RU2802693C1 - Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине - Google Patents

Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине Download PDF

Info

Publication number
RU2802693C1
RU2802693C1 RU2022127742A RU2022127742A RU2802693C1 RU 2802693 C1 RU2802693 C1 RU 2802693C1 RU 2022127742 A RU2022127742 A RU 2022127742A RU 2022127742 A RU2022127742 A RU 2022127742A RU 2802693 C1 RU2802693 C1 RU 2802693C1
Authority
RU
Russia
Prior art keywords
alloy
titanium
tungsten
kerosene
cobalt
Prior art date
Application number
RU2022127742A
Other languages
English (en)
Inventor
Евгений Викторович Агеев
Екатерина Владимировна Агеева
Анна Евгеньевна Агеева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Application granted granted Critical
Publication of RU2802693C1 publication Critical patent/RU2802693C1/ru

Links

Abstract

Изобретение относится к области порошковой металлургии, а именно к получению твердых сплавов. Способ получения вольфрамо-титано-кобальтового твердого сплава включает получение сплава в результате искрового плазменного спекания порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине, при температуре Т=1200°С, давлении Р=40 МПа и времени выдержки t=10 мин. Обеспечивается повышение физико-механических свойств сплава. 6 ил., 3 пр.

Description

Изобретение относится к области порошковой металлургии, а именно к получению твердых сплавов.
Известен способ получения твердых сплавов, согласно которому спекание прессованных заготовок осуществляют в восстановительной атмосфере или в вакууме [Третьяков В. И. Основы металловедения и технологии производства спеченных твердых сплавов. М. Металлургия, 1976, с. 382]. При применении восстановительной атмосферы спекание проводят в горизонтальных печах трубчатого или муфельного типа, нагревательный элемент которых расположен с внешней стороны. В некоторых случаях нагревателем является графитовая труба, служащая одновременно и рабочим пространством печи. При применении вакуума спекание проводят либо в вертикальных печах периодического действия, либо в горизонтальных непрерывного действия.
Недостаток данного способа наличие градиента температур как по длине, так и по сечению трубы или муфеля, что снижает качество спеченных твердосплавных изделий.
Наиболее близким к предлагаемому способу является способ получения твердых сплавов [Патент РФ №2048266 Способ получения твердых сплавов], включающий прессование шихты, спекание в псевдоожиженном слое предварительно спеченного оксида алюминия в восстановительной атмосфере, отличающийся тем, что спекание проводят, осуществляя нагрев со скоростью 35…40 град./мин до 800…850°C с последующей выдержкой в течение 30…40 мин, а затем со скоростью 50…55 град./мин до 1350…1400°С и последующей выдержкой в течение 50…60 мин.
Недостатком известного способа является многооперационность процесса получения твердого сплава, а также высокие затраты энергии на получение расплавов, а также относительно низкое качество твердого сплава вследствие относительно высокой конечной пористости и невысокие в связи с этим физико-механические свойства сплава.
В основу изобретения положена задача получения вольфрамо-титано-кобальтового твердого сплава с улучшенными физико-механическими свойствами и низкой себестоимостью.
Поставленная задача решается тем, что упомянутые твердый сплав получаются в результате искрового плазменного спекания твердосплавных порошков, получаемых электроэрозионным диспергированием отходов сплава Т5К10 в керосине осветительном.
Процесс электроэрозионного диспергирования (ЭЭД) представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами.
Регулируя электрические параметры установки для электроэрозионного диспергирования (ЭЭД), можно получать за определенные промежутки времени нужное количество порошка заданных размеров и качества. Получаемые электроэрозионным способом порошковые материалы имеют в основном сферическую форму частиц.
Получение спеченных изделий искровым плазменным спеканием в условиях быстрого нагрева и малой продолжительности рабочего цикла способствует повышению физико-механических свойств по сравнению с промышленными сплавами, из которых были получены исходные частицы порошка, за счет подавления роста зерна и получения равновесного состояния с субмикронным и наномасштабным зерном. Использование метода искрового плазменного спекания для получения твердосплавных изделий из порошка, полученного электроэрозионным диспергированием сплава Т5К10, позволит обеспечить высокую работоспособность изделий за счет однородности поверхности, благоприятной структуры и низкой пористости изделия.
