SI22124A - Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times - Google Patents

Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times Download PDF

Info

Publication number
SI22124A
SI22124A SI200600284A SI200600284A SI22124A SI 22124 A SI22124 A SI 22124A SI 200600284 A SI200600284 A SI 200600284A SI 200600284 A SI200600284 A SI 200600284A SI 22124 A SI22124 A SI 22124A
Authority
SI
Slovenia
Prior art keywords
winding
thread
guide
coil
point
Prior art date
Application number
SI200600284A
Other languages
Slovenian (sl)
Inventor
Danilo Jaksic
Original Assignee
Danilo Jaksic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danilo Jaksic filed Critical Danilo Jaksic
Priority to SI200600284A priority Critical patent/SI22124A/en
Publication of SI22124A publication Critical patent/SI22124A/en
Priority to EP07021674A priority patent/EP1930273A1/en
Priority to US11/946,299 priority patent/US20080135667A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Landscapes

  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Winding Filamentary Materials (AREA)

Abstract

The method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times solves the problem of reducing the friction force (Fr), which is generated in the odd layer (3) when unwinding cones (1) by an innovative method of winding the thread (20) to spools (12) in odd (3) and even (4) layers. For the implementation of the method according to the invention it is not important if the cone (1) is wound on a machine where the guide drive (2, 2') of the thread (20) changes the rotation direction or not. If the guide or the thread (20) drive (2) or (2') or servomotor do not change the rotation direction it is necessary to consider that the number of guides (2, 2') has to be a multiple of the length of their supports, while their mutual distance has to fit the cone (1) length (L). The thread (20) can be wound to cylinder-shaped or conical cones (12) with or without disks (14, 21) in the terminal part (19) of the cone (1). In this case all odd layers (3) are wound equally from the virtual point (b') to the virtual point (d') and the even layers (4) are wound equally from virtual point (f') to virtual point (g'). The main feature of the method according to the invention is that the winding methods of the odd layer (3) and even layer (4) within one winding cycle do not differ from each other regardless of the fact whether a cone with five cones (5, 6, 7, 8, 9) or (6, 7, 8, 9, 13) per cylinder or cone-shaped cone (12), and with or without disk (14, 21) on the terminal part (19), or cones (1) with two cones (6, 8) and disk-shaped ring (21) on its terminal part (19) is wound.

Description

METODA PRECIZIJSKEGA NAVIJANJA TEKSTILNE PREJE NA NAVITKE Z VEČKRATNIM SPREMINJANJEM NAVIJALNEGA RAZMERJA ZNOTRAJ ENEGA CIKLUSA NAVIJANJAMETHOD OF PRECISION WINDING OF TEXTILE YARN TO REVERSES WITH MULTIPLE CHANGE OF THE WELDING RATIO WITHIN ONE SINGLE CYCLE

Predmet izuma je metoda precizijskega navijanja tekstilne preje na navitke z večkratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja, oziroma je natančneje način usmerjanja in namotavanja niti na jedra oziroma tuljave, pri katerem se struktura navijanja lihih in sodih plasti v navitku med sabo razlikuje.The subject of the invention is a method of precision winding textile yarns on windings by repeatedly changing the winding ratio within one winding cycle, or more precisely, a method of directing and winding threads to cores or coils, in which the winding structure of odd and even layers in the winding differ from one another.

Po mednarodni patentni klasifikaciji spada izum v B65H 54/02, v B65H 55/04 in dodatno še v B65H 81/00.According to the international patent classification, the invention belongs to B65H 54/02, B65H 55/04 and additionally to B65H 81/00.

Tehnični problem, ki ga rešuje izum, je izvedba takšne strukture plasti v navitkih, ki bo onemogočala pojav neugodne dinamike odvijanja niti v lihih plasteh pri odvijanju niti iz tuljave, pri čemer bo kot med vzdolžno osjo navitka, gledano proti zadnjemu koncu navitka in med lego niti v lihih plasteh navitka približek kotu 90°, s čimer se bo posledično zmanjšala sila trenja pri odvijanju niti iz navitkov, s tem pa bo omogočeno odvijanje niti iz navitkov z veliko hitrostjo, hkrati pa bo struktura navitkov kompaktna, oba konca navitkov pa bosta stabilizirana.A technical problem solved by the invention is the implementation of such a structure of layers in the coils, which will prevent the occurrence of unfavorable dynamics of unwinding, neither in the odd layers when unwinding or from the coil, with the angle between the longitudinal axis of the winding being viewed towards the rear end of the winding and in position even in odd layers of the coil, it approximates 90 °, which in turn will reduce the friction force when unwinding the thread from the windings, thus allowing the winding of the windings to be unwound at high speed, while keeping the structure of the windings compact and stabilizing both ends of the windings. .

Znanih je kar nekaj metod navijanja preje oziroma niti na pripadajoča jedra oziroma tuljave. Po patentu US 6,027,060 je znana metoda navijanja preje na cilindrični vložek z križnimi navoji, ki preprečuje zrcalno navitje, angleško ribbon, hkrati pa omogoča stopničasto prilagajanje precizijskega navijanja tako, da za vsak ciklus izračuna novo navijalno razmerje, ki se stopničasto zmanjšuje. Sleherni ciklus sestavlja dvojni gib vodila niti vzdolž tuljave, navijalno razmerje pa predstavlja razmerje med številom vrtljajev vretena in dvojnim gibom vodila niti. Na ta način se z navitjem po tem izumu poveča enakomernost gostote navitka, kar posledično omogoča, da se tak navitek odvija hitreje kot navitek, ki je navit po metodi, ki omogoča pojav zrcalnega navitja. Značilnost zrcalnega navitja je predvsem v tem, da se vijačnice navite preje nalagajo druga na drugo, torej sode na sode in lihe na lihe. Osnovna pomanjkljivost te znane rešitve je v tem, da je korak vijačnic sodih in lihih plasti znotraj istega ciklusa enak, le da so ene leve druge pa desne. Zaradi takšnega načina navijanja lihih plasti, ki so na tuljavo navite od zadnjega konca proti sprednjemu koncu navitka, čez katerega se nit odvija, ni mogoče doseči želenega hitrejšega odvijanja, kljub odpravi zrcalnega navitja.There are several known methods of winding yarns or threads to their respective cores or coils. U.S. Patent No. 6,027,060 discloses a method of winding a yarn onto a cylindrical insert with cross-threads that prevents mirrored winding, English ribbon, while allowing for stepwise adjustment of the precision winding by calculating a new steplessly winding ratio for each cycle. Each cycle consists of a double stroke of the thread guide along the coil, and the winding ratio represents the ratio of the spindle speed to the double stroke of the thread guide. In this way, the winding of the present invention increases the uniform density of the winding, which in turn enables such winding to be performed faster than the winding winding by a method which enables the appearance of mirror winding. A feature of mirror winding is that winding helixes are stacked on top of each other, that is, barrels of soda and odds on odds. The basic disadvantage of this known solution is that the pitch of the helixes of the even and odd layers within the same cycle is the same, except that one left side is right. This type of winding of the odd layers coiled from the back end to the front end of the winding through which the thread is unwinding makes it impossible to achieve the desired faster unwinding despite the removal of the mirror winding.

Razen predhodno opisane so najbolj značilne še naslednje znane rešitve po patentih US 4,667,889; US 4,697,753; US 4,771,961; US 5,056,724; US 5,348,238; US 5,447,277; US 6,027,060; EP 0 194 524; SI 9111546 in EP 0 578 966, ki pa ne omogočajo tako visoke hitrosti odvijanja niti s tuljave, ki bi bila potrebna pri vnašanju votka na sodobnih hitrih statvah. Vzrok zato je predvsem v tem, ker te znane rešitve ne upoštevajo v zadostni meri dejstvo, da so lihe plasti na križnem navitku zelo velika ovira za dosego večje hitrosti odvijanja, saj se pri tem načinu lihe plasti navijajo od zadnjega proti sprednjemu koncu navitka, čez katerega se kasneje nit odvija in to z enakim korakom vijačnic, kot je v sodih plasteh navitka v istem ciklu.In addition to those described above, the most prominent are the following known solutions of US Patent Nos. 4,667,889; US 4,697,753; US 4,771,961; US 5,056,724; US 5,348,238; US 5,447,277; US 6,027,060; EP 0 194 524; SI 9111546 and EP 0 578 966, which, however, do not allow the speed of unwinding even from the coil that would be required when introducing weft on modern fast looms. The reason for this is mainly because these known solutions do not sufficiently take into account the fact that the odd layers on the cross winding are a very big obstacle to achieving higher speed of unwinding, since in this way the evil layers are wound from the rear towards the front end of the winding, across later the thread unfolds with the same pitch of the helix as in the even layers of the winding in the same cycle.

Značilnost predhodno navedenih znanih rešitev so predvsem metode navijanja križnih navitkov, ki temeljijo na naključnem, precizijskem ali stopničasto precizijskem križnem navijanju navitkov na jedra oziroma tuljave oblike valja ali stožca. Znotraj enega cikla navijanja vodilo vodi nit od zadnjega k sprednjemu koncu navitka, kar predstavlja liho plastA feature of the previously known known solutions is, in particular, methods of winding cross windings based on random, precision or stepped precision cross winding of windings on cores or coils of the cylinder or cone shape. Within one winding cycle, the guide guides the thread from the back to the front end of the winding, representing an odd layer

J in obratno od sprednjega k zadnjemu koncu navitka, kar predstavlja sodo plast. Pri tem se v enem in istem ciklu korak vijačnice niti v lihi plasti ne razlikuje, oziroma se bistveno ne razlikuje od koraka vijačnice niti v sodi plasti. Velja, da pri znanih metodah križnega navijanja vijačnice, ki jih oblikujejo niti navite v lihih plasteh, ležijo praviloma v ravninah, ki so proti zadnjemu koncu navitka nagnjene za toliko, da z vzporednico oklepajo kot, ki je manjši od 90°. Pri tem vzporednico ponazarja vzdolžna središčna os navitka oziroma tuljave, opazovana v smeri zadnjega konca navitka. Vijačnice, ki jih tvorijo niti v sodih plasteh pa ležijo v ravninah, ki so proti sprednjemu koncu navitka nagnjene za toliko, da skupaj z vzporednico oklepajo kot, ki je večji od 90°. Tudi v tem primeru ponazarja vzporednico vzdolžna središčna os navitka ali tuljave, opazovana v smeri proti zadnjemu koncu navitka.J and vice versa from the front to the back end of the winding, which is an even layer. In the same cycle, the helix pitch does not differ in the odd layer, nor does it differ significantly from the helix step nor in the even layer. As is known in the known methods of cross-winding, helixes formed by strands wound in odd layers generally lie in planes inclined towards the rear end of the winding so as to enclose an angle of less than 90 ° with the parallel. Here, the parallel is illustrated by the longitudinal center axis of the winding or coil, observed in the direction of the rear end of the winding. The helixes formed by the threads in the barrel layers, however, lie in planes inclined towards the front end of the winding so as to enclose an angle greater than 90 ° with the parallel. In this case, too, the longitudinal center axis of the winding or coil, observed in the direction towards the rear end of the winding, illustrates the parallel.

Prav tako je skupno znanim paralelnim načinom zaprtega navijanja niti na tuljave v navitke tudi to, da vijačnice, ki jih oblikuje na tuljavo navita nit, ležijo tesno ena ob drugi in skupaj z vzdolžno središčno osjo navitka oziroma tuljave oklepajo kot blizu 90°. Pri tej znani metodi je korak vijačnic prednostno enak premeru niti, ki jo navijamo.It is also a commonly known parallel method of winding thread windings to windings into windings, in that the windings formed by the winding winding thread lie close to each other and, together with the longitudinal center axis of the winding or the coils, close to 90 °. In this known method, the helix pitch is preferably equal to the diameter of the thread being wound.

Glavna slabost oziroma pomanjkljivost opisanih znanih rešitev navijanja niti oziroma preje na tuljavo je predvsem v enakem koraku vijačnic niti v sodih in v lihih plasteh ter v kotu, ki ga oklepajo te vijačnice z vzporednico, torej z vzdolžno središčno osjo navitka v smeri proti zadnjem koncu navitka in, ki je lahko manjši ali večji od 90°. Opisana struktura sode in lihe plasti ne omogoča dovolj hitrega odvijanje niti iz navitkov. Gre za to, da se odvijanje niti iz sodih plasti, v smeri od zadnjega proti sprednjemu koncu navitka, izvaja pod kotom vijačnice, kije večji od 90°. Posledica takšnega kota vijačnice, kakor tudi hkratne spremembe gibalnega stanja niti, se pojavi sila vleka, tako imenovana reakcijska vztrajnostna sila. Ker ta sila samega odvijanja niti ne ovira preveč, jo lahko v tem primeru zanemarimo. Povsem drugače je pri dinamiki odvijanja niti iz lihih plasti, ki so bile navite od zadnjega proti sprednjemu koncu navitka. Kot, ki ga vijačnice niti oklepajo z vzporednico, torej z vzdolžno središčno osjo navitka v smeri zadnjega konca navitka ali tuljave, je namreč manjši od 90°. Takšen kot vijačnice niti povzroči, da sila, ki vleče nit v smeri odvijanja, deluje tudi na tisti del niti, kije še vedno na navitku tako, da nit pritiska ob navitek. Posledica tega je, da nit drsi po površini navitka, zaradi česar se, hkrati s predhodno že opisano vztrajnostno silo, dodatno pojavi še reakcijska torna sila, ki pa deluje v smeri, ki je nasprotna smeri odvijanja niti. Pri tem velja, da je ta torna sila, pri določeni hitrosti odvijanja, tem večja, čim manjši je kot vijačnic in obratno.The main disadvantage or disadvantage of the known known solutions for winding a thread or yarn per coil is mainly in the same pitch of the helixes, even in the barrels and odd layers, and in the angle enclosed by these helices with a parallel, ie with the longitudinal center axis of the winding towards the rear end of the winding. and, which may be less than or greater than 90 °. The structure of the soda and odd layers described does not allow the rolls to be unwound quickly enough. It is the case that the unwinding of the threads from the barrel layers, in the direction from the rear to the front end of the winding, is performed at an angle of helix greater than 90 °. As a result of such a helix angle, as well as a simultaneous change in the moving state of the thread, a pulling force, the so-called reaction inertia force, occurs. Since this force of unwinding alone does not interfere too much, we can neglect it in this case. It is completely different in the dynamics of unwinding threads of odd layers that have been wound from the rear to the front end of the winding. The angle that the helixes even enclose with a parallel, that is, with the longitudinal center axis of the coil in the direction of the rear end of the coil or coil, is less than 90 °. Such as a helix, the thread causes the force that pulls the thread in the direction of unwinding to act on that part of the thread still on the coil by pushing the thread against the coil. As a result, the thread slides along the winding surface, which, in addition to the inertia force previously described, further produces a reaction friction force, which in turn works in the opposite direction to the thread unwinding. In this case, the higher the frictional force, the smaller the angle of the helixes, and vice versa, at a certain speed of spin.

