SI24339A - Piston with optimum cooling effectiveness for cold-chamber die-casting systems - Google Patents

Piston with optimum cooling effectiveness for cold-chamber die-casting systems Download PDF

Info

Publication number
SI24339A
SI24339A SI201300101A SI201300101A SI24339A SI 24339 A SI24339 A SI 24339A SI 201300101 A SI201300101 A SI 201300101A SI 201300101 A SI201300101 A SI 201300101A SI 24339 A SI24339 A SI 24339A
Authority
SI
Slovenia
Prior art keywords
piston
called
cooling
design
piston body
Prior art date
Application number
SI201300101A
Other languages
Slovenian (sl)
Inventor
Boštjan Taljat
MatjaĹľ MegliÄŤ
Gregor Mali
Aleš Brili
Original Assignee
Hts Ic D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hts Ic D.O.O. filed Critical Hts Ic D.O.O.
Priority to SI201300101A priority Critical patent/SI24339A/en
Priority to EP20140468003 priority patent/EP2796226A1/en
Publication of SI24339A publication Critical patent/SI24339A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Predstavljen je bat za tlačno litje zasnovan na telesu bata, ki je enodelni element, in sistemu za toplotno regulacijo, ki je vgrajen v telo bata oziroma je njen integralni del. Sistem toplotne regulacije vsebuje prehod, ki omogoča pretok tekočine za regulacijo temperature bata. Prostorska postavitev prehoda je povsem brez omejitev v okviru fizične meje telesa bata. Predstavljen izum omogoča popolno optimizacijo hladilne učinkovitosti bata skozi celoten cikel litja. Predstavljen bat z integriranim hladilnih sistemom je v splošnem izdelan kot enodelni element z uporabo inovativnih tehnoloških postopkov. Zaradi enostavne konstrukcijske izvedbe bata je izum razumeti tudi v smislu zagotavljanja stroškovno učinkovite proizvodnje.A cast-iron casting piston based on the piston body is presented, which is a one-piece element, and a heat regulating system incorporated into the piston body or an integral part thereof. The heat regulating system contains a passage allowing fluid flow to regulate the temperature of the piston. The spatial layout of the passage is completely without restrictions within the physical boundary of the body of the piston. The present invention provides a complete optimization of the cooling performance of the piston throughout the casting cycle. The presented piston with an integrated cooling system is generally manufactured as a one-piece element using innovative technological procedures. Due to the simple construction of the piston, the invention is also understood in terms of providing cost-effective production.

Description

BAT Z OPTIMALNO HLADILNO EFEKTIVNOSTJO ZA HLADNO-KOMORNE TLAČNO-LIVNE SISTEMEBAT WITH OPTIMAL COOLING EFFICIENCY FOR COOLING-CHAMBER PRESSURE-MOLDING SYSTEMS

Izumitelji:Inventors:

Boštjan Taljat, Matjaž Meglic, Gregor Mali, Aleš BriliBoštjan Taljat, Matjaz Meglic, Gregor Mali, Ales Brili

Upravičenec:Beneficiary:

HTS IC d.o.o., Litostrojska cesta 60, SI-1000 Ljubljana (Sl)HTS IC Ltd., Litostrojska cesta 60, SI-1000 Ljubljana (Sl)

OPIS IZUMADESCRIPTION OF THE INVENTION

Stanje tehnike in opis izumaBACKGROUND OF THE INVENTION

Predstavljeni bat za tlačno litje je uporaben pri hladno komornem tlačnem litju aluminijevih in magnezijevih zlitin, kakor tudi pri drugih industrijskih aplikacijah. Bat, ki je predmet tega izuma je uporaben za številne aplikacije, vendar ta predstavitev obravnava predvsem uporabo v procesu hladno komornega tlačnega litja.The presented die-casting piston is useful for cold-chamber die-casting of aluminum and magnesium alloys, as well as for other industrial applications. The piston of the present invention is useful for many applications, but the present invention primarily deals with use in the process of cold chamber injection molding.

Pri hladno komornem litju se komora napolni z raztaljeno kovino, ki jo bat, nameščen na batnici, potisne v orodje. Talina se v orodju strdi in oblikuje ulitek z zahtevano geometrijo. V tem primeru gre predvsem za raztaljeni aluminij in magnezij, ki se predelujeta pri razmeroma visokih temperaturah. V tem delu ni podajanih podrobnejših opisov procesa tlačnega litja ali specifičnih tehničnih značilnosti komponent livarskega sistema, ki jih je mogoče najti drugje.In cold chamber casting, the chamber is filled with molten metal, which is pushed into the tool by a piston mounted on the piston rod. The melt hardens in the tool and forms a mold with the required geometry. In this case it is mainly molten aluminum and magnesium, which are processed at relatively high temperatures. This section does not provide more detailed descriptions of the injection molding process or the specific technical characteristics of the casting system components found elsewhere.

Komponente livarskega sistema, ki so v neposrednem stiku z raztaljeno kovino so izpostavljene velikim toplotnim obremenitvam. Bat mora talino potisniti v orodje in vzpostaviti dovolj visok tlak, da talina napolni orodje in se strdi brez poroznosti. Bat, še posebno njegova čelna površina, je izpostavljen velikim toplotnim in mehanskim obremenitvam. Toplotne obremenitve nastanejo zaradi neposrednega stika bata z raztaljeno kovino, mehanske obremenitve pa so posledica velikega tlaka na čelni površini bata v končnih fazah cikla litja. Optimalno hlajenje bata je zato ključnega pomena za zagotavljanje najboljše kakovosti ulitkov in izboljševanje učinkovitosti proizvodnje.The components of the foundry system which are in direct contact with the molten metal are exposed to high thermal loads. The plunger must push the melt into the tool and pressurize high enough for the melt to fill the tool and solidify without porosity. The piston, especially its front surface, is subjected to high thermal and mechanical stresses. The thermal stresses are due to the direct contact of the piston with the molten metal, and the mechanical stresses are due to the high pressure on the piston face at the final stages of the casting cycle. Optimal piston cooling is therefore crucial to ensure the best casting quality and improve production efficiency.

Za optimalno hlajenje bata je treba določiti intenzivnost hlajenja posameznih delov bata v odvisnosti od časa cikla, s ciljem doseganja maksimalne kakovosti ulitka in najkrajšega možnega časa proizvodnega cikla. Moč hlajenja je odvisna od vrste neodvisnih spremenljivk, ki jih je mogoče upravljati. Določi se enostavno kot produkt masnega pretoka, specifične toplote in razlike temperatur hladilne tekočine (HT) na dovodu in odvodu. Specifična toplota je odvisna od izbora HT, medtem ko masni pretok in dovodno temperaturo določa nastavitev enote za pripravo HT. Na odvodno temperaturo HT neposredno vpliva učinkovitost hlajenja bata, ki je parameter zasnove in materiala bata. Hladilna moč bata je torej odvisna od učinkovitosti hlajenja bata, specifične toplote in masnega pretoka HT ter dovodne temperature HT. Ta hladilna moč je enaka toplotni energiji, ki se v časovni enoti prenese iz taline (TA) na HT.For optimum piston cooling, it is necessary to determine the cooling intensity of the individual piston parts as a function of the cycle time, in order to achieve the maximum casting quality and the shortest possible production cycle time. Cooling power depends on the type of independent variables that can be controlled. It is easily determined as the product of mass flow, specific heat and differences in coolant (HT) temperatures at the inlet and outlet. The specific heat depends on the HT selection, while the mass flow and supply temperature determine the setting of the HT preparation unit. The HT outlet temperature is directly influenced by the cooling efficiency of the piston, which is a parameter of the piston design and material. The cooling power of the piston therefore depends on the cooling efficiency of the piston, the specific heat and mass flow rate of the HT and the supply temperature of the HT. This cooling power is equal to the thermal energy transferred from the melt (TA) to HT in a time unit.

