RU2795393C1 - Способ стендовой калибровки трехканального блока акселерометров - Google Patents

Способ стендовой калибровки трехканального блока акселерометров Download PDF

Info

Publication number
RU2795393C1
RU2795393C1 RU2022127220A RU2022127220A RU2795393C1 RU 2795393 C1 RU2795393 C1 RU 2795393C1 RU 2022127220 A RU2022127220 A RU 2022127220A RU 2022127220 A RU2022127220 A RU 2022127220A RU 2795393 C1 RU2795393 C1 RU 2795393C1
Authority
RU
Russia
Prior art keywords
faceplate
rotation
angle
channels
main
Prior art date
Application number
RU2022127220A
Other languages
English (en)
Inventor
Сергей Алексеевич Волобуев
Павел Александрович Сергеев
Пётр Александрович Чесноков
Original Assignee
Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации filed Critical Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Application granted granted Critical
Publication of RU2795393C1 publication Critical patent/RU2795393C1/ru

Links

Images

Abstract

Изобретение относится к области гироскопической техники. Технический результат - повышение точности определения паспортных параметров блока акселерометров (БА). В способе стендовой калибровки трехканального блока акселерометров, блок акселерометров, предназначенный для использования в морских инерциальных навигационных системах (ИНС), устанавливается на планшайбе основного поворотного устройства (ПУ) в одно фиксированное положение, данное ПУ устанавливается на планшайбу дополнительного ПУ с возможностью изменения угла наклона оси вращения планшайбы. БА с помощью основного и дополнительного ПУ устанавливается в различные ориентации, в каждой ориентации фиксируются значения выходных сигналов каналов БА, после чего производится предварительный расчет паспортных параметров БА, с использованием паспортных параметров оценивается погрешность измерения действующих ускорений и производится уточнение паспортных коэффициентов. 6 ил.