Po izumu je problem rešen z metodo precizijskega navijanja tekstilne preje na navitke z večkratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja z hkratnim stabiliziranjem koncev navitka, po kateri bo tekstilna preja oziroma nit, v primeru da vodilo niti spreminja smer gibanja, navita na tuljave, izvedene z ali brez konusnega koluta na zadnjem koncu, tako da bo vsak na vi tek zgrajen iz sedmih sekvenc in petih konusov, hkrati pa bo omogočeno zvezno spreminjanje dolžine navitka v intervalu dolžine poti vodila niti in to ob različni strukturi lihih in sodih plasti v navitku, pri čemer pa bodo lihe plasti navite kar se da paralelno, navitek pa bo stabilen, kompakten in stopničasto navit. Z metodo po izumu pa bo omogočeno navijanje niti na navitke tudi v primeru, ko vodilo niti ne bo spreminjalo smeri gibanja, to je takrat ko servomotor, ki poganja nosilo ali nosila vodil niti, ne spreminja smeri rotacije, pri čemer bo v tem primeru vsak navitek, pri katerem bo nit navita na tuljavo z enim diskastim kolutom na zadnjem koncu, sestavljen iz dveh sekvenc in dveh konusov, omogočeno pa bo tudi spreminjanje dolžine navitka, ki bo lahko enaka mnogokratniku dolžine nosila vodil niti, razdalja med vodili niti pa bo enaka dolžini navitka. Izum bo opisan na obeh izvedbenih primerih in to tako na prvem prednostnem izvedbenem primeru, pri katerem ima navitek pet konusov in je navit stopničasto, kot tudi na drugem izvedbenem primeru z navitkom z dvema konusoma in to za izvedbe, ki so karakteristične tako za navitke z valjkastimi kot tudi stožčastimi tuljavami, z ali brez koluta na zadnjem koncu tuljave, ob pomoči slik, ki prikazujejo:According to the invention, the problem is solved by the method of precision winding of textile yarn to windings by repeatedly changing the winding ratio within one winding cycle, while stabilizing the ends of the winding, by which the textile yarn or thread will, in the case of a thread guide change the direction of movement, be wound on coils made with or without a conical reel at the rear end, each of you running will be constructed of seven sequences and five cones, while allowing continuous variation of the length of the coil in the interval of the length of the path leading by the threads, with different structure of odd and even layers in the coil, however, the odd layers will be wound as parallel as possible, and the winding will be stable, compact and stepwise wound. The method according to the invention, however, will allow thread winding to be made even in the case where the guide does not even change the direction of motion, that is, when the servomotor that drives the stretcher or the carrier of the guide thread does not change the direction of rotation, in which case each a reel in which the thread will be wound on a coil with one disc disc at the rear end, consisting of two sequences and two cones, and will also be able to change the length of the reel, which will be able to be multiplied by the length of the thread guides and the distance between the guides will not be the same the length of the winding. The invention will be described in both embodiments, both in the first preferred embodiment, in which the reel has five cones and is wound in a stepwise fashion, as well as in the second embodiment with a double cone winding, for embodiments characterized by both reels with cylindrical as well as tapered coils, with or without a reel at the rear end of the coil, by means of pictures showing:

sl. I shematski prikaz delovanja sil pri odvijanju niti iz navitkov, tako iz lihih, kot tudi iz sodih plasti sl. 2 prikaz polovičnega vzdolžnega prereza navitka, navitega s spreminjanjem smeri in hitrosti gibanja vodila niti, po metodi izuma, z hkratnim simboličnim polovičnim prikazom videza površine navitka znotraj posameznih sektorjev sl. 3 navitek po metodi izuma, pri katerem je nit navita na stožčasto tuljavo ob hkratnem spreminjanju smeri gibanja vodila niti sl. 3A navitek po metodi izuma, pri katerem je nit navita na valjkasto tuljavo, ob hkratnem spreminjanju smeri in hitrosti gibanja vodila niti sl. 3B diagram hitrosti gibanja vodila niti pri navijanju niti na tuljavo po metodi izuma, ki ustreza navitku z valjkasto tuljavo, prikazanega na sl. 3A sl. 3C enako, kot v sl. 3B, samo v nekoliko povečanem in bolj preglednem prikazu sl. 4 navitek po metodi po izumu, pri katerem je nit navita na valjkasto tuljavo ob spreminjanju smeri in hitrosti gibanja vodila niti, ki ima na zadnjem koncu izveden konusni kolut za stabiliziranje zadnjega konca navitka sl. 4A enako, kot v sl. 3B, samo pri navitku, ki ustreza valjkasti tuljavi z konusnim kolutom iz sl. 4 sl. 5 navitek po metodi po izumu, pri katerem je nit navita na valjasto tuljavo, brez spreminjanja smeri gibanja vodila niti, oziroma brez spremembe smeri rotacije servomotorja, ki poganja nosilo ali nosila vodil niti, ki ima na zadnjem koncu diskasti kolut za stabilizacijo zadnjega konca navitkaFIG. I is a schematic representation of the action of forces in unwinding threads from windings, both odd and even layers of FIG. FIG. 2 is a partial longitudinal cross-sectional view of the winding wound by changing the direction and velocity of the thread guide, according to the method of the invention; 3 is a winding according to the method of the invention, wherein the thread is wound on a tapered coil while changing the direction of travel of the thread guide of FIG. 3A is a winding according to the method of the invention, wherein the thread is wound on a cylindrical coil, while changing the direction and speed of travel of the thread of the thread; 3B is a diagram of the speed of travel of the guide neither in winding nor in the coil according to the method of the invention corresponding to the roller coil winding shown in FIG. 3A FIG. 3C is the same as in FIG. 3B, only in a slightly enlarged and more transparent view of FIG. 4 is a reel according to the method of the invention, wherein the thread is wound on a cylindrical coil while changing the direction and speed of movement of the thread guide having a conical reel at the rear end to stabilize the rear end of the winding of FIG. 4A is the same as in FIG. 3B, only in the case of a winding corresponding to a cylindrical roller coil of FIG. 4 fig. 5 a reel according to the method of the invention, wherein the thread is wound on a cylindrical coil without changing the direction of motion of the thread guide, or without changing the direction of rotation of the servomotor that drives the stretcher or stretchers of the thread guide having a disc disk at the rear end to stabilize the rear end of the winding

Sl. 5A diagram hitrosti gibanja vodil niti pri navijanju niti na tuljavo po izumu, ki ne spreminjajo smeri gibanja in, ki ustreza navitku z valjkasto tuljavo z diskastim kolutom iz sl. 5 sl. 6 primerjalni diagram obremenitve niti pri odvijanju navitkov, med znanimi metodami in metodo po izumu, po kateri je nit navita na valjasto cevko brez koluta in to ob spreminjanju smeri in hitrosti gibanja vodila niti sl. 7 fotografija navitka, navitega po metodi izuma in sicer na valjasto cevko brez koluta, s spreminjanjem smeri in hitrosti gibanja vodila nitiFIG. 5A is a diagram of the speed of movement of the guides, neither in the winding nor on the coil according to the invention, which do not change the direction of motion and which corresponds to the roller coil of the disk disc of FIG. 5 fig. 6 is a comparative diagram of the thread load in the unwinding of the windings, between the known methods and the method of the invention, wherein the thread is wound on a cylindrical tube without a reel, changing the direction and speed of movement of the guide thread; 7 is a photograph of a coil wound according to the method of the invention, on a cylindrical tube without a disc, by changing the direction and speed of the thread guide movement

Na sl. 1 je shematsko prikazana razlika v delovanju nekaterih sil, ki nastajajo pri odvijanju niti 20 iz lihih plasti 3 in iz sodih plasti 4 navitkov 1, ki so predhodno navitih po do sedaj znanih metodah navijanja križnih navitkov 1 in sicer v poljubnih točkah A in A', kar predstavlja osnovo za opis in razumevanje problema in hkrati za razumevanje bistva metode po tem prijavljenem izumu, ki ta problem rešuje. Pri tem velja, da se nit 20 odvija v smeri, ki je nasprotna smeri navijanja, kar pomeni, da se nit 20 iz lihih plasti 3 odvija v smeri D, torej od sprednjega konca 18 k zadnjemu koncu 19 navitkov 1 in, da se nit 20 iz sodih plasti 4 odvija v nasprotni smeri C, torej od zadnjega konca 19 proti sprednjemu koncu 18 navitkov 1.In FIG. 1 is a schematic representation of the difference in the action of some forces generated by the unwinding of strands 20 from odd layers 3 and from barrel layers 4 of windings 1 previously wound according to known methods of winding cross windings 1 at any points A and A ' , which forms the basis for describing and understanding the problem and at the same time understanding the essence of the method of the present invention that solves this problem. The thread 20 is said to be unfolding in a direction opposite to the winding direction, which means that the thread 20 from the odd layers 3 is unfolding in the D direction, i.e. from the front end 18 to the rear end 19 of the windings 1 and that the thread 20 from the barrel layer 4 extends in the opposite direction C, that is, from the rear end 19 towards the front end 18 of the windings 1.

Kot je predhodno že povedano, predstavlja na sl. 1 točka A poljubno točko pri odvijanju niti 20 lihe plasti 3 v smeri D, točka A' pa poljubno točko pri odvijanju niti 20 sode plasti 4 v smeri C, s poljubno vlečno silo F. Zaradi pospeškov pri veliki hitrosti odvijanja se pojavi vztrajnostna sila Fv oziroma Fv'. Nit 20 je v lihih plateh 3 navita tako, da njene vijačnice v neki točki A zapirajo kot a, ki je manjši od 90°, oziroma kot a', ki je večji od 90°. V tem primeru za točko A velja, da vlečna sila F deluje tudi na del niti 20 v lihi plasti 3 in sicer v njeni dolžini od točke A do točke T, ki še leži na navitku 1. Del niti 20, v območju med točkama A in T, pri odvijanju pritiska na površino navitka 1 tako, da drsi po površini navitka 1, zaradi česar se pojavi torna sila Fr, ki deluje v smeri vijačnice niti 20 v lihi plasti 3. Sila Fr deluje torej tako dolgo, dokler se nit 20 v točki A ne dvigne in odlepi od površine navitka 1. Komponenta, ki v tem primeru deluje v nasprotni smeri vlečne sile F je približno sorazmerna produktu Fr*cosa. Problem s torno silo Fr se pojavlja samo pri odvijanju niti 20 v lihih plasteh 3, ne pa tudi pri njenem odvijanju v sodih plasteh 4, ker je pri slednjih kot a' večji od 90°, kar je prikazano v točki A'.As previously stated, the FIG. 1 point A any point at unwinding of 20 odd layers 3 in direction D, point A 'any point at unwinding of 20 strands of layer 4 in direction C, with any pulling force F. Due to the accelerations at high speed of unwinding, the inertia force F appears. v or F v '. The thread 20 is wound in odd plates 3 such that its helixes at some point A are closed as a less than 90 ° or a 'greater than 90 °. In this case, point A is considered to be that the pulling force F also acts on a part of the thread 20 in the odd layer 3, in its length from point A to the point T still lying on the coil 1. The part of the thread 20, in the area between points A and T, when applying pressure to the surface of the coil 1 by sliding along the surface of the coil 1, resulting in a friction force F r acting in the direction of the helix 20 in the odd layer 3. The force F r therefore acts as long as thread 20 at point A does not raise and detach from the surface of the coil 1. The component acting in the opposite direction of the pulling force F in this case is approximately proportional to the product F r * cosa. The problem with the friction force F r occurs only in the unscrewing of the threads 20 in odd layers 3 and not in the unscrewing them in the even layers 4, since for the latter the angle a is greater than 90 °, as shown in point A '.

Zaradi rotacije niti 20 se pri odvijanju iz navitka 1, med točama A in B oziroma med točkama A' in B, pojavita tudi centrifugalna sila in Coriollisova sila, ki sta pri lihih plasteh 3 in pri sodih plasteh 4 približno enaki, vendar pa na metodo po izumu bistveno ne vplivata in zato v opisu izuma posebej ne bosta omenjeni. Pri tem je točka B enaka točki položaja vodila 2 niti 20 na ustreznem stroju, na katerem se odvijajo navitki 1, predhodno naviti po metodi precizijskega navijanja z večkratnim spreminjanjem navijalnega razmerja v enem ciklusu navijanja po tem prijavljenem izumu.Due to the rotation of the thread 20, centrifugal force and Coriollis force, which are approximately identical in the odd layers 3 and in the barrel layers 4, appear to be approximately the same at the unwinding from the winding 1, between points A and B, or between points A 'and B, but to the method are not significantly affected by the invention and will therefore not be specifically mentioned in the description of the invention. The point B is equal to the position of the guide 2 of the thread 20 in the corresponding machine on which the windings 1 are wound, pre-wound by the method of precision winding, by repeatedly changing the winding ratio in one winding cycle of the present invention.

Pri odvijanju lihe plasti 3 se začne nit 20 dvigovati od površine navitka 1 v točki A. Pri tem se vpliv vlečne sile F pojavlja vzdolž niti 20 in to od točke A do točke T. Ker je v tem primeru kot a precej manjši od 90°, pride do pojava dodatne torne sile Fr, hkrati pa se pojavi tudi vztrajnostna sila Fv. Pri odvijanju sode plasti 4 se začne nit 20 dvigati od površine navitka 1 v točki A', pri čemer se generira vztrajnostna sila F'v. Ker je v tem primeru kot a' večji od 90°, se torna sila Fr pri odvijanju niti 20 iz sode plasti 4 navitka 1 ne pojavi. Pri tem naj ponovimo že povedano, da kot a, oziroma kot a', ponazarja kot med vzdolžno središčno osjo navitka 1, gledano proti zadnjem koncu 19 navitka 1 in med lego, ki jo oblikuje vijačnica niti 20 v lihi plasti 3, oziroma v sodi plasti 4, na površini navitka 1.As the odd layer 3 unfolds, the thread 20 starts to rise from the surface of the coil 1 at point A. In this case, the influence of the pulling force F occurs along the thread 20, from point A to point T. Since in this case the angle a is much less than 90 °. , an additional friction force F r occurs, and at the same time an inertia force F v occurs. As the soda layer 4 unwinds, the thread 20 starts to rise from the surface of the winding 1 at point A ', generating a inertia force F' in . Since in this case the angle a 'is greater than 90 °, the friction force F r does not occur when unwinding the thread 20 from the soda layer 4 of the winding 1. It should be reiterated that as a, or as a ', illustrates the angle between the longitudinal center axis of the coil 1, when viewed towards the rear end 19 of the coil 1, and between the position formed by the helix of the thread 20 in the odd layer 3 or in the barrel layer 4, on the surface of the coil 1.