Učinkovitost hlajenja bata je torej njegova sposobnost, da prenaša toplotno energijo iz TA na HT, in je neposredno odvisna od konstrukcije bata in uporabljenih materialov. Izraziti jo je mogoče kot razmerje med dejanskim in največjim možnim prenosom toplote iz TA na HT pri dani dovodni temperaturi pretoku HT.The cooling efficiency of a piston is therefore its ability to transfer thermal energy from TA to HT and is directly dependent on the piston construction and the materials used. It can be expressed as the ratio between the actual and maximum heat transfer from TA to HT at a given flow temperature HT flow.

Prenos toplote iz TA na HT je v splošnem določen s: (i) temperaturno razliko med čelno površino bata in TA, površino čela bata in pripadajočim koeficientom prestopa toplote, (ii) temperaturno razliko med čelno površino bata in površino hladilnih kanalov, pripadajočo razdaljo in koeficientom toplotne prevodnosti (KTP) materiala bata, ter (iii) temperaturno razliko med steno hladilnega kanala in HT, površino hladilnih kanalov in pripadajočim koeficientom prestopa toplote (KPT).The heat transfer from TA to HT is generally determined by: (i) the temperature difference between the piston face and TA, the piston face surface and the associated heat transfer coefficient, (ii) the temperature difference between the piston front surface and the cooling duct surface, the corresponding distance, and the thermal conductivity coefficient (KTP) of the piston material; and (iii) the temperature difference between the wall of the cooling channel and the HT, the surface of the cooling channels and the associated heat transfer coefficient (KPT).

Učinkovitost hlajenja bata je mogoče izboljšati z iskanjem nove konstrukcije bata, ki jo opredeljujejo naslednji neodvisni parametri: (i) površina hladilnih kanalov, (ii) razdalja med čelom bata in površino hladilnih kanalov, (iii) KTP in (iv) KPT. KTP je neposredno odvisen od izbire materiala na čelnem delu bata, KPT pa je določen s kakovostjo površine hladilnih kanalov. Površina hladilnih kanalov in razdalja med čelom bata ter površino hladilnih kanalov izhajata iz konstrukcije bata.The piston cooling efficiency can be improved by finding a new piston design defined by the following independent parameters: (i) the surface of the cooling ducts, (ii) the distance between the piston face and the surface of the cooling ducts, (iii) the KTP and (iv) the KPT. KTP is directly dependent on the choice of material at the front of the piston, and KPT is determined by the quality of the surface of the cooling ducts. The surface of the cooling ducts and the distance between the piston face and the surface of the cooling ducts are derived from the piston structure.

Intenzivno hlajenje bata doseženo z visoko učinkovitostjo hlajenja je ugodno za doseganje krajših proizvodnih ciklov in izboljšanje produktivnosti. Povzroči pa lahko tudi prezgodnje strjevanje taline pred vstopom v orodje kar negativno vpliva na zmogljivost litja in kakovost ulitkov. Hlajenje bata je zato potrebno optimirati preko celotnega cikla litja. Zahteve za doseganje optimalnega hlajenje so: (i) minimalno hlajenje v fazi polnjenja livarske komore s talino in s tem kontrola optimalne temperature kovinske taline brez efekta predčasnega strjevanja; (ii) maksimalno intenzivno hlajenje v fazi stiskanja taline iz komore, ki omogoča: (i) strjevanje TA v najkrajšem možnem času za povečanje produktivnosti, in (ii) višjo trdnost stene čelnega dela bata doseženo z znižanjem njegove temperature.Intensive piston cooling achieved with high cooling efficiency is advantageous to achieve shorter production cycles and improve productivity. However, premature hardening of the melt before entering the tool can also have a negative impact on the casting capacity and the quality of the castings. The piston cooling must therefore be optimized over the entire casting cycle. The requirements for achieving optimum cooling are: (i) minimum cooling during the filling phase of the casting chamber with the melt, thereby controlling the optimum temperature of the metal melt without the effect of premature hardening; (ii) maximum intensive cooling during the compression phase of the melt from the chamber, which enables: (i) the solidification of TA in the shortest possible time to increase productivity; and (ii) the higher strength of the piston face wall is achieved by lowering its temperature.

Livarska industrija uporablja pretežno standardne izvedbe enodelnih batov narejenih iz bakrovih zlitin z enostavnim notranjim hlajenjem (glej Sliko 6). Pomemben prispevek k sposobnosti ohlajevanja batov je dosegel Allper (US 8.136.574 B2) s povečevanjem notranje površine v kontaktu s hladilno tekočino (HT) za tako imenovani večdelni bat. Nadaljnjo izboljšavo je predstavil Brondolin (US 2012/0031580 Al), praktično z enakim večdelnim batom. Izboljšano hlajenje stranskega dela bata je bilo doseženo s povečevanjem površine bata v neposrednem kontaktu s HT. Na ta način je povečana hladilna učinkovitost bata. Splošna rešitev hlajenja z uporabo hladilnega tokokroga vgrajenega v del telesa bata je predstavljena v US2012/199305.The foundry industry uses predominantly standard one-piece pistons made of copper alloys with simple internal cooling (see Figure 6). An important contribution to the cooling capacity of the pistons was achieved by Allper (US 8,136,574 B2) by enlarging the inner surface in contact with the coolant (HT) for the so-called multi-piece piston. Further improvement was introduced by Brondolin (US 2012/0031580 Al), practically with the same multi-piston. Improved cooling of the piston side was achieved by increasing the piston surface in direct contact with HT. In this way, the piston's cooling efficiency is increased. A general cooling solution using a cooling circuit built into the piston body part is presented in US2012 / 199305.