Description

Изобретение относится к области гироскопической техники и может быть использовано для определения параметров трехканальных блоков акселерометров (далее - БА) с целью повышения точности (уменьшения погрешности) измерения действующих ускорений на подвижном объекте в составе инерциальной навигационной системе (далее - ИНС).
В состав БА входят три независимых канала измерения, измерительные оси чувствительных элементов которых расположены по трем взаимно перпендикулярным осям. Каждый канал БА состоит из чувствительного элемента и платы обратной связи, работающей в режиме широтно-импульсной модуляции. В качестве чувствительных элементов в каналах БА используется поплавковый маятниковый прибор на торсионном подвесе с жидкостным демпфированием. Выходные сигналы каналов БА представлены в виде цифровых кодов.
Для высокоточных акселерометров, используемых в ИНС морского применения, требуется в процессе калибровки на стенде предприятия-изготовителя с высокой точностью определять паспортные параметры каналов БА:
Кпх, Кпу, Kgz, - коэффициенты преобразования для каждого канала БА;
Wox, Woy, Woz - значения смещения нуля для каждого канала БА;
Ккх, Кку, Ккz - значения коэффициентов квадрата ускорения для каждого канала БА;
Кху, Kxz, Кух, Kyz, Kzx, Kzy - значения коэффициентов перекрестных связей для каждого канала БА;
αх - азимутальный угол отклонения измерительной оси канала X БА от нормали к установочной плоскости;
βх - вертикальный угол отклонения измерительной оси канала X БА от нормали к установочной плоскости;
αу - азимутальный угол отклонения измерительной оси канала Y БА от нормали к установочной плоскости;
γy - вертикальный угол отклонения измерительной оси канала Y БА от нормали к установочной плоскости,
βz - вертикальный угол отклонения измерительной оси канала Z БА от нормали к установочной плоскости;
γz - азимутальный угол отклонения измерительной оси канала Z БА от нормали к установочной плоскости.
Преобразование выходных сигналов каналов БА в измеренные значения ускорений относительно базовых направлений ИНС осуществляется по формулам:
Wxп=Wxp ⋅ (1+Wxp⋅Kкx+Wyp⋅Kxy+Wzp⋅Kxz)+Wyp⋅Sinαx+Wzp⋅Sinβx;
Wyп=Wyp ⋅ (1+Wyp⋅Kкy+Wxp⋅Kуx+Wzp⋅Kyz)+Wxp⋅Sinαy+Wxp⋅Sinγy;
Wzп=Wzp ⋅ (1+Wzp⋅Kкz+Wzp⋅Kzx+Wyp⋅Kzy)+Wxp⋅Sinβz+Wyp⋅Sinγz;
Wxp=Kпx⋅Nx+Wox;
Wyр=Kпy⋅Ny+WOy;
Wzp=Kпz⋅Nz+Woz.
где
Wxп, Wyп, Wzп - измеренное каналами БА ускорение,.
Nx, Ny, Nz - выходные сигналы каналов БА,
Wхр, Wyр, Wzp - выходные сигналы каналов БА преобразованные в ускорения.
Известен способ калибровки одноосных акселерометров [1], заключающийся в установке его на планшайбе одноосного поворотного устройства (далее - ПУ), фиксации показаний акселерометра и угла разворота планшайбы вокруг оси ПУ при нескольких значениях угла разворота ПУ в диапазоне ускорений ±1 g, расчете паспортных параметров акселерометра по зафиксированным данным. При применении данного способа к калибровке трехосного БА требуется проведение измерений при установке БА в два положения, что не позволяет обеспечить требуемую точность калибровки ввиду погрешностей, вносимых неоднозначностью углового положения БА при его переустановке на планшайбе ПУ. Кроме того, определение паспортных параметров производится при ориентации акселерометра, не полностью соответствующей рабочему положению в условиях подвижного объекта, что является источником дополнительных погрешностей калибровки и приводит к увеличению погрешностей измерения ускорений.
В принятом в качестве прототипа способе калибровки БА [2] предложено определять паспортные параметры БА на одноосном ПУ при установке БА на специальном приспособлении, обеспечивающем ориентацию акселерометра относительно горизонта в процессе калибровки, соответствующую рабочему положению в условиях подвижного объекта. Однако необходимость установки БА на приспособлении в два положения для определения полного набора паспортных параметров сохраняется.
Решаемая техническая проблема - исключение переустановок БА при калибровке для получения достоверных параметров каналов БА, обеспечивающих минимальные значения погрешностей измерения ускорений каналами до уровня 0,00012 м/с в условиях, соответствующих рабочему положению Б А на подвижном объекте.
Достигаемый технический результат - уменьшение погрешностей измерения ускорений каналами БА до уровня 0,00012 м/с за счет приближения условий его стендовой калибровки к условиям его использования в составе ИНС и исключения погрешностей, обусловленных переустановкой Б А в процессе калибровки.
Предлагаемый подход обеспечивает также повышение определения достоверности определения паспортных параметров БА и снижение погрешностей измерения ускорения в условиях эксплуатации до уровня нестабильности смещения нуля БА.
В предлагаемом способе стендовой калибровки трехканальный БА с помощью специального приспособления устанавливается на планшайбе ПУ с одной осью вращения (далее - основное ПУ) в одно фиксированное на приспособлении положение, основное ПУ устанавливается на планшайбу дополнительного ПУ, обеспечивающего возможность изменения угла наклона оси вращения планшайбы основного ПУ.
Для обеспечения требуемого температурного режима, соответствующего условиям использования в ИНС, на приспособление дополнительно устанавливается термостатирующее устройство.
Реализация предлагаемого способа
Производится включение БА и термостатирующего устройства и после выхода температуры в требуемое значение фиксируются значения выходных сигналов БА, показаний углов поворота планшайбы основного ПУ и наклона дополнительного ПУ при нескольких значениях угла поворота планшайбы основного ПУ, полученных при задании нескольких значений угла наклона дополнительного ПУ После чего производится расчет паспортных параметров каналов БА по зафиксированным данным.
В предлагаемом способе калибровки исключаются положения, при которых на вертикальный (Z) канал БА действуют отрицательные ускорения, что не бывает при эксплуатации морских ИНС.
