isil iletkenlik katsayisinin arttirilmis olmasi böylece içerisinde bulundugu termostat tertibatlarinin sicaklik degisimi karsisinda daha hizli tepki vermesini saglamasidir. Saf parafin (P) içerisine agirlikça %50 oraninda bakir tozu eklenmesiyle elde edilen bakir tozu karisimi (C) içeren termostat tertibati 48'inci saniyede %50, ulasmaktadir. Copper powder obtained by adding 50% by weight of copper powder into pure paraffin (P) The thermostat assembly containing the mixture (C) is the thermostat containing only pure paraffin (P). It responds more quickly to temperature changes compared to its device. This is because of the thermal conductivity By adding copper powder into pure paraffin (P), which has a low coefficient, the thermal conductivity coefficient can be increased. has been increased, so that the thermostat assemblies in which it is located are protected against temperature changes. it allows it to react more quickly. 50% by weight copper powder into pure paraffin (P) The thermostat assembly containing the copper powder mixture (C) obtained by adding 50% in the 48th second, is reaching.

Saf parafin (P) içerisine agirlikça %19 oraninda grafen eklenmesiyle elde edilen grafen karisimi (G) içeren termostat tertibati ise içerisinde yalnizca saf parafin (P) içeren termostat tertibatina ve bakir tozu karisimi (C) içeren termostat tertibatina göre sicaklik degisimi karsisinda daha kisa sürede tepki vermektedir. Bunun sebebi grafenin isil iletkenlik katsayisinin bakir tozuna göre katbekat fazla olmasi sayesinde grafen karisimi (G) içerisindeki isil iletimin daha hizli gerçeklesmesidir. Saf parafin (P) içerisine agirlikça %19 oraninda grafen eklenmesiyle elde edilen grafen karisimi (G) 188'inci saniyede %100 açiklik degerine ulasmaktadir. Görüldügü gibi grafen karisimi (G) içeren termostat tertibati, içerisinde saf parafin (P) veya bakir tozu karisimi (C) içeren termostat tertibatlarina göre sicaklik degisimi karsisinda daha hizli tepki vermektedir. Graphene mixture (G) obtained by adding 19% by weight graphene into pure paraffin (P) Thermostat assembly containing only pure paraffin (P) and a copper-free thermostat assembly. Compared to the thermostat assembly containing dust mixture (C), it takes a shorter time against temperature change. it reacts. The reason for this is that the thermal conductivity coefficient of graphene is many times higher than that of copper powder. This is due to the fact that the thermal transmission in the graphene mixture (G) is faster. Pure Graphene mixture (G) obtained by adding 19% by weight graphene into paraffin (P) It reaches 100% aperture value in 188th second. As can be seen, the graphene mixture (G) contains thermostat assembly, thermostat containing pure paraffin (P) or copper powder mixture (C) It responds more quickly to temperature changes compared to its devices.

