SU698657A1 - Method of separating the mechanical mixture of superconducting components - Google Patents

Method of separating the mechanical mixture of superconducting components

Info

Publication number
SU698657A1
SU698657A1 SU782616220A SU2616220A SU698657A1 SU 698657 A1 SU698657 A1 SU 698657A1 SU 782616220 A SU782616220 A SU 782616220A SU 2616220 A SU2616220 A SU 2616220A SU 698657 A1 SU698657 A1 SU 698657A1
Authority
SU
USSR - Soviet Union
Prior art keywords
mixture
superconducting
magnetic field
separating
components
Prior art date
Application number
SU782616220A
Other languages
Russian (ru)
Inventor
Игорь Анатольевич Домашнев
Елена Петровна Сапегина
Владимир Николаевич Троицкий
Original Assignee
Институт новых химических проблем АН СССР
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт новых химических проблем АН СССР filed Critical Институт новых химических проблем АН СССР
Priority to SU782616220A priority Critical patent/SU698657A1/en
Priority to SU782616220A priority patent/SU950442A1/en
Application granted granted Critical
Publication of SU698657A1 publication Critical patent/SU698657A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Claims (1)

Изобретение относитс  к физическим методам разделени  веществ, а именно к технологии разделени  сверхпровод щих материалов. Известен способ разделени  механиче кой смеси сверхпровод щих компонентов, включающий охлаждение смеси до сверхпровод щего состо ни  и воздействи  магнитного пол  l. Недостатком известного способа  вл етс  довольно низка  эффективность при отделении магнитных материалов от сверхпроводников второго рода, так как при переходе их в сверхпровод щее состо ние в магнитном поле происходит замораживание магнитного потока. Кроме того, из-за произвольного характера охлаждени  системы магнит - сверхпровод ник известный способ не позвол ет раздел ть смесь сверхпровод щих компонентов с различной критической температурой . Цель изобретени  - выделение сверхпровод щих компонентов из механической смеси материалов. Это достигаетс  тем, что раздел емую смесь п-1 раз последовательно охлаждают до температуры перехода в сверхпровод щее состо ние компонента, следующего за отдел емым в р ду критических температур от больших к,меньшим, после чего воздействуют магнитным полем. После перехода в сверхпровод щее состо ние отдел емый компонент взаимодействует с магнитным полем и выдел етс  из смеси. При этом интенсивность выделени  его из смеси тем выше, чем вы«ь ше приложенное попе. В пределе - это критическое магнитное поле отдел емого компонента. П р и м е р . Смесь порошков, содержащую 100 мг нитрида титана (Тсв5,2 К), 100 мг нитрида ванади  (,8 К) и 100 мг нитрида ниоби  (ТСВ.15К) помещают в одну из камер двухкамерной разделительной  чейки, 3 охлаждают до температуры 8,8К и воздействуют магнитным полем. Нитрид ниоби , перешедший в сверхпровод щее сос то ние при охлаждении смеси, магнитны полем выталкиваетс  во вторую камеру разделительной  чейки, откуда он в количестве 10О мг удал етс . После сн ти  магнитного пол  оставшуюс  смесь охлаждают до температуры 5,2 К и воздействуют на нее магнитным полем. Нитрид ванади  перемещаетс  в свободную камеру, а в первой камере остаетс  1ОО мг нитрида титана, что свидетельствует о полном разделении трехкомпонентной смеси. Предложенный способ можно испо;1Ь- зовать также дл  разделени  сверхпрово д щих материалов по размеру частиц, а также дл  выделени  сверхпровод щих 7, компонентов из механических смесей, содержащих не сверхпровод щие материалы. Формула изобрете }и  Способ разделени  механической смеси сверхпровод щих компонентов, включающий охлаждение смеси до сверхпровод щего состо ни  и воздействие магнитного пол , отличающийс  тем, что, с целью выделени  п компонентов, смесь п-1 раз последовательно охлаждают до температуры перехода в сверхпровод щее состо ние компонента, следующего за отдел емым в р ду критических температур от больших к меньшим, после чего воздействуют магнитным полем. Источники информации, прин тые во внимание при экспертизе 1. Мендельсон К. Физика низких температур , М., Иностранна  литература, 1969, с. 114-117.The invention relates to physical methods for the separation of substances, namely, to a technology for the separation of superconducting materials. There is a known method of separating a mechanical mixture of superconducting components, which includes cooling the mixture to a superconducting state and a magnetic field l. The disadvantage of the known method is rather low efficiency when separating magnetic materials from second type superconductors, since when they are transferred to the superconducting state in a magnetic field, the magnetic flux freezes. In addition, due to the arbitrary cooling nature of the magnet-superconducting system, a known method does not allow separating a mixture of superconducting components with different critical temperatures. The purpose of the invention is to isolate superconducting components from a mechanical mixture of materials. This is achieved by the fact that the separated mixture is n-1 times successively cooled to the transition temperature to the superconducting state of the component, which follows the separated to a series of critical temperatures from large to lower, and then is affected by a magnetic field. After the transition to the superconducting state, the component to be separated interacts with the magnetic field and is released from the mixture. At the same time, the intensity of its release from the mixture is the higher, the higher the applied pope. In the limit, this is the critical magnetic field of the component being separated. PRI me R. A mixture of powders containing 100 mg of titanium nitride (TCB5.2 K), 100 mg of vanadium nitride (, 8 K) and 100 mg of niobium nitride (TCB.15K) is placed in one of the chambers of a two-chamber separation cell, 3 is cooled to a temperature of 8.8K and are affected by a magnetic field. Niobium nitride, which passed into the superconducting state when the mixture is cooled, is pushed by the magnetic field into the second chamber of the separation cell, from where it is removed in an amount of 10O mg. After removing the magnetic field, the remaining mixture is cooled to a temperature of 5.2 K and exposed to a magnetic field. Vanadium nitride is moved to the free chamber, and 1OO mg of titanium nitride remains in the first chamber, indicating a complete separation of the three-component mixture. The proposed method can also be used for separating superconducting materials by particle size, as well as for separating superconducting 7, components from mechanical mixtures containing non-superconducting materials. The invention formula} and the method for separating a mechanical mixture of superconducting components, including cooling the mixture to a superconducting state and applying a magnetic field, characterized in that, in order to isolate n components, the mixture is successively cooled to the transition temperature to the superconducting state component following the separated in a series of critical temperatures from high to low, and then affected by a magnetic field. Sources of information taken into account in the examination 1. Mendelssohn K. Low Temperature Physics, Moscow, Foreign Literature, 1969, p. 114-117.
SU782616220A 1978-05-16 1978-05-16 Method of separating the mechanical mixture of superconducting components SU698657A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SU782616220A SU698657A1 (en) 1978-05-16 1978-05-16 Method of separating the mechanical mixture of superconducting components
SU782616220A SU950442A1 (en) 1978-05-16 1978-05-16 Method of separating component mechanical mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU782616220A SU698657A1 (en) 1978-05-16 1978-05-16 Method of separating the mechanical mixture of superconducting components