На фиг. 1 представлены виды с ориентацией БА, установленного с помощью специального приспособления на планшайбе основного ПУ (прототипа) в двух различных положениях БА.
На фиг. 2 (предлагаемый способ) представлены на стенде виды с ориентацией БА, установленного с помощью специального приспособления на планшайбе основного ПУ, ось вращения (направление канала Z) которой в процессе калибровки изменяет наклон за счет наклона планшайбы дополнительного ПУ (наклоны 90° и 0°).
На фиг. 3 и 5 приведены графики погрешностей измерения каналов БА при двух значениях наклона оси вращения шпинделя основного ПУ по предлагаемому способу.
На фиг. 4 и 6 приведены графики погрешностей измерения каналов БА при двух значениях наклона оси вращения шпинделя основного ПУ с использованием по способу-прототипу.
На фиг. 1, 2 приняты следующие обозначения:
1 - блок акселерометров
2 - основное ПУ
3. - планшайба дополнительного ПУ
4. - узлы фиксации основного ПУ на планшайбе дополнительного ПУ, дополнительное ПУ на фиг. не показано.
В качестве основного ПУ предлагается использовать углоизмерительной прибор с цифровой индикацией УМ1-Ц (далее - прибор УМ1-Ц) с погрешностью задания угла поворота планшайбы не более 0,5 угл. сек.
В качестве дополнительного ПУ предлагается использовать стол поворотный делительный универсальный с цифровой индикацией СУ50-1101 (далее - поворотный стол) с погрешностью задания угла 6 угл. сек.
За счет использования указанного оборудования, существенно уменьшается погрешность при определении действующих ускорений, которые используются при расчете паспортных параметров каналов БА.
В предлагаемом способе калибровка каналов БА осуществляется в следующей последовательности:
1. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц в горизонт (угол наклона 90°). Производится регистрация выходных сигналов каналов БА при углах поворота шпинделя УМ1-Ц, равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
2. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 60°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
3. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц равный 45°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
4. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 30°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
5. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 15°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°
6. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 10°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
7. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 5°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°
8. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 3°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
9. Поворотным столом устанавливается угол наклона оси вращение планшайбы прибора УМ1-Ц, равный 0°. Производится регистрация выходных сигналов каналов Б А при углах поворота шпинделя УМ1-Ц равных 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°.
Для выполнения расчетов паспортизуемых параметров каналов БА введем обозначения выходных сигналов NX(j), NYi(j), NZi(j), где
i - значение угла поворота планшайбы прибора УМ1-Ц,
j - значение угла наклона оси вращения планшайбы прибора УМ1-Ц.
В результате выполнения калибровки по каждому каналу получен массив из 81 данных.
Используя данные выходных сигналов каналов X и Y, полученные при j=0, на основании формул, приведенных в определяем для указанных каналов значения Кпх, Kпy, Wox, Woy.
Для каждого положения j определяем значения Wxp, Wyp при всех значениях i. На основании полученных данных определяем угол наклона оси вращения планшайбы прибора УМ1-Ц и, учитывая, что корень квадратный из суммы квадратов измеренных ускорений по трем взаимно перпендикулярным осям величина постоянная и равна 1 g [2], определяем значения Kпz, Woz, Для каждого положения j определяем значения Wzp, при всех значениях i.
На основании полученных значений Wxpi(j), Wypi(j), Wzpi(j) определяем погрешность измерения действующего ускорения в каждой ориентации БА без учета углов неортогональности, коэффициентов квадрата ускорений и перекрестных связей. По результатам определения погрешностей рассчитываем для каждого канала значения углов αх, αу, βх, βz, γy, γz и минимизируем погрешность за счет учета рассчитанных углов. По результатам минимизации погрешности рассчитываем коэффициенты Ккх, Кку, Kкz, Кху, Кхz и, Кyx, Kyz, Kzx, Kzy.
С использованием полученных паспортных параметров каналов БА определяется окончательная погрешность измерения действующих на каналы БА ускорений и производится уточнение паспортных параметров каналов БА для обеспечения минимизации погрешности измерения в условиях приближенных к условиям его использования в составе морской ИНС.
После уточнения паспортных параметров каналов БА проверяется погрешность в нескольких ориентациях БА, соответствующих условиям его использования на подвижном объекте в составе ИНС, не используемых при выполнении калибровки.
Использование предлагаемого способа позволило в 1,5 раза уменьшить погрешности измерения ускорений до уровня 0,00010 м/с2 (не более 2,0 угл. сек.) в требуемом при использовании в морских ИНС диапазоне измерения, в том числе за счет использования предлагаемого оборудования, позволяющего в 2-3 раза уменьшается погрешность при определении действующих ускорений, которые используются при расчете паспортных параметров каналов БА. В результате значения паспортных параметров БА определяются с минимальной погрешностью.
Таким образом заявляемый технический результат достигнут.
Литература:
1. А.Е. Синельников. Низкочастотные линейные акселерометры. Методы и средства проверки и градуировки // М.: Издательство стандартов, 1979.
2. Д.О. Тарановский. Стендовая калибровка блока маятниковых поплавковых акселерометров корабельной инерциальной навигационной системы // СПб: Гироскопия и навигация, 2008, №4, с. 56-65.

