RU2774865C1 - Способ получения анодного материала на основе алюмината церия - Google Patents

Способ получения анодного материала на основе алюмината церия Download PDF

Info

Publication number
RU2774865C1
RU2774865C1 RU2022103100A RU2022103100A RU2774865C1 RU 2774865 C1 RU2774865 C1 RU 2774865C1 RU 2022103100 A RU2022103100 A RU 2022103100A RU 2022103100 A RU2022103100 A RU 2022103100A RU 2774865 C1 RU2774865 C1 RU 2774865C1
Authority
RU
Russia
Prior art keywords
aluminate
cerium
synthesis
anode material
carried out
Prior art date
Application number
RU2022103100A
Other languages
English (en)
Inventor
Ирина Евгеньевна Анимица
Даниил Валентинович Корона
Алексей Олегович Смелов
Дмитрий Андреевич Медведев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН)
Application granted granted Critical
Publication of RU2774865C1 publication Critical patent/RU2774865C1/ru

Links

Images

Abstract

Изобретение относится к получению материала на основе алюмината церия, который может быть использован в качестве анодного материала для твердооксидных топливных элементов (ТОТЭ) электрохимических устройств, применяемых в электроэнергетике. Способ включает получение твердого раствора на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин. Технический результат заключается в повышении электропроводности анодного материала на основе алюмината церия, снижении температуры его синтеза, упрощении аппаратурного оформления процесса и снижении его стоимости. 3 ил., 5 пр.