Iz predhodno zapisanega torej velja, daje pri križnem navijanju niti 20, tako v lihih plasteh 3 in v sodih plasteh 4 navitkov 1, v dosedanji praksi osnovni problem predvsem v navijanju lihih plasti 3, torej v pojavu torne sile Fr pri odvijanju niti 20 iz njih. Za odpravo tega problema, torej zmanjšanja vrednosti torne sile Fr, je potrebno, da se navitki 1 navijajo tako, da se kot a, niti 20 v lihih plasteh 3, čim bolj približa kotu 90°, kar je tudi temeljna oziroma bistvena značilnost metode po tem izumu. Naj k temu dodamo še to, da mora biti pri tem navijanje niti 20 v sodih plasteh 4 takšno, da se koraki vijačnic niti 20 postopoma zmanjšujejo tako, da na ta način tvorijo konus na površini navitka 1 tudi, če ga navijamo na valjasto tuljavo 12, zaradi česar se tudi zmanjšuje vrednost torne sile Fr. Slednje je pogojeno z zahtevo, da mora navitek 1 v postopku odvijanja ostati stabilen, kar pomeni, da se nit 20 na sprednjem koncu 18 in na zadnjem koncu 19 navitka 1 ne posipa. To stabilnost navitka 1 dosežemo z križnim navijanjem dela dolžine navitka 1 in sicer na njegovem sprednjem delu 18, čez katerega nit 20 odvijamo in z oblikovanjem konusa 9 na sprednjem koncu 18 navitkaIt follows from the foregoing that, in the case of cross-winding of threads 20, both in odd layers 3 and in even layers 4 of windings 1, in current practice, the main problem is mainly in the winding of odd layers 3, that is, in the appearance of the friction force F r when unwinding threads 20 from them. To eliminate this problem, ie reducing the value of the friction force F r , it is necessary to bend the windings 1 so that the angle a, nor 20 in odd layers 3, is as close as possible to the 90 ° angle, which is also a fundamental or essential feature of the method. according to this invention. In addition, the thread winding 20 in the barrel layers 4 should be such that the pitch of the threaded strands 20 is gradually reduced so as to form a cone on the surface of the winding 1 even when wound on a cylindrical coil 12 , which also reduces the value of the friction force F r . The latter is conditioned by the requirement that the winding 1 must remain stable during the unwinding process, which means that the thread 20 on the front end 18 and the back end 19 of the winding 1 is not sanded. This stability of the winding 1 is achieved by cross-winding part of the length of the winding 1 on its front part 18, through which the thread 20 is unrolled and by forming a cone 9 on the front end 18 of the winding

1. Zadnji konec 19 navitka 1 pa navijamo konusno, oziroma v obliki prisekanega stožca in ga na ta način stabiliziramo. V nekem drugem izvedbenem primeru lahko zadnji konec 19 navitka 1 stabiliziramo tudi z dodatnim konusnim kolutom 14 nameščenim na tuljavo 12.1. The back end 19 of the reel 1 is wound in a conical or truncated cone shape and thus stabilized. In another embodiment, the back end 19 of the winding 1 may also be stabilized with an additional tapered reel 14 mounted on the coil 12.

Na sl. 2 je v zgornji polovici prikazana struktura lihih plasti 3 in sodih plasti 4 v navitku 1, v spodnji polovici pa je simbolično prikazana površina navitka 1. Oba prikaza sta locirana znotraj območja navitka 1, oziroma v območju njegovih zunanjih petih konusov 5, 6, 7, 8 in 9, v sektorjih in Li, L2, La, L4L5, ki skupaj tvorijo dolžino L navitka 1. Pri tem je navitek 1 navit na tuljavo 12, brez dodanega koluta 14 ali koluta 21 in to z vodilom 2 niti 20, ki med navijanjem spreminja smer in hitrost svojega gibanja. Tudi v tem prikazu gre za križno navitje navitka 1, sestavljeno iz poljubnega števila lihih plasti 3 in sodih plasti 4, navitih z nitjo 20. Lihe plasti 3 so navite v smeri C, torej od zadnjega dela 19 proti sprednjemu delu 18 navitka 1, oziroma tuljave 12 in se zato odvijajo v obratni smeri D, od sprednjega dela 18 proti zadnjemu delu 19. Temu nasprotno velja za sode plasti 4, ki so navite v smeri D, torej od sprednjega dela 18 proti zadnjemu delu 19 navitka 1, oziroma tuljave 12 in se zato odvijajo v obratni smeri C, od zadnjega dela 19 proti sprednjemu delu 18. Sama struktura navitka 1 je dobljena z zaporedjem sedmih sekvenc gibanja vodila 2 niti 20 skozi lihe plasti 3 in sode plasti 4, kar je razvidno iz diagrama na sl. 3B oziroma sl. 3C. Opisano in prikazano velja za navitke 1, pri katerih je nit 20 navita na valjkaste ali stožčaste tuljave 12, prikazane na sl. 3 in sl. 3A, ne velja pa za navitke 1, pri katerih ima tuljava 12 na zadnjem delu 19 še dodaten stožčast oziroma konusni kolut 14 ali dodaten diskast kolut 21, ki sta prikazana na sl. 4 in sl. 5, kar bo natančneje opisano v nadaljevanju.In FIG. 2, the upper half shows the structure of the odd layers 3 and the barrel layers 4 in the coil 1, and the lower half symbolically shows the surface of the coil 1. Both displays are located within the region of the coil 1, or in the area of its outer five cones 5, 6, 7 , 8 and 9, in sectors and Li, L2, La, L4L5, which together form the length L of the coil 1. In this case, coil 1 is wound on coil 12, with no reel 14 or reel 21 added, with guide 2 nor thread 20, which it changes the direction and speed of its movement during winding. Also in this embodiment, it is a cross winding of winding 1 consisting of any number of odd layers 3 and barrel layers 4 wound with thread 20. The odd layers 3 are wound in direction C, that is, from the rear 19 towards the front 18 of winding 1, respectively. the coils 12 and therefore extend in the opposite direction D from the front 18 towards the rear 19. The opposite is true for the barrels of layers 4, which are wound in the D direction, ie from the front 18 towards the rear 19 of the coil 1, or coil 12 and thus proceed in the reverse direction C, from the rear 19 towards the front 18. The structure of the winding 1 itself is obtained by sequencing the seven motion sequences of the guide 2 threads 20 through the odd layers 3 and the barrels of layers 4, as shown in the diagram in FIG. 3B and FIG. 3C. Described and shown are for windings 1, in which the thread 20 is wound on cylindrical or conical coils 12 shown in FIG. 3 and FIG. 3A, but does not apply to coils 1, in which the coil 12 at the rear 19 has an additional conical or conical disc 14 or an additional disc disc 21, shown in FIG. 4 and FIG. 5, which will be described in more detail below.

Kot že rečeno, ima navitek 1 iz sl. 2 pet zunanjih konusov 5, 6, 7, 8 in 9, ki ležijo znotraj celotne dolžine L navitka 1, oziroma v območju petih sektorjev Li; L2j L3, L4 in L5 tako, da leži znotraj sektorja Li zunanji konus 5, znotraj L2 konus 6, znotraj L3 konus 7, znotraj L4 konus 8 in znotraj sektorja L5 zunanji konus 9. Iz sl. 2 je tudi razvidno, da sektor L3 v bistvu tvorijo tako navitja lihih plasti 3 in navitja sodih plasti 4 iz predhodnega sektorja L2, kot tudi iz naslednjega sektorja L4 in na ta način oblikujejo medsebojno prepletenost plasti 3 in 4. Gre namreč zato, da se sektor L3 začne v vertikalni ravnini 10, ki je pravokotna na vzdolžno os tuljave 12 in s tem navitka 1 in se konča v ravnini 11, kije paralelna ravnini 10 in ju povezuje poševnica, ki leži poševno na vzdolžno os tuljave 12, pri čemer ta poševnica povezuje njuni skrajni točki, ki sta si diagonalno narazen, kar je na sl. 2 črtkano označeno. Povedano drugače, točka 10 predstavlja začetek križnega navijanja dela prve lihe plasti 3, točka 11 pa predstavlja začetek križnega navijanja dela zadnje lihe plasti 3. Črtkana premica, ki povezuje točki 10 in 11 pa ponazarja premik začetka navijanja križnega dela lihih plasti 3, proti zadnjemu delu 19 navitka 1. Zoženje sprednjega dela 18 navitka 1, čez katerega se odvija nit 20 iz lihih plasti 3 in iz sodih plasti 4, je na eni strani posledica zmanjševanja gostote vijačnic, oziroma povečevanja koraka vijačnic v smeri navijanja niti 20 v lihih plasteh 3 in povečevanja gostote vijačnic, oziroma zmanjševanja koraka vijačnic v smeri navijanja niti 20 v sodih plasteh 4. Navitek 1 je v območju sektorjev L3, L4 in L5 navit križno tako, da se navijalno razmerje pri vsakem obratu tuljave 12, torej za vsako vijačnico spreminja. To le delno velja za lihe plasti 3, ki so pod črtkano linijo med ravninam 10 in 11, navite dokaj paralelno, tako kot v sektorju Li oziroma L2. S tehniko te metode navijanja po izumu je sprednji del 18 navitkov 1 popolnoma stabiliziran. Pri tem dolžina območja križnega navitja, torej sektorjev L3, L4 in L5, praviloma ne presega ene petine do ene četrtine celotne dolžine L navitkov 1, odvisno od njihove dolžine in vrste preje, oziroma niti 20. Pri tem praviloma velja, daje pri navijanju multifilamentne preje dolžina L navitkov 1 večja, kot pri navijanju predene preje. Li, znotraj katerega se nahaja zunanji konus 5, ima dve temeljni funkciji. Prva je ta, da stabilizira zadnji del 19 navitka 1 tako, da ne pride do posipa zaradi načina navijanja niti 20 v lihih plasteh 3 in deloma tudi v sodih plasteh 4, na njihovi poti v smeri D, od sprednjega dela 18 proti zadnjemu delu 19 navitka 1. S tem hkrati preprečimo pojav zrcalnega oziroma skladnega navitja, pri katerem bi se pri navijanju navitka 1 nit 20 v lihih plasteh 3 nalagala ena na drugo. Enako velja tudi za sode plasti 4. Nit 20 je v prvi lihi plasti 3, znotraj sektorjev Li in L2, ter delno tudi znotraj sektorja L3, navita skoraj paralelno, saj njene vijačnice oziroma ovojnice ležijo v ravninah, ki jih navidezno prebada os navitka 1 pod kotom, kije nekoliko manjši od 90°, navijalno razmerje in hitrost vodila niti znotraj območij Li in L2 ter delno znotraj območja L3 pa se ne spreminja. Nit 20 je, v sodih plasteh 4 in znotraj območja sektorjev Li in L2 križno navita tako, da se korak vijačnic postopoma zmanjšuje v smeri navijanja. Soda plast 4 se začne navijati, ko se začne vodilo 2 niti 20 gibati v smeri D, proti zadnjemu delu 19 navitka 1. Če se pri tem ozremo na sl. 3B vidimo, da vodilo 2 doseže naj večjo hitrost na koncu sektorja L4, ko se le-ta že giblje proti zadnjemu delu 19 navitka 1, kjer se njegova hitrost začne postopoma zmanjševati. Zaradi tega se postopoma zmanjšuje tudi korak vijačnic niti 20 v lihih plasteh 3 in v sodih plasteh 4, hkrati pa se povečuje gostota njihovega navijanja. Posledica tega je stožčasta oblika navitka 1 v sektorju L2 tudi v primeru navijanja niti 20 v navitek 1 z valjasto tuljavo 12. S povečanjem nagiba oziroma konusa navitkov 1, znotraj sektorja L2, se zmanjšuje torna sila Fr, ki se pojavi pri odvijanju lihih plasti 3 in sicer zaradi drsenja niti 20 po površini navitka 1. Pri navijanju preje oziroma niti 20 na tuljavo 12 stožčaste oblike, je konus navitka 1 v sektorju L2 bolj izrazit kot pri navitku 1, ki je navit na tuljavo 12 valjaste oblike. Znotraj sektorjev L4 in L5 in delno v sektorju L3 je nit 20 v lihih plasteh 3 navita križno, navijalno razmerje pa se spreminja v območju sektorjev L4 in L5 ter delno v sektorju L3. Tudi v sodih plasteh 4 je nit 20 navita križno, prav tako se v teh plasteh 4 spreminja navijalno razmerje. V sektorjih L4 in L5 ter delno v sektorju L3> se korak vijačnic navitja niti 20 v lihih plasteh 3 postopoma povečuje, kar je posledica predhodno opisanih sprememb navijalnega razmerja. Hitrosti vodila 2 pri navijanju niti 20 na poti L, lihih plasti 3 v smeri C in sodih plasti 4 v smeri D, so prikazane in opisane pri sl. 3C.As already mentioned, the coil 1 of FIG. 2 five outer cones 5, 6, 7, 8 and 9, which lie within the entire length L of the coil 1, or in the area of five sectors Li ; L 2j L 3 , L4 and L5 such that inside the sector Li the outer cone 5, inside the L 2 cone 6, inside the L 3 cone 7, inside the L4 cone 8 and inside the sector L5 the outer cone 9. From FIG. 2 also shows that sector L 3 essentially forms both the windings of odd layers 3 and the windings of barrel layers 4 from the previous sector L 2 , as well as from the next sector L4, thus forming the interconnections of layers 3 and 4. that sector L 3 begins in a vertical plane 10 perpendicular to the longitudinal axis of the coil 12 and thus a coil 1 and ends in a plane 11 parallel to the plane 10 and joined by a slash that lies obliquely on the longitudinal axis of the coil 12, at whereby this slash connects their extremes, which are diagonally apart, in FIG. 2 dashed marked. In other words, point 10 represents the beginning of the cross-winding portion of the first odd layer 3, and point 11 represents the beginning of the cross-winding of part of the last odd layer 3. The dashed line connecting points 10 and 11 illustrates the movement of the beginning of the winding of the odd-numbered layer 3 toward the last Part 1 of the coil 1. The narrowing of the front part 18 of the coil 1, through which the thread 20 from the odd layers 3 and from the even layers 4 extends, is, on the one hand, the result of a decrease in the density of the helixes, or an increase in the pitch of the helixes in the direction of the winding of the thread 20 in the odd layers 3 and increasing the helix density, or decreasing the pitch of the helixes in the direction of winding the threads 20 in barrel layers 4. The winding 1 is wound in the area of sectors L 3 , L 4 and L 5 so that the winding ratio at each turn of the coil 12, ie for each the helix changes. This is only partly true of the odd layers 3, which are below the dashed line between planes 10 and 11, wound quite parallel, as in the Li and L2 sectors, respectively. With the technique of this winding method according to the invention, the front part 18 of the windings 1 is completely stabilized. In this case, the length of the cross-winding area, ie sectors L3, L4 and L5, does not generally exceed one-fifth to one-fourth of the total length L of the windings 1, depending on their length and the type of yarn, or even 20. In this case, when winding, multifilament yarn length L of windings 1 greater than the winding of spinning yarn. Li, within which the outer cone 5 is located, has two fundamental functions. The first is to stabilize the back portion 19 of the roll 1 so that no sanding occurs due to the way the strands are wound 20 in the odd layers 3 and partly even in the even layers 4, in their path in the D direction, from the front 18 towards the rear 19 coil 1. This prevents the appearance of a mirror coil or coil which, when winding a coil 1, thread 20 in odd layers 3 would be stacked on top of each other. The same applies to barrels of layer 4. The thread 20 is wound almost parallel in the first odd layer of layer 3, within sectors Li and L2, and partly also within sector L 3 , since its helixes or envelopes lie in planes that are apparently pierced by the axis of the winding. 1 at an angle slightly less than 90 °, and the winding ratio and speed of the guide does not change even within the Li and L2 regions and partly within the L 3 range. The thread 20 is cross-wound in barrel layers 4 and within the area of sectors Li and L2 so that the pitch of the helixes gradually decreases in the winding direction. The soda layer 4 begins to wind as the guide 2 of the thread 20 begins to move in the D direction towards the rear of the winding 1. In this regard, FIG. 3B, the guide 2 is said to reach a higher velocity at the end of sector L4 when it is already moving towards the rear 19 of the coil 1, where its velocity begins to decrease gradually. As a result, the pitch of the strands of thread 20 in odd layers 3 and even layers 4 is gradually reduced, while the density of their winding increases. As a result, the conical shape of the coil 1 in sector L2 also in the case of winding the thread 20 into the coil 1 with a cylindrical coil 12. By increasing the slope or cone of the coils 1, within sector L2, the friction force F r that occurs when unwinding layers is reduced 3, due to the sliding of the thread 20 over the surface of the winding 1. When winding the yarn or thread 20 onto a conical 12 coil, the cone of the winding 1 in sector L2 is more pronounced than in the winding 1 which is wound on a coil 12 of cylindrical shape. Within sectors L 4 and L5 and partly in sector L3, the thread 20 is cross-wound in odd layers 3, and the winding ratio varies in the area of sectors L 4 and L5 and partly in sector L 3 . Even in barrel layers 4, the thread 20 is wound crosswise, and in these layers 4 the winding ratio changes. In sectors L 4 and L5, and partly in sector L 3> , the pitch of the winding threads of thread 20 in odd layers 3 is gradually increasing, which is a consequence of the changes in the winding ratio described previously. The speeds of the guide 2 in the winding of the thread 20 in the path L, the odd layers 3 in the direction C and the barrels of the layers 4 in the direction D are shown and described in FIG. 3C.