Obstajajo različne tehnične rešitve za učinkovito zatesnitev vrzeli med batom in komoro. Allper je predstavil nov način tesnenja z uporabo tesnilnega obroča in predstavil njegove prednosti. Konstrukcijska izvedba omogoča pretok TA v vrzel med batom in tesnilnim obročem. Strditev taline v tem delu izboljša učinkovitost tesnenja (glej US 5.233.913). Obstaja več tehničnih rešitev za izdelavo zvez med tesnilnim obročem in telesom bata, nekatere med njimi onemogočajo tudi vrtenje tesnilnega obroča. Predstavljene so tudi različne konstrukcijske izvedbe utorov za prehod TA v vrzel med batom in tesnilnim obročem (glej US 7.900.552 B2 in US 2012/0024149 Al).There are various technical solutions to effectively seal the gap between the piston and the chamber. Allper introduced a new method of sealing using a sealing ring and outlined its advantages. The design allows the flow of TA into the gap between the piston and the sealing ring. The hardening of the melt in this part improves the sealing performance (see US 5,233,913). There are several technical solutions for making connections between the sealing ring and the piston body, some of which also make it impossible to rotate the sealing ring. Various constructions of grooves for the passage of TA into the gap between the piston and the sealing ring are also presented (see US 7,900,552 B2 and US 2012/0024149 Al).

Večdelni livarski bat predstavlja napredek k optimizaciji hladilne učinkovitosti v primerjavi s standardnimi izvedbami batov. Kljub vsemu so še vedno možne in potrebne izboljšave za povečevanje učinkovitosti batov. Nove napredne konstrukcijske in tehnične rešitve so potrebne za dosego optimalnih toplotnih in ostalih funkcionalnih lastnosti. V nadaljevanju so navedene prednostne tehnične zahteve za izdelavo bata optimalne učinkovitosti:The multi-piece foundry plunger represents an advance towards optimizing cooling performance compared to standard piston designs. Nevertheless, improvements are still possible and needed to increase the efficiency of the pistons. New advanced design and technical solutions are required to achieve optimal thermal and other functional properties. The following are the priority technical requirements for producing optimum efficiency pistons:

(i) izvedba konstrukcije bata z optimalno hladilno učinkovitostjo kot funkcijo prostora in časa, oziroma izbor primerne kombinacije materialov in konstrukcijske izvedbe za dosego optimalne hladilne učinkovitosti posameznih površin bata kot funkcije livnega časa;(i) the design of a piston structure with optimum cooling efficiency as a function of space and time, or the selection of a suitable combination of materials and construction design to achieve optimum cooling efficiency of the individual piston surfaces as a function of casting time;

(ii) izdelava tehnologije za izdelavo batov s hladilnim sistemom največje možne površine na minimalni razdalji od čelne površine bata in/ali stranskih površin bata, vse v povezavi z zahtevanimi geometrijskimi parametri in mehanskimi lastnostmi. Tako je dosežen maksimalni prenos toplote iz TA na HT, oziroma izdelan je bat z maksimalno hladilno učinkovitostjo; to je design maksimalne hladilne učinkovitosti (MCD);(ii) production of technology for producing pistons with a cooling system of the largest possible surface area at a minimum distance from the piston face and / or lateral piston surfaces, all in relation to the required geometric parameters and mechanical properties. Thus, maximum heat transfer from TA to HT is achieved, or a piston with maximum cooling efficiency is made; this is maximum cooling efficiency (MCD) design;

(iii) razviti tehnologijo za izdelavo batov z optimalno hladilno učinkovitostjo; to pomeni, da imamo na voljo tehnologijo za izdelavo bata s hladilno učinkovitostjo kjerkoli med dvema mejnima vrednostima: minimalna hladilna učinkovitost standardnega tipa bata na eni strani in MDC bata na drugi;(iii) develop technology for producing pistons with optimum cooling efficiency; this means that we have the technology to produce cooling pistons anywhere between two limits: minimum cooling efficiency of standard piston type on one side and MDC piston on the other;

(iv) razviti tehnologijo za izdelavo batov enostavnih geometrij, ki pa omogoča zgoraj opredeljene zahteve (optimizacija toplotnih lastnosti bata) in zagotavlja stroškovno učinkovitost izdelave (izogibanje vpliva razlik v konstrukciji na stroške izdelave).(iv) develop technology for the production of simple geometry pistons, which, however, enables the requirements defined above (optimization of the thermal properties of the piston) and ensures the cost-effectiveness of fabrication (avoiding the impact of structural differences on manufacturing costs).

Izum temelji na enodelnem livarskem batu z integriranim ohlajevalnim sistemom. Enodelnost v tem izumu predstavlja telo bata. Bat lahko vsebuje enega ali več tesnilnih obročev, ki so trajno povezani s telesom bata ali pa so izvedeni kot zamenljivi deli. Izum opisan v nadaljevanju predstavlja rešitve zgoraj navedenih prednostnih tehničnih zahtev. Inovacija in izvedba novega bata za tlačno litje je predstavljena tudi s slikami od 1 do 7.The invention is based on a one-piece foundry piston with an integrated cooling system. The one-piece in the present invention represents the piston body. The piston may comprise one or more sealing rings which are permanently connected to the piston body or which are made as interchangeable parts. The invention described below represents solutions to the foregoing priority technical requirements. The innovation and implementation of the new die-casting piston is also presented in Figures 1 through 7.

Opis slikDescription of the pictures

Slika 1: Risba novega bata za tlačno litje z integriranim hladilnim sistemom.Figure 1: Drawing of a new pressure piston with integrated cooling system.

Slika 2: Risba integrirane izvedbe hlajenja na čelnem delu bata: (a) spirala, (b) koncentrični povezani krogi, (c) radialne linije, (d) naključna izvedba.Figure 2: Drawing of an integrated cooling design on the piston face: (a) coil, (b) concentric connected circles, (c) radial lines, (d) random design.

Slika 3: Risba integrirane izvedbe hlajenja stranskih cilindričnih površin bata: (a) vijačnica, (b) serija povezanih krogov, (c) linijska izvedba, (d) naključna izvedba.Figure 3: Drawing of the integrated cooling design of the piston cylindrical surfaces: (a) helix, (b) series of connected circuits, (c) line design, (d) random design.

Slika 4: Presek hladilnega kanala, ki prikazuje možnost določanja površine hladilnega sistema.Figure 4: Cross section of the cooling duct showing the possibility of determining the surface of the cooling system.

Slika 5: Primer predhodno izdelanih sestavnih delov bata pripravljenih za končno izdelavo: (a) izdelava hladilnega sistema na notranjem delu, in (b) izdelava hladilnega sistema na zunanjem delu.Figure 5: Example of pre-fabricated piston components ready for final fabrication: (a) manufacturing a cooling system on the inside, and (b) manufacturing a cooling system on the outside.

Slika 6: Risba dveh ohlajevalnih ekstremov: (a) bat z IHS in maksimalno hladilno učinkovitostjo, (b) standardni tip bata.Figure 6: Drawing of two cooling extremes: (a) piston with IHS and maximum cooling efficiency, (b) standard piston type.

Slika 7: Prikaz rezultatov optimizacije ohlajevanja: (a) standardna izvedba bata iz Cu zlitine, (b) standardna izvedba bata iz orodnega jekla, (c) IHS bat z zmerno Ac in čelom bata iz Cu zlitine, (d) IHS bat z zmerno Ac in čelom narejenim iz orodnega jekla.Figure 7: Demonstration of cooling optimization results: (a) standard Cu alloy piston design, (b) standard tool steel piston design, (c) IHS piston with moderate Ac and Cu alloy piston face, (d) IHS piston with moderate Ac and helmet made of tool steel.