Description

Изобретение относится к получению материала на основе алюмината церия, который может быть использован в качестве анодного материала для твердооксидных топливных элементов (ТОТЭ) электрохимических устройств, применяемых в электроэнергетике.
К анодным материалам для ТОТЭ предъявляются требования по высокой электронной и ионной проводимости, химической устойчивости в восстановительной среде, хорошему спеканию с электролитом при отсутствии химического взаимодействия, а также коэффициенту термического расширения близкому к электролиту, высокой скорости электродной реакции, высокой термомеханической стабильности и высокой пористости.
Несмотря на большое разнообразие существующих электролитов для ТОТЭ, требуется индивидуальный подбор химически совместимых с ними электродных материалов, поэтому разработка новых способов получения анодных материалов остается актуальной.
Известен материал – алюминат церия состава CeAlO3, синтез которого осуществляют двумя основными способами – твердофазным и сжиганием раствора. Основная проблема в синтезе CeAlO3, где церий присутствует в степени окисления +3, заключается в стабилизации этой степени окисления, поскольку для церия на воздухе устойчива степень окисления +4.
В способе сжиганием раствора в качестве исходных веществ используются мочевина и глицин в разных соотношениях, а также нитраты алюминия и церия [Aruna S.T, Kini N.S, Satish S., Rajam K.S., Synthesis of nanocrystalline CeAlO3 by solution-combustion route // Materials Chemistry and Physics – 2010. - № 119. – P. 485–489]. Вначале готовится раствор с определенными пропорциями топлива (органические реагенты) и нитратов в минимальном количестве воды, который затем вносится в предварительно разогретую до 500°С печь. Реакцию проводят в цилиндрическом алюминиевом тигле, где раствор сгорает через несколько минут, образуя губчатую массу. Подбирая оптимальное соотношение глицина и мочевины, можно получить однофазный CeAlO3. Однако следует отметить, что получение керамического образца из порошка, полученного сжиганием раствора, также требует температуры выше 1000°С и восстановительной атмосферы, поскольку CeAlO3 окисляется на воздухе выше 600°С. Таким образом, для получения анодного материала состава CeAlO3 требуется аппаратное оформление такое же, как при твердофазном методе синтеза.
В твердофазном способе получения керамики CeAlO3 [X. Wang, H. Yamada, K. Nishikubo and C.-N. Xu. Synthesis and Electric Property of CeAlO3 Ceramics // Japanese Journal of Applied Physics, Vol. 44, No. 2, 2005, pp. 961–963] в качестве исходных веществ использовались альфа-Al2O3 оксид алюминия (99.999%, Kojundo Chemical Lab. Co.), нитрат церия Ce(NO3)3⋅5.3H2O (99.9%, Kojundo Chemical Lab. Co.) и борная кислота H3BO3 (99.99%, Aldrich Chemical) в качестве флюса. Эти реагенты смешивались в агатовой ступке в этаноле, высушивались и прокаливались при 900°С в течение 4 ч в восстановительной атмосфере (Ar + 5 % H2). После прокаливания смесь была снова перетерта, а затем спрессована в таблетки диаметром 10 мм. Таблетки спекались при 1350–1600°C в течение 4 ч в восстановительной атмосфере (Ar + 5% H2). Керамика на основе CeAlO3 с пористостью 40 % получена при 1600°С без добавления флюса H3BO3, а керамика с пористостью 6 % была получена при 1450°С с добавлением флюса 5 % мол. H3BO3.
Вышеописанный твердофазный способ получения керамики CeAlO3 характеризуется высокой температурой синтеза (1600°С без использования флюса − борной кислоты Н3ВО3). При этом для снижения температуры синтеза до 1400°С требуется использование борной кислоты Н3ВО3, что приводит к снижению на 1.5 порядка электропроводности керамики (с 10-7 до 5⋅10-9 Ом-1⋅см-1 при 25°С), недостаточной для ее использования в качестве анода ТОТЭ.
Задачей изобретения является разработка способа получения анодного материала для ТОТЭ – керамики на основе алюмината церия, в которой церий присутствует в степени окисления +3, обладающей электропроводностью, достаточной для использования в качестве анода ТОТЭ, и снижение температуры синтеза.
Для этого предложен способ получения анодного материала на основе алюмината церия, характеризующийся тем, что получают твердый раствор на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин.
Анодный материал в виде твердого раствора Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, имеет повышенную электропроводность, например, при 400°С ее величина по сравнению с CeAlO3 повышается с 10-3 до 10-2 Ом-1⋅см-1. Частичное замещение церия на кальций при создании твердого раствора приводит к увеличению электропроводности как результат появления кислородной нестехиометрии.
Понижение температуры синтеза получаемого материала, вероятно, обусловлено использованием карбоната или оксида церия.
Использование в способе оксалата аммония обусловлено тем, что оксалат аммония при нагревании разлагается с образованием газообразных продуктов NH3, CO2 и СО, которые создают восстановительную атмосферу. При соотношении оксалата аммония 1:1 на моль алюмината обеспечивается необходимая концентрация восстановителя, при которой сохраняется степень окисления церия +3, и окисление до степени окисления +4 не происходит.
Таким образом, предложенный способ позволяет на порядок повысить электропроводность анодного материала, понизить температуру синтеза с 1600°С до 1400°С без использования борной кислоты Н3ВО3 в качестве флюса. Понижение температуры с 1600°С до 1400°С, и оксалата аммония – в качестве восстановителя, упрощает аппаратурное оформление процесса, а также позволяет уменьшить его стоимость.
Новый технический результат, достигаемый заявленным способом, заключается в повышении электропроводности анодного материала на основе алюмината церия, снижении температуры его синтеза, упрощении аппаратурного оформления процесса и снижении его стоимости.
Изобретение иллюстрируется рисунками, где на фиг.1 приведена рентгенограмма
Figure 00000001
с обработкой методом полнопрофильного анализа; на фиг.2 – температурная зависимость электропроводности керамики
Figure 00000002
; на фиг.3 – результаты энергодисперсионного микроанализа керамики
Figure 00000002
.
Для синтеза материала состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, использовали порошки Ce2(CO3)3 или Сe2O3, или СeO2 «чда», Al2O3 «чда» и CaCO3 «чда».
Пример 1. Для синтеза 10 г Сe0.9Ca0.1AlO2.95 использовали навески: 10.1383 г Ce2(CO3)3, 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5,97 г на 10 г Сe0.9Ca0.1AlO2.95. Навески исходных веществ были перетерты в агатовой ступке в среде этилового спирта, а затем спрессованы в несколько таблеток диаметра 2 см гидравлическим прессом при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами в виде прессованных таблеток помещали в трубчатую печь из непористой муллит-кремнеземистой керамической трубки с пробками из вакуумной резины и карбид-кремниевыми нагревательными стержнями. Ступенчатый отжиг вели вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин. На выходе этот поток газа пропускали через жидкостный затвор с низколетучей жидкостью – дибутилфталатом во избежание диффузии воздуха противотоком, а затем газ уходил в вытяжную вентиляцию.
Пример 2. Для синтеза 10 г Сe0,9Ca0,1AlO2,95 использовали навески: 7.2301 г Сe2O3 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5.97 г на 10 г Сe0.9Ca0.1AlO2.95. Далее синтез вели аналогично примеру 1.
Пример 3. Для синтеза 10 г Сe0,9Ca0,1AlO2,95 использовали навески: 7.2311 г СeO2 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5.97 г на 10 г Сe0.9Ca0.1AlO2.95. Далее синтез вели аналогично примеру 1.
Пример 4. Для синтеза 10 г Сe0.98Ca0.02AlO2.99 использовали навески: 7.9264 г СeO2 (или 7.9253 г Сe2O3 , или 11.1133 г Ce2(CO3)3), 0.0986 г CaCO3 и 2.5121 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6 г на 10 г Сe0.98Ca0.02AlO2.99. Далее синтез вели аналогично примеру 1.
Пример 5. Для синтеза 10 г Сe0.95Ca0.05AlO2.975 использовали навески: 7.4334 г СeO2 (или 7.4323 г Сe2O3 , или 10.4220 г Ce2(CO3)3), 0.2386 г CaCO3 и 2.4302 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6 г на 10 г Сe0.95Ca0.05AlO2.975. Далее синтез вели аналогично примеру 1.
Таким образом, заявляемый способ получения анодного материала на основе алюмината церия, позволяет повысить электропроводность анодного материала, понизить температуру его синтеза до 1400°С и не использовать в качестве флюса борную кислоту Н3ВО3. Указанные преимущества предлагаемого способа имеют существенное значение для его использования в промышленных условиях.

