RU2773963C1 - Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном - Google Patents

Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном Download PDF

Info

Publication number
RU2773963C1
RU2773963C1 RU2021136445A RU2021136445A RU2773963C1 RU 2773963 C1 RU2773963 C1 RU 2773963C1 RU 2021136445 A RU2021136445 A RU 2021136445A RU 2021136445 A RU2021136445 A RU 2021136445A RU 2773963 C1 RU2773963 C1 RU 2773963C1
Authority
RU
Russia
Prior art keywords
powder
nickel
waste
kerosene
powders
Prior art date
Application number
RU2021136445A
Other languages
English (en)
Inventor
Евгений Викторович Агеев
Евгений Александрович Бобков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)
Application granted granted Critical
Publication of RU2773963C1 publication Critical patent/RU2773963C1/ru

Links

Images

Abstract

Изобретение относится к порошковой металлургии, в частности к получению металлических никельхромовых порошков. Порошок получают путем электроэрозионного диспергирования отходов марки Х20Н80 в керосине осветительном при напряжении на электродах 150-170 В, ёмкости разрядных конденсаторов 40-45 мкФ и частоте следования импульсов 150-170 Гц. Обеспечивается стабилизация процесса получения порошка, повышение экологичности. 4 ил., 3 пр.

Description

Изобретение относится к порошковой металлургии, в частности к производству металлических никельхромовых порошков. В промышленности для получения металлических никельхромовых порошков применяют физические и физико-химические методы.
Известен способ получения порошкообразного никеля восстановлением закиси никеля в многоподовой печи [а.с. СССР N 931777, С22 В 23/02, 1982 г.], используемого на цементационной очистке никелевого электролита от меди. В качестве восстановителя используют газ от неполного сжигания угля (газогенераторная станция) или конверсированный природный газ с заданным соотношением водорода, воды, окиси углерода и двуокиси углерода. Процесс ведут при температуре 580-720°С и расходе конверсированного газа 900 нм3/ч.
Недостатком способа является низкая производительность процесса за счет длительного пребывания материала в реакционном объеме печи. Процесс трудноуправляем по поддержанию равномерного температурного поля по подам и, как следствие, прохождение агломерации и неполного восстановления отдельных частиц порошка, что влечет получение цементационной активности порошка на уровне 80%. Кроме того, процесс производится с достаточно высокими экономическими затратами.
Известен способ получения порошка чернового никеля 2-стадийным восстановлением закиси никеля [а.с. СССР № 139444, С22 В 23/02, опубл. 1961 г.]. Первую стадию восстановления ведут во вращающейся трубчатой печи (или в печи кипящего слоя), полученный горячий огарок первой стадии подвергают дополнительному обжигу в кипящем слое в присутствии твердого восстановителя при температуре 1000-1300°С. При этом слой обрабатываемого материала поддерживают в псевдоожиженном состоянии продувкой сквозь него оборотных газов, полученных в той же печи.
Недостатками способа являются сложность аппаратурного исполнения, неполнота восстановления из-за агломерации частиц в высокотемпературной стадии, высокая энергоемкость, особенно второй стадии процесса, и низкие значения химической активности металлического порошка.
Наиболее близким к заявленному техническому решению является способ получения металлического порошка [пат. РФ 2332280 С2, B22F 9/14, 30.06.2006], в котором порошок получают путем зажигания разряда между двумя электродами, один из которых катод, который выполняют из распыляемого материала в виде стержня, диаметром 10≤d≤40 мм. В качестве другого электрода-анода используют электролит (техническая вода). Процесс получения порошка ведут при следующих параметрах: напряжение между электродами 500≤U≤650 В, ток разряда 1,5≤I≤3 А, расстояние между катодом и электролитом 2≤l≤10 мм. Весь процесс ведут при атмосферном давлении.
Недостатком прототипа является невозможность получения порошков-сплавов с равномерным распределением легирующих элементов, а также высокие энергетические затраты.
Заявляемое изобретение направлено на решение задачи получения порошков из отходов сплава Х20Н80 в керосине осветительном с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.
Поставленная задача достигается тем, что порошок получают методом электроэрозионного диспергирования из отходов сплава Х20Н80 в керосине осветительном при напряжении на электродах 150…170 В, емкости разрядных конденсаторов 40…45 мкФ и частоте следования импульсов 150…170 Гц.
Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами. В зоне разряда под действием высоких температур происходит нагрев, расплавление и частичное испарение металла.
На фигуре 1 - результаты микроскопии и микроанализа порошков; на фигуре 2 - рентгеноспектральный микроанализ порошка; на фигуре 3 - гранулометрический состав порошка; на фигуре 4 - рентгеноструктурный анализ порошка.
Пример 1
На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 250 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:
- напряжение на электродах от 130…150 В;
- емкость конденсаторов 35…40 мкФ;
- частота следования импульсов 130…150 Гц.
Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет прерывисто, поскольку недостаточно энергии для пробоя рабочей жидкости.
Пример 2
На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 200 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:
- напряжение на электродах от 150…170 В;
- емкость конденсаторов 40…45 мкФ;
- частота следования импульсов 150…170 Гц.
Полученный порошок исследовали различными методами.
Для изучения формы и морфологии полученных порошков были выполнены снимки на электронно-ионном сканирующем (растровом) микроскопе с полевой эмиссией электронов «QUANTA 600 FEG» (Нидерланды). На основании фигуры 1, порошок, полученный методом ЭЭД из отходов Х20Н80, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.
Изучение фазового состава электроэрозионного порошка проводили рентгеновском дифрактометре «Rigaku Ultima IV» (Япония). В результате изучения концентраций элементного и минералогического состава образца, были получены результаты, представленные на фигуре 2.
Основным материалом в образце является железо, никель, хром, углерод.
Затем полученный порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (фигура 3).
Установлено, что средний размер частиц составляет 64,942 мкм, арифметическое значение - 64,94 мкм.
Анализ фазового состава полученного порошка (фигура 4) показал, что наличие в составе рабочей жидкости (керосин) углерода способствует образованию фаз карбидов, таких как Ni3С, Fe3С. Основные фазами являются Fe, Ni, Cr, Ni3С, Fe3С.
Пример 3
На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 150 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:
- напряжение на электродах от 170…190 В;
- емкость конденсаторов 45…55 мкФ;
- частота следования импульсов 170…190 Гц.
Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно и сопровождается хлопками.