Podroben opis izumaDETAILED DESCRIPTION OF THE INVENTION

Slika 1 predstavlja sestav bata za tlačno litje in batnice ter nakazuje integriran sistem hladilnih kanalov ter smer pretoka hladilne tekočine (HT). Bat (1) je enodelno cilindrično telo s čelno površino (2), ki je v kontaktu s talino (TA), stransko površino cilindra (3), ki je v kontaktu z tlačno komoro (4), in središčno odprtino za pritrditev bata na batnico (5). Bat ima določen dovod HT (6), integriran hladilni sistem (7), ter odvod HT (8). Bat lahko vsebuje tesnilni obroč (9), ki omogoča drsenje oziroma vodenje bata v komori ter preprečuje TA vstop v vrzel med komoro in batom. Bat je pritrjen na batnico s pomočjo navojne zveze ali z zvezo drugačne vrste (10) (primer je lahko bajonetna zveza). Izvedba sestava bata in batnice prikazana na Sliki 1 je običajna in splošno znana v industriji tlačnega liva.Figure 1 represents the assembly of the injection molding piston and piston rods and shows the integrated cooling duct system and the direction of flow of the coolant (HT). The piston (1) is a one-piece cylindrical body with a face (2) in contact with the melt (TA), a lateral surface of the cylinder (3) in contact with the pressure chamber (4), and a central hole for attaching the piston to piston rod (5). The piston has a fixed inlet HT (6), an integrated cooling system (7), and an outlet HT (8). The piston may comprise a sealing ring (9) which allows the piston to slide or guide in the chamber and prevent TA from entering the gap between the chamber and the piston. The piston is secured to the piston rod by means of a threaded connection or by a union of a different type (10) (an example may be a bayonet connection). The embodiment of the piston and piston assembly shown in Figure 1 is common and commonly known in the die-casting industry.

Batnica ima notranji prehod ali središčno odprtino (11), skozi katero se bat oskrbuje s HT. Pretok HT je lahko izveden na različne načine. V središčno odprtino batnice je mogoče namestiti dve ločeni cevi, eno za dovod HT do bata in drugo za odvod HT. Na Sliki 1 je razviden uveljavljen sistem z eno cevjo (12), ki je vgrajena v središčno odprtino. Cev manjšega premera od središčne odprtine je povezana z dovodno odprtino HT v batu (6), in se uporablja za dovod hladilne tekočine (13). Prehod med središčno odprtino in cevjo je povezan z odvodno odprtino HT v batu (8) in služi za odvod hladilne tekočine (14). .The piston rod has an internal passage or center opening (11) through which the piston is supplied with HT. HT flow can be done in different ways. Two separate tubes can be installed in the center bore of the piston rod, one for the HT inlet to the piston and the other for the HT outlet. Figure 1 shows an established single pipe system (12) which is integrated into the center opening. A smaller diameter pipe than the center orifice is connected to the HT inlet in the piston (6) and is used to supply the coolant (13). The passage between the center opening and the pipe is connected to the outlet opening HT in the piston (8) and serves to drain the coolant (14). .

Izum temelji predvsem na hladilnem sistemu, ki je integriran v telo bata (7). Dovod HT iz batnice v integriran hladilni sistem (IHS) je lahko nameščen kot je prikazano na Sliki 1. Lokacija dovoda HT v IHS ni posebej opredeljena v tem izumu. IHS je lahko izdelan v različnih izvedljivih geometrijah. Nekateri primeri so prikazani na Sliki 2: (a) spiralni, (b) serija povezanih koncentričnih krogov, (c) radialni, ali (d) druge geometrije ohlajevalnega sistema do povsem naključno izbrane geometrije hladilnih kanalov. Ohlajanje stranske površine bata se lahko nadaljuje s podobnim geometrijskim vzorcem izbranim za ohlajanje čelne površine. Na Sliki 3 so prikazani nekateri primeri hladilnih sistemov vgrajenih na stranske površine: (a) vijačna, (b) serija med seboj povezanih krogov, (c) linearni kanali razporejeni po celotnem obsegu, ali (d) druge izvedbe vse do naključno izbrane geometrije hladilnih kanalov. Položaj odvodne odprtine v batu je določen z geometrijo IHS in povezan z odvodno odprtino v batnici. IHS omogoča izdelavo hladilnih kanalov različnih prerezov, ki direktno vplivajo na velikost površine hladilnega sistema. Na Sliki 4 je prikazanih nekaj možnih izvedb, od (a) kroga, (b) kvadrata, (c) pravokotnika, in (d) primer posebne geometrije prereza. Posebna geometrija (d) ima v primerjavi z izvedbo (c) za 35% večjo površino.The invention is based primarily on a cooling system integrated into the piston body (7). The HT inlet from the piston rod to the integrated cooling system (IHS) can be installed as shown in Figure 1. The location of the HT inlet into the IHS is not specifically defined in the present invention. IHS can be manufactured in a variety of feasible geometries. Some examples are shown in Figure 2: (a) helical, (b) series of connected concentric circles, (c) radial, or (d) other geometries of the cooling system to a completely random geometry of the cooling channels. Cooling of the piston side surface can be continued with a similar geometric pattern chosen to cool the front surface. Figure 3 shows some examples of refrigeration systems installed on the side surfaces: (a) screw, (b) series of interconnected circuits, (c) linear channels spaced over the entire circumference, or (d) other designs down to a randomly selected cooling geometry channels. The position of the outlet opening in the piston is determined by the geometry of IHS and connected to the outlet opening in the piston rod. IHS enables the manufacture of cooling ducts of various cross sections that directly affect the size of the cooling system surface. Figure 4 shows some possible embodiments of (a) a circle, (b) a square, (c) a rectangle, and (d) an example of a special cross section geometry. The specific geometry (d) has a 35% larger surface area compared to the embodiment (c).

Livarski bat predstavljen v tem izumu je izdelan z uporabo posebne tehnologije, v našem primeru s tehnologijo vakuumskega spajanja. Na Sliki 5 sta prikazana dva dela s pred-obdelanim hladilnim sistemom. Hladilni sistem je tako izdelan z klasično strojno obdelavo na notranjem delu bata (15), zunanjem delu bata (16), ali delno na obeh delih bata. Ta dva sestavna dela sta s posebno tehnologijo spajanja združena v enoviti bat z IHS. Del oziroma površina v katero so pred-obdelani hladilni kanali je izbran izključno na osnovi prednosti za mehansko obdelavo, saj sicer ta izbira nima vpliva na toplotne lastnosti bata, seveda ob pogoju, da imata pred-obdelana dela bata enake toplotne lastnosti. Predstavljen izum ni na kakršenkoli način omejen na tehnologijo izdelave. Za izdelavo IHS bata lahko uporabimo kakršno koli tehnologijo izdelave, kot npr. tehnologijo litja, printanja, različnih tehnologij varjenja ali druge tehnologije, ki omogočajo doseganje rezultatov tega izuma.The foundry piston presented in the present invention is manufactured using a special technology, in our case, vacuum coupling technology. Figure 5 shows two parts with a pre-treated cooling system. The cooling system is thus manufactured by conventional machining on the inner part of the piston (15), the outer part of the piston (16), or partly on both parts of the piston. These two components are integrated into a single piston with IHS using special coupling technology. The part or surface into which the pre-treated cooling ducts are selected is solely based on the advantages of mechanical treatment, since this choice does not affect the thermal properties of the piston, provided, of course, that the pre-treated parts of the piston have the same thermal properties. The present invention is not in any way limited to the manufacturing technology. We can use any manufacturing technology such as eg IHS piston. casting, printing, various welding technologies, or other technology that enables the results of this invention to be achieved.