Tuljave 12, na katere se navija nit 20 v lihih plasteh 3 in v sodih plasteh 4, so lahko oblike valja ali stožca, z ali brez kolutov 14 oziroma kolutov 21. Tako je na sl. 3 prikazan navitek 1 s tuljavo 12 stožčaste oblike, na sl. 3 A pa s tuljavo 12 valjkaste oblike. Razvidno je, daje pri stožčasti tuljavi 12 konus 6 v sektorju L2 navitka 1 precej bolj izrazit, kot pri njeni valjkasti izvedbi. Da se znotraj posameznih sektorjev, od sektorja Li do vključno sektorja L5, nahaja najmanj po en pripadajoči zunanji konus 5, 6, 7, 8 ali 9, je predhodno že pojasnjeno pri sl. 2.The coils 12 supported by the thread 20 in the odd layers 3 and the barrel layers 4 may be cylindrical or conical, with or without reels 14 or reels 21. Thus, in FIG. 3 shows a cone 1 with a conical coil 12 in FIG. 3 A with a coil of 12 cylindrical shape. It is apparent that the cone coil 12 cone 6 is much more pronounced in sector L 2 of the coil 1 than in its cylindrical embodiment. That there are at least one associated outer cone 5, 6, 7, 8 or 9 within individual sectors, from sector Li to and including sector L5, is already explained in FIG. 2.

Na sl. 3B je prikazan diagram hitrosti gibanja vodila 2 pri navijanju niti 20 v lihe plasti 3 in v sode plasti 4 navitka 1 in to po njegovi celotni dolžini L, oziroma v območjih posameznih sektorjev Li, L2, L3, L4 in L5, znotraj katerih se oblikujejo zunanji konusi 5, 6, 7, 8 in 9. Bolj natančno in pregledno je ta diagram nekoliko povečano prikazan še na sl. 3C. Prikazana sta dva ciklusa navijanja, tako prvi, kot drugi. Vsak ciklus navijanja je sestavljen iz ene lihe plasti 3 in iz ene sode plasti 4, ki se na tuljavo 12 navijata v smeri C oziroma D. V smeri C se navijajo lihe plasti 3, v smeri D pa se navijajo sode plasti 4. Vsak ciklus je sestavljen iz sedmih segmentov. Kot je razvidno iz sl. 3C prvi ciklus poteka po poti a'-b'-c'-d'-e'-f-g'-a*' in tvori naslednjih sedem segmentov: a'-b; b'-c'; c'-d'; d'-e'; e'-f; f-g' in g'-a*'. Drugi ciklus poteka po poti a*'-b*'-c*'-d*'-e*'-f|!,-g*'-g!,:' in tvori naslednjih sedem segmentov: a*'-b*'; b*'c*'* inIn FIG. 3B shows a diagram of the speed of movement of the guide 2 when winding the thread 20 into the odd layers 3 and into the barrels of layers 4 of the winding 1, along its entire length L, or in the areas of individual sectors Li, L 2 , L 3 , L 4 and L5, inside whose outer cones 5, 6, 7, 8 and 9 are formed. More precisely and transparently, this diagram is somewhat enlarged in FIG. 3C. Two winding cycles are shown, both first and second. Each winding cycle consists of one odd layer 3 and one barrel of layer 4, which winds in the direction C and D. respectively, in the coil 12. consists of seven segments. As can be seen from FIG. 3C, the first cycle follows the path a'-b'-c'-d'-e'-f-g'-a * 'and forms the following seven segments: a'-b;b'-c';c'-d';'-e';e'-f; fg 'and g'-a *'. The second cycle follows the path a * '- b *' - c * '- d *' - e * '- f | !, -g *' - g !,: 'And forms the following seven segments: a *' - b * '; b * 'c *' * in

V diagramu na sl. 3B in 3C je prikazano, daje pot L vodila 2, pri navijanju niti 20 v lihe plasti 3 in v sode plasti 4, enaka dolžini L navitka 1, ki poteka od a' do e', označimo jo torej z L = a'e' in predstavlja prvo koordinato, to je abscisno os znotraj prikazanega diagrama v koordinatnem sistemu. Drugo koordinato znotraj tega koordinatnega sistema predstavljata ordinati absolutnih hitrosti Vi in V2 vodila 2. Gre torej za prikaz, kako vodilo 2 dosega določeno različno hitrost V i v smeri C, oziroma hitrost V2 v smeri D, znotraj določene dolžine L navitka 1, oziroma določeno hitrost Vi, V2 znotraj posameznega sektorja od Li do vključno L5, ki skupaj tvorijo dolžino L navitka 1. Tako na primer na poti od a' do b' doseže vodilo 2 hitrost Vi = b, na poti od c' do d' pa se hitrost Vi vodila 2 poveča od c na d. Velja torej, da pri navijanju niti 20 na tuljavo 12, izmenično v lihe plasti 3 in sode plasti 4, opravi vodilo 2 določeno pot L z določeno hitrostjo Vi oziroma V2, pri čemer predstavlja v diagramu hitrost VbV2 prvo, pot L pa drugo koordinato.In the diagram of FIG. 3B and 3C show that the path L of the guide 2, when winding the thread 20 in the even layers 3 and in the barrels of the layer 4, is equal to the length L of the winding 1, which runs from a 'to e', therefore denote it by L = a'e 'and represents the first coordinate, that is, the abscissa axis within the diagram shown in the coordinate system. The second coordinate within this coordinate system is the absolute velocity ordinates Vi and V 2 of guide 2. It is thus a demonstration of how guide 2 achieves a different velocity in the iv direction C, or velocity V 2 in the D direction, within a given length L of the winding 1, respectively. a certain velocity Vi, V 2 within a sector from Li to and including L5, which together form the length L of the coil 1. Thus, for example, on the path from a 'to b', speed 2 Vi = b, on the path from c 'to d' however, the velocity Vi of guide 2 increases from c to d. Therefore, when winding the thread 20 onto the coil 12, alternately in the odd layers 3 and the barrel layers 4, the guide 2 performs a certain path L at a given speed Vi or V 2 , where in the diagram the velocity V b V 2 is the first, path L and the other coordinate.

Kot že rečeno, se na levi strani diagrama, na sl. 3C, nahajata ordinati absolutnih hitrosti Vi in V2 vodila 2. Ordinata Vi prikazuje hitrosti gibanja vodila 2 od zadnjega dela 19 proti sprednjemu delu 18 navitka 1, torej v smeri C. Nasprotno temu prikazuje ordinata V2 hitrosti gibanja vodila 2 od sprednjega dela 18 nazaj proti zadnjemu delu 19 navitka 1.As already stated, on the left side of the diagram in FIG. 3C, the coordinates of the absolute velocities Vi and V 2 of guide 2 are located. The ordinate Vi shows the velocities of motion of the guide 2 from the rear 19 towards the front part 18 of the coil 1, thus in the direction C. In contrast, the ordinates V 2 speeds of the guide 2 from the front 18 back to back of coil 19 1.

Prav tako je že povedano, da se prvi ciklus metode po tem izumu sestoji iz dveh plasti in to iz lihe plasti 3, pri kateri se nit 20 navija v smeri C in iz sode plasti 4, pri kateri se nit 20 navija v smeri D. Gibanje in hitrost vodila 2 bomo s pomočjo diagrama na sl. 3C najprej opazovali skozi vseh sedem, predhodno že omenjenih segmentov prvega ciklusa. Pri navijanju lihe plasti 3 v smeri C vodilo 2 niti 20 v točki a' miruje, nakar doseže na poti od a' do b' hitrost b. Od točke b' do c' se hitrost vodila 2 in s tem niti 20 ne spremeni in ostaja enaka. Od c' do d' se hitrost vodila 2 poveča od c = b na hitrost d. Na poti od d' do e' se začne vodilo 2 ustavljati in se v točki e' dokončno ustavi. S tem je navijanje lihe plasti 3 v smeri C v prvem ciklusu končano.It is also stated that the first cycle of the method according to the present invention consists of two layers, namely an odd layer 3 in which the thread 20 is bent in the C direction and a soda of the layer 4 in which the thread 20 is bent in the D. The movement and velocity of bus 2 will be illustrated using the diagram in FIG. 3C was first observed through all seven previously mentioned first cycle segments. When winding the odd layer 3 in the C direction, the thread guide 2 of the thread 20 at a 'stops, then reaches a speed b on the path from a' to b '. From point b 'to c', the speed of the bus 2 is changed and thus the thread 20 does not change and remains the same. From c 'to d', the speed of bus 2 increases from c = b to the speed d. On route d 'to e', bus 2 starts to stop and stops at point e '. This completes the winding of the odd layer 3 in the C direction in the first cycle.

Prvi ciklus se nato nadaljuje z navijanjem niti 20 v sodi plasti 4 in to v smeri D. Na poti od e' do f doseže vodilo 2 hitrost f. Nato se hitrost vodila 2 na poti od f do g' zmanjšuje in sicer od hitrosti f na hitrost g. Na poti od g' do a*' se začne vodilo 2 niti 20 zaustavljati in se v točki a*' popolnoma ustavi.The first cycle then proceeds by winding the thread 20 in the barrel layer 4 in the D. direction. On the path from e 'to f, the guide 2 reaches speed f. Then the speed of the guide 2 decreases from the speed f to the speed g in the path from f to g '. On the path from g 'to a *', guide 2 of thread 20 starts to stop and stops completely at a * '.

Drugi ciklus navijanja navitka 1 po izumu se prav tako sestoji iz kombinacije lihe plasti 3, navite v smeri C in iz sode plasti 4, ki je navita v smeri D. V nadaljevanju bo opisana pot, ki jo znotraj drugega ciklusa opravi vodilo 2 in s tem tudi nit 20. Hitrost vodila 2 se v smeri C, od točke a*', v kateri vodilo 2 miruje, do točke b*', poveča od začetne hitrosti 0 na hitrost b*, ki je enaka hitrosti b iz predhodno opisanega prvega ciklusa. V nadaljevanju se hitrost vodila 2 in s tem hitrost niti 20 v lihi plasti 3, ne spreminja od točke b*' do točke c*' in je hitrost na tej poti ves čas enaka. V točki c*' je hitrost vodila 2 enaka c*, ta pa je enaka hitrosti b*. Od točke c*' do točke d*' se hitrost vodila 2 nato poveča na d*, ki je enaka hitrosti d iz prvega ciklusa. Hitrost vodila 2 se začne v območju med točkama d*' in e*' zniževati in pade iz hitrosti d* na hitrost 0 v točki e*'. S tem je navijanje lihe plasti 3 v drugem ciklusu končano in začne se navijanje sode plasti 4 drugega ciklusa. Na poti od točke e*' do točke f*' hitrost vodila 2 niti 20 naraste od hitrosti 0 v točki e*' na hitrost f* v točki f*'. Nadalje se začne hitrost vodila 2, v območju od točke f*' do točke g*', zmanjševati in sicer pade od hitrosti H na hitrost g*. Sledi še nadaljnje padanje hitrosti vodila 2 in s tem niti 20 in to od hitrosti g* na 0, kar se zgodi na poti od točke g*' do točke a**'. V točki a**' je torej hitrost vodila 2 enaka 0 in vodilo 2 niti 20 se popolnoma ustavi. S tem je znotraj drugega ciklusa končano navijanje sode plasti 4 v smeri D, torej v smeri od sprednjega dela 18 proti zadnjemu delu 19 navitka 1.The second winding cycle of the winding 1 according to the invention also consists of a combination of an odd layer 3 wound in the C direction and a soda layer 4 wound in the D. direction. The following will describe the path taken by guide 2 within the second cycle. also thread 20. The speed of guide 2 increases in the direction C, from point a * 'in which guide 2 is stationary, to point b *', from an initial velocity of 0 to a velocity b * equal to the velocity b of the previously described first cycles. In the following, the speed of the guide 2, and thus the speed of the thread 20 in the odd layer 3, does not change from point b * 'to point c *' and the speed on this path is constant throughout. At point c * ', the speed of the guide 2 is equal to c *, and this is equal to the speed b *. From point c * 'to point d *', the speed of bus 2 is then increased to d *, which is equal to the speed d from the first cycle. The speed of bus 2 starts to decrease in the range between points d * 'and e *' and drops from speed d * to speed 0 at point e * '. This completes the winding of the even layer 3 in the second cycle and begins the winding of the second layer's baking layer 4. On the path from point e * 'to point f *', the speed of bus 2 of thread 20 increases from speed 0 at point e * 'to speed f * at point f *'. Further, the speed of bus 2 starts to decrease in the range from point f * 'to point g *', falling from speed H to speed g *. This is followed by a further decrease in the speed of bus 2, and thus not 20, from speed g * to 0, which happens on the way from point g * 'to point a **'. Therefore, at point a ** ', the speed of bus 2 is equal to 0, and bus 2 of thread 20 is completely stopped. This completes the winding of the soda layer 4 in the D direction in the second cycle, that is, in the direction from the front 18 to the rear 19 of the winding 1.