Claims (1)

  1. Способ стендовой калибровки трехканального блока акселерометров (БА), заключающийся в последовательной установке его на планшайбе одноосного основного поворотного устройства (ПУ) с горизонтальной осью вращения в двух различных положениях, фиксации в каждом из положений показаний БА и угла поворота планшайбы вокруг оси ПУ при нескольких значениях угла поворота планшайбы, расчете паспортных параметров БА, отличающийся тем, что БА устанавливается на планшайбе основного ПУ в одно положение, при этом основное ПУ устанавливается на планшайбу дополнительного ПУ с изменением наклона оси вращения планшайбы основного ПУ, при этом на приспособление дополнительно устанавливается термостатирующее устройство, причем основным ПУ углоизмерительного прибора является устройство с погрешностью задания угла поворота планшайбы не более 0,5 угл. сек., а дополнительным ПУ является поворотный стол делительный универсальный с погрешностью задания угла 6 угл. сек., при этом осуществляют включение БА и термостатирующего устройства и после выхода температуры в требуемое значение фиксируют значения выходных сигналов БА, показаний углов поворота планшайбы основного ПУ и наклона дополнительного ПУ при нескольких значениях угла поворота планшайбы основного ПУ, полученных при задании нескольких значений угла наклона дополнительного ПУ, после чего производят расчет паспортных параметров каналов БА по зафиксированным данным, с использованием полученных паспортных параметров каналов БА определяют окончательную погрешность измерения, действующих на каналы БА ускорений, и осуществляют уточнение паспортных параметров каналов БА для обеспечения минимизации погрешности измерения в условиях, приближенных к условиям его использования в составе морской инерциальной навигационной системы (ИНС), после уточнения паспортных параметров каналов БА проверяют погрешность в нескольких ориентациях БА, соответствующих условиям его использования на подвижном объекте в составе ИНС, не используемых при выполнении калибровки.
RU2022127220A 2022-11-30 Способ стендовой калибровки трехканального блока акселерометров RU2795393C1 (ru)

Publications (1)