Hladilni sistem, ki je predmet tega izuma je lahko izdelan v poljubni razporeditvi hladilnih kanalov, poljubne geometrije njihovih prečnih presekov, kot tudi izbranih razdalj med hladilnimi kanali in zunanjimi površinami bata, vse dokler je zadoščeno pogoju integritete celotne komponente ob upoštevanju toplotnih in mehanskih obremenitev.The cooling system of the present invention may be constructed in any arrangement of cooling channels, any geometry of their cross-sections, as well as selected distances between the cooling channels and the outer surfaces of the piston, as long as the condition of integrity of the whole component is met, taking into account thermal and mechanical loads.

Predlagana izvedba IHS ima naslednje prednosti:The proposed IHS implementation has the following advantages:

(i) hladilni sistem je lahko izdelan s poljubno razporeditvijo hladilnih kanalov, (glej primer na Sliki 2 in 3), kot tudi s poljubnimi geometrijami njihovih prečnih presekov (Slika 4) za doseganje primerne velikosti površine in primernega toplotnega odziva, (ii) celoten hladilni sistem je zaradi inovativne izvedbe v neposrednem kontaktu s telesom bata in tako prenaša toploto iz TA preko materiala bata neposredno na HT, (iii) hladilni kanali so lahko pozicionirani na kakršni koli razdalji od čelne ali stranske površine bata;(i) the refrigeration system may be constructed by arbitrary arrangement of the cooling channels, (see example in Figures 2 and 3), as well as by arbitrary geometries of their cross-sections (Figure 4) to achieve a suitable surface size and adequate thermal response, (ii) complete due to the innovative design, the cooling system is in direct contact with the piston body, thereby transferring heat from the TA via the piston material directly to HT; (iii) the cooling channels can be positioned at any distance from the piston front or side;

(iv) material bata za čelni ali stranski del izbiramo lahko tudi iz stališča karakteristike toplotne prevodnosti za doseganje želene učinkovitosti hlajenja;(iv) the material of the piston for the front or side can also be selected from the point of view of the thermal conductivity characteristic for achieving the desired cooling efficiency;

(v) IHS je lahko konstrukcijsko izveden za doseganje prostorsko spremenljive intenzitete ohlajanja ali za različno intenziteto ohlajanja v različnih segmentih cikla tlačnega litja.(v) IHS may be designed to achieve spatially variable cooling intensity or for different cooling intensity in different segments of the injection molding cycle.

IHS lahko opredelimo s tremi glavnimi parametri (glej Sliko 1): Ac predstavlja površino hladilnega sistema, h razdaljo med čelom bata in/ali stransko površino bata in hladilnimi kanali, parameter λ pa predstavlja koeficient toplotne prevodnosti čelnega in/ali stranskega dela bata.IHS can be defined by three main parameters (see Figure 1): Ac represents the surface of the cooling system, h is the distance between the piston face and / or lateral surface of the piston and the cooling channels, and the parameter λ represents the thermal conductivity coefficient of the front and / or lateral part of the piston.

Parameter Af predstavlja čelno površino bata, ki je v kontaktu z TA, torej ogrevano površino bata, ki je predmet ohlajanja. Bat lahko del toplote prejema tudi preko stranske površine, ki je v stiku z livno komoro. V tem primeru je prenos toplote odvisen od temperature notranje površine komore.The parameter A f represents the front surface of the piston in contact with TA, hence the heated piston surface subject to cooling. The plunger can also receive some of the heat through the side surface in contact with the casting chamber. In this case, the heat transfer depends on the temperature of the inner surface of the chamber.

Na Sliki 6 je prikazan primer dveh batov z mejnima toplotnima karakteristikama. Bat z najvišjo hladilno učinkovitostjo (MCD) lahko izdelamo s hladilnimi kanali, ki so v neposredni bližini čelne površine bata, hi, iz materiala z najvišjo možno vrednostjo koeficienta toplotne prevodnosti λι, in z izvedbo hladilnih kanalov z največjo možno površino Acl » Afl (glej Sliko 6(a)). Drugi mejni primer pa je bat brez hlajenja ali za lažjo primerjavo standardni tip bata z nizko hladilno učinkovitostjo, določeno z h2, Ac2 in λ2. V tem primeru je h2 > hlz λ2 = λ1( in Ac2 « Aci (glej Sliko 6(b)). Oba mejna primera: (i) novi bat z IHS in visoko hladilno učinkovitostjo, in (ii) standardni tip bata, imata izrazito različno toplotno karakteristiko in s tem pomemben vpliv na obratovanje livarskega sistema.Figure 6 shows an example of two pistons with boundary thermal characteristics. The highest cooling efficiency (MCD) piston can be made by cooling channels in the immediate vicinity of the piston face hi, from the material with the highest possible thermal conductivity coefficient λι, and by executing the cooling channels with the largest possible surface A cl »A fl (see Figure 6 (a)). Another limiting example is the non-cooling piston or, for ease of comparison, the standard type of low cooling efficiency piston specified by zh 2 , A c2 and λ 2 . In this case, h 2 > h lz λ 2 = λ 1 ( and A c2 «Aci (see Figure 6 (b)). Both limit cases: (i) a new IHS piston with high cooling efficiency, and (ii) a standard piston type, have a distinctly different thermal characteristic and thus have a significant impact on the operation of the casting system.