Predhodno opisana prvi in drugi ciklus navijanja niti 20 na tuljave 12 oblike valja ali stožca, brez kolutov 14 in 21, izmenično v lihih plasteh 3 in v sodih plasteh 4, tvorita temeljno izvirnost in novost metode navijanja navitkov 1 po prijavljenem izumu v primeru, ko vodilo 2 niti 20 spreminja smer gibanja, oziroma servomotor, ki poganja vodilo 2, spreminja smer rotacije.The previously described first and second threading cycles of thread 20 on cylinders or cones 12, without reels 14 and 21, alternately in odd layers 3 and even casks 4, form the fundamental originality and novelty of the winding method 1 of the present invention in the case where the thread 2 guide 20 changes the direction of motion, or the servomotor that drives the guide 2 changes the direction of rotation.

Iz predhodnega opisa prvega in drugega ciklusa metode sledi, da se z kombinacijo različnih hitrosti gibanja vodila 2 niti 20, na poti L vzdolž navitka 1, oblikuje pet zunanjih konusov 5, 6, 7, 8 in 9. Kot že rečeno, so navitki 1 sestavljeni iz velikega, poljubnega števila predhodno že opisanih dvojnih plasti. Dvojna plast pomeni, kar je že omenjeno, en zaključen ciklus navijanja niti 20, v katerem se navije ena liha plast 3 v smeri C in ena soda plast 4 v smeri D tuljave 12, oziroma navitka 1. Pri tem zunanji konusi od 5 do vključno 9 nastanejo v posameznih segmentih oziroma etapah znotraj posameznih sektorjev Lj, L2, L3, L4 in Ls, na svoji poti L ob tuljavi 12 navitkov 1. Njihov nastanek pri navijanju niti 20, v lihih plasteh 3 oziroma v sodih plasteh 4, na tuljave 12 brez kolutov 14, 21, bo opisan v nadaljevanju, ob pomoči sl. 3B in sl. 3C.From the foregoing description of the first and second cycles of the method, it follows that by combining different speeds of the guide 2 threads 20, along the path L along the winding 1, five outer cones 5, 6, 7, 8 and 9 are formed. consisting of a large number of double layers previously described. Double layer means, as already mentioned, one complete thread winding cycle 20, in which one odd layer 3 in the direction C is wound and one soda layer 4 in the direction D of the coil 12, or the winding 1. The outer cones 5 to and including 9 are formed in individual segments or stages within individual sectors Lj, L2, L3, L4 and Ls, on their path L with coils of 12 windings 1. Their formation when winding strands 20, in odd layers 3 or in even layers 4, on coils 12 without discs 14, 21, will be described below with the help of FIG. 3B and FIG. 3C.

Zunanji konus 5 nastane zaradi razlike med potjo vodila 2 znotraj prvega in drugega ciklusa ter znotraj vseh naslednjih parov ciklusov, ki jima sledijo. Vzrok temu je razlika v dolžini poti L, ki jo vodilo 2 niti 20 opravi med točko a' v prvem ciklusu in med točko a*' v drugem ciklusu, pri čemer se v točki a*' vodilo 2 in s tem nit 20 popolnoma zaustavi.The outer cone 5 is formed by the difference between the path of the guide 2 within the first and second cycles and within all subsequent pairs of cycles that follow them. This is caused by the difference in the length of the path L made by the guide 2 of thread 20 between the point a 'in the first cycle and between the point a *' in the second cycle, leaving the guide 2 at the point a * 'and thus the thread 20 completely stops .

Zunanji konus 6 nastane v nadaljevanju zaradi postopnega zmanjševanja hitrosti gibanja vodila 2 niti 20 in to na poti znotraj segmenta od točke f do točke g'. V tem segmentu pade hitrost vodila 2 od hitrosti f na hitrost g, s tem pa se prav tako postopoma zmanjšuje velikost koraka vijačnice niti 20, navite v sodi plasti 4, kar povzroči povečevanje gostote navitja niti 20 na navitku 1 v tem segmentu.The outer cone 6 is subsequently formed by a gradual decrease in the speed of movement of the guide 2 of the thread 20, and this on the path within the segment from point f to point g '. In this segment, the speed of the guide 2 decreases from the speed f to the speed g, which also gradually reduces the size of the pitch of the thread helix 20 wound in the barrel layer 4, which causes an increase in the density of the winding thread 20 on the winding 1 in this segment.

Zunanji konus 7 nastane zaradi spremembe lege točke c' po vsakem ciklusu navijanja tako, da se hitrost c, ki je enaka hitrosti b začne spreminjati po vsakem ciklusu navijanja tako, da se v drugem ciklusu spremeni že v točki c*', ki je bližje zadnjemu koncu 19 navitka 1 kot točka c', kar velja tudi za naslednje cikluse. Zunanji konus 8 nastane zaradi spremembe, povečanja hitrosti c, v točki c', na hitrost d, v točki d', vodila 2 niti 20. Zunanji konus 8 je hkrati tudi posledica načina navijanja sodih plasti 4 na tem delu navitka 1. Ko vodilo 2 niti 20 doseže hitrost f v točki f, začne njegova hitrost pojemati in se giblje počasneje. S tem se zmanjšujejo koraki vijačnic niti 20, povečuje pa se gostota navitja v navitku 1.The outer cone 7 is formed by changing the position of point c 'after each winding cycle such that the velocity c, which is equal to the speed b, begins to change after each winding cycle, so that in the second cycle it changes already at the point c *', which is closer the back end 19 of reel 1 as point c ', which also applies to the following cycles. The outer cone 8 is caused by a change, increase in speed c, at point c ', to speed d, at point d', of the guide 2 threads 20. The outer cone 8 is also due to the way the barrel layers 4 are wound in this part of the coil 1. When the guide 2, thread 20 reaches velocity f at point f, its velocity declines and moves more slowly. This reduces the pitch of the helix 20 threads and increases the winding density of the winding 1.

Zunanji konus 9 nastane zaradi razlike med potjo vodila 2 znotraj prvega in drugega ciklusa ter znotraj vseh naslednjih parov ciklusov, ki jima sledijo. Vzrok temu je razlika v dolžini poti, ki jo vodilo 2 niti 20 opravi med točko e' v prvem ciklusu in med točko e*' v drugem ciklusu, pri čemer se v točki e*' vodilo 2 in s tem nit 20 popolnoma zaustavi.The outer cone 9 is formed by the difference between the path of the guide 2 within the first and second cycles and within all subsequent pairs of cycles that follow them. This is caused by the difference in the length of the path that guide 2 of thread 20 makes between point e 'in the first cycle and between point e *' in the second cycle, leaving guide 2 at the point e * 'and thus thread 20 completely stops.

Pred navijanjem je potrebno za vsako tekstilno prejo, oziroma za nit 20, eksperimentalno ugotoviti optimalne vrednosti parametrov navijanja navitkov 1 in jih pred navijanjem na stroju nastavimo, oziroma vstavimo v program navijanja navitka 1. Vseh parametrov je najmanj štirinajst, vključno s parametrom, ki temelji na upoštevanju debeline preje oziroma niti 20. Po vsakem izvedenem ciklusu navijanja se hitrost rotacije tuljav 12 na pripadajočih vretenih stroja zmanjšuje. S tem zagotovimo konstantno hitrost navijanja. Količino navite preje oziroma niti 20 merimo s številom opravljenih ciklusov, to je s številom dvojnih plasti navite preje, sestavljenih hkrati iz lihe plasti 3 in sode plasti 4.Before winding, it is necessary to determine for each textile yarn or thread 20, experimentally, the optimal values of the winding parameters of the windings 1 and adjust or insert them into the winding program of the winding 1. Before the winding, at least fourteen parameters, including the parameter based on considering the thickness of the yarn or thread 20. After each winding cycle, the speed of rotation of the coils 12 on the associated spindles of the machine decreases. This ensures a constant winding speed. The amount of coiled yarn or thread 20 is measured by the number of cycles completed, that is, by the number of double layers of coiled yarn, consisting simultaneously of the odd layer 3 and the soda layer 4.

Zunanji konus 5 v sektorju Li in zunanji konus 9 v sektorju L5 sta, po navijanju multifilamentne preje oziroma niti 20 v navitke 1 po metodi izuma, nekoliko bolj položna in daljša, kot pri navijanju predene preje oziroma niti 20 in to pri enakem končnem premeru navitkov 1, še posebej pri navijanju steklene multifilamentne preje oziroma niti 20. Pri tem je potrebno upoštevati še dejstvo, da se pri navijanju niti 20 v lihih plasteh 3 korak vijačnic v sektorju L2 ne spreminja. V tem deluje torej navitje dokaj paralelno. Ko dosežemo sektor L3, se korak vijačnic niti 20 postopoma povečuje in je največji na sprednjem delu 18 navitka 1. Velja pa, da je dolžina tega dela navitka 1, v primerjavi z celotno dolžino L navitka 1, relativno kratka. Pri odvijanju lihe plasti 3 se povečuje dolžina balona med točko A in točko B oziroma vodilom 2 niti 20. Hkrati se korak vijačnic niti 20 zmanjšuje. Zaradi tega se pogoji odvijanja lihe plasti 3 v tretjem sektorju L3 bistveno ne poslabšajo. Nadalje se poveča tudi dolžina vijačnic pri odvijanju niti 20 iz sode plasti 4 med točkama A' in B iz sl. 1, pri čemer se istočasno zmanjšuje dolžina balona, kar izniči oziroma nevtralizira vpliv povečane dolžine koraka vijačnic v sektorju L3. Je pa predhodno že omenjeno, da odvijanje sodih plasti 4 ni problematično. Prav tako zoženi del navitka 1, navitega po metodi izuma, omogoča na sprednjem delu 18 postavitev vodila 2 niti 20 bliže tuljavi 12, s čimer se zmanjša dolžina prej omenjenega balona niti 20, tako v sodi plasti 3, kot v lihi plasti 4, Poleg tega zoženi del navitka 1 omogoča uspešno odvijanje relativno dolgih navitkov 1 in vanje navitih niti 20, ne da bi se pri tem balon zadel ob sprednji rob 18 navitka 1.The outer cone 5 in sector Li and the outer cone 9 in sector L5, after winding the multifilament yarn or thread 20 into the windings 1 according to the method of the invention, are slightly flatter and longer than when winding the spinning yarn or thread 20 at the same end diameter of the windings 1, especially when winding glass multifilament yarn or thread 20. It should also be taken into account that the winding of the thread 20 in odd layers 3 does not change the pitch of the helixes in sector L 2 . So in this the winding works fairly parallel. When sector L3 is reached, the pitch of the helix 20 threads gradually increases and is greatest on the front part 18 of the coil 1. However, the length of this portion of the coil 1 is considered to be relatively short compared to the total length L of the coil 1. As the odd layer 3 unfolds, the length of the balloon between point A and point B or thread 2 of thread 20 increases. At the same time, the pitch of the thread helix 20 decreases. As a result, the conditions of the unfolding layer 3 in the third sector L3 do not significantly deteriorate. Further, the length of the helixes is also increased by unwinding the thread 20 from the soda layer 4 between points A 'and B in FIG. 1, at the same time reducing the length of the balloon, which eliminates or counteracts the impact of increased helix length in sector L3. However, it has been mentioned before that the unwinding of barrel layers 4 is not problematic. Also, the tapered portion of the winding 1, wound according to the method of the invention, allows the front 18 to position the guide 2 of the thread 20 closer to the coil 12, thereby reducing the length of the aforementioned balloon thread 20, both in the barrel layer 3 and in the odd layer 4, in addition the narrowed part of the winding 1 allows the winding of the relatively long winding 1 and the winding strands 20 to be successfully wound, without the balloon being hit by the leading edge 18 of the winding 1.

Na sl. 4 je prikazan navitek 1, pri katerem so lihe plasti 3 in sode plasti 4 niti 20 navite na valjkasto tuljavo 12, ki ima na zadnjem delu 19 dodatno izveden ali nameščen še konusni kolut 14. Navijanje preje, oziroma niti 20 na tuljave 12 z koluti 14 se, od predhodno opisanega navijanja na valjkaste in stožčaste tuljave 12 brez koluta 14, razlikuje samo v formiranju notranjega konusa 13, ki je v tem izvedbenem primeru nadomestil zunanji konus 5 iz predhodno opisanega izvedbenega primera iz sl. 3 oziroma sl. 3A. Iz tega razloga bo v nadaljevanju opisan samo del postopka formiranja tega notranjega konusa 13 po metodi izuma, opis identičnega, predhodno že opisanega postopka pa se ne ponavlja.In FIG. 4 shows a winding 1 in which the odd layers 3 and the soda layers 4 of the thread 20 are wound on a cylindrical coil 12 having a tapered reel 14 additionally mounted or mounted on the back 19. 14 differs from the previously described winding on cylindrical and conical coils 12 without a disc 14 only in the formation of an inner cone 13, which in this embodiment replaced the outer cone 5 of the previously described embodiment of FIG. 3 or FIG. 3A. For this reason, only a portion of the process of forming this inner cone 13 according to the method of the invention will be described below, and the description of the identical but previously described process is not repeated.

Na površini navitka 1, prikazanega na sl. 4, pri katerem je nit 20 navita na valjkasti tuljavi 12, z dodatnim konusnim kolutom 14, so izvedeni štirje zunanji konusi 6, 7, 8 in 9, v njegovi notranjosti pa je izveden notranji konus 13, ob oziroma na poševnim konusnega koluta 14. Kot je prikazano na diagramu v sl. 4A, se notranji konus 13, na valjkasti tuljavi 12 z kolutom 14, oblikuje v segmentu na poti vodila 2 niti 20 od točke a' do točke a*', znotraj prvega ciklusa in na poti vodila 2 od točke a*' do točke a**' v drugem ciklusu. Pri tem od točke a' do točke b' hitrost vodila 2 naraste od 0 do hitrosti b. Sledi postopek, ki je vse do točke g enak postopku, kije predhodno že opisan pri sl. 3, sl. 3A, sl. 3B in sl. 3C. Za tem hitrost vodila 2 znotraj prvega ciklusa strmo pade na njegovi poti od točke g' do točke a*' in to iz hitrosti g na hitrost 0. S tem je prvi ciklus pri tem izvedbenem primeru končan in začne se drugi ciklus tako, da hitrost vodila 2, na njegovi poti od točke a*' do točke b*', strmo naraste od 0 na hitrost b*. Nato do točke g* sledi postopek, ki je že znan iz opisa predhodnega izvedbenega primera s sl. 3, sl. 3A oziroma sl. 3B in sl. 3C. V nadaljevanju hitrost vodila 2, znotraj njegove poti od točke g*' do točke a**', sunkovito pade iz hitrosti g* na 0 v točki a**'. Pri tem se je vodilo 2 pomaknilo proti kolutu 14 za razdaljo, ki je enaka poti od točke a*' do točke a**'. Pri tem velja, daje hitrost niti 20 identična hitrosti vodila 2, saj potujeta skupaj.On the surface of the coil 1 shown in FIG. 4, in which the thread 20 is wound on a cylindrical coil 12, with an additional conical disc 14, four outer cones 6, 7, 8 and 9 are made, and an inner cone 13 is provided on its inside, respectively on the oblique conical disc 14 respectively. As shown in the diagram in FIG. 4A, the inner cone 13, on the cylindrical coil 12 with the reel 14, is formed in a segment on the path 2 of the thread 20 from point a 'to point a *', within the first cycle and along the path of guide 2 from point a * 'to point a ** 'in the second cycle. From this point a 'to point b', the speed of the guide 2 increases from 0 to the speed b. Following is a procedure up to point g identical to the procedure previously described in FIG. 3, FIG. 3A, FIG. 3B and FIG. 3C. After that, the speed of bus 2 falls steeply along its path from point g 'to point a *' within the first cycle, from speed g to speed 0. This completes the first cycle in this embodiment and starts the second cycle so that the speed guide 2, in its path from point a * 'to point b *', rises steeply from 0 to speed b *. Next, the procedure already known from the description of the preceding embodiment of FIG. 3, FIG. 3A and FIG. 3B and FIG. 3C. Hereinafter, the speed of the guide 2, within its path from point g * 'to point a **', drops dramatically from speed g * to 0 at point a ** '. In doing so, guide 2 moved toward reel 14 by a distance equal to the path from a * 'to a **'. The thread speed 20 is said to be identical to the speed 2 of the bus 2 as they travel together.

