RU2761127C1 - Сумматор оптического излучения - Google Patents

Сумматор оптического излучения Download PDF

Info

Publication number
RU2761127C1
RU2761127C1 RU2020141737A RU2020141737A RU2761127C1 RU 2761127 C1 RU2761127 C1 RU 2761127C1 RU 2020141737 A RU2020141737 A RU 2020141737A RU 2020141737 A RU2020141737 A RU 2020141737A RU 2761127 C1 RU2761127 C1 RU 2761127C1
Authority
RU
Russia
Prior art keywords
optical
beams
radiation
plane
parallel
Prior art date
Application number
RU2020141737A
Other languages
English (en)
Inventor
Олег Витальевич Сизов
Алексей Владимирович Григорьев
Сергей Олегович Чистяков
Людмила Юрьевна Бажанова
Виталий Николаевич Палашов
Original Assignee
Акционерное общество "Вологодский оптико-механический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Вологодский оптико-механический завод" filed Critical Акционерное общество "Вологодский оптико-механический завод"
Priority to RU2020141737A priority Critical patent/RU2761127C1/ru
Application granted granted Critical
Publication of RU2761127C1 publication Critical patent/RU2761127C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Изобретение относится к области оптического приборостроения, а точнее к оптическим системам с преломляющими элементами, коллимирующими излучение лазерного пучка, и может быть использовано в системах оптической локации, оптической связи, телеуправления и др. Сумматор оптического излучения содержит две группы расположенных в ряд полупроводниковых лазеров с одиночными градиентными или асферическими коллимирующими линзами, создающих два набора параллельных в одной плоскости коллимированных пучков с расстоянием между пучками, несколько превышающим их световой диаметр, совмещающий компонент, формирующий единый набор параллельных в одной плоскости коллимированных пучков с минимальным расстоянием между пучками, следующий за ним призменный телескоп, состоящий из целого числа пар оптических призм, ребра преломляющих двугранных углов которых ориентированы параллельно плоскостям полупроводниковых переходов, и фокусирующую линзу, обеспечивающую вблизи фокальной плоскости пятно лазерного излучения с необходимыми параметрами. Технический результат - повышение мощности выходного пучка. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области оптического приборостроения, а точнее к оптическим системам с преломляющими элементами, коллимирующими излучение лазерного пучка, и может быть использовано в системах оптической локации, оптической связи, телеуправления и др.
В этих системах, как правило, необходимо эффективно и достаточно равномерно заполнить излучением некоторую полевую диафрагму, изображение которой в конечном счете передается в дальнюю зону.
Для этого удобно использовать инжекционные полупроводниковые лазеры, также называемые лазерными диодами, которые являются одними из наиболее востребованных современных излучателей всего оптического диапазона, видимого и ближнего инфракрасного и представляют собой самые компактные источники лазерного излучения из всех когда-либо применявшихся в лазерных технологиях. Лазерные диоды являются твердотельными устройствами, поэтому отличаются высокой прочностью, надежностью и долговечностью, причем по мере совершенствования технологий их эксплуатационный ресурс продолжает увеличиваться. Их коэффициент полезного действия составляет около 50%, но теоретически можно получить и более 80%. Несмотря на то, что выходная мощность лазерных диодов может достигать нескольких ватт, мощности одного диода может быть недостаточно для подсветки вышеуказанной полевой диафрагмы. Тогда применяются различные схемы суммирования излучения от нескольких лазеров. При этом помимо плотности мощности в плоскости полевой диафрагмы к пучку предъявляются требования по максимально допустимому значению числовой апертуры (углу расходимости).
Известна коллимирующая оптическая система для полупроводниковых лазеров по патенту RU №2101743, G02B 27/30, 1998 г., содержащая последовательно расположенные по ходу лучей объектив и группу призм, отличающаяся тем, что ребра преломляющих двугранных углов призм ориентированы параллельно плоскости полупроводникового перехода, преломляющие углы призм выбираются в пределах 25-40°, угловое увеличение Г группы призм выбирается из следующего соотношения:
Figure 00000001
где
Figure 00000002
, θ - углы расходимости излучения полупроводникового лазера по уровню 0,5 в плоскостях, параллельной и перпендикулярной плоскости полупроводникового перехода соответственно, передняя фокальная плоскость объектива смещена относительно предметной плоскости на расстояние δo, определяемое соотношением
Figure 00000003
где
Figure 00000004
, а размеры - тела свечения полупроводникового лазера в плоскостях, параллельной и перпендикулярной плоскости полупроводникового перехода соответственно, а продольная сферическая аберрация δ(u) объектива выбирается из следующего соотношения:
Figure 00000005
где U - апертурный угол объектива;
δo - расстояние от передней фокальной плоскости объектива до предметной плоскости.
Figure 00000002
=8° - 12°, θ⊥=30° - 50°,
Figure 00000004
=50 - 500 мкм в зависимости от выходной мощности Р=0.5-5 Вт, а ≈ 1 мкм.
В реферате указывается, что данная коллимирующая оптическая система может быть использована для получения осесимметричного светового пучка от нескольких полупроводниковых лазеров. При этом соотношение для углового увеличения Г группы призм меняется и превращается в следующее:
Figure 00000006
где N - количество полупроводниковых лазеров.