Za predstavitev prednosti IHS v primerjavi s standardnimi izvedbami batov so bile izvedene numerične simulacije hladno-komornega tlačnega livnega sistema za litje aluminija. Na Sliki 7 je prikazan rezultat hladilne učinkovitosti. Temperatura bata, T, je izračunana na sredini čelne ploskve tik pod njeno površino, normirana s temperaturo taline, TTA, ter predstavljena v odvisnosti od časa, t, preko celotnega časa trajanja enega cikla tc. Simulacije so bile narejene za: (a) standardno izvedbo bata iz materiala z visoko toplotno prevodnostjo, kot na primer baker; (b) standardno izvedba bata iz materiala z nizko toplotno prevodnostjo; kot na primer orodno jeklo; (c) IHS bat z zmerno velikostjo površine hladilnega sistema, Ac, s čelom narejenim iz bakra, ter (d) IHS bat enake izvedbe vendar s čelom iz orodnega jekla. V primeru (a, je beležena temperatura v začetku cikla enaka Ts. Nadalje temperatura raste in ob koncu faze stiskanja aluminija v orodje doseže Tmax. Ob zaključku faze strjevanja, to je pred pričetkom novega cikla, se bat ohladi na najnižjo temperaturo v ciklu, Tmin = Ts. Primerjava med (a) in (b), to sta bata v standardni izvedbi, pokaže izrazito višjo temperaturo skozi celoten cikel za bat izdelan iz orodnega jekla. Primera (c) in (d), to sta IHS bata, imata temperaturo Tmin na bistveno nižji vrednosti, Tmax pa na višji vrednosti v primerjavi z izvedbo (a). Najvišja temperatura v ciklu, Tmax, je v obeh primerih (c) in (d) zamaknjena v levo glede na primer (a), kar nakazuje na hitreje doseženo maksimalno temperaturo v fazi polnjenja. Predstavljeni rezultati nam podajajo tri pomembne zaključke:To demonstrate the advantages of IHS over standard piston designs, numerical simulations of a cold-chamber die-cast aluminum die-casting system were performed. Figure 7 shows the result of the cooling efficiency. The piston temperature, T, is calculated at the center of the faceplate just below its surface, normalized by the melt temperature, T TA , and represented as a function of time, t, over the entire duration of one cycle t c . The simulations were designed to: (a) standardize a plunger made of high thermal conductivity material such as copper; (b) standard piston construction of low thermal conductivity material; such as tool steel; (c) IHS piston with a moderate surface area of the cooling system, Ac, with a copper-faced face; and (d) IHS piston of the same design but with tool steel face. In case (a, the recorded temperature at the beginning of the cycle is equal to T s . Further, the temperature rises and reaches T max at the end of the compression phase of the aluminum. At the end of the solidification phase, that is, before the start of the new cycle, the piston is cooled to the lowest temperature in the cycle , T min = T s . Comparison between (a) and (b), these are pistons in the standard version, shows a markedly higher temperature throughout the cycle for piston made of tool steel. Examples (c) and (d), these are IHS pistons have a temperature T min at a significantly lower value and T max at a higher value compared to version (a). The maximum cycle temperature, T max , is offset to the left in both cases (c) and (d) (a), which indicates a faster maximum temperature reached during the filling phase. The results presented here give us three important conclusions:

(i) temperatura Tmax v primeru IHS bata, (d), je izrazito višja in se nastopi hitreje v ciklu polnjenja v primerjavi z batom standardnega tipa (a). Razlog za visoko doseženo temperaturo je v nizki toplotni kapaciteti čelnega dela bata, ki se nahaja med IHS in TA (glej 2a na Sliki 1). Opažen pojav preprečuje prezgodnje strjevanje taline in je zaradi tega uporaben za optimizacijo livnega sistema ter izdelavo ulitkov visoke kvalitete;(i) the temperature T max in the case of IHS pistons, (d) is markedly higher and occurs faster during the filling cycle than the pistons of standard type (a). The reason for the high temperature attainment lies in the low heat capacity of the piston head located between IHS and TA (see 2a in Figure 1). The observed phenomenon prevents premature hardening of the melt and is therefore useful for optimizing the casting system and making high quality castings;

(ii) padec temperature v primeru IHS bata, (d), je zelo intenziven v fazi strjevanja, dosežena Tmin pa bistveno nižja v primerjavi z batom standardnega tipa (a). Razlog je predvsem v visoki hladilni učinkovitosti IHS bata, kar je posebej pomembno za povečevanje produktivnosti;(ii) the temperature drop in the case of IHS pistons, (d) is very intense during the solidification phase, and the T min achieved is significantly lower compared to the standard type pistons (a). This is mainly due to the high cooling efficiency of the IHS piston, which is especially important for increasing productivity;

(iii) temperaturni odziv IHS določamo z izbiro Ac, h in λ, kar omogoča vpliv na krivuljo T-t predstavljeno na Sliki 7 in njene premike k višjim ali nižjim vrednostim.(iii) the IHS temperature response is determined by choosing A c , h and λ, which allows the effect on the curve Tt presented in Fig. 7 and its shifts to higher or lower values.

Posebnost tega izuma je direktna določitev toplotnega odziva bata kot funkcije prostora in/ali časa na osnovi izbire treh parametrov, kar nadalje omogoča izvedbo toplotne optimizacije bata. Tri parametri so neodvisni, imajo pa določen vpliv na temperaturni odziv: Ac direktno vpliva na intenziteto hlajenja, medtem ko h in λ vplivata tako na intenziteto hlajenja kot na časovno odvisnost temperature bata. Slednja je odvisna od toplotne kapacitete (masa in specifična toplota) materiala bata v prostoru med IHS in TA. h in λ lahko torej uporabimo za optimizacijo hladilne učinkovitosti v odvisnosti od časa. Prostorsko optimizacijo hladilne učinkovitosti pa na drugi strani zagotavljamo z ustrezno konstrukcijsko izvedbo hladilnih kanalov.A feature of the present invention is the direct determination of the piston thermal response as a function of space and / or time based on the choice of three parameters, which further enables the thermal optimization of the piston. The three parameters are independent but have a certain influence on the temperature response: A c directly affects the cooling intensity, while h and λ affect both the cooling intensity and the time dependence of the piston temperature. The latter depends on the heat capacity (mass and specific heat) of the piston material in the space between IHS and TA. h and λ can therefore be used to optimize the cooling efficiency as a function of time. Spatial optimization of cooling efficiency, on the other hand, is ensured by the proper construction of cooling channels.

Posebnost tega izuma je tudi v visoki fleksibilnosti IHS sistema ter zmožnosti za optimizacijo hladilnega sistema kakršnega koli livarske aplikacije z minimalnim vplivom ali brez vpliva na proizvodne stroške bata. IHS bat je projektiran in izdelan na osnovi principa optimalne toplotne regulacije. Projektiranje optimalne IHS rešitve vedno temelji na računalniški simulaciji ustreznega livarskega procesa.A special feature of the present invention is the high flexibility of the IHS system and the ability to optimize the cooling system of any foundry application with minimal or no impact on the piston production costs. The IHS piston is designed and manufactured based on the principle of optimal thermal control. The design of the optimal IHS solution is always based on a computer simulation of a suitable foundry process.

V splošnem se bat smatra kot izmenjevalec toplote, ki odvaja toploto iz TA na HT. Terminologija »hlajenje« v tem prikazu predstavlja ohlajanje TA s pomočjo HT. V optimalnih primerih litja je mogoča tudi potreba po segrevanju bata preko HT. Smiselno posplošitev tega izuma dobimo z menjavo izrazov »hlajenje« in »hladilna tekočina« z izrazoma »toplotna regulacija« in »tekočina«.Generally, the piston is considered to be a heat exchanger that transfers heat from TA to HT. The term "cooling" in this representation represents the cooling of TA by HT. In optimal casting cases, the need to heat the piston over HT is also possible. A meaningful generalization of the present invention is obtained by substituting the terms "cooling" and "coolant" with the terms "thermal control" and "fluid".