Navijalni stroj za navijanje niti 20 v navitke 1, na valjkaste ali stožčaste tuljave 12, z ali brez dodatnega konusnega koluta 14, pri katerem vodila 2 niti 20 spreminjajo smer gibanja, se praviloma sestoji iz nekaterih osnovnih delov in elementov. Tuljave 12 so nataknjene na pripadajoča vretena, poganja pa jih glavni motor, ki gaje mogoče programirati. Sestavni del stroja je tudi digitalno analogni pretvornik, ki zagotavlja komunikacijo med krmilno enoto in glavnim motorjem. Pred samim začetkom navijanja navitkov 1 po metodi izuma, glavnemu motorju programiramo frekvenco oziroma število vrtljajev vretena s tuljavo 12 v določeni časovni enoti. Na ta način je v naprej določeno začetno število vrtljajev tuljave 12 in s tem navitka 1 na njej. Nadalje na stroju programiramo še načrtovane spremembe oziroma zmanjševanje frekvence po vsakem izvedenem ciklusu navijanja, oziroma po navitju vsakega para dvojne plasti, torej lihe plasti 3 in sode plasti 4 skupaj. Vrednosti vseh teh parametrov se nato vnesejo v aplikacijski program krmilnika navijalnega stroja. Ta krmilnik z aplikacijskim programom omogoča izredno fleksibilno krmiljenje gibanja vodila 2 z nitjo 20, oziroma delovanje servomotorja, ki to vodilo 2 poganja. Krmilnik navijalnega stroja opremimo z aplikacijskim programom, ki je prilagojen navijanju navitkov 1 na tuljave 12 z in/ali brez dodatnih kolutov 14.As a rule, the winding machine for winding the thread 20 into the windings 1, on the cylindrical or conical coils 12, with or without an additional tapered disc 14, in which the guides 2 or 20 change the direction of motion, as a rule consists of some basic parts and elements. The coils 12 are mounted on the associated spindles and are driven by a programmable main motor. An integral part of the machine is the digital-to-analog converter, which provides communication between the control unit and the main engine. Prior to the start of winding of windings 1 according to the method of the invention, the main motor is programmed for the frequency or the number of revolutions of the spindle with coil 12 in a specific time unit. In this way, the initial speed of the coil 12 and thus the winding 1 on it are determined in advance. Further, the machine programmed the planned changes or decreases in frequency after each winding cycle, or after the winding of each pair of double layers, ie odd layers 3 and even layers 4 together. The values of all these parameters are then entered into the application program of the winder controller. This controller with the application program enables extremely flexible control of the movement of the bus 2 with thread 20, or the operation of the servomotor that drives this bus 2. The winding machine controller is equipped with an application program adapted to wind the windings 1 onto the coils 12 with and / or without additional reels 14.

Na sliki 5 je prikazan navitek 1, pri katerem je nit 20 navita na tuljavo 12 oblike valjaste cevke, ki ima na zadnjem koncu 19 diskasti kolut 21. Navitek 1 je navit na navijalni napravi, pri kateri je pripadajoči servomotor, ki poganja nosili vodil 2 in 2' niti 20, izveden tako, da med delovanjem ne spreminja smeri rotacije. Vodila 2 in 2' se gibljejo vzdolž navitka 1 v obe smeri, v smeri C in v smeri D. Pri tem se vodila 2 gibljejo v smeri D in navijajo nit 20 na tuljave 12 proti zadnjem koncu 19 navitka 1, dočim se vodila 2' gibljejo v nasprotni smeri C tako, da nit 20 na tuljave 12 navijajo proti sprednjem koncu 18 navitka 1. Pri tem je razdalja med nasproti gibajočimi se vodili 2, 2' enaka dolžini navitka 1 in je hkrati mnogokratnik dolžine nosila vodil 2 in 2'.Figure 5 shows the winding 1 in which the thread 20 is wound on a coil 12 in the shape of a cylindrical tube having a disc disk 21 at the rear end 21. The winding 1 is wound on a winding device in which the associated servomotor is driven by a carrier 2 and 2 ' threads 20 so as not to alter the direction of rotation during operation. The guides 2 and 2 'move along the winding 1 in both directions, in the C direction and in the direction D. The guides 2 move in the D direction and thread the thread 20 onto the coils 12 towards the rear end 19 of the winding 1, until the guides 2' move in the opposite direction C so that the thread 20 on the coils 12 is screwed towards the front end 18 of the coil 1. The distance between the opposite guides 2, 2 'is equal to the length of the coil 1 and, at the same time, the length of the length of the stretcher guides 2 and 2'.

Na sliki 5A je prikazan diagram hitrosti vodil 2 in 2' niti 20, pri navijanju navitka 1 po postopku, kije opisan pri sl. 5. Vodilo 2, ki se giblje proti sprednjem koncu 18 navitka 1, zgrabi nit 20 v točki b' in se giblje z nespremenjeno hitrostjo b do točke c'. V točki c' ima vodilo 2 z nitjo 20 hitrost c, ki je enaka hitrosti b. Od točke c' do točke d', ki je obenem sprednji konecl8 navitka 1, se vodilo 2 niti 20 giblje pospešeno in v točki d' doseže vodilo 2 največjo hitrost. Enako hitrost ima tudi vodilo 2', ki se giblje v nasprotni smeri proti zadnjemu koncu 19 navitka 1. Vsa vodila 2 in 2' niti 20 so lahko montirana na enem ali na dveh nosilcih, ki jih poganja en motor, se pa, kot je že omenjeno, vodila 2 gibljejo v smeri C, vodila 2' pa v smeri D, torej v nasprotnih si smereh. Ko vodilo 2 niti 20, ki se giblje v smeri C, doseže sprednji konec 18 navitka 1 oziroma točko d', preda nit 20 drugemu vodilu 2', ki je doseglo točko f (f = d') in ima hitrost f (f = d) in se giblje v nasprotni smeri D. Pri gibanju proti zadnjem koncu 19 navitka 1 se hitrost tega drugega vodila 2', ki potuje v smeri D, zmanjšuje in na zadnjem koncu 19 navitka 1 doseže hitrost g (g = b) ter preda nit 20 zopet naslednjemu vodilu 2, ki se giblje proti sprednjem koncu 18 navitka 1. S tem je končan prvi ciklus navijanja. Vsi naslednji ciklusi so identični opisanemu prvemu ciklusu in se ponavljajo vse dokler navitek 1 ni dokončno navit.Figure 5A shows a speed diagram of guides 2 and 2 'of thread 20, when winding winding 1 according to the procedure described in FIG. 5. Guide 2, which moves toward the front end 18 of the coil 1, grabs the thread 20 at point b 'and moves at a constant speed b to point c'. At point c ', the guide 2 with thread 20 has a speed c equal to the speed b. From point c 'to point d', which is at the same time the front end 8 of the winding 1, the guide 2 of the thread 20 moves accelerated and at point d 'reaches the guide 2 at the highest speed. The same speed is provided by the guide 2 ', which moves in the opposite direction towards the rear end 19 of the winding 1. All the guides 2 and 2' of the thread 20 can be mounted on one or two mounts, driven by one motor, but, as already mentioned, guides 2 move in the C direction and guides 2 'in the D direction, so in opposite directions. When the thread guide 2 of thread 20 moving in the C direction reaches the front end 18 of thread 1 or point d ', it passes the thread 20 to another guide 2' that has reached point f (f = d ') and has a speed f (f = d) and moving in the opposite direction D. When moving towards the rear end 19 of roll 1, the speed of this second guide 2 'traveling in direction D decreases and reaches the speed g (g = b) at the rear end 19 of roll 1. thread 20 again to the next guide 2 moving towards the front end 18 of the winding 1. This completes the first winding cycle. All subsequent cycles are identical to the first cycle described and are repeated until coil 1 is completely wound.

V primeru direktnega pogona, ko servomotor spreminja smer rotacije, zadostuje za izvedbo metode navijanja sode plasti 4 in lihe plasti 3 po izumu eno samo vodilo 2 niti 20 na posamezno tuljavo 12. Pri direktnem pogonu tuljave 12, pri katerem servomotor smer rotacije ne spreminja, pa pripadata posamezni tuljavi 12 najmanj dve vodili 2, 2' ali več njih. Več kot dve vodili 2 in 2' niti 20 potrebujemo, če želimo pri navijanju dolžino navitka 1 spreminjati. V tem primeru potrebujemo najmanj tri ali več vodil 2 oziroma 2'. Število vodil 2, 2' je torej mnogokratnik dolžine nosila vodil 2 oziroma 2', razdalja med vodili 2 in 2'pa mora biti enaka dolžini L navitka 1.In the case of direct drive, when the servomotor changes the direction of rotation, it is sufficient to carry out the method of winding the soda layer 4 and the odd layers 3 according to the invention with a single guide 2 or 20 per individual coil 12. In the direct drive of the coil 12, in which the servomotor does not change the direction of rotation, however, at least two guides 2, 2 'or more of them belong to a single coil 12. More than two guides 2 and 2 'of thread 20 are required to change the length of the winding 1 when winding. In this case, at least three or more guides 2 and 2 'are required. The number of guides 2, 2 'is therefore a multiple of the length of the guides 2 and 2', the distance between guides 2 and 2'pa must be equal to the length L of the coil 1.

Velja torej, da pri direktnem pogonu tuljav 12 pripada vsaki tuljavi 12 najmanj en par vodil 2,Therefore, in the case of direct drive of the coils 12, at least one pair of guides 2 belongs to each coil 12,

2', od katerega eno potuje v smeri C in na opazovano tuljavo 12 navija nit 20 proti njenemu sprednjemu delu 18, drugo pa potuje v smeri D in na tuljavo 12 navija nit 20 proti njenemu zadnjemu delu 19. Na svoji poti v smeri C in v smeri D si opisani par vodil 2, 2’ eno in isto nit 20 izmenjuje na začetku in koncu tuljave 12 in jo v smeri C in D navija tolikokrat in tako dolgo, dokler navitek 1 ni do konca navit.2 ', one of which travels in the direction C and the observed coil 12 supports the thread 20 towards its front portion 18, the other travels in the D direction and the coil 12 supports the thread 20 towards its rear 19. On its way in the direction C and in direction D, the pair of guides 2, 2 'alternates one and the same thread 20 at the beginning and end of coil 12 and bend it in directions C and D as many times and until winding 1 is fully wound.

Na sl. 6 je prikazan primerjalni diagram obremenitev F, (cN), ki nastanejo pri odvijanju niti 20 iz lihih plasti 3 in sodih plasti 4 navitkov 1 in to v odvisnosti od različni hitrosti odvijanja V, (km/min). Gre torej za primerjalni prikaz obremenitve F, ki nastane pri odvijanju niti 20 iz različnih navitkov 1, med katerimi so eni naviti po znanih metodah, zopet drugi po metodi tega prijavljenega izuma.In FIG. 6 is a comparative diagram of the loads F, (cN) arising from the unwinding of strands 20 from odd layers 3 and barrel layers 4 of windings 1, depending on the different unwinding speed V, (km / min). It is, therefore, a comparative representation of the load F arising from the unwinding of threads 20 from different windings 1, one of which is wound by known methods and the other by the method of the present invention.

Krivulja 15 ponazarja hitrost odvijanja niti 20 iz križnega navitka 1, ki je navit po znani metodi na navijalniku z obodnim pogonom tuljave 12, kije konusne oziroma stožčaste oblike. Iz diagrama na sl. 6 je razvidno, da se pri odvijanju tega navitka 1, oziroma odvijanju niti 20 iz tuljave 12, z hitrostjo do 1,2 km/minuto, generira sila F v niti 20 , ki ima vrednost okrog 9 do 10 cN.Curve 15 illustrates the speed of unwinding of thread 20 from the cross winder 1, which is wound by the known method on a winder with a circumferential drive of a coil 12, which is conical or conical in shape. From the diagram in FIG. 6, it is apparent that, when unwinding this winding 1, or unwinding the thread 20 from the coil 12, at a speed of up to 1.2 km / minute, a force F is generated in the thread 20, which has a value of about 9 to 10 cN.

Naslednja krivulja 16 v sl. 6 prikazuje hitrost odvijanja niti 20 iz navitka 1 po znani rešitvi z ravnim koncem, tako imenovanim Top-Flat package, navitega na navijalniku firme Murata. Ta krivulja 16 kaže, da se pri odvijanju tega navitka 1, pri hitrosti 1,2 km/minuto, generira sila F jakosti 3 do 4 cN, kar je približno trikrat manj kot v primeru krivulje 15.The next curve 16 in FIG. 6 shows the speed of unwinding of thread 20 from reel 1 according to the well-known flat-end solution, the so-called Top-Flat package wound on a Murata winder. This curve 16 shows that at the speed of 1.2 km / min, a force F of strength 3 to 4 cN is generated when unrolling this winding 1, which is about three times less than in the case of curve 15.

Krivulja 17 prikazuje hitrost odvijanja V niti 20 iz navitkov 1, ki so bili pred tem naviti po predhodno opisani in prikazani metodi tega prijavljenega izuma na tuljavo 12 brez koluta 14 oziroma 21. Iz nje je razvidno, da metoda po izumu omogoča odvitje do 4 km in še več preje, oziroma niti 20, iz navitkov 1 v eni minuti in to ob manjši obremenitvi F, kar je v bistvu posledica zmanjšanja torne sile Fr. Izvedeni preizkusi so dokazali, da je bila nit 20, pri maksimalni doseženi hitrosti odvijanja V 4.000 metrov na minuto, obremenjena zgolj z 40 cN. Zelo pomembno je tudi, da pri odvijanju navitkov 1 po metodi izuma, ki jo ponazarja krivulja 17, v nobenem primeru ni prišlo do pretrga niti 20. V danem izkustvenem primeru je dolžina L navitka 1 znašala 20 cm, njegov premer pa 13 cm. To pomeni, daje bil premer navitka 1, navitega po metodi izuma, skoraj dvakrat manjši kot pri navitkih 1, ki so bili naviti po znanih metodah in na katere se nanašata krivulji 15 in 16. Obenem je bila dolžina navitka 1 navitega po izumu, za 5 cm daljša od dolžine navitkov 1, ki so bili naviti po znanih metodah.Curve 17 shows the unwinding speed of the thread 20 of the windings 1, which were previously wound according to the previously described and shown method of the present invention onto a coil 12 without a reel 14 or 21. It can be seen that the method according to the invention allows a winding up to 4 km and even more yarn, or thread 20, from the windings 1 in one minute, with a smaller load F, which is essentially due to the decrease in the friction force F r . The tests performed proved that the thread 20, at a maximum attained velocity of V of 4,000 meters per minute, was loaded with only 40 cN. It is also very important that the unwinding of the reels 1 according to the method of the invention illustrated by curve 17 did not in any case break even 20. In the given case, the length L of the reel 1 was 20 cm and its diameter was 13 cm. This means that the diameter of the wound 1 wound according to the method of the invention was almost twice smaller than that of the windings 1, which were wound according to known methods and referred to in curves 15 and 16. At the same time, the length of the wound 1 was wound according to the invention, for 5 cm longer than the length of the windings 1, which were wound by known methods.