В дальнейшем этот подход продолжен в патенте RU №2148850, G02B 27/30, 2000 г. тех же авторов в основном в части повышения стабильности выходного пучка при воздействии пониженной и повышенной температуры без изменения принципа увеличения мощности пучка за счет увеличения количества полупроводниковых лазеров, расположенных в один ряд вплотную друг к другу.
Наиболее близким устройством по технической сущности к заявляемому изобретению является сумматор оптического излучения, патент RU №2182346, G02B 27/09, 2000 г., содержащий группу источников излучения, например лазеров, оптические оси которых параллельны друг другу, последовательно расположенные по ходу лучей коллимирующие объективы и общую систему оптических клиньев. В этом изобретении, как и в предыдущем, предлагается способ уменьшения зависимости основных оптических характеристик прибора от изменения температуры окружающей среды.
Поперечный габаритный размер сумматора данной конструкции ограничен снизу поперечным размером корпуса лазерного диода D и не может быть меньше N(D+δ), где δ - минимально необходимый технологический зазор между корпусами лазеров. Продольный габаритный размер в свою очередь прямо пропорционален поперечному при неизменном значении углового увеличения группы призм Г. Размер D связан с мощностью лазера и с требуемой эффективностью теплоотвода, поэтому не может быть уменьшен. Кроме того, в качестве коллимирующей оптики в данной конструкции используются трехлинзовые объективы с высокой числовой апертурой, требующие соответствующих размеров оправ, что тоже ограничивает возможности уменьшения габаритов прибора.
Поэтому недостатком такой оптической системы является то, что при необходимости повышения в два раза выходной мощности суммированного пучка с использованием тех же источников излучения в два раза увеличиваются габаритные размеры устройства.
Другим недостатком, который не акцентируется в вышеуказанных патентах, является сильная неоднородность распределения мощности в поперечном сечении пучка на выходе призменного телескопа (в ближней зоне) в направлении, перпендикулярном плоскостям полупроводниковых переходов.
Задачей данного изобретения является повышение в два раза мощности выходного пучка сумматора оптического излучения без увеличения габаритов при обеспечении необходимой равномерности распределения освещенности в поперечном сечении пучка.
Технический результат достигается тем, что в качестве объективов, коллимирующих излучение группы расположенных в один ряд вплотную друг к другу лазерных диодов используются одиночные градиентные или асферические линзы диаметром dk в два раза меньшим, чем поперечный размер корпуса лазерного диода D, в систему добавляется еще одна такая же группа расположенных в один ряд вплотную друг к другу лазерных диодов с коллимирующими линзами, только смещенная поперек оптической оси на половину расстояния между соседними лазерными диодами.
Каждая из двух групп создает набор параллельных в одной плоскости коллимированных пучков с расстоянием между пучками, несколько превышающим световой диаметр пучков.
Затем при помощи совмещающего компонента формируется единый набор параллельных в одной плоскости коллимированных пучков с минимальным расстоянием между пучками.
За совмещающим компонентом следует призменный телескоп, состоящий из целого числа пар оптических призм, ребра преломляющих двугранных углов которых ориентированы параллельно плоскостям полупроводниковых переходов, причем направление входного и выходного пучка в каждой паре совпадает с направлением исходных коллимированных пучков.
Следующая за призменным телескопом линза формирует сходящийся пучок с заданным апертурным углом (углом расходимости) и с заданными размерами поперечного сечения вблизи ее фокальной плоскости, обеспечивая при этом необходимую равномерность распределения освещенности.
На фиг. 1 и 2 показаны поперечные разрезы сумматора в сечениях параллельном и перпендикулярном плоскости полупроводникового перехода.
Сумматор фиг. 1 и фиг. 2 содержит десять полупроводниковых лазеров поз. 1 с характеристиками:
Figure 00000004
, а - размеры тела свечения полупроводникового лазера в плоскостях, параллельной и перпендикулярной плоскости полупроводникового перехода соответственно.
Figure 00000002
, θ⊥ - углы расходимости излучения полупроводникового лазера по уровню 0,5 в плоскостях, параллельной и перпендикулярной плоскости полупроводникового перехода соответственно.
Полупроводниковые лазеры поз. 1 собраны в две группы по пять лазеров, расположенных в ряд в направлении, перпендикулярном плоскости полупроводникового перехода (см. фиг. 2) с минимальным зазором δ между корпусами лазеров, необходимым для настройки сумматора. Поэтому расстояние между осями соседних лазеров равно D+δ.
При этом оси пучков в первой группе перпендикулярны осям пучков во второй группе (см. фиг. 1).
В качестве коллимирующего объектива используется одиночная градиентная или асферическая линза поз. 2 фиг. 1 с фокусом ƒк и диаметром dк, не превышающим половины поперечного размера корпуса лазерного диода D:
Figure 00000007
В плоскости, параллельной плоскости полупроводникового перехода, из-за большой ширины активного слоя лазер генерирует излучение на нескольких поперечных модах резонатора, в связи с этим угловое распределение интенсивности излучения лазера в этой плоскости приблизительно постоянно в пределах угла расходимости
Figure 00000002
. В плоскости, перпендикулярной плоскости полупроводникового перехода, волноводный слой удерживает только одну низшую поперечную моду, и угловое распределение интенсивности излучения лазера в этой плоскости описывается гауссовой кривой с шириной θпо уровню 0,5. Поэтому после коллимирующей линзы поперечное сечение пучка представляет собой узкую полоску шириной