Claims (1)

  1. Способ получения никельхромового порошка, отличающийся тем, что порошок получают методом электроэрозионного диспергирования из отходов сплава Х20Н80 в керосине осветительном при напряжении на электродах 150-170 В, ёмкости разрядных конденсаторов 40-45 мкФ и частоте следования импульсов 150-170 Гц.
RU2021136445A 2021-12-10 Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном RU2773963C1 (ru)

Publications (1)

Publication Number Publication Date
RU2773963C1 true RU2773963C1 (ru) 2022-06-14

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1681466A1 (ru) * 1989-10-20 1995-03-10 Новомосковский Филиал Государственного Научно-Исследовательского И Проектного Института Азотной Промышленности И Продуктов Органического Синтеза Установка электроэрозионного диспергирования токопроводящих материалов для получения одно- и многокомпонентных каталитических систем
US20070101823A1 (en) * 2003-06-25 2007-05-10 Prasenjit Sen Process and apparatus for producing metal nanoparticles
RU2681237C1 (ru) * 2018-02-12 2019-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения кобальто-хромовых порошков электроэрозионным диспергированием
RU2683162C2 (ru) * 2017-09-09 2019-03-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения порошка псевдосплава W-Ni-Fe методом электроэрозионного диспергирования в дистиллированной воде
RU2699479C1 (ru) * 2019-04-10 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1681466A1 (ru) * 1989-10-20 1995-03-10 Новомосковский Филиал Государственного Научно-Исследовательского И Проектного Института Азотной Промышленности И Продуктов Органического Синтеза Установка электроэрозионного диспергирования токопроводящих материалов для получения одно- и многокомпонентных каталитических систем
US20070101823A1 (en) * 2003-06-25 2007-05-10 Prasenjit Sen Process and apparatus for producing metal nanoparticles
RU2683162C2 (ru) * 2017-09-09 2019-03-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения порошка псевдосплава W-Ni-Fe методом электроэрозионного диспергирования в дистиллированной воде
RU2681237C1 (ru) * 2018-02-12 2019-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения кобальто-хромовых порошков электроэрозионным диспергированием
RU2699479C1 (ru) * 2019-04-10 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной

Similar Documents

Publication Publication Date Title
Chen et al. A review of plasma–liquid interactions for nanomaterial synthesis
RU2699479C1 (ru) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной
RU2773963C1 (ru) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном
JP2014101530A (ja) 合金ナノ粒子の製造方法
EP2625141A1 (en) Process and reactor for the plasma transformation of powdery by-products of bauxite processing into a solid, inert and compact product
US3708409A (en) Chemical process in high enthalpy thermal environment and apparatus therefor
RU2709561C1 (ru) Способ получения вольфрамотитанокобальтовых порошков из отходов сплава Т30К4 в спирте
Kim High energy pulsed plasma arc synthesis and material characteristics of nanosized aluminum powder
RU2433888C1 (ru) Способ синтеза наночастиц карбида вольфрама
Ilyin et al. Synthesis and characterization of metal carbides nanoparticles produced by electrical explosion of wires
RU2735844C1 (ru) Способ получения коррозионностойких порошков из стали Х17 в керосине
DE1814557C3 (de) Vorrichtung und Verfahren zur elektrothermischen Durchführung chemischer Reaktionen
RU2772879C1 (ru) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в воде дистиллированной
RU2784145C1 (ru) Способ получения жаропрочного никелевого порошка из отходов сплава ЖС6У в керосине осветительном
RU2683162C2 (ru) Способ получения порошка псевдосплава W-Ni-Fe методом электроэрозионного диспергирования в дистиллированной воде
Samokhin et al. Synthesis and processing of powder materials in DC arc thermal plasma
RU2802693C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине
Safronov et al. Plasma way for oxide nanoparticles obtaining
Shiryaeva et al. A study on the production of titanium carbide nano-powder in the nanostate and its properties
RU2779730C1 (ru) Способ получения жаропрочного никелевого порошка из отходов сплава ЖС6У в воде дистиллированной
JP2011073896A (ja) カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置
CN100595299C (zh) 一种TiCl4真空辉光放电制备金属钛的方法
Nazarenko et al. Nano Powders Production by Electrical Explosion of Wires: Environmental Applications
RU2804892C1 (ru) Способ получения порошка молибдена электроэрозией молибденовых отходов
RU2763431C1 (ru) Способ получения безвольфрамовых твердосплавных порошковых материалов в воде дистилированной