Praktični preizkusi so hkrati dokazali, da omogoča metoda po izumu najmanj tri, celo do štirikrat hitrejše odvijanje preje oziroma niti 20 iz navitkov 1, kot to omogočajo znane metode navijanja navitkov 1 in to ob enaki ali celo večji kompaktnosti strukture navitja lihih plasti 3 in sodih plasti 4. Pri tem je pomembno tudi to, da se pri hitrosti odvijanja V 1,2 km/minuto po metodi izuma generira obremenitev manj kot 1 cN. Pri znanih rešitvah je ta obremenitev, pri enaki hitrosti V 1,2 km/minuto, kar nekajkrat večja in sicer znaša med 3 in 10 cN. Povedano drugače to pomeni, daje mogoče navitke 1, ki so naviti po metodi izuma, odvijati v povprečju tri do štirikrat hitreje od tistih, ki so naviti po znanih metodah. Dokazano tudi je, da kljub tako visoki hitrosti odvijanja V in ob uporabi kakovostne preje oziroma niti 20, praviloma ne preseže 5% trgalne trdnosti niti 20 pri hitrosti odvijanja V, kije v območju od 3 do 3,5 km na minuto.Practical tests have at the same time proved that the method according to the invention enables at least three, even up to four times faster, winding of the yarn or even 20 of the windings 1, than is possible by known methods of winding windings 1, with the same or even greater compactness of the structure of the winding layers 3 and barrels layers 4. It is also important that a load of less than 1 cN is generated at a speed of V 1.2 km / min according to the method of the invention. For known solutions, this load, at the same speed of 1.2 km / minute, is several times higher, ranging between 3 and 10 cN. In other words, this means that windings 1 wound according to the method of the invention can be rolled out on average three to four times faster than those wound by known methods. It has also been demonstrated that, despite such a high unwinding speed V and using good quality yarn or 20 threads, it generally does not exceed 5% of the breaking strength or 20 at the unwinding speed V, which ranges from 3 to 3.5 km per minute.

Glavna izvirnost in prednost metode po predstavljenem izumu je predvsem ta, da omogoča, da se z njeno uporabo način navijanja lihih plasti 3 in sodih plasti 4, v navitke 1, ne spreminja oziroma je ta način vedno enak in to ne glede na to ali na valjkasto, ali stožčasto tuljavo 12, z ali brez enega od kolutov 14 ali 21, navijamo navitek 1 s petimi konusi 5, 6, 7, 8, 9 iz sl. 2 in sl. 3 ali na tuljavo 12 s kolutom 21 navijamo navitek 1 samo z dvema konusoma 6 in 8 iz sl. 5.The main originality and advantage of the method of the present invention is, in particular, that, by its use, the way of winding the odd layers 3 and even layers 4 into the windings 1 does not change or is always the same regardless of whether or not cylindrical or conical coil 12, with or without one of the reels 14 or 21, wind the winding 1 with the five cones 5, 6, 7, 8, 9 of FIG. 2 and FIG. 3 or on the coil 12 with the reel 21, wind the coil 1 with only the two cones 6 and 8 of FIG. 5.

Na sl. 7 je na fotografiji prikazan navitek 1, ki je navit po prvi prednostni metodi izuma in to po opravljenih 1.000 ciklusih navite preje oziroma niti 20 na navitek 1 in, ki ustreza opisu pri sl, 3 in sl. 3A.In FIG. 7 shows a photograph 1 of a winding wound according to the first preferred method of the invention after completion of 1,000 cycles of winded yarn or thread 20 of a winding 1 and corresponding to the description in FIGS. 3 and FIG. 3A.

Claims (17)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Metoda precizij skega navijanja tekstilne preje na navitke z večkratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja, pri kateri je za oblikovanje navitka uporabljena tuljava valj kaste ali stožčaste oblike, z ali brez dodatnih kolutov na zadnjem koncu navitka, vodilo niti pa poganja pripadajoči servomotor takšne izvedbe, da se smer njegove rotacije spreminja in, ki temelji na potovanju vodila niti skozi več ciklusov navijanja lihih in sodih plasti, pri katerem se, znotraj pripadajočih segmentov in sektorjev, po ceh dolžini navitka, oblikuje navitek s petimi zunanjimi konusi ah s štirimi zunanjimi in enim notranjim konusom ob uporabi stožčastega koluta na zadnjem koncu navitka, označena s tem, da vodilo (2) z nitjo (20) v prvem ciklusu dvakrat opravi pot (L) in sicer prvič pri navijanju lihe plasti (3) v smeri (C) in drugič pri navijanju sode plasti (4) v smeri (D), pri čemer poteka gibanje vodila (2), v odvisnosti njegove hitrosti (Vi, V2) in od poti (L), skozi navidezne točke (a'-b'-c'-d'-e'f-g'-a*'), ki vzajemno in v danem zaporedju prednostno oblikujejo sedem hitrostnih segmentov navijanja (a'-b), (b-c), (c-d), (d-e1), (e'-f), (f-g) in (g-a*1), skozi katere vodilo (2) z nitjo (20) potuje tako, da pri tem spreminja hitrost gibanja; da vodilo (2) z nitjo (20) v drugem ciklusu prav tako dvakrat opravi pot (L) in sicer pri navijanju lihe plasti (3) v smeri (C) in nato še obratno pri navijanju sode plasti (4) v smeri (D), pri čemer poteka gibanje vodila (2), v odvisnosti od hitrosti (V), V2) in od poti (L) skozi navidezne točke (a*'-b'*-c*'-d*'-e*'-T!l-g*'), ki v danem zaporedju prednostno oblikujejo sedem hitrostnih segmentov (a*'-b*), (b*-c*), (c*-d*), (d*-e*'), (e*1^), (f*g*) in (g*-g*'), skozi katere potuje vodilo (2) z nitjo (20) s spreminjajočo se hitrostjo, navitek (1) pa se navija stopničasto.1. A method of precision winding textile yarns on windings by repeatedly changing the winding ratio within a single winding cycle using a caste or tapered roller coil, with or without additional reels at the rear end of the winding, with or without the drive servomotor such that the direction of its rotation varies and, based on the travel of the guide, through several cycles of winding of even and even layers, in which, within the respective segments and sectors, along the length of the winding, a roll is formed with five outer cones with four the outer and one inner cones using a conical disc at the rear end of the winding, characterized in that the thread (20) guides the thread (20) twice in the first cycle twice through the path (L), for the first time when winding the dull layer (3) in the direction ( C) and secondly, when winding the soda layer (4) in the direction (D), in which the guide (2) moves, depending on its speed (Vi, V 2 ) and from the path (L), through the virtual points (a'-b'-c'-d'-e'f-g'-a * '), which in a reciprocal and orderly fashion, form seven winding speed segments (a'- b), (bc), (cd), (de 1 ), (e'-f), (fg), and (ga * 1 ), through which the guide (2) with the thread (20) travels by changes the speed of movement; that the guide (2) with the thread (20) in the second cycle also twice traverses the path (L) when winding the odd layer (3) in the direction (C) and then vice versa when winding the soda layer (4) in the direction (D ), with the movement of the guide (2), depending on the speed (V), V 2 ) and the path (L) through the virtual points (a * '- b' * - c * '- d *' - e * '-T ! L -g *'), which, in a given order, preferentially form seven velocity segments (a * '- b *), (b * -c *), (c * -d *), (d * -e * '), (e * 1 ^), (f * g *), and (g * -g *') through which a guide (2) with a thread (20) moves at a variable speed, and the winding (1) is fan steps up. 2. Metoda precizij skega navijanja tekstilne preje na navitke z večkratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja, pri kateri je za oblikovanje navitka uporabljena tuljava valjkaste ah stožčaste oblike, z dodatnim kolutom na zadnjem koncu navitka, vodilo niti pa poganja pripadajoči servomotor takšne izvedbe, da se smer njegove rotacije ne spreminja in, ki temelji na potovanju vodila niti skozi več ciklusov navijanja lihih in sodih plasti, pri katerem se znotraj pripadajočih segmentov in sektorjev oblikuje navitek z dvema zunanjima konusoma po dolžini navitka, označena s tem, da vodilo (2), ki ima hitrost (b), prevzame nit (20) v navidezni točki (b') na zadnjem koncu (19) navitka (1) in jo s hitrostjo (b) pripelje do navidezne točke (c1) in nato s pospešeno hitrostjo dalje do navidezne točke (d1) na sprednjem koncu (18) navitka (1), v kateri vodilo (2) s hitrostjo (d) preda nit (20) naslednjemu vodilu (2') v točki (f), pri čemer je točka (f) enaka oziroma skladna točki (d') in se nato s hitrostjo (f), kije enaka hitrosti (d), giblje dalje s pojemajočo hitrostjo (Vi, V2) do naslednje navidezne točke (g1), kije skladna točki (b1), v kateri ima vodilo (2') hitrost (g), ki je enaka hitrosti (b) in preda nit (20) naslednjemu vodilu (2), ki se giblje s hitrostjo (b) proti sprednjemu koncu (18) navitka (1), kar se ponavlja v cikličnem zaporedju vse do končnega navitja niti (20) navitka (1), ki ni navit stopničasto.2. A method of precision winding textile yarns on windings by repeatedly changing the winding ratio within a single winding cycle using a cylindrical cone-shaped coil to form the winding, with an additional reel at the rear end of the winding, and the guide is not driven by an associated servomotor of such an embodiment, that the direction of its rotation does not change and, based on the travel of the guide, through several cycles of winding of even and even layers, in which a coil with two outer cones along the length of the coil is formed within the respective segments and sectors, characterized in that the guide (2 ), which has velocity (b), takes the thread (20) at the virtual point (b ') at the back end (19) of the coil (1) and brings it to the virtual point (c 1 ) at a speed (b) and then accelerates speed further to the virtual point (d 1 ) at the front end (18) of the winding (1), in which the guide (2) at a speed (d) passes the thread (20) to the next guide (2 ') at point (f), is the point ( f) equal to or congruent to point (d '), and then moves at a velocity (f) equal to velocity (d) at decreasing velocity (Vi, V 2 ) to the next apparent point (g 1 ) which is congruent with point ( b 1 ) in which the guide (2 ') has a velocity (g) equal to the velocity (b) and passes the thread (20) to the next guide (2) moving at a velocity (b) towards the front end (18) the winding (1), which is repeated in a cyclic sequence until the final winding of the winding thread (20) (1) is not stepped. 3. Metoda stopničasto precizijskega navijanja tekstilne preje na navitke z večkratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja, pri kateri je za oblikovanje navitka uporabljena tuljava valjkaste ali stožčaste oblike brez dodatnih kolutov in to po postopku, ki temelji na potovanju vodila niti skozi več dvojnih ciklusov navijanja lihih in sodih plasti, pri katerem vodilo nit poganja servomotor takšne izvedbe, da spreminja smer svoje rotacije in pri katerem se, znotraj pripadajočih segmentov in sektorjev, oblikuje navitek s petimi zunanjimi konusi po dolžini navitka, označena s tem, da vodilo (2) z nitjo (20) v prvem ciklusu opravi pot (L) navijanja lihe plasti (3) v smeri (C) in v obratni smeri (D) prav tako pot (L) pri navijanju sode plasti (4), pri čemer poteka gibanje vodila (2), v odvisnosti njegove hitrosti (V), V2) in od poti (L), skozi navidezne točke (a'-b-c-d-e'-f-g-a*'), ki vzajemno in v danem zaporedju prednostno oblikujejo sedem hitrostnih segmentov navijanja (a'b), (b-c), (c-d), (d-e'), (e'-f), (f-g) in in (g-a*1), skozi katere vodilo (2) z nitjo (20) potuje tako, da pri tem spreminja hitrost gibanja; da vodilo (2) z nitjo (20) v drugem ciklusu opravi pot (L) lihe plasti (3) v smeri (C) in nato še obratno pri navijanju sode plasti (4) v smeri (D), pri čemer poteka gibanje vodila (2), v odvisnosti od hitrosti (Vi, V2) in od poti (L), skozi navidezne točke (a*'-b*-c*-d*-e*'-f,!-g:t!-g*'), ki v danem zaporedju prednostno oblikujejo sedem hitrostnih segmentov (a*'-b*), (b*-c*), (c*22 d*), (d*-e*'), (e*'f*), (f*-g*) in (g*-g*'), skozi katere potuje vodilo (2) s spreminjajočo se hitrostjo; daje v danem primeru navitje niti (20) v navitku (1) izvedeno stopničasto.3. A method of stepwise precision winding of textile yarn onto reels by repeatedly varying the winding ratio within a single winding cycle, using a cylindrical or conical coil without additional discs to form the winding, by a process based on the travel of a guide through several double cycles winding odd and even layers, in which the thread guide is driven by a servomotor of such a design that it changes the direction of its rotation, and in which, within the respective segments and sectors, a winding is formed with five outer cones along the length of the winding, characterized in that the guide (2) with thread (20), in the first cycle, make the path (L) of winding the odd layer (3) in the direction (C) and in the opposite direction (D), as well as the path (L) in the winding of the soda layer (4), whereby the guide is moving (2), depending on its velocity (V), V 2 ) and on the path (L), through virtual points (a'-bcd-e'-fga * '), which mutually and sequentially form seven velocity s the winding elements (a'b), (bc), (cd), (d-e '), (e'-f), (fg) and and (ga * 1 ) through which the guide (2) with thread ( 20) travels in such a way as to change the speed of movement; that the guide (2) with the thread (20) in the second cycle make the path (L) of the odd layer (3) in the direction (C) and then vice versa when winding the soda layer (4) in the direction (D), in which case the motion of the guide (2), in dependence on the speeds (Vi, V 2) and the path (L) through the virtual point (a * '- b * -c * -d * s *' - f! -g: t! -g * '), which in a given order preferentially form seven velocity segments (a *' - b *), (b * -c *), (c * 22 d *), (d * -e * '), ( e * 'f *), (f * -g *), and (g * -g *'), through which guide (2) travels at a variable speed; in that case, the winding of the thread (20) in the winding (1) is staggered. 4. Metoda po zahtevku 1, označena s tem, da je nit (20) na tuljavo (12) navita stopničasto, ko servo motor oziroma vodilo (2) med navijanjem navitka (1) spreminja smer svoje rotacije, pri tem pa je mogoče dolžino tuljave (12) oziroma navitka (1) zvezno spreminjati in to na celotni dolžini gibanja vodila (2) niti (20) in to s spremembo števila impulzov za parameter dolžine tuljave (12), oziroma navitka (1), v aplikacijskem programu navijanja, kije naložen v spomin krmilnika.Method according to claim 1, characterized in that the thread (20) is wound in a stepped manner on the coil (12) when the servo motor or guide (2) changes the direction of its rotation while winding the winding (1), while allowing a length change the coils (12) or coil (1) continuously over the entire length of motion of the thread guide (2) (20) by changing the number of pulses for the coil length parameter (12) or coil (1) in the winding application program, which is loaded into the controller's memory. 5. Metoda po zahtevku 2, označena s tem, da nit (20) na tuljavo (12) ni navita stopničasto, ko servomotor z vodiloma (2, 2') med navijanjem navitka (1) smer svoje rotacije ne spreminja, dolžina tuljave (12), oziroma navitka (1), pa se pri tem spreminja nezvezno, s spreminjanjem števila vodil (2, 2') niti (20) na nosilcih teh vodil .(2,2').Method according to claim 2, characterized in that the thread (20) is not stepped on the coil (12) when the servomotor with guides (2, 2 ') does not change the direction of its rotation while winding the coil (1), the length of the coil ( 12), or the winding (1), however, changes independently, by changing the number of guides (2, 2 ') of thread (20) on the supports of these guides. 6. Metoda po zahtevku 1, označena s tem, da se pri navijanju prve lihe plasti (3), znotraj prvega ciklusa, začne gibati vodilo (2) z nitjo (20) pospešeno v smeri (C) in to iz točke mirovanja (a') proti točki (b'), v kateri doseže programirano hitrost (b), s katero se nato enakomerno in ob nespremenjenem navijalnem razmerju giblje vse do točke (c'), zaradi česar se nit (20) v lihi plasti (3) navija skoraj paralelno po vnaprej programiranem koraku vijačnice, pri čemer je hitrost (b) enaka hitrosti (c) v točki (c1) in pri čemer vodilo (2) doseže točko (b') še preden navitek (1) naredi en obrat.Method according to claim 1, characterized in that when winding the first odd layer (3), within the first cycle, the guide (2) starts to move with the thread (20) accelerated in the direction (C) from the resting point (a ') towards the point (b') at which it reaches the programmed velocity (b), which then moves uniformly and without change in the winding ratio up to the point (c '), causing the thread (20) to form an odd layer (3) bends almost parallel to the pre-programmed pitch of the helix, with speed (b) being equal to speed (c) at point (c 1 ) and leading (2) reaching point (b ') even before the coil (1) makes one turn. 7. Metoda po zahtevkih 1, 2 in 3, označena s tem, da doseže vodilo (2) programirano hitrost (d) na poti (L) od točke (c1) do točke (d'), pri čemer je hitrost (d) hkrati naj višja hitrost znotraj navijanja lihe plasti (3) in pri čemer je v tem segmentu preja oziroma nit (20) na tuljave (12) navita križno tako, da se korak med vijačnicami niti (20) povečuje in od točke (c') do točke (d').Method according to claims 1, 2 and 3, characterized in that the guide (2) reaches the programmed speed (d) on the path (L) from point (c 1 ) to point (d '), wherein the speed (d) ) at the same time, to increase the velocity within the winding of the even layer (3) and in this segment the yarn or thread (20) be wound crosswise on the coils (12) so that the step between the helixes of the thread (20) increases and from the point (c ' ) to point (d '). 8. Metoda po enem od zahtevkov 1 ali 4, označena s tem, da k vsaki posamezni tuljavi (12) pripada eno vodilo (2) niti (20).Method according to one of Claims 1 or 4, characterized in that a single thread (2) guide (2) is attached to each individual coil (12). 9. Metoda po enem od zahtevkov 2 ali 5, označena s tem, da k vsaki posamezni tuljavi (12) pripadata najmanj dve vodili (2) in (2').Method according to one of claims 2 or 5, characterized in that at least two guides (2) and (2 ') belong to each individual coil (12). 10. Metoda po zahtevku 2, označena s tem, da je število vodil (2, 2') enako mnogokratniku dolžine nosilca, ki ju nosi, razdalja med vodili (2, 2') pa je enaka dolžini (L) navitka (1).A method according to claim 2, characterized in that the number of guides (2, 2 ') is equal to the multiple of the length of the carrier which carries them, and the distance between the guides (2, 2') is equal to the length (L) of the winding (1) . 11. Metoda po zahtevkih 1, 2 in 3, označena s tem, da sta si metodi, oziroma postopka navijanja lihe plasti (3) in sode plasti (4) znotraj enega ciklusa navijanja niti (20) na tuljave (12) v navitke (1), med sabo popolnoma identična od točke (b1) do točke (d1) v lihi plasti (3) in od točke (f) do točke (g1) v sodi plasti (4), tako pri navijanju navitkov (1) s petimi konusi (5, 6, 7, 8, 9), oziroma s konusi (6, 7, 8, 9, 13) na tuljave (12) valjkaste ali stožčaste oblike, z ali brez konusnega koluta (14) oziroma diskastega koluta (21), kot tudi pri navijanju navitkov (1) s samo dvema konusoma (6, 8) in z diskastim kolutom (21) na zadnjem koncu (19) tuljave (12), pri tem pa se struktura lihih plasti (3) razlikuje od strukture sodih plasti (4).Method according to Claims 1, 2 and 3, characterized in that the methods, respectively, of winding the dough layer (3) and the baking soda layer (4), within one cycle of winding the thread (20) onto the coils (12) 1), identical to each other from point (b 1 ) to point (d 1 ) in the odd layer (3) and from point (f) to point (g 1 ) in the barrel layer (4), so when winding the windings (1 ) with five cones (5, 6, 7, 8, 9), or cones (6, 7, 8, 9, 13) on coils (12) cylindrical or conical, with or without a conical disc (14) or a disk reels (21), as well as winding windings (1) with only two cones (6, 8) and a disk reel (21) at the rear end (19) of the coil (12), with the structure of odd layers (3) different from the structure of barrel layers (4). 12. Metoda po zahtevku 7, označena s tem, daje kot (a), med vijačnicami niti (20) v lihih plasteh (3), približek pravemu kotu 90°, razen na sprednjem delu (18) navitka (1), med navideznima točkama (c) in (d), kjer je nit (20) križno navita.Method according to claim 7, characterized in that the angle (a) between the helixes of the threads (20) in the odd layers (3) approximates to a right angle of 90 °, except at the front (18) of the winding (1), between the virtual ones points (c) and (d), where the thread (20) is cross-wound. 13. Metoda po zahtevku 1, označena s tem, daje navitek (1) v območju sektorjev (L3, L4, L5) navit tako, da se pri navijanju niti (20) na tuljavo (12) navijalno razmerje spreminja in to pri vsakem obratu tuljave (12), torej se spreminja pri vsaki vijačnici niti (20).Method according to claim 1, characterized in that the winding (1) is wound in the area of sectors (L 3 , L4, L5) so that the winding ratio varies with the winding (20) on the coil (12) and for each thus turning at each coil of thread (20). 14. Metoda po zahtevkih 1, 2 in 3, označena s tem, da se v vsakem ciklusu navijanja niti (20) na tuljavo (12) navije najmanj ena liha plast (3) in najmanj ena soda plast (4), navite v smeri (C) oziroma v smeri (D).Method according to Claims 1, 2 and 3, characterized in that at least one odd layer (3) and at least one soda layer (4) are wound in the direction in each winding cycle of the thread (20) (C) or direction (D). 15. Metoda po zahtevku 1, označena s tem, da se znotraj sektorja (L3) nahajajo tako navitja niti (20) lihe plasti (3), kot tudi sode plasti (4) iz obeh sosednjih sektorjev (L2) in (L4).Method according to claim 1, characterized in that inside the sector (L 3 ) there are both winding threads (20) of the odd layers (3) as well as the soda layers (4) from both adjacent sectors (L 2 ) and (L 4 ). 16. Metoda po zahtevku 15, označena s tem, da se sektor (L3) začne v vertikalni, na os tuljave (12) pravokotni ravnini (10) in se konča v ravnini (11), ki je prav tako pravokotna na os tuljave (12) in jo veže poševna premica z ravnino (10), ki ponazarja premik točke začetka navijanja križnega dela lihih plasti (3), proti zadnjemu koncu (19) navitka (1).Method according to claim 15, characterized in that the sector (L 3 ) starts in a vertical, perpendicular plane (10) to the coil axis (12) and ends in a plane (11) which is also perpendicular to the coil axis (12) and is connected by an oblique line with a plane (10) illustrating the displacement of the point of beginning of the winding of the cross section of the odd layers (3) towards the rear end (19) of the winding (1). 17. Metoda po zahtevku 1, označena s tem, da se lahko namesto zunanjega konusa (5), za stabilizacijo zadnjega dela (19) navitka (1), uporabi konusni kolut (14) ali diskasti kolut (21), nameščen na tuljave (12).Method according to claim 1, characterized in that a conical disc (14) or a disc disc (21) mounted on coils (20) can be used instead of an outer cone (5) to stabilize the rear part (19) of the coil (1). 12).
SI200600284A 2006-12-07 2006-12-07 Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times SI22124A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200600284A SI22124A (en) 2006-12-07 2006-12-07 Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times
EP07021674A EP1930273A1 (en) 2006-12-07 2007-11-08 The method of precision winding of textile yarn into packages by frequently changing the wind ratio within one winding cycle
US11/946,299 US20080135667A1 (en) 2006-12-07 2007-11-28 Method of precision winding of textile yarn into packages by frequently changing the wind ratio within one winding cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200600284A SI22124A (en) 2006-12-07 2006-12-07 Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times