Publication Number Publication Date
RU2795393C1 true RU2795393C1 (ru) 2023-05-03

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2256880C1 (ru) * 2004-10-12 2005-07-20 Мезенцев Александр Павлович Способ комплексных испытаний бесплатформенных инерциальных измерительных блоков на основе микромеханических гироскопов и акселерометров и устройство для его осуществления
CN101852818A (zh) * 2010-06-02 2010-10-06 北京航空航天大学 一种基于旋转机构的加速度计误差标定与补偿方法
RU2494345C1 (ru) * 2012-01-16 2013-09-27 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им. Академика Н.А. Пилюгина" (ФГУП "НПЦАП") Универсальный широкодиапазонный стенд для контроля измерителей угловой скорости
KR101393270B1 (ko) * 2012-10-26 2014-05-27 한국해양과학기술원 자동형 가속도계 캘리브레이터
RU2537513C2 (ru) * 2012-12-06 2015-01-10 Открытое акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" (ОАО АНПП "ТЕМП-АВИА") Способ оценки ошибок и контроля датчиков первичной информации в составе бесплатформенной инерциальной навигационной системы в наземных условиях и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2256880C1 (ru) * 2004-10-12 2005-07-20 Мезенцев Александр Павлович Способ комплексных испытаний бесплатформенных инерциальных измерительных блоков на основе микромеханических гироскопов и акселерометров и устройство для его осуществления
CN101852818A (zh) * 2010-06-02 2010-10-06 北京航空航天大学 一种基于旋转机构的加速度计误差标定与补偿方法
RU2494345C1 (ru) * 2012-01-16 2013-09-27 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им. Академика Н.А. Пилюгина" (ФГУП "НПЦАП") Универсальный широкодиапазонный стенд для контроля измерителей угловой скорости
KR101393270B1 (ko) * 2012-10-26 2014-05-27 한국해양과학기술원 자동형 가속도계 캘리브레이터
RU2537513C2 (ru) * 2012-12-06 2015-01-10 Открытое акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" (ОАО АНПП "ТЕМП-АВИА") Способ оценки ошибок и контроля датчиков первичной информации в составе бесплатформенной инерциальной навигационной системы в наземных условиях и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US5606124A (en) Apparatus and method for determining the gravitational orientation of a well logging instrument
CA1330455C (en) Electronic tilt measuring system
Aggarwal et al. A standard testing and calibration procedure for low cost MEMS inertial sensors and units
US8751161B2 (en) Method of determining a heading in the geographical north direction by means of an inertial unit
CN110345970B (zh) 一种光学导航敏感器标定方法及其设备
CN105716593B (zh) 一种用于光电侦察***定向定位精度测试的测试装置及测试方法
CN102692239B (zh) 一种基于旋转机构的光纤陀螺八位置标定方法
RU2269813C2 (ru) Способ калибровки параметров бесплатформенного инерциального измерительного модуля
CN111829503B (zh) 一种光纤陀螺阈值测试方法及装置
CN201955097U (zh) 惯性定向设备的检测标定***
CN110895149B (zh) 局部基准传递对准精度内场测试***及测试方法
RU2795393C1 (ru) Способ стендовой калибровки трехканального блока акселерометров
RU2447404C2 (ru) Способ калибровки датчиков угловой скорости бесплатформенного инерциального измерительного модуля
RU2619443C2 (ru) Способ оценки погрешностей трехосного гироскопа
RU2477864C1 (ru) Способ калибровки инерциального измерительного модуля по каналу акселерометров
RU2717566C1 (ru) Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе
RU2626288C1 (ru) Способ определения погрешностей основных характеристик блока инерциальных измерителей
CN102183263A (zh) 一种光纤陀螺常值漂移的标定方法
CN108917789B (zh) 一种基于俯仰轴和横滚轴相对夹角的倾角仪正交性评估方法
CN111609869A (zh) 基于假设检验的正反多位置光纤陀螺方位效应判断方法
CN108036756B (zh) 一种利用加速度计进行双轴旋转惯性测量装置相邻轴线垂直度检查的方法
CN109186639A (zh) 一种高精度姿态变化量测量方法
CN113899324A (zh) 基于单轴激光陀螺测角仪的多轴转台垂直度误差检测方法
CN111006686B (zh) 一种大深度下潜三轴加速计的零偏测试方法
RU2718142C1 (ru) Способ повышения точности калибровки масштабных коэффициентов и углов неортогональности осей чувствительности блока датчиков ДУС