На фиг. 1 представлена схема процесса ЭЭД, на фиг. 2 показаны методика и режимы искрового плазменного спекания, на фиг. 3 - микроструктура спеченного изделия, на фиг. 4 - спектрограмма элементного состава спеченного изделия, на фиг. 5 - дифрактограмма спеченного образца, на фиг. 6 - сводная таблица свойств спеченного твердосплавного изделия в сравнении с промышленным твердым сплавом.
Твердосплавный вольфрамо-титано-кобальтовый порошок получали в следующей последовательности.
На первом этапе производили сортировку твердосплавных отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - керосином осветительным, отходы загружали в реактор.
На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фиг. 1. Вначале осуществлялась сборка электродов 5 и 6 из диспергируемых отходов твердого сплава 8. Далее в реактор 3 загружались гранулы диспергируемого сплава Т5К10 8 и заливалась рабочая жидкость - керосин 10. На пульте управления генератора импульсов 2 устанавливались требуемые для электродиспергирования металлоотходов параметры: емкость разрядных конденсаторов и частота следования импульсов. Затем при помощи регулятора напряжения 1 устанавливалось такое напряжение, при котором происходил электрический пробой рабочей жидкости 10, находящийся в межэлектродном пространстве. При образовании канала разряда куски твердого сплава в точке разряда плавились и испарялись. Рабочая жидкость 10 в канале электрического разряда также кипела и испарялась, образуя газовый пузырь 9. Капли расплавленного и испаряющегося твердого сплава попадали в жидкую рабочую среду с образованием сферических и эллиптических частиц 7, а также агломератов. Встряхиватель 4 перемещал один из электродов и обеспечивал непрерывное протекание процесса электродиспергирования.
На третьем этапе проводится выгрузка рабочей жидкости с твердосплавным вольфрамо-титано-кобальтовым порошком из реактора.
На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка. Затем полученный порошок подвергали искровому плазменному спеканию в системе SPS 25-10 «Thermal Technology» (США).
При этом достигается следующий технический результат: спеченный вольфрамо-титано-кобальтовый твердый сплав с улучшенными физико-механическими свойствами без существенного увеличения затрат на их изготовление.
Пример 1
Для получения вольфрамо-титано-кобальтового порошка использовали отходы твердого сплава марки Т5К10, которые измельчали методом электроэрозионного диспергирования в керосине осветительном на установке (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При диспергировании отходов Т5К10 использовали следующие параметры установки: ёмкость конденсаторов 65,0 мкФ; напряжение на электродах от 195…205 В; частота следования импульсов 180…220 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение отходов твердого сплава с образованием частиц вольфрамо-титано-кобальтового порошка.
Спекание вольфрамо-титано-кобальтового порошка осуществляли в системе SPS 25-10 «Thermal Technology» (США) при температуре Т = 1000°С, давлении Р = 30 МПа и времени выдержки t = 5 мин.
При данных режимах твердосплавный порошок не спекся.
Пример 2
Для получения вольфрамо-титано-кобальтового порошка использовали отходы твердого сплава марки Т5К10, которые измельчали методом электроэрозионного диспергирования в керосине осветительном на установке (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При диспергировании отходов Т5К10 использовали следующие параметры установки: ёмкость конденсаторов 65,0 мкФ; напряжение на электродах от 195…205 В; частота следования импульсов 180…220 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение отходов твердого сплава с образованием частиц вольфрамо-титано-кобальтового порошка.
Спекание вольфрамо-титано-кобальтового порошка осуществляли в системе SPS 25-10 «Thermal Technology» (США) при температуре Т = 1200°С, давлении Р = 40 МПа и времени выдержки t = 10 мин.
Полученное спеченное твердосплавное изделие исследовали различными методами.
Микроструктуру сплавов исследовали на электронно-ионном сканирующем (растровом) микроскопе с полевой эмиссией электронов «QUANTA 600 FEG» (Нидерланды). Анализ микроструктуры сплава, показал, что он имеет мелкозернистое строение, без включений, равномерное распределение фаз и отсутствие значительных пор, трещин и несплошностей.