Bulus konusu karisimin tercih edilen bir oraninda, saf parafin (P) içerisine agirlikça %19 oraninda grafen ve agirlikça %1 oraninda bor malzemeleri eklenmesiyle elde edilen bor + grafen karisimi (B) içeren termostat tertibati saf parafin (P), bakir tozu karisimi (C) veya grafen karisimi (G) içeren termostat tertibatlarina göre sicaklik degisimi karsisinda daha hizli tepki vermektedir. Saf parafin (P) içerisine %19 oraninda grafen ve %1 oraninda bor eklenmesiyle elde edilen bor + grafen saniyede %96 ve 142nci saniyede %100 açiklik degerine ulasmaktadir. Buradan da anlasildigi gibi parafin içerisine grafenin yani sira bor eklenerek hazirlanan hidrolik karisimi ihtiva eden termostat tertibatinin sicaklik degisimi karsindaki tepki süresi içerisinde saf parafin (P), bakir tozu karisimi (C) veya grafen karisimi (G) içeren termostat tertibatlarina kiyasla çok daha kisadir. Özdes havuz kanallari içerisindeki özdes sicaklik degisimlerine maruz birakilan ve her biri bahsedilen 4 hidrolik sividan birini ihtiva eden termostatlarin yüzdelik açilma-zaman grafikleri sekil 1'de verilmistir. Grafik verilerinden de anlasildigi gibi sicaklik degisimi karsisinda her biri 3 hidrolik sivi karisimindan birini içeren termostat tertibatlarinin hepsi, tepki süresi referans deger olarak kullanilan saf parafin (P) içeren termostat tertibatina göre daha erken tepkiler vermektedir. Kisaca saf parafinin (P) düsük olan isil iletkenlik katsayisi içerisinde bulundugu termostat tertibatinin deney havuzundaki (gerçekte de motor kanallarindaki sogutucunun) sicaklik degisimini geç algilamasina ve böylece bu degisim karsisinda geç kalinmis bir tepki (açilma) göstermesine neden olmaktadir. In a preferred proportion of the inventive mixture, 19% by weight into pure paraffin (P) Boron + graphene mixture obtained by adding graphene and 1% by weight boron materials (B) thermostat assembly containing pure paraffin (P), copper powder mixture (C) or graphene mixture (G) It responds more quickly to temperature changes than thermostats. pure paraffin Boron + graphene obtained by adding 19% graphene and 1% boron into (P) It reaches the opening value of 96% per second and 100% at 142 seconds. As can be seen here Thermostat containing a hydraulic mixture prepared by adding boron as well as graphene into paraffin. pure paraffin (P), copper powder mixture (C) during the reaction time of the device against the temperature change. It is much shorter compared to thermostat assemblies containing a mixture of graphene (G) or graphene. exposed to identical temperature changes within identical pool channels and each percentage opening-time graphs of thermostats containing one of the mentioned 4 hydraulic fluids. It is given in 1. As can be seen from the graphic data, each of 3 hydraulic All thermostat assemblies containing one of the liquid mixtures, with the response time as the reference value. It reacts earlier than the thermostat assembly that contains pure paraffin (P) used. Briefly Experimentation of the thermostat assembly in which pure paraffin (P) has a low thermal conductivity coefficient. late detection of the temperature change in the pool (actually the cooler in the motor channels) and thus it causes a delayed reaction (opening) against this change.

