SU370499A1 - METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION - Google Patents

METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION

Info

Publication number
SU370499A1
SU370499A1 SU1612455A SU1612455A SU370499A1 SU 370499 A1 SU370499 A1 SU 370499A1 SU 1612455 A SU1612455 A SU 1612455A SU 1612455 A SU1612455 A SU 1612455A SU 370499 A1 SU370499 A1 SU 370499A1
Authority
SU
USSR - Soviet Union
Prior art keywords
deformation
metals
dynamic resistance
determining dynamic
holder
Prior art date
Application number
SU1612455A
Other languages
Russian (ru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1612455A priority Critical patent/SU370499A1/en
Application granted granted Critical
Publication of SU370499A1 publication Critical patent/SU370499A1/en

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

1one

Изобретение относитс  к области механических испытаний металлов.This invention relates to the field of mechanical testing of metals.

Известны способы определени  динамического сопротивлени  металлов деформированию , заключающиес  в том, что испытуемый образец подвергают динамическому нагружению и определ ют его деформацию, по которой суд т о динамическом сопротивлении материала .Methods are known for determining the dynamic resistance of metals to deformation, which consists in subjecting the test sample to dynamic loading and determining its deformation, according to which the dynamic resistance of the material is judged.

Недостатком известных способов  вл етс  низка  точность определени  динамического сопротивлени  металлов деформированию при повышении скорости нагружени .A disadvantage of the known methods is the low accuracy of the determination of the dynamic resistance of metals to deformation with an increase in the loading rate.

Предлагаемый способ отличаетс  тем, что дл  повышени  точности используют кольцевой образец, который размещают с зазором в жесткой обойме, воздействуют на образец равномерно распределенной радиальной динамической нагрузкой, достаточной дл  обеспечени  соударени  его с внутренней поверхностью обоймы, и измер ют диаметр образца после соударени , по которому определ ют его деформацию .The proposed method is characterized in that, in order to increase accuracy, an annular sample is used, which is placed with a gap in a rigid holder, the sample is subjected to a uniformly distributed radial dynamic load sufficient to ensure its impact with the inner surface of the holder, determine its deformation.

Кольцевую заготовку определенного днаметра под действием равномерно распределенного по ее поверхности импульса давлени  деформируют в кольцевую обойму. После удара об обойму заготовка измен ет свой диаметр на величину Дй /упр. (1), где /упр.-The annular billet of a certain dnmeter is deformed into an annular clip by a pressure pulse uniformly distributed over its surface. After hitting the holder, the workpiece changes its diameter by the value of Dy / Ex. (1) where / Cope.-

относительна  величина пружинени , м -relative springback, m -

внутренний диаметр обоймы. На основании закона Гука дл  одноосногоinner diameter of the clip. Based on Hooke's law for uniaxial

(2), где(2) where

g напр женного состо ни  iynpg tense iynp

Ог - истинное сопротивление деформированию , Е - модуль упругости первого рода.Og - the true resistance to deformation, E - the modulus of elasticity of the first kind.

Замер   AD и вычисл   по формуле (1) пр., по формуле (2) вычисл етс  с,-.Measurement AD and calculated by the formula (1) etc., by the formula (2) is calculated with, -.

Измен   степень деформации заготовки и вычисл   величину ее упругой деформации после удара об обойму, можно определить дл  каждой степени деформации а и построить диаграмму . дл  заданной скорости соударени  заготовки и обоймы. Равномерно распределенный импульс давлени  может быть создан высоковольтным электрогидравлическим разр дом с помощью шнурового зар да взрывчатого вещества и другими способами .Changing the degree of deformation of the workpiece and calculating the value of its elastic deformation after hitting the holder, you can determine for each degree of deformation a and build a diagram. for a given speed of the collision of the workpiece and the yoke. A uniformly distributed pressure pulse can be generated by high voltage electrohydraulic discharge using cord explosive charge and other means.

Степень деформации измен етс  за счет изменени  внутреннего диаметра обоймы.The degree of deformation varies by changing the inner diameter of the clip.

Величину нагрузки выбирают такой, чтобы эффект калибровки при соударении заготовки с обоймой был минимален.The magnitude of the load is chosen such that the effect of calibration when the workpiece collides with the holder was minimal.