Claims (1)

  1. Способ получения анодного материала на основе алюмината церия, характеризующийся тем, что получают твердый раствор на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин.
RU2022103100A 2022-02-09 Способ получения анодного материала на основе алюмината церия RU2774865C1 (ru)

Publications (1)

Publication Number Publication Date
RU2774865C1 true RU2774865C1 (ru) 2022-06-23

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188868A1 (en) * 1985-01-22 1986-07-30 Westinghouse Electric Corporation Ceramic compound and air electrode materials for high-temperature electrochemical cells
WO2004013882A2 (en) * 2001-06-29 2004-02-12 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same
RU2323506C2 (ru) * 2002-10-25 2008-04-27 Пирелли Энд К. С.П.А. Твердооксидный топливный элемент с керамическим анодом
RU2361332C1 (ru) * 2007-12-12 2009-07-10 "ГОУ ВПО Уральский государственный университет им. А.М. Горького" Топливный элемент

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188868A1 (en) * 1985-01-22 1986-07-30 Westinghouse Electric Corporation Ceramic compound and air electrode materials for high-temperature electrochemical cells
WO2004013882A2 (en) * 2001-06-29 2004-02-12 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same
RU2323506C2 (ru) * 2002-10-25 2008-04-27 Пирелли Энд К. С.П.А. Твердооксидный топливный элемент с керамическим анодом
RU2361332C1 (ru) * 2007-12-12 2009-07-10 "ГОУ ВПО Уральский государственный университет им. А.М. Горького" Топливный элемент

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. Wang, H. Yamada, K. Nishikubo and C.-N. Xu. Synthesis and Electric Property of CeAlO3 Ceramics // Japanese Journal of Applied Physics. Vol. 44. No. 2, 2005, pp. 961-963. *

Similar Documents

Publication Publication Date Title
Chen et al. Chemical stability study of BaCe 0.9 Nd 0.1 O 3-α high-temperature proton-conducting ceramic
JP5126535B2 (ja) 複合体型混合導電体
Ullmann et al. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes
Shuk et al. Hydrothermal synthesis and properties of mixed conductors based on Ce1− xPrxO2− δ solid solutions
JP7074911B2 (ja) 電気化学デバイスの膜電極接合体、燃料電池、電気化学的水素ポンプ、および水素センサ
Dikmen et al. Hydrothermal synthesis and properties of Ce1− xLaxO2− δ solid solutions
Huang et al. Hydrothermal synthesis and properties of terbium-or praseodymium-doped Ce1− xSmxO2− x/2 solid solutions
US10014529B2 (en) Triple conducting cathode material for intermediate temperature protonic ceramic electrochemical devices
CA2297578A1 (en) Mixed conducting cubic perovskite for ceramic ion transport membrane
Wang et al. Chemical stability, ionic conductivity of BaCe0. 9− xZrxSm0. 10O3− α and its application to ammonia synthesis at atmospheric pressure
Zhao et al. Carbonates formed during BSCF preparation and their effects on performance of SOFCs with BSCF cathode
Tomita et al. Proton conduction at the surface of Y-doped BaCeO 3 and its application to an air/fuel sensor
JP4092106B2 (ja) La2Mo2O9から誘導された化合物及びそれらのイオン導体としての使用
Chen et al. Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0. 9Ba0. 1Ga1–x Mg x O3–α
RU2774865C1 (ru) Способ получения анодного материала на основе алюмината церия
Balachandran et al. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion
JPH06231611A (ja) 混合イオン導電体
RU2777104C1 (ru) Способ получения алюмината церия
Gorelov et al. Synthesis and properties of high-density protonic solid electrolyte BaZr 0.9 Y 0.1 O 3− α
Schmutzler et al. Fabrication of Dense, Shaped Barium Cerate by the Oxidation of Solid Metal‐Bearing Precursors
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
Shan et al. Improving the stability of an amperometric ammonia sensor based on BaZr0. 8Y0. 2O3-δ electrolyte with a volatile B2O3 sintering additive
JP4788867B2 (ja) ビスマス・エルビウム・タングステン酸化物固溶体の粉末からなる酸化物イオン伝導材料及びその製造方法
Pasierb et al. Application of proton-conducting SrCeO3 for construction of potentiometric hydrogen gas sensor
WO2023079877A1 (ja) 酸化物イオン伝導性固体電解質