RU2750715C1 - Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции - Google Patents

Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции Download PDF

Info

Publication number
RU2750715C1
RU2750715C1 RU2020142831A RU2020142831A RU2750715C1 RU 2750715 C1 RU2750715 C1 RU 2750715C1 RU 2020142831 A RU2020142831 A RU 2020142831A RU 2020142831 A RU2020142831 A RU 2020142831A RU 2750715 C1 RU2750715 C1 RU 2750715C1
Authority
RU
Russia
Prior art keywords
nat2
tuberculosis
multidrug
development
mycobacterium tuberculosis
Prior art date
Application number
RU2020142831A
Other languages
English (en)
Inventor
Нина Васильевна Мальцева
Ольга Михайловна Казанцева
Ирина Борисовна Викторова
Аркадий Лейбович Ханин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования" Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования" Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России) filed Critical Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования" Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России)
Priority to RU2020142831A priority Critical patent/RU2750715C1/ru
Application granted granted Critical
Publication of RU2750715C1 publication Critical patent/RU2750715C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области медицины, в частности к инфекционным болезням, фтизиатрии и терапии. Предложен способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis. У пациентов группы риска проводят забор образцов венозной крови, выделение геномной ДНК, аллель-специфическую полимеразную цепную реакцию с целью генотипирования по полиморфным локусам rs1208, rs1799930 и rs1799929 гена ариламин-ацетилтрансферазы 2 NAT2. У носителей сочетания генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu С481С прогнозируют развитие туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis с 10,775-кратным риском. Изобретение позволяет прогнозировать развитие туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis у больных ВИЧ и корректировать лечебную тактику ведения больных на этапе назначения лекарственных средств. 1 з.п. ф-лы, 2 табл., 3 пр.