Figure 00000008
вытянутую в плоскости, перпендикулярной плоскости полупроводникового перехода с гауссовым распределением вдоль полоски и с почти равномерным распределением поперек полоски. Коллимирующая линза не должна вносить дифракционных искажений в пучок, поэтому ее угловая апертура должна быть не меньше угла θ. Таким образом, размер пучка в направлении, перпендикулярном плоскости полупроводникового перехода равен световому диаметру коллимирующей линзы, т.е. А=dк.
Каждая группа лазеров создает набор коллимированных пучков, параллельных в одной плоскости, с расстоянием между пучками, несколько превышающим световой диаметр пучков. Это позволяет объединить два набора пучков в один набор параллельных в одной плоскости коллимированных пучков с небольшим расстоянием между пучками.
Для этого используется совмещающий компонент поз. 3 фиг. 1 и фиг. 2, выполненный в виде зеркала с эквидистантным набором круглых сквозных отверстий для прохода излучения первой группы полупроводниковых лазеров (диаметр отверстий соответствует световому диаметру коллимирующей линзы) и отражающего излучение второй группы полупроводниковых лазеров.
После совмещающего компонента отдельные коллимированные пучки объединяются в единый пучок с поперечными размерами:
Figure 00000009
Figure 00000010
Углы расходимости пучков после коллимирующих линз (углы расходимости пучка до призменного телескопа):
Figure 00000011
Figure 00000012
где λ - длина волны излучения лазера.
Последнее выражение следует из известного закона преобразования гауссова пучка линзой (см., например, [4]).
Конструкция совмещающего компонента может быть различной и зависит от взаимного расположения осей пучков исходных групп. При перпендикулярном расположении осей совмещающий компонент может также быть выполнен в виде удлиненной призмы полного внутреннего отражения АР-90 поз. 3 фиг. 3 с эквидистантным набором круглых сквозных отверстий, направленных вдоль одного из катетов для прохода излучения первой группы полупроводниковых лазеров. Излучение лазеров второй группы испытывает полное внутреннее отражение от гипотенузной грани призмы. При этом требуется просветление поверхностей катетов призмы для уменьшения потерь излучения второй группы.
При встречном ходе пучков исходных групп совмещающий компонент может быть двойным набором призм полного внутреннего отражения АР-90 поз. 3(1) и поз. 3(2) фиг. 4.
При параллельном ходе пучков исходных групп совмещающий компонент может быть двойным набором ромбических призм типа БС-0 поз. 3(1) и поз. 3(2) фиг. 5.
За совмещающим компонентом следует призменный телескоп, состоящий из последовательности оптических призм поз. 4, 5, 6, 7 фиг. 1 и фиг. 2, ребра преломляющих двугранных углов которых ориентированы параллельно плоскостям полупроводниковых переходов, который многократно уменьшает поперечный размер
Figure 00000013
лишь незначительно увеличивая за счет длины прохода размер
Figure 00000014
При этом во столько же крат увеличивается угол расходимости
Figure 00000015
, а угол расходимости
Figure 00000016
остается неизменным. Число призм может быть любым и каждая призма может иметь свое значение углового увеличения Гi. Угловое увеличение телескопа равно произведению угловых увеличений призм. На практике для настройки прибора удобно, когда направление пучка на выходе телескопа совпадает с направлением входящего пучка, поэтому в заявленной конструкции телескоп состоит из целого числа пар оптических призм, причем направление входного и выходного пучка в каждой паре совпадает с направлением исходных коллимированных пучков. Такая попарная компоновка призменного телескопа сильно упрощает технологический процесс сборки и настройки. Для этого ребра преломляющих двугранных углов призм в каждой паре расположены по разные стороны относительно оси пучка, а величины углов и показателей преломления материалов призм выбираются исходя из требуемого значения углового увеличения пары. Применение различных материалов может быть необходимо для компенсации температурных уводов выходного пучка. В простейшем случае все призмы изготавливаются из одного материала с одинаковыми углами как на фиг. 2.
Поперечные размеры пучка после призменного телескопа:
Figure 00000017
где Lcp - средняя длина прохода в призменном телескопе, приведенная к воздуху;
Figure 00000018
где Г=Г1⋅Г2⋅Г3…Г2n - угловое увеличение призменного телескопа (коэффициент сжатия пучка), Гi - угловое увеличение (коэффициент сжатия) i-й призмы, n - число пар призм.
Углы расходимости пучка после призменного телескопа:
Figure 00000019
Figure 00000020
Т.к. распределение мощности в поперечном сечении пучка на выходе призменного телескопа неоднородно в направлении, перпендикулярном плоскостям полупроводниковых переходов, то после призменного телескопа устанавливается линза с фокусом ƒi, необходимая для формирования пучка с заданными параметрами и максимально равномерным распределением мощности в заданной плоскости. На практике эта плоскость выбирается вблизи фокальной плоскости линзы, где поперечные размеры пучка равны:
Figure 00000021
Figure 00000022
Углы расходимости пучка после фокусирующей линзы (на выходе сумматора) равны:
Figure 00000023
Figure 00000024
Приведенные формулы помогают оценить характеристики схемы сумматора и составляющих его элементов исходя из заданных параметров выходного пучка.
Список использованных источников
1. Патент РФ №2101743, G02B 27/30, 10.01.1998.
2. Патент РФ №2148850, G02B 27/30, 28.07.1998.
3. Патент РФ №2182346, G02B 27/09, 20.06.2000.
4. Л.В. Тарасов. Физика процессов в генераторах когерентного оптического излучения. - М.: Радио и связь, 1981, с. 175.