Скорость деформировани  регулируетс  величиной импульса давлени  и регистрируетс , например, с помощью скоростного фоторегистратора СФР-2М. 34The deformation rate is controlled by the magnitude of the pressure pulse and is recorded, for example, using an SFR-2M high-speed photo recorder. 34

Предмет изобретени ности, используют кольцевой образец, который Способ определени  динамического сопро-действуют на образец равномерно расиредетивленн  металлов деформированию, заклю-ленной радиальной динамической нагрузкой, чающийс  в том, что испытуемый образец под-5 достаточной дл  обеспечени  соударени  его вергают динамическому нагружению и опре-с внутренней поверхностью обоймы, и измедел ют его деформацию, по которой суд т ор ют диаметр образца после соударени , по динамическом сопротивлении материала, от-которому определ ют его деформацию. личающийс  тем, что, с целью повышени  точ370499 The subject matter of the invention is to use an annular sample, which the Method of determining the dynamic resistance of the sample to uniformly rationalized metals to deformation caused by the radial dynamic load, in that the test sample is sub-5 sufficient to provide a collision with the inner surface of the holder, and its strain is crushed, according to which the diameter of the specimen is judged after the impact, by the dynamic resistance of the material, from which it is determined its deformation. characterized by the fact that, in order to increase the

размещают с зазором в жесткой обойме, возplaced with a gap in a rigid holder

SU1612455A 1971-01-11 1971-01-11 METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION SU370499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1612455A SU370499A1 (en) 1971-01-11 1971-01-11 METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1612455A SU370499A1 (en) 1971-01-11 1971-01-11 METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION

Publications (1)

Publication Number Publication Date
SU370499A1 true SU370499A1 (en) 1973-02-15

Family

ID=20463862

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1612455A SU370499A1 (en) 1971-01-11 1971-01-11 METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION

Country Status (1)

Country Link
SU (1) SU370499A1 (en)

Similar Documents

Publication Publication Date Title
Niordson A unit for testing materials at high strain rates: By using ring specimens and electromagnetic loading, high strain rates are obtained in a tension test in a homogeneous, uniaxial strain field
Nicholas Strain-rate and strain-rate-history effects in several metals in torsion: Experimental results are presented for constant-strain-rate tests from 10− 4 to 25/sec and for dynamic tests on quasi-statically prestressed specimens
Aspden et al. The effect of loading rate on the elasto-plastic flexure of steel beams
SU370499A1 (en) METHOD FOR DETERMINING DYNAMIC RESISTANCE OF METALS TO DEFORMATION
Mok The dependence of yield stress on strain rate as determined from ball-indentation tests: Investigation indicates that the dependence of yield stress of materials on strain rate can be derived from the ball-indentation-test results by using Tabor's empirical formulas and an equation relating strain rate and velocity of penetration
GB1358131A (en) Hardness testing
Smith Studies of effect of dynamic preloads on mechanical properties of steel: Investigation provides additional information about the nature of the yielding process by determining the properties of low-carbon steel specimens which have been subjected to initial dynamic compressive or tensile loads
SU667858A1 (en) Method of testing structural material for plasticity
Hamdan et al. A crossbow system for high-strain-rate mechanical testing
SU828014A1 (en) Force cell dynamic calibration method
RU94036121A (en) Method of measurement of rocket engine thrust by means of primary converter and stand for its realization
Savitt et al. Velocity Attenuation of Explosive‐Produced Air Shocks
US2645151A (en) Apparatus for dynamic determination of reduction in area of specimens during mechanical tests
Bitans et al. Stress-Strain Curves for Oxygen-Free High Conductivity Copper at Shear Strain Rates of up to 103s-1
SU1632158A1 (en) Method of testing hte cyclic durability of metallic materials
SU139122A1 (en) Method for dynamic testing of metals by an elastic reverser
SU796705A1 (en) Specimen for impact testing of materials
SU834442A1 (en) Internal stress of the second kind determination method for structural material under mechanical tests
Weiss et al. Mechanical and optical properties of an anelastic polymer at intermediate strain rates and large strains
SU1146577A1 (en) Material viscosity coefficient determination method
SU1434321A1 (en) Method of dynamic testing of materials
SU1364954A1 (en) Device for measuring time lag of material yield in dynamic tests
SU1108348A1 (en) Material dynamic testing method
SU981869A1 (en) Article thermal stability determination method
SU429256A1 (en) METHOD OF MEASUREMENT OF SMALL RADIUSS FOR ROUNDING OF FIRST BODIES