Deneyde öncelikle saf parafin (P) içeren termostat tertibatiyla ölçümler yapilmis ve diger hidrolik sivi karisimlarini içeren termostat tertibatlarinin sicaklik degisimi karsisinda verecekleri tepkilerin degerlendirilmesinde referans olarak kullanilmak üzere sicaklik degisimi karsisinda gösterdigi yüzdelik açilma degerleri zaman bazinda kayit altina alinmistir. Daha sonra ayni deneyler bahsedilen saf parafinin (P) %50 oraninda bakir tozuyla karismasi sonucu olusturdugu hidrolik sivi karisimini (bilinen teknikte sikça kullanilan hidrolik sivi karisimi) ihtiva eden özdes termostat tertibatiyla da denenmis ve saf parafin (P) ihtiva eden termostat tertibatina kiyasla tepki sürelerinde iyilesmeler gözlenmistir. Bunun nedeni bakir tozunun isil iletkenlik katsayisinin saf parafine (P) göre oldukça yüksek olmasidir. Böylece saf parafin (P) içerisine %50 oraninda bakir tozu eklenmesiyle elde edilen hidrolik sivi karisiminin (bakir tozu karisimi (C)) da saf parafine (P) kiyasla isil iletkenlik katsayisi oldukça yüksek olmaktadir. Ayni deneyler bahsedilen saf parafinin (P) %19 oraninda grafen ile karismasi sonucu olusturdugu hidrolik sivi karisimini ihtiva eden termostat tertibatiyla da tekrarlanmis ve içerisinde bakir tozu karisimi (C) ihtiva eden termostat tertibatina kiyasla tepki süresinde büyük iyilesme gözlenmistir. Bunun sebebi ise grafenin isil iletkenlik katsayisinin bakir tozuna göre katbekat yüksek olmasidir. Böylece saf parafin (P) içerisine bakir tozu karisimina (C) kiyasla isil iletkenlik katsayilari oldukça yüksek olmaktadir. Ayni deneyler bahsedilen saf parafinin (P) %1 oraninda bor ve %19 oraninda grafen ile karismasi sonucu olusturdugu hidrolik sivi karisimini ihtiva eden termostat tertibatiyla da tekrarlanmis ve içerisinde grafen karisimi (G) ihtiva eden termostat tertibatina kiyasla tepki süresinde daha büyük iyilesme gözlenmistir. Bunun sebebi ise borun islatma etkisidir. lslatma etkisi sayesinde parafin içerisine karistirilan bor, karisimin grafeni yeterince islatmasini saglayarak daha homojen karisim elde edilmesine olanak vermektedir. Böylece saf parafin (P) içerisine %1 oraninda bor ve %19 oraninda grafen eklenmesiyle elde edilen hidrolik sivi karisiminin (bor + grafen karisimi (B)) içerisinde grafen daha homojen bir dagilim gösterdigi için elde edilen karisimin isil iletkenlik katsayisi grafen karisimina (G) göre oldukça yüksek olmaktadir. Ayrica grafen ve borun beraber kullanilmasi sayesinde teknigin bilinen durumlarindaki karisimlara kiyasla daha homojen bir karisim elde edildigi için termo-elemanlarin tepki süresinde saglanan iyilesmenin termostat tertibatinin uzun kullanimlari boyunca degismeden sürdürülmesi saglanmaktadir. Deney sonucu elde edilen grafik verilerinden de anlasildigi gibi sicaklik degisimi karsisinda içinde bulundugu termostat tertibatinin en kisa sürede tepki vermesini saglayarak %100 açiklik degerine ulasmasini saglayan karisim mevcut bulus konusu bor + grafen karisimi (B)'dir. In the experiment, firstly, measurements were made with a thermostat device containing pure paraffin (P) and other hydraulic of the reactions of thermostat assemblies containing liquid mixtures to temperature changes. to be used as a reference in the evaluation of Percentage opening values are recorded on a time basis. Later same experiments hydraulic liquid formed as a result of mixing the said pure paraffin (P) with 50% copper powder. identical thermostat containing in reaction times compared to the thermostat assembly, which has been tried with a pure paraffin (P) improvements have been observed. The reason for this is that the thermal conductivity coefficient of copper powder is compared to pure paraffin (P). relatively high. Thus, 50% copper powder into pure paraffin (P) The hydraulic liquid mixture (copper powder mixture (C)) obtained by adding the pure paraffin (P) The thermal conductivity coefficient is quite high compared to The same experiments were carried out on the pure paraffin mentioned. (P) It contains 19% hydraulic fluid mixture formed as a result of mixing with graphene. The thermostat, which was repeated with the thermostat assembly and contains a mixture of copper dust (C), Great improvement in response time compared to the device was observed. The reason for this is that graphene Its conductivity coefficient is much higher than that of copper powder. Thus, in pure paraffin (P) The thermal conductivity coefficients are quite high compared to the copper powder mixture (C). In-kind experiments as a result of mixing of said pure paraffin (P) with 1% boron and 19% graphene. It was repeated with the thermostat assembly containing the hydraulic liquid mixture it formed and inside Greater improvement in response time compared to thermostat assembly containing graphene blend (G) has been observed. The reason for this is the wetting effect of boron. Thanks to its wetting effect, it is embedded in paraffin. The mixed boron allows the mixture to sufficiently wet the graphene, resulting in a more homogeneous mixture. allows for. Thus, 1% boron and 19% are mixed into pure paraffin (P). Graphene in the hydraulic fluid mixture (boron + graphene mixture (B)) obtained by adding graphene Since it shows a more homogeneous distribution, the thermal conductivity coefficient of the mixture obtained is graphene. It is quite high compared to the mixture (G). Also, using graphene and boron together Thanks to this, a more homogeneous mixture is obtained compared to the mixtures in the known state of the art. long uses of the thermostat assembly, the improvement in the response time of the thermo-elements for It is ensured that it is maintained unchanged throughout. From the graphic data obtained as a result of the experiment As it is understood, the shortest time of the thermostat assembly, which it is in, against temperature changes. There is a mixture that allows it to react in a short time and reach the opening value of 100%. The subject of the invention is boron + graphene mixture (B).