Claims (5)

1. Сумматор оптического излучения, содержащий несколько полупроводниковых лазеров, последовательно расположенные по ходу лучей коллимирующие объективы, единый призменный телескоп, состоящий из целого числа пар оптических призм, ребра преломляющих двугранных углов которых ориентированы параллельно плоскостям полупроводниковых переходов, отличающийся тем, что лазеры разделены на две группы, каждая из которых состоит из расположенных в ряд лазерных диодов, оптические оси которых параллельны друг другу, и следующих за ними по ходу лучей одиночных коллимирующих линз диаметром в два раза меньшим поперечного размера корпуса лазерного диода, и создает набор параллельных в одной плоскости коллимированных пучков с расстоянием между пучками, несколько превышающим световой диаметр пучков, перед призменным телескопом установлен совмещающий компонент, создающий единый набор параллельных в одной плоскости коллимированных пучков с минимальным расстоянием между пучками, а после призменного телескопа установлена фокусирующая линза, формирующая сходящийся пучок с заданным апертурным углом (углом расходимости) и с заданными размерами поперечного сечения вблизи ее фокальной плоскости, обеспечивая при этом необходимую равномерность распределения мощности.
2. Сумматор оптического излучения по п. 1, отличающийся тем, что совмещающий компонент выполнен в виде зеркала с эквидистантным набором круглых сквозных отверстий для прохода излучения первой группы полупроводниковых лазеров и отражающего излучение второй группы полупроводниковых лазеров.
3. Сумматор оптического излучения по п. 1, отличающийся тем, что совмещающий компонент выполнен в виде удлиненной призмы полного внутреннего отражения АР-90 с эквидистантным набором круглых сквозных отверстий, направленных вдоль одного из катетов, пропускающей через них излучение первой группы полупроводниковых лазеров и отражающей от гипотенузной грани излучение второй группы полупроводниковых лазеров.
4. Сумматор оптического излучения по п. 1, отличающийся тем, что совмещающий компонент выполнен в виде двойного набора призм полного внутреннего отражения АР-90.
5. Сумматор оптического излучения по п. 1, отличающийся тем, что совмещающий компонент выполнен в виде двойного набора ромбических призм типа БС-0.
RU2020141737A 2020-12-16 2020-12-16 Сумматор оптического излучения RU2761127C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141737A RU2761127C1 (ru) 2020-12-16 2020-12-16 Сумматор оптического излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020141737A RU2761127C1 (ru) 2020-12-16 2020-12-16 Сумматор оптического излучения