Description

Изобретение относится к медицине, а именно к инфекционным болезням, фтизиатрии и терапии, и может быть использовано для прогнозирования развития туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при клиническом течении ВИЧ-инфекции.
ВИЧ-инфекция остается одной из основных проблем глобального общественного здравоохранения. Напряженность эпидемиологической ситуации по ВИЧ-инфекции проявляется в неуклонном росте числа инфицированных ВИЧ и летальности среди заболевших людей. Прогрессия ВИЧ-ассоциированного иммунодефицита наиболее часто (в 60% случаев) приводит к развитию туберкулеза (ТБ), занимающего лидирующую позицию (в 50% случаев) среди причин смерти больных ВИЧ-инфекцией. Известно, что при туберкулезе у больных ВИЧ-инфекцией (коинфекция ВИЧ/ТБ) часто выявляется устойчивость к антитуберкулезной терапии за счет заражения лекарственно устойчивыми штаммами микобактерий туберкулеза. Множественная лекарственная устойчивость Mycobacterium tuberculosis (резистентность к двум и более препаратам, если ими являются изониазид и рифампицин) ведет к низким показателям излечения ТБ и более высокими показателям летальности в сравнении с пациентами с сохраненной лекарственной чувствительностью Mycobacterium tuberculosis.
Селекция лекарственно-устойчивых мутантных штаммов Mycobacterium tuberculosis обычно наблюдается на ранних этапах лечения, когда при неадекватных режимах терапии мутанты становятся резистентными. Большая часть чувствительных штаммов исчезает, проявляется клиническая лекарственная устойчивость (http://med.by/methods/pdf/28-9902.pdf).
Известно, что механизмы формирования лекарственной устойчивости либо чувствительности к фармакотерапии определяются и скоростью метаболизма в организме используемых лекарственных средств (ЛС). От последней зависит продолжительность и интенсивность фармакологического действия ЛС, т.е. эффективность терапии или отсутствие ожидаемого лечебного эффекта. Метаболизм ЛС осуществляется системой биотрансформации, состоящей из множества ферментов, специфичных для одной из трех фаз работы этой системы. В фазе I ферменты, такие как оксидазы цитохрома Р450, окисляют ЛС. Модифицированные ЛС посредством последующего ферментативного катализа конъюгируются с полярными соединениями в реакциях фазы II. Липофильные соединения превращаются в гидрофильные продукты, которые выводятся из организма в фазе III. Каталитическая активность ферментов обусловливает эффективность метаболизма ЛС. Поскольку многие ферменты являются продуктами экспрессии полиморфных генов, их действие генетически детерминировано, и от генотипа самого больного может зависеть возникновение нежелательной резистентности к назначаемым ЛС, являющимся субстратами метаболизирующих их ферментов.
Назначением настоящего изобретения является разработка способа определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции.
Назначение изобретения достигается с помощью способа определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции.
У пациентов с диагнозом ВИЧ-инфекции русской национальности проводят забор образцов венозной крови, выделение геномной ДНК, аллель-специфическую полимеразную цепную реакцию с целью генотипирования по полиморфным локусам NAT2Lys268Arg rs1208, NAT2Argl97Gln G590A rs1799930 и NAT2 Leu161Leu С481Т rs1799929 гена ариламин-ацетилтрансферазы 2 NAT2 и у носителей сочетания генотипов NAT2A803A × NAT2G590G × NAT2C481C прогнозируют развитие туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis с 10,775-кратным риском. Новизна изобретения:
1. Впервые изучено распределение частот встречаемости генотипов/аллелей однонуклеотидных полиморфизмов гена ариламин-ацетилтрансферазы 2 NAT2 -NAT2Lys268Arg A803G rs 1208, NAT2Arg197Gln G590A rs1799930 и NAT2Leu161Leu С481Т rs1799929 - у пациентов с клиническим течением коинфекции ВИЧ и туберкулез, резистентных и чувствительных к антитуберкулезной терапии.
2. Установлено, что пациенты с генотипом NAT2Arg197Gln G590G более подвержены к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции, нежели чувствительности, с 3,63-кратным риском.
3. Обнаружено, что носительство сочетания двух генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G усиливает риск формирования туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis до 10,65-кратного.
4. Носительство сочетания трех генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu C481C приводит к максимальному выявленному в данном исследовании риску развития туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis - 10,78-кратному.
5. Генотипирование по трем генотипам NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu C481C предлагается использовать в клинической практике для прогноза формирования туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции.
При известном прогнозе ответа пациента на определенную фармакотерапию возможно заблаговременное изменение тактики лечения и избежание формирования побочных реакций, неизбежных при использовании любых ЛС. Новый технический результат изобретения позволяет прогнозировать развитие туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis у больных ВИЧ и корректировать лечебную тактику ведения больных на этапе назначения лекарственных средств. В патентной и научной литературе отсутствуют сведения об аналогичном способе прогнозирования развития туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis у больных ВИЧ.
Причиной смерти больных коинфекцией ВИЧ/ТБ становится прогрессирование туберкулеза с полиорганным поражением. Одним из основных препаратов первого ряда для противотуберкулезного лечения является изониазид. Монотерапия туберкулеза изониазидом часто сопровождается развитием устойчивости возбудителя к этому антибиотику. Изониазид активен в отношении вне- и внутриклеточных Mycobacterium tuberculosis. Он метабо-лизируется в печени путем ацетилирования ферментом ариламин-ацетилтрансферазой 2 (NAT2) до неактивных метаболитов, и для реакции ацетилирования характерен полиморфизм ацетилирующего эффекта (Preziosi P. Isoniazid: metabolic aspects and toxicological correlates. Curr. Drug Metab. 2007; 8:839-851. doi:10.2174/138920007782798216).