Рентгеноспектральный микроанализ сплавов проводили на энергодисперсионном анализаторе рентгеновского излучения фирмы «EDAX» (Нидерланды), встроенном в растровый электронный микроскоп «QUANTA 200 3D» (Нидерланды). На основе анализа спектрограмм элементного состава установлено, что на поверхности сплава содержится углерод, а все остальные элементы W, Ti и Со распределены относительно равномерно.
Фазовый анализ твердого сплава выполняли на рентгеновском дифрактометре «Rigaku Ultima IV» (Япония). Анализ дифрактограмм фазового состава исследуемых сплавов показал наличие в них карбидных фаз: WC и TiC и фазы чистого металла W.
Пористость и размер зерна в вольфрамо-титано-кобальтовых твердых сплавах исследовали на оптическом инвертированном микроскопе «OLYMPUS GX51» (Япония), оснащенного системой автоматизированного анализа изображений «SIMAGIS Photolab». Экспериментально установлено, что новые вольфрамо-титано-кобальтовые сплавы, полученные искровым плазменным спеканием твердосплавного порошка, имеют размер зерна порядка 0,31 мкм. Мелкодисперсность твердого сплава объясняется высокой дисперсностью исходной электроэрозионной шихты и эффекта «подавления роста зерна» при искровом плазменном спекании за счет короткого времени рабочего цикла, высокого давления и равномерного распределения тепла по образцу при воздействии на него импульсного электрического тока и так называемого «эффекта плазмы искрового разряда».
Микротвердость сплава определяли с помощью прибора «Instron 402 MVD» (Великобритания). Экспериментально установлено, что новые вольфрамо-титано-кобальтовые сплавы, полученные искровым плазменным спеканием электроэрозионной шихты, имеют микротвердость порядка 4729 МПа. Отмечено, что полученные сплавы обладают более высокой микротвердостью по сравнению с аналогичными промышленными сплавами. Данный эффект достигается при искровом плазменном спекании диспергированных электроэрозией частиц практически беспористой структурой и наличием высокотвердых фазовых составляющих. Экспериментально установлено, что наличие карбидов в твердосплавном порошке, полученном в керосине, способствует повышению микротвердости сплавов.
Твердость сплавов определяли с помощью прибора «Instron 600 MRD» (Великобритания). Экспериментально установлено, что новые вольфрамо-титано-кобальтовые сплавы, полученные искровым плазменным спеканием вольфрамо-титано-кобальтовых порошков, имеют твердость порядка HRA 95. Установлено, что новые вольфрамо-титано-кобальтовые сплавы имеют более высокую твердость по сравнению с аналогичными промышленными. Данный эффект достигается при искровом плазменном спекании порошков с мелким размером зерна, высокой микротвердостью, практически беспористой и бездефектной структурой и фазовым составом. Экспериментально установлено, что наличие карбидов в порошке, полученном в керосине, способствует повышению твердости вольфрамо-титано-кобальтовых твердых сплавов.
Предел прочности при сжатии и при изгибе образцов сплавов определяли помощью прибора «Instron 300 LX-B1-C3-J1C» (Великобритания). Экспериментально установлено, что новые вольфрамо-титано-кобальтовые сплавы, полученные искровым плазменным спеканием вольфрамо-титано-кобальтовых порошков, имеют предел прочности при изгибе порядка 3876 МПа. Экспериментально установлено, что новые вольфрамо-титано-кобальтов твердые сплавы, полученные искровым плазменным спеканием твердосплавного порошка, обладают более высоким пределом прочности по сравнению с промышленными металлами и сплавами. Повышению прочности новых сплавов способствует высокая дисперсность и сферическая форма частиц, а также относительно мелкий размер зерна и беспористая бездефектная структура.
Пример 3
Для получения вольфрамо-титано-кобальтового порошка использовали отходы твердого сплава марки Т5К10, которые измельчали методом электроэрозионного диспергирования в керосине осветительном на установке (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - № 2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 13). При диспергировании отходов Т5К10 использовали следующие параметры установки: ёмкость конденсаторов 65,0 мкФ; напряжение на электродах от 195…205 В; частота следования импульсов 180…220 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение отходов твердого сплава с образованием частиц вольфрамо-титано-кобальтового порошка.
Спекание вольфрамо-титано-кобальтового порошка осуществляли в системе SPS 25-10 «Thermal Technology» (США) при температуре Т = 1300°С, давлении Р = 50 МПа и времени выдержки t = 20 мин.
При данных режимах имелись раковины и поры на поверхности твердосплавной заготовки.