Saf parafin (P) içeren termostat tertibatinin %50, %90, %96 ve %100 açiklik degerlerine ulasma süre degerleri referans degerler kabul ederek geriye kalan 3 hidrolik sivi karisiminin içlerinde bulunduklari termostat tertibatlarina sagladigi iyilesme oranlarinin karsilastirildigi tablo asagida verilmistir. Reaching 50%, 90%, 96% and 100% opening values of the thermostat assembly containing pure paraffin (P) time values are accepted as reference values and the remaining 3 hydraulic fluid mixtures are in The table below is a comparison of the improvement rates provided to the thermostat assemblies in which they are located. given.

Açilma Orani B C P G 51 16 Ref 35 iyilesme Orani (%) i 66 25 Ref 50 iyilesme Orani (%) l 67 32 Ref 55 iyilesme Orani (%) l 65 38 Ref 58 iyilesme Orani (%) i Tablo verilerinden de anlasildigi gibi saf parafin (P) içeren termostat tertibatinin sicaklik degisimi karsisinda tamamen açik pozisyona geçme süresi referans alindigi taktirde içerisinde sirasiyla içlerinde bakir tozu karisimi (C), grafen karisimi (G) ve bor + grafen karisimini (B) içeren özdes termostat tertibatlarinin havuzlardaki özdes sicaklik degisimi karsisinda tamamen açik pozisyona geçme sürelerinde saglanan iyilesme %16, %35 ve %51'dir. Görüldügü gibi tepki süresinde saglanan en büyük iyilesme %51 ile içerisinde mevcut bulus konusu hidrolik sivi karisimi olan bor + grafen karisimini (B) ihtiva eden termostat tertibatina aittir. Opening Ratio B C P G 51 16 Ref 35 Healing Rate (%) i 66 25 Ref 50 Recovery Rate (%) l 67 32 Ref 55 Recovery Rate (%) l 65 38 Ref 58 Recovery Rate (%) i As can be seen from the table data, the temperature change of the thermostat assembly containing pure paraffin (P) If the time to switch to the fully open position is taken as a reference, Identical, containing a mixture of copper powder (C), a mixture of graphene (G), and a mixture of boron + graphene (B) the thermostat assemblies in the fully open position against the same temperature change in the pools. The improvement in the transition times is 16%, 35% and 51%. As you can see, in response time The greatest improvement achieved was 51%, with boron + It belongs to the thermostat assembly containing the graphene mixture (B).

Claims (1)