Publications (1)

Publication Number Publication Date
SU698657A1 true SU698657A1 (en) 1979-11-28

Family

ID=20764840

Family Applications (1)

Application Number Title Priority Date Filing Date
SU782616220A SU698657A1 (en) 1978-05-16 1978-05-16 Method of separating the mechanical mixture of superconducting components

Country Status (1)

Country Link
SU (1) SU698657A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330399A (en) * 1980-01-10 1982-05-18 Holec N.V. Magnetic separation method
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
US5182253A (en) * 1987-12-09 1993-01-26 Canon Kabushiki Kaisha Purification apparatus for superconductor fine particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330399A (en) * 1980-01-10 1982-05-18 Holec N.V. Magnetic separation method
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
US5182253A (en) * 1987-12-09 1993-01-26 Canon Kabushiki Kaisha Purification apparatus for superconductor fine particles

Similar Documents

Publication Publication Date Title
Turner et al. Nature of the 6.1-eV band in neutron-irradiated Al 2 O 3 single crystals
SU698657A1 (en) Method of separating the mechanical mixture of superconducting components
Berkley et al. Pressure dependence of the superconducting transition temperature in single crystals of Tl 2 Ba 2 Ca 2 Cu 3 O 10− x
Predel et al. Metastable Crystalline and Amorphous Phases in the Magnesium--Gallium System
Brun et al. Study of the reorientation of impurity-vacancy complexes in KCl containing divalent substitutional ions
Heiniger et al. Bulk superconductivity in dilute hexagonal titanium alloys
JPS5322495A (en) Automatic analyzer
SU950442A1 (en) Method of separating component mechanical mixture
JPS5357393A (en) Reactor observation system of nuclear reactor
Wertheim et al. Bulk and surface phases of NaxC60
JPS5510421A (en) Treating method for waste sulfuric acid containing toluene sulfonic acid derivative
Whitson et al. The isolation of oral structures from Tetrahymena pyriformis by low-speed zonal centrifugation
JPS52143400A (en) Separation method of isotope and device
JPS53149392A (en) Specimen injector of gas chromatograph
Robinson Superconductor Claim Raised to 94 K: A joint effort by researchers at the University of Alabama in Huntsville and the University of Houston yields the first superconductor to operate above liquid nitrogen temperature
Lagouri et al. Positron annihilation studies in high-Tc superconductors RBa2Cu3Oy, R: La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er
Li et al. Preparation of Soft X-Ray Filters
Deville et al. ESR of Gd3+ in Y1− xGdxBa2Cu3O7 powders and single crystals: Results and problems
JPS51149769A (en) Freeze hracture replication method and equipment
SU109972A1 (en) The method of extraction of the Y-isomer of hexachlorocyclohexane from a mixture of isomers
JPS52119386A (en) Detecting method for processedly degenerated layer
Seka et al. Spectroscopic Measurements on Laser‐Produced LiH Plasmas
Shchegoleva et al. On the Question of the Ageing Mechanism of the Alloy Al-Li
Shchegoleva et al. Regarding the Mechanism of Aging in Al-Li Alloys
SU921397A1 (en) Method for channeling energy out of superconductor induction accumulator