Claims (1)

  1. Способ получения вольфрамо-титано-кобальтового твердого сплава, отличающийся тем, что упомянутый сплав получают в результате искрового плазменного спекания порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине, при температуре Т=1200°С, давлении Р=40 МПа и времени выдержки t=10 мин.
RU2022127742A 2022-10-26 Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине RU2802693C1 (ru)

Publications (1)

Publication Number Publication Date
RU2802693C1 true RU2802693C1 (ru) 2023-08-30

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2048266C1 (ru) * 1993-12-28 1995-11-20 Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов Способ получения твердых сплавов
RU2680536C1 (ru) * 2018-02-12 2019-02-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченного изделия из порошка кобальтохромового сплава
RU2681238C1 (ru) * 2018-04-05 2019-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков
US11104980B2 (en) * 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure
RU2773960C1 (ru) * 2021-12-21 2022-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченных изделий из электроэрозионного порошка из отходов стали Х13

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2048266C1 (ru) * 1993-12-28 1995-11-20 Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов Способ получения твердых сплавов
US11104980B2 (en) * 2016-04-26 2021-08-31 H. C. Starck Tungsten GmbH Carbide with toughness-increasing structure
RU2680536C1 (ru) * 2018-02-12 2019-02-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченного изделия из порошка кобальтохромового сплава
RU2681238C1 (ru) * 2018-04-05 2019-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков
RU2773960C1 (ru) * 2021-12-21 2022-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения спеченных изделий из электроэрозионного порошка из отходов стали Х13

Similar Documents

Publication Publication Date Title
TW201932216A (zh) 經加成製造之組件
Michalski et al. Sintering diamond/cemented carbides by the pulse plasma sintering method
JPWO2004011696A1 (ja) 放電表面処理用電極および放電表面処理方法並びに放電表面処理装置
RU2699479C1 (ru) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной
Ageev et al. Investigation of the elemental composition of the WNF-95 sintered powder alloy obtained by the electroerosive dispersion of waste in a carbon-containing liquid
Zoz et al. Improve Ag-SnO~ 2 Electrical Contact Material Produced by Mechanical Alloying
Ageeva et al. X-ray spectral analysis of sintered products made of electroerosive materials obtained from X17 alloy waste in lighting kerosene
RU2680536C1 (ru) Способ получения спеченного изделия из порошка кобальтохромового сплава
RU2802693C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине
RU2802692C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в воде
Ageev et al. Composition, Structure and Properties of Hard Alloy Products from Electroerosive Powders Obtained from T5K10 Hard Alloy Waste in Kerosene
Bodrova et al. Synthesis of arc-resistant W70Cu30 composite alloy with frameless placing of thin-dispersed tungsten phase
RU2779731C1 (ru) Способ получения заготовок никельхромового сплава Х20Н80
RU2681238C1 (ru) Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков
RU2772880C1 (ru) Способ получения никельхромового сплава Х20Н80, спеченного из электроэрозионных порошков, полученных в керосине
Kim et al. Nanocomposites TiB 2-Cu: consolidation and erosion behavior
RU2807399C1 (ru) Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в дистиллированной воде
RU2816973C1 (ru) Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в осветительном керосине
RU2810417C1 (ru) Способ получения сплава из порошка свинцовой латуни ЛС58-3
Grashkov et al. Investigation of the sinterability of cobalt-chromium powders used for the restoration of agricultural machinery parts
RU2750720C1 (ru) Способ получения спеченного изделия из порошковой коррозионной стали
RU2820095C2 (ru) Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ССу-3 в керосине
RU2795311C1 (ru) Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ССу-3 в воде
RU2631549C1 (ru) Способ получения порошка титана методом электроэрозионного диспергирования
RU2812059C1 (ru) Способ получения спеченных изделий из электроэрозионных порошков на основе алюминиевого сплава АД0Е