ISTEMLER Mevcut bulus, saf parafin (P) içeren, içerisinde kullanildigi termo-elemanlarin tepki süresinde iyilesme saglamasinin yani sira homojene yakin bir dagilim göstererek ayrisma riskini oldukça azaltan böylece bahsedilen tepki süresindeki iyilesmenin termo-elemanlarin uzun kullanimlari boyunca degismeden sürdürülmesine olanak veren bir hidrolik sivi karisimiyla ilgili olup, özelligi; bahsedilen parafinin isil iletkenlik katsayisini arttirmak böylece içerisinde kullanildiklari termo-elemanlarin tepki süresindeki iyilesmeyi saglamak üzere; içerisinde, isil iletkenlik katsayisi bilinen teknikte ayni amaçla kullanilan diger maddelere kiyasla oldukça yüksek olan grafen malzemesini içermesiyle karakterize edilmesidir. Istem 1 e göre bir hidrolik sivi karisimi olup, özelligi; içerisinde agirlikça %5 ile %25 orani araliginda grafen içermesiyle karakterize edilmesidir. Istem 1 veya 2 ye göre bir hidrolik sivi karisimi olup, özelligi; tercih edilen bir karisim oraninda, içerisinde agirlikça %19 oraninda grafen içermesiyle karakterize edilmesidir. Istem 1, 2 ve 3 e göre bir hidrolik sivi karisimi olup, özelligi; bor maddesinin parafin içerisindeki islatma (wetting) etkisinden faydalanarak karisimin grafeni yeterince islatmasini ve böylece homojen bir dagilim olusturarak karisimin daha uzun ömürlü olmasini saglayarak ayrisma riskini azaltmak üzere içerisinde bor malzemesi içermesiyle karakterize edilmesidir. Istem 4 e göre bir hidrolik sivi karisimi olup, özelligi; içerisinde agirlikça %3 oranina kadar bor içermesiyle karakterize edilmesidir. Istem 5 e göre bir hidrolik sivi karisimi olup, özelligi; tercih edilen bir karisim oraninda, içerisinde agirlikça %1 oraninda bor içermesiyle karakterize edilmesidir. Önceki istemlerden herhangi birine göre bir hidrolik sivi karisimi olup, özelligi; tercih edilen bir karisim oraninda, içerisinde agirlikça %1 oraninda bor ve %19 oraninda grafen malzemesi içermesiyle karakterize edilmesidir. Önceki istemlerden herhangi birine göre bir hidrolik sivi karisimi olup, özelligi; içerisine eklenen grafen ve/veya bor malzemelerinin parafin ile homojen dagilim göstermesini saglamak üzere eklenen malzemelerden grafenin nano ölçekte olmasi ve borun islatma özelligine uygun fiziksel ve kimyasal özellikleri ihtiva eden malzemelerden seçilmesidir.CLIENTS The present invention is a hydraulic fluid mixture containing pure paraffin (P), which provides an improvement in the response time of the thermo-elements in which it is used, as well as reduces the risk of decomposition by showing a close homogeneous distribution, thus allowing the improvement in the said reaction time to be maintained unchanged throughout the long use of the thermo-elements. is related, its feature is; to increase the thermal conductivity coefficient of said paraffin and thus to improve the response time of the thermo-elements in which they are used; It is characterized by the fact that it contains graphene material, the thermal conductivity coefficient of which is quite high compared to other materials used for the same purpose in the known art. It is a hydraulic liquid mixture according to claim 1, its feature is; It is characterized by the fact that it contains graphene in the range of 5% to 25% by weight. It is a hydraulic liquid mixture according to claim 1 or 2, its feature is; It is characterized by the fact that it contains 19% by weight graphene in a preferred mixing ratio. It is a hydraulic liquid mixture according to claims 1, 2 and 3, and its feature is; It is characterized by the fact that the boron material contains boron material in order to reduce the risk of decomposition by making the mixture wet the graphene sufficiently by taking advantage of the wetting effect in the paraffin, thus creating a homogeneous distribution and providing a longer life of the mixture. It is a hydraulic liquid mixture according to claim 4, its feature is; It is characterized by containing boron up to 3% by weight. It is a hydraulic liquid mixture according to claim 5, its feature is; It is characterized by containing 1% by weight boron in a preferred mixture ratio. It is a hydraulic fluid mixture according to any one of the previous claims and its feature is; It is characterized by the fact that it contains 1% by weight boron and 19% graphene material in a preferred mixing ratio. It is a hydraulic fluid mixture according to any one of the previous claims and its feature is; In order to ensure that the graphene and/or boron materials added into it show a homogeneous distribution with paraffin, the graphene is nano-scale and it is selected from materials that contain physical and chemical properties suitable for the wetting property of boron.
TR2018/00657A 2018-01-17 2018-01-17 A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING TR201800657A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2018/00657A TR201800657A2 (en) 2018-01-17 2018-01-17 A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING
PCT/TR2019/050002 WO2019240702A2 (en) 2018-01-17 2019-01-02 A hydraulic fluid mixture which provides improvement in reaction time of thermo-elements and allows this improvement to be sustainable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2018/00657A TR201800657A2 (en) 2018-01-17 2018-01-17 A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING

Publications (1)

Publication Number Publication Date
TR201800657A2 true TR201800657A2 (en) 2019-07-22

Family

ID=67900743

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2018/00657A TR201800657A2 (en) 2018-01-17 2018-01-17 A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING

Country Status (2)

Country Link
TR (1) TR201800657A2 (en)
WO (1) WO2019240702A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661842B (en) * 2020-05-15 2021-10-22 西安交通大学 Operation method for transferring graphene
CN112029561A (en) * 2020-07-18 2020-12-04 江苏捷达油品有限公司 Modified graphene-based water-based flame-retardant hydraulic oil
CN113845779A (en) * 2021-09-18 2021-12-28 瑞安市万泰汽车电器有限公司 Composite temperature-sensing wax used in temperature-sensing element of electronic thermostat and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434064A (en) * 1981-05-04 1984-02-28 Atlantic Richfield Company Graphite dispersion
US7348298B2 (en) * 2002-05-30 2008-03-25 Ashland Licensing And Intellectual Property, Llc Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
US8222190B2 (en) * 2009-08-19 2012-07-17 Nanotek Instruments, Inc. Nano graphene-modified lubricant

Also Published As

Publication number Publication date
WO2019240702A3 (en) 2020-03-12
WO2019240702A2 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
Zhao et al. Recent advances in liquid‐like thermoelectric materials
TR201800657A2 (en) A HYDRAULIC LIQUID MIXTURE THAT PROVIDES IMPROVEMENT IN RESPONSE TIME OF THERMAL ELEMENTS AND ENSURES SUSTAINABILITY OF HEALING
Choo et al. Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation
Kappagantula et al. Experimentally measured thermal transport properties of aluminum–polytetrafluoroethylene nanocomposites with graphene and carbon nanotube additives
Gunes et al. Effect of grain size and porosity on phonon scattering enhancement of Ca3Co4O9
Finefrock et al. Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires
Wang et al. Reduce the sensitivity of CL-20 by improving thermal conductivity through carbon nanomaterials
Karagoz et al. Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys
Bhatt et al. Effect of size on the elastic and thermodynamic properties of nanomaterials
Clark et al. 3D processing and characterization of acrylonitrile butadiene styrene (ABS) energetic thin films
Han et al. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride
Tian et al. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers
Zhang et al. Thermoelectric properties of ultralong silver telluride hollow nanofibers
Pattnaik et al. Impact of chemical reaction on micropolar fluid past a stretching sheet
Song et al. Low-temperature sintering and enhanced thermoelectric properties of LaCoO3 ceramics with B2O3–CuO addition
Chen et al. A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material
Rajeshwari et al. Finite element modelling and experimental investigation on effective thermal conductivity of AlN (nano) particles reinforced HDPE polymer nanocomposites
Romano et al. Thermal anisotropy enhanced by phonon size effects in nanoporous materials
Mishra et al. Thermal conductivity of nanofluids-A comprehensive review
Zhu et al. Si wire supported MnO2/Al/fluorocarbon 3D core/shell nanoenergetic arrays with long-term storage stability
Lin et al. Construction and thermal properties of nano-structured polymer bonded explosives with graphene
Islam et al. Shape stable composite phase change material with improved thermal conductivity for electrical-to-thermal energy conversion and storage
Smith et al. Thermal and combustion properties of energetic thin films with carbon nanotubes
Parashar Electrical behaviour of discontinuous silver films deposited on compatible Polystyrene/Poly (2-vinylpyridine) composite
Zhang et al. Improvement of thermal stability of antimony film by cerium addition for phase change memory application