Publications (1)

Publication Number Publication Date
SI22124A true SI22124A (en) 2007-04-30

Family

ID=37998479

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200600284A SI22124A (en) 2006-12-07 2006-12-07 Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times

Country Status (3)

Country Link
US (1) US20080135667A1 (en)
EP (1) EP1930273A1 (en)
SI (1) SI22124A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010756A1 (en) * 2009-07-21 2011-01-27 Kolon Industries, Inc. Method of winding fiber and method of preparing aramid fiber using the same
CN102431837B (en) * 2011-08-29 2013-06-19 北京银河昊星电气技术有限公司 Multi-stage precise winding method for spinning cake
JP2023055344A (en) * 2021-10-06 2023-04-18 村田機械株式会社 Package, package manufacturing method and yarn winding device
CN114277469B (en) * 2021-12-21 2022-11-29 苏州汇川控制技术有限公司 Method and apparatus for adjusting end face shape of package, and storage medium

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL83918C (en) * 1953-12-31
NL122033C (en) * 1962-12-19
CH425572A (en) * 1964-11-26 1966-11-30 Mettler Soehne Maschf Winding body, process for its production and device for carrying out the process
US3727855A (en) * 1971-04-05 1973-04-17 Leesona Corp Winding method and apparatus
JPS5817066A (en) * 1981-07-22 1983-02-01 Teijin Seiki Co Ltd Winding method for yarn
US4771960A (en) * 1985-02-20 1988-09-20 Teijin Seiki Co., Ltd. Method for winding a cross-wound package
CN1005029B (en) * 1985-03-05 1989-08-23 巴马格·巴默机器制造股份公司 Winding method
EP0195325B1 (en) * 1985-03-11 1988-09-07 B a r m a g AG Winding method
JPS62290682A (en) * 1986-06-03 1987-12-17 Teijin Seiki Co Ltd Traverse device
IT1227912B (en) * 1988-12-23 1991-05-14 Savio Spa PROCEDURE AND APPARATUS TO DRIVE THE DISTRIBUTION OF THE WIRE ON THE PACKAGE IN FORMATION IN A COLLECTION GROUP FOR SYNTHETIC WIRES
JP2560918B2 (en) * 1990-12-28 1996-12-04 村田機械株式会社 Traverse equipment
US5348238A (en) * 1991-07-30 1994-09-20 Murata Kikai Kabushiki Kaisha Doubler winder
DE4223271C1 (en) * 1992-07-17 1993-06-24 Neumag - Neumuenstersche Maschinen- Und Anlagenbau Gmbh, 2350 Neumuenster, De
DE4310905A1 (en) * 1993-04-02 1994-10-06 Schlafhorst & Co W Method and apparatus for laying a thread on a cross-wound bobbin
FR2703671B1 (en) * 1993-04-08 1995-06-09 Vetrotex France Sa METHOD FOR MANUFACTURING TAPERED WIRE COILS AND REELS THEREFROM.
DE19642618A1 (en) * 1996-10-16 1998-04-23 Sahm Georg Fa Device for winding a thread in the wild winding on a package
DE19817111A1 (en) * 1997-04-24 1998-11-05 Barmag Barmer Maschf Method of winding yarn on cylindrical cross wound bobbin
FR2796631B1 (en) * 1999-07-22 2001-08-17 Vetrotex France Sa PROCESS FOR THE MANUFACTURE OF TRONCONIC WIRE COILS
JP2002104730A (en) * 2000-10-02 2002-04-10 Murata Mach Ltd Traverse equipment and traverse method
WO2004035445A1 (en) * 2002-10-17 2004-04-29 Asahi Fiber Glass Company, Limited Yarn package and method of manufacturing the package
DE102004010824A1 (en) * 2004-02-27 2005-09-15 Wilhelm Stahlecker Gmbh Cross-wound bobbin and method of manufacture

Also Published As

Publication number Publication date
US20080135667A1 (en) 2008-06-12
EP1930273A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US5499772A (en) Winding operation control method and apparatus for automatic winder
JPS5817066A (en) Winding method for yarn
SI22124A (en) Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times
CN1702031A (en) Method and device of driving forming cross traverse winding bobbing mechanical loom collecting device
JP4863400B2 (en) Cross wound bobbins and related fabrication methods
CN101508393B (en) Method and device for winding yarn
JP2007284196A (en) Automatic winder
JPH026035Y2 (en)
JP5840683B2 (en) Textile bobbin manufacturing method and textile machine equipped with a work site for carrying out this method
US20170320698A1 (en) Extended Length and Higher Density Packages of Bulky Yarns and Methods of Making the Same
WO2006103001A1 (en) Yarn rewinding method and device
US6929211B1 (en) Method of winding yarns to form frustoconical yarn packages
DE102008015908A1 (en) Method for winding thread from cylindrical bobbin tube to cross-wound bobbin in textile machine, involves adjusting additional conicity at bobbin frame with asymmetric thread order by changing conicity factor
US6308907B1 (en) Method for winding up a thread
JP2936948B2 (en) Automatic winder tension controller
US2365434A (en) Traversing means for winding machines
US3277640A (en) Pretwisting apparatus for continuous filament yarns
JP3275189B2 (en) Method and apparatus for winding high elongation yarn
US3314620A (en) Yarn guide
CN215289113U (en) Proofing warping device
JP2001253638A (en) Winding device
JPS63123772A (en) Yarn winding method
JPH06329335A (en) Winding method
JP2000185872A (en) Control method for thread line winder
JPH07133054A (en) Taking-up control method for winder

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20070109

KO00 Lapse of patent

Effective date: 20130710