Claims (7)

(1) Bat, ki s premočrtnim gibanjem po centralni izvrtini livarske komore tlačno-livnega stroja potiska talino iz livarske komore v orodje ali kokilo in vključuje:(1) A piston pushing a melt from a casting chamber into a tool or mold using a straight line movement through the central bore of the casting chamber of a die-casting machine and including: telo bata (1), z zunanjo cilindrično površino (3) obrnjeno proti notranji površini livarske komore (4), s čelno površino (Af) v kontaktu z kovinsko talino (TA), in odprtino ali drugo geometrijsko obliko na zadnjem delu bata za njegovo pritrditev;piston body (1), with outer cylindrical surface (3) facing the inner surface of the casting chamber (4), with the face surface (A f ) in contact with the metal melt (TA), and an opening or other geometric shape at the rear of the piston its attachment; in je značilen po tem:and is characterized by: da je tako imenovano telo bata enodelni element in kot tako ni sestav dveh ali več kot dveh različnih elementov;that the so-called piston body is a one-piece element and as such is not an assembly of two or more than two different elements; daje sistem toplotne regulacije integriran oziroma izveden v tako imenovanem telesu bata;the thermal control system is integrated or implemented in the so-called piston body; da tako imenovani sistem toplotne regulacije vsebuje prehod, ki omogoča pretok tekočine in s tem regulacijo temperature bata;that the so-called thermal control system contains a passage allowing fluid flow and thus the temperature control of the piston; da je tako imenovani prehod izveden kot posamezen kanal, kot dva kanala ali kot množina kanalov, brez omejitev na njihovo prostorsko postavitev v okviru fizičnih mej tako imenovanega telesa bata, ter brez omejitev na izbor geometrije prečnega preseka kanalov;that the so-called passage is made as a single channel, as two channels or as a plurality of channels, without restrictions on their spatial arrangement within the physical boundaries of the so-called piston body, and without restriction on the selection of the channel cross-section geometry; da tako imenovani prehod vključuje in med seboj povezuje dovod hladilne tekočine v bat in odvod hladilne tekočine iz bata;that the so-called passage includes and interconnects the coolant inlet to the piston and the coolant outlet from the piston; da je tako imenovani dovod izveden iz ene odprtine ali več kot ene odprtine ter tako imenovani odvod izveden iz ene odprtine ali več kot ene odprtine;that the so-called inlet is made of one orifice or more than one orifice and the so-called orifice is derived from one orifice or more than one orifice; (2) Bat po zahtevku 1 značilen po tem:(2) The piston according to claim 1, characterized in that: da je tako imenovano telo bata enodelni element spojen iz dveh ali več kot dveh predhodno izdelanih sestavnih delov z uporabo tehnologije, ki vključuje, vendar ni izključno omejena na tehnologijo vakuumskega spajanja;that the so-called piston body is a one-piece element joined from two or more than two pre-fabricated components using technology that includes, but is not limited to, vacuum coupling technology; da je tako imenovani sistem toplotne regulacije izdelan v celoti na enem od tako imenovanih predhodno izdelanih delov, ki se spaja v tako imenovano enodelno telo bata, oziroma je tako imenovani sistem toplotne regulacije izdelan delno na nekaterih, ali na vsakem, od tako imenovanih predhodno izdelanih delov;that the so-called thermal control system is made entirely on one of the so-called pre-fabricated parts, which fits into the so-called one-piece piston body, or the so-called thermal control system is made partly on some, or each, of the so-called pre-fabricated parts parts; da sta/so tako imenovani predhodno izdelani deli izdelani iz enega materiala, oziroma dveh ali več kot dveh različnih materialov.that / the so-called pre-fabricated parts are made of one material or two or more than two different materials. (3) Bat po katerem koli predhodnem zahtevku značilen po tem, da je pritrjen na batnico (5);(3) A piston according to any one of the preceding claims, characterized in that it is attached to the piston rod (5); da je tako imenovani dovod hladilne tekočine v bat v direktni ali indirektni povezavi z dovodnim kanalom hladilne tekočine v batnici, ter tako, da je tako imenovani odvod hladilne tekočine iz bata povezan direktno ali indirektno z odvodnim kanalom hladilne tekočine v batnici.that the so-called coolant inlet to the piston is in direct or indirect connection with the coolant inlet in the piston rod, and so that the so-called coolant outlet from the piston is connected directly or indirectly to the coolant inlet in the piston rod. (4) Bat po katerem koli predhodnem zahtevku značilen po tem, da je tako imenovani prehod delno ali v celoti zapolnjen z materialom z enako ali drugačno toplotno prevodnostjo kot jo ima tako imenovano telo bata.(4) A piston according to any one of the preceding claims, characterized in that the so-called passage is partially or fully filled with material with the same or different thermal conductivity as the so-called piston body. (5) Bat po katerem koli predhodnem zahtevku značilen po tem, da tako imenovano telo bata ni omejeno na enodelni element, ampak je lahko sestavljeno iz dveh ali več kot dveh elementov.(5) Piston according to any one of the preceding claims, characterized in that the so-called piston body is not limited to a one-piece element but may consist of two or more than two elements. (6) Bat po katerem koli predhodnem zahtevku značilen po tem, da je tesnenje med batom in livno komoro izvedeno z uporabo enega ali več kot enega tesnilnega obroča nameščenega na tako imenovano telo bata.(6) A piston according to any one of the preceding claims, characterized in that the sealing between the piston and the casting chamber is carried out using one or more than one sealing ring mounted on the so-called piston body. (7) Bat po zahtevku 6 značilen po tem, da ima en ali več kot en tesnilni obroč trajno pritrditev na tako imenovano telo bata z uporabo tehnologije varjenja, vendar brez izključne omejitve na tehnologijo varjenja, ali je en oziroma več kot en tesnilni obroč v celoti izdelan z varjenjem na tako imenovano telo bata.(7) A piston according to claim 6, characterized in that one or more than one sealing ring has a permanent attachment to the so-called piston body using welding technology, but without exclusive limitation to the welding technology, or one or more than one sealing ring in made entirely by welding to the so-called piston body. 1/71/7 Slika 1: Risba novega bata za tlačno litje z integriranim hladilnim sistemom.Figure 1: Drawing of a new pressure piston with integrated cooling system. Slika 2: Risba integrirane izvedbe hlajenja na čelnem delu bata: (a) spirala, (b) koncentrični povezani krogi, (c) radialne linije, (d) naključna izvedba.Figure 2: Drawing of an integrated cooling design on the piston face: (a) coil, (b) concentric connected circles, (c) radial lines, (d) random design. (d)(d) Slika 3: Risba integrirane izvedbe hlajenja stranskih cilindričnih površin bata: (a) vijačnica, (b) serija povezanih krogov, (c) linijska izvedba, (d) naključna izvedba.Figure 3: Drawing of the integrated cooling design of the piston cylindrical surfaces: (a) helix, (b) series of connected circuits, (c) line design, (d) random design. 4/7 σ4/7 σ O ° O ° α α •««Sl·-- • «« Sl · - b b o o i i
(α) (b) (c) b(α) (b) (c) b C1 C1 H_n_r LrLrd H_n_r LrLrd O( O ( (d) (d)
b = 2a b = 2ab = 2a b = 2a Ac = Ac(3,14a)A c = A c (3,14a) Ac = Ac(4a)Ac = A c (4a) Ac = Ac(6a)A c = A c (6a) A = Ac(8a>A = A c (8a> Slika 4: Presek hladilnega kanala, ki prikazuje možnost določanja površine hladilnega sistema.Figure 4: Cross section of the cooling duct showing the possibility of determining the surface of the cooling system. 5/7 • · * ·5/7 • · * · Slika 5:Figure 5: Primer predhodno izdelanih sestavnih delov bata pripravljenih za končno izdelavo: (a) izdelava hladilnega sistema na notranjem delu, in (b) izdelava hladilnega sistema na zunanjem delu.An example of pre-fabricated piston components ready for final manufacture: (a) production of an internal cooling system, and (b) production of an external cooling system. 6/76/7 Acl ία)Acl) Slika 6:Figure 6: Risba dveh ohlajevalnih ekstremov: (a) bat z standardni tip bata.Drawing of two cooling extremes: (a) piston with standard piston type. in maksimalno hladilno učinkovitostjo, (b)and maximum cooling efficiency, (b) 7/77/7 Slika 7: Prikaz rezultatov optimizacije ohlajevanja: (a) standardna izvedba bata iz Cu zlitine, (b) standardna izvedba bata iz orodnega jekla, (c) IHS bat z zmerno Ac in čelom bata iz Cu zlitine, (d) IHS bat z zmerno Ac in čelom narejenim iz orodnega jekla.Figure 7: Demonstration of cooling optimization results: (a) standard Cu alloy piston design, (b) standard tool steel piston design, (c) IHS piston with moderate Ac and Cu alloy piston face, (d) IHS piston with moderate Ac and helmet made of tool steel.
SI201300101A 2013-04-24 2013-04-24 Piston with optimum cooling effectiveness for cold-chamber die-casting systems SI24339A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201300101A SI24339A (en) 2013-04-24 2013-04-24 Piston with optimum cooling effectiveness for cold-chamber die-casting systems
EP20140468003 EP2796226A1 (en) 2013-04-24 2014-04-24 Piston with optimum cooling effectiveness for cold-chamber die-casting systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300101A SI24339A (en) 2013-04-24 2013-04-24 Piston with optimum cooling effectiveness for cold-chamber die-casting systems