Publications (1)

Publication Number Publication Date
RU2761127C1 true RU2761127C1 (ru) 2021-12-06

Family

ID=79174446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020141737A RU2761127C1 (ru) 2020-12-16 2020-12-16 Сумматор оптического излучения

Country Status (1)

Country Link
RU (1) RU2761127C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165097C1 (ru) * 1998-11-04 2001-04-10 Фирма "РЕЙТЭК Лазер Индастрис Лтд." Излучающий сумматор
RU2182346C2 (ru) * 2000-06-20 2002-05-10 Государственное унитарное предприятие "Конструкторское бюро приборостроения" Сумматор оптического излучения
US6873640B2 (en) * 2002-01-28 2005-03-29 Fujifilm Electronic Imaging Ltd. Laser diode collimating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165097C1 (ru) * 1998-11-04 2001-04-10 Фирма "РЕЙТЭК Лазер Индастрис Лтд." Излучающий сумматор
RU2182346C2 (ru) * 2000-06-20 2002-05-10 Государственное унитарное предприятие "Конструкторское бюро приборостроения" Сумматор оптического излучения
US6873640B2 (en) * 2002-01-28 2005-03-29 Fujifilm Electronic Imaging Ltd. Laser diode collimating system

Similar Documents

Publication Publication Date Title
US10418774B2 (en) Spectrally multiplexing diode pump modules to improve brightness
US9596034B2 (en) High brightness dense wavelength multiplexing laser
US6680800B1 (en) Device for symmetrizing the radiation emitted by linear optical transmitters
US5168401A (en) Brightness conserving optical system for modifying beam symmetry
US7970040B1 (en) Apparatus for incoherent combining of high power lasers for long-range directed-energy applications
US5321717A (en) Diode laser having minimal beam diameter and optics
KR101984759B1 (ko) 레이저 처리 장치를 위한 다중 빔 결합기 및 방사 소스
JPH08240793A (ja) 球面収差の無い屈折楕円光学面
JPS6032998B2 (ja) 多重プリズム形ビ−ム拡大器
US20070019912A1 (en) Illuminateur laser
JP6165366B1 (ja) 平行光発生装置
US20060045144A1 (en) Diode laser array beam homogenizer
CN106532435A (zh) 一种半导体激光阵列合束装置
CN105071196A (zh) 一种窄线宽合束模块及具有该模块的多波长拉曼激光器
RU2761127C1 (ru) Сумматор оптического излучения
JP2015056469A (ja) 外部共振器により波長制御されたダイオードレーザモジュール
Ning et al. Collimation of laser diode beams for free space optical communications
RU2390811C1 (ru) Оптическая система для полупроводниковых лазеров
CN114813050B (zh) 一种多模蓝光单管激光模式测量装置
Bagdasarov et al. Investigation of the characteristics of formation of the angular distribution of laser radiation in resonators with retroreflecting mirrors
RU2811392C1 (ru) Устройство формирования пучка лазерного излучения с сечением прямоугольной формы и равномерным распределением интенсивности
JP6693680B2 (ja) 平行光発生装置
US10795172B1 (en) Apparatus and method of combining multiple laser beams using a negative focal length radial gradient index rod lens
JP2008300885A (ja) 半導体レーザ光出力装置および固体レーザロッド励起モジュール
Ma et al. The coupling study between multi-channel laser diodes and multimode fiber in a fiber pump laser