SU685718A1 - Method of preparing plating based on tungsten and molybdenum - Google Patents

Method of preparing plating based on tungsten and molybdenum

Info

Publication number
SU685718A1
SU685718A1 SU782568352A SU2568352A SU685718A1 SU 685718 A1 SU685718 A1 SU 685718A1 SU 782568352 A SU782568352 A SU 782568352A SU 2568352 A SU2568352 A SU 2568352A SU 685718 A1 SU685718 A1 SU 685718A1
Authority
SU
USSR - Soviet Union
Prior art keywords
tungsten
molybdenum
plating based
preparing plating
preparing
Prior art date
Application number
SU782568352A
Other languages
Russian (ru)
Inventor
Георгий Александрович Рымашевский
Дмитрий Сергеевич Горный
Виктор Федорович Соловьев
Владимир Константинович Соколов
Владимир Яковлевич Папугин
Леонид Сергеевич Косачев
Владимир Васильевич Косухин
Владимир Иванович Столяров
Original Assignee
Предприятие П/Я А-1857
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я А-1857 filed Critical Предприятие П/Я А-1857
Priority to SU782568352A priority Critical patent/SU685718A1/en
Application granted granted Critical
Publication of SU685718A1 publication Critical patent/SU685718A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Description

3 бочей температуре 2000С снижаетс  до 9 кг/мм, что близко к пределу прочности столбчатого вольфрама 7 кг/мм. Целью изобретени   вл етс  повышение жаропрочности получаемых покры тий. Цель достигаетс  тем, что в газообразную смесь дополнительно ввод т 5-25 мол. % четыреххлористого циркони  и процесс ведут при 1100-1бОО С, Предложенный способ обеспечи вает благопри тные термодинамические услови  дл  образовани  и равномерного распределени  в структуре осаж даемого металла частиц карбида цирк ни , которые более дисперсны, чем частицы карбида вольфрама, и более УСТОЙЧИВЫ к высокотемпературному воздействию. В результате предел прочности, например, дл  вольфрама повьвааетс  по Сравнению с известным способом в 2,5-3,0 раза при рабочей температуре и в 1,5-2,0 раза при 2000 С. Максимальна  температура , при которой сохран етс  эффект упрочнени , равна дл  предложенного способа . 8 Снижение температуры осаждени  ниже способствует образованию нар ду с карбидом циркони  значительных количеств карбида вольфрама; увеличение температуры выше сопровозкдаетс  разложением четыреххлористого циркони  в объеме. В обоих случа х ухудшаетс  качество получаемых покрытий. Давление в системе не играет существенной роли и может измен тьс  в широком интервале (1-760 мм.рт.ст.). Пример. Молибденовую трубку размере 4x0,5 мм помещают в реакционную камеру и нагревают пр мым пропусканием электрического тока. Через реакционную камеру пропускгиот газообразную смесь фторкда вольфрама или молибдена, четыреххлористого циркони , метана и водорода. После охлаждени  сло  толщиной 1,0-1,5 мм подложку с осалсденным покрытием разрезают на заготовки, удал ют подложку и полученные образцы испытывают на прочность при различных температурах. Услови  проведени  процесса и результаты испытаний представлены в таблице.The 3 barrel temperature of 2000 ° C is reduced to 9 kg / mm, which is close to the ultimate strength of the columnar tungsten 7 kg / mm. The aim of the invention is to increase the heat resistance of the coatings obtained. The goal is achieved by the addition of 5-25 mol% to the gaseous mixture. The process is carried out at 1100-1 BOO C, the proposed method provides favorable thermodynamic conditions for the formation and uniform distribution in the structure of the deposited metal of zirconium carbide particles that are more dispersed than the particles of tungsten carbide and more resistant to high temperature effects . As a result, the tensile strength, for example, for tungsten is twisted by a factor of 2.5-3.0 compared with a known method 2.5-3.0 times at an operating temperature and 1.5-2.0 times at 2000 C. The maximum temperature at which the strengthening effect is maintained , equal to the proposed method. 8 Lowering the precipitation temperature below contributes to the formation of significant amounts of tungsten carbide along with zirconium carbide; an increase in temperature above accompanying the decomposition of zirconium tetrachloride in bulk In both cases, the quality of the coatings is deteriorated. The pressure in the system does not play a significant role and can vary over a wide range (1-760 mm Hg). Example. A 4x0.5 mm molybdenum tube is placed in the reaction chamber and heated by direct passing an electric current. Through the reaction chamber passes a gaseous mixture of fluoride tungsten or molybdenum, zirconium tetrachloride, methane and hydrogen. After cooling the layer with a thickness of 1.0-1.5 mm, the substrate with the ossified coating is cut into blanks, the substrate is removed, and the samples obtained are tested for strength at various temperatures. The process conditions and test results are presented in the table.

SU782568352A 1978-01-10 1978-01-10 Method of preparing plating based on tungsten and molybdenum SU685718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU782568352A SU685718A1 (en) 1978-01-10 1978-01-10 Method of preparing plating based on tungsten and molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU782568352A SU685718A1 (en) 1978-01-10 1978-01-10 Method of preparing plating based on tungsten and molybdenum

Publications (1)

Publication Number Publication Date
SU685718A1 true SU685718A1 (en) 1979-09-15

Family

ID=20743967

Family Applications (1)

Application Number Title Priority Date Filing Date
SU782568352A SU685718A1 (en) 1978-01-10 1978-01-10 Method of preparing plating based on tungsten and molybdenum

Country Status (1)

Country Link
SU (1) SU685718A1 (en)

Similar Documents

Publication Publication Date Title
CA1043190A (en) Protective films
DE3841731C1 (en) Process for coating a tool base, and tool produced by this process
EP0084567B1 (en) High hardness material
JPS60169554A (en) Tough, antifrictive and anticorrosive coating and manufacture
US2972550A (en) Flame plating using detonation reactants
EP0326658A1 (en) Wear-resistant coating
US4654263A (en) Polymer composition
EP0222241A1 (en) Deposition of titanium aluminides
US4598024A (en) Dispersion toughened ceramic composites and method for making same
US5169515A (en) Process and article
SU685718A1 (en) Method of preparing plating based on tungsten and molybdenum
Miyake et al. Chemical vapor deposition of niobium on graphite
NO852254L (en) CORROSION RESISTANT ALLOY AND USE THEREOF.
JPS59152299A (en) Gas-phase production of carbon fiber
DE4438625C2 (en) Conversion coatings on ceramics and their use
US4289801A (en) Method for producing fine grained pyrolytic silicon nitride
US3851048A (en) Method for producing isotropic pyrolytic carbon
US5041305A (en) Process for depositing a silicon carbide coating on a filament
JPH0135061B2 (en)
SU1175906A1 (en) Method of producing carbon coating
US5376458A (en) Structural alloy with a protective coating containing silicon or silicon-oxide
SU618450A1 (en) Method of depositing aluminium nitride
Salvetti et al. Pyrolysis of a polysilazane precursor to SiCN ceramics
GB2109009A (en) Application of wear-resistant titanium carbide coatings to sintered hard alloys
JPH02228475A (en) Production of silicon carbide film