Publications (1)

Publication Number Publication Date
SI24339A true SI24339A (en) 2014-10-30

Family

ID=50732085

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300101A SI24339A (en) 2013-04-24 2013-04-24 Piston with optimum cooling effectiveness for cold-chamber die-casting systems

Country Status (2)

Country Link
EP (1) EP2796226A1 (en)
SI (1) SI24339A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166601B2 (en) 2015-11-17 2019-01-01 United Technologies Corporation Die cast tip cover and method of managing radial deflection of die cast tip
US10173261B2 (en) * 2015-11-17 2019-01-08 United Technologies Corporation Highly cooled die casting plunger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3323328C1 (en) * 1983-06-29 1984-05-03 Mahle Gmbh, 7000 Stuttgart One-part liquid-cooled casting piston
US4886107A (en) * 1986-02-28 1989-12-12 Zecman Kenneth P Piston for cold chamber
DE3934778A1 (en) * 1988-12-28 1990-07-05 Allper Ag Piston for casting cylinder of die casting press - has cooling channels for thin-walled cap pref. heat shrunk to threaded body
US5233913A (en) 1992-08-31 1993-08-10 General Motors Corporation Swash plate compressor with spring thrust bearing assembly
DE4230080C2 (en) * 1992-09-09 1998-04-09 Hugo Kunz Die casting pistons, in particular for cold chamber die casting machines
DE102005048717A1 (en) 2005-10-12 2007-04-19 Allper Ag Multi-part piston for a cold chamber casting machine
ITBS20060087A1 (en) 2006-04-12 2007-10-13 Copromec S R L PISTON FOR COLD ROOM DIE CASTING MACHINES
IT1393330B1 (en) 2009-01-21 2012-04-20 Brondolin S P A PISTONS FOR DIE CASTING
IT1393329B1 (en) 2009-01-21 2012-04-20 Brondolin S P A PISTON AND SEALING RING FOR DIE CASTING
EP2480357B1 (en) * 2009-09-22 2020-04-15 KSM Castings Group GmbH Vacuum die casting device and method for oprating a vacuum die casting device
DE202010008596U1 (en) * 2010-09-21 2010-12-02 Schmelzmetall (Deutschland) Gmbh Die-cast pistons
DE202010016953U1 (en) * 2010-12-22 2011-03-31 Sommer Antriebs- Und Funktechnik Gmbh overhead door
US8356655B2 (en) 2011-02-09 2013-01-22 United Technologies Corporation Shot tube plunger for a die casting system

Also Published As

Publication number Publication date
EP2796226A1 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
BR102014022376A2 (en) method and device for producing a metal component using a casting and forming tool
JP2014128828A (en) Sprue sleeve
US8757243B2 (en) Shot tube plunger for a die casting system
SI24339A (en) Piston with optimum cooling effectiveness for cold-chamber die-casting systems
JP2010120072A (en) Die casting device
JP4028112B2 (en) Mold cooling method and apparatus
BRPI0618566A2 (en) permanent casting mold and casting mold insert
CN201061822Y (en) Copper pipe of continuous casting crystallizer with cooling water path
US20160038999A1 (en) Isothermal shot tube assembly
KR101743944B1 (en) Mold cooling device
WO2016208027A1 (en) Casting device and casting method
JP2010094721A (en) Warm compacting method in powder metallurgy and die device therefor
SI24287A (en) Piston for cold chamber die casting
JP3592287B2 (en) Structure of injection sleeve for die casting machine
KR20180118742A (en) Die casting nozzle system
US20170274447A1 (en) Hybrid die cast system for forming a component usable in a gas turbine engine
US20220016685A1 (en) Production method for a shape-imparting tool part of a forming tool
JP6753188B2 (en) Plunger chip structure of die casting machine
US2708298A (en) Apparatus for casting metal billets and the like
JP2011173151A (en) Forging die
EP2933193B1 (en) Shroud for a temperature control device, method for producing the same and use of such a shroud
JP5606354B2 (en) Mold cooling structure
KR20140141176A (en) Method for manufacturing high pressure casting and forging member
JP2004025248A (en) Bore pin for casting cylinder block
JP5907845B2 (en) Mold resin injection mold and runner lock pin used therefor

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20141107

SP73 Change of data on owner

Owner name: ADDITHERM RAZVOJ TEHNOLOGIJ D.O.O.; SI

Effective date: 20201204

KO00 Lapse of patent

Effective date: 20230510