Способность к ацетилированию можно измерить по реакции человека на лекарства, метаболизируемые ферментом, и теперь известно, что этот фенотип зависит от генотипа индивидуума в единственном кодирующем экзоне гена NAT2. Мутации в гене NAT2 действительно приводят к различным фенотипам ацетилирования, которые объясняют индивидуальные вариации в ответ на введение стандартной дозы лекарственного средства (от отсутствия терапевтической эффективности до побочных реакций на лекарства). В популяциях различают экстенсивных метаболизаторов с повышенной скоростью метаболизма, медленных метаболизаторов со сниженной скоростью биотрансформации и промежуточных метаболизаторов. У медленных метаболизаторов происходит синтез «дефектного» фермента либо отсутствует его продукция, ЛС накапливается в организме в высоких концентрациях, что приводит к появлению выраженных нежелательных лекарственных реакций - вплоть до интоксикации. У «сверхактивных» или «быстрых» метаболизаторов, т.е. лиц с повышенной скоростью биотрансформации ЛС результирующая концентрация ЛС в крови может быть недостаточна для достижения терапевтического эффекта. У пациентов, у которых наблюдается быстрая инактивация, ЛС рекомендуется применять в более высоких дозах.
Изоформы синтезированного фермента NAT2 отличаются аминокислотной последовательностью и активностью ацетилирующего эффекта, которая генетически детерминирована. Кодирующий ген NAT2 - локус широкого полиморфизма, который может существовать в более чем 20 аллельных формах.
Известно 95 вариантов (гаплотипов) гена NAT2, отличающихся одним (или более) однонуклеотидным полиморфизмом в 870-Ьр кодирующей области. Именно гаплотипы NAT2 определяют ацетилирующую способность (фенотип) кодируемого фермента. Активность ацетилирования in vivo у гомозиготных субъектов дикого типа значительно выше, чем у гетерозиготных генотипов. Все мутантные аллели показали низкую степень ацетилирования in vivo. Кроме того, отдельные «медленные» генотипы значительно различаются между собой по степени ацетилирования.
Таким образом, тип ацетилирования у человека влияет на продолжительность и интенсивность фармакологического действия ЛС, что может быть связано с развитием резистентности или чувствительности к соответствующим фармакопрепаратам. Тип ацетилирования можно определять генотипированием гена NAT2.
Показано, что полиморфный вариант гена NAT2 (rs1799931) ассоциирован с риском развития туберкулеза и оказывает значимое влияние на эффективность лечения пациентов с широкой лекарственной устойчивостью Mycobacterium tuberculosis (ШЛУ-ТБ) [M.M. Юнусбаева, Л.Я. Бородина, Ф.С. Билалов, Р.А. Шарипов, Т.Р. Насибуллин, Б.Б. Юнусбаев. Эффективность лечения туберкулеза с широкой лекарственной устойчивостью у пациентов с разным генотипом по генам ферментов биотрансформации CYP2B6 и NAT2. Туберкулез и болезни легких. 2020; 98 (6):40-46]. Работы по изучению генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции не проводились.
В связи с вышеизложенным целью настоящей работы явился поиск генотипов гена NAT2, носительство которых может предрасполагать к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции, и разработка способа определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции.
В исследование включены 70 больных коинфекцией ВИЧ и туберкулез (ВИЧ/ТБ) в возрасте от 24 до 54 (36,17±0,784) лет: - 43 мужчины, 61%, в возрасте от 27 до 49 (35,79±0,833) лет и 27 женщин, 39%, в возрасте от 24 до 54 (36,78±1,557) лет, находившихся на стационарном лечении в ГКУЗ Кемеровской области «Новокузнецком клиническом противотуберкулезном диспансере» г. Новокузнецка в период 2017-2019 гг. Из них МЛУ МБТ (резистентность одновременно к изониазиду и рифампицину) обнаружена у 47 пациентов (у 12 больных с МЛУ МБТ имелась дополнительная резистентность к фторхинолонам) в возрасте от 24 до 54 (35,85±0,982) лет, мужчин - 28 человек (60%), в возрасте от 27 до 48 (35,5±0,985) лет и женщин - 19 (40%) в возрасте от 24 до 54 (36,37±1,981) лет. Фенотипическое определение лекарственной чувствительности (ЛЧ) МБТ к препаратам основного (изониазид, рифампицин, этамбутол, стрептомицин) и резервного (канамицин, офлокса-цин, этионамид, капреомицин, циклосерин и ПАСК) рядов проводилось методом абсолютных концентраций на плотных питательных средах Левенштейна-Йенсена. Генотипическая экспресс-диагностика МЛУ МБТ проводилась с использованием GeneXpert MTB/RIF выявлением в биологическом материале (мокроте) ДНК МБТ и мутации в гене rpoB, ответственной за резистентность к рифампицину (маркер МЛУ). Лекарственная чувствительность к противотуберкулезным препаратам была установлена у 23 больных ВИЧ/ТБ (ЛЧ-ТБ). МЛУ МБТ (резистентность одновременно к изониазиду и рифампицину) была обнаружена у 47 (67,1%) пациентов, а в 12 случаях имелась дополнительная резистентность к фторхинолонам. Дополнительными критериями включения в исследование были проведение противотуберкулезной терапии [Федеральные клинические рекомендации по диагностике и лечению туберкулеза у больных ВИЧ-инфекцией, 2015 г. [Federal clinical guidelines for the diagnosis and treatment of tuberculosis in patients with HIV infection, 2015] http://roftb.ru/netcat_files/doks2016/rec2016.pdf] и согласие пациентов на участие в исследовании. Медиана количества CD4-лимфоцитов составила во всей выборке - 177,0 клеток/мкл (диапазон 9,0-1624,0 кле-ток/мкл), у пациентов с МЛУ-ТБ - 189,0 клеток/мкл (диапазон 50,0-1624,0 клеток/мкл), при ЛЧ-ТБ - 157,0 клеток/мкл (диапазон 9,0-930,0 клеток/мкл).
Постановка полимеразной цепной реакции (ПЦР)
Для выделения образцов геномной ДНК у каждого больного забирали по 3 мл цельной венозной крови из локтевой вены в стандартные пробирки, содержащие ЭДТА-K3 (IMPROVE, China). ДНК выделяли с помощью коммерческого реагента «ДНК-экспресс-кровь» (НПФ «Литех», Москва). Генотипирование проводили по полиморфным локусам гена N-ацетилтрансферазы2 - NAT2Lys268Arg A803G rs1208, NAT2Arg197GlnG590A rs1799930 и NAT2 Leu161Leu C481T rs1799929 - с помощью коммерческих комплектов реагентов «SNP-экспресс» (НПФ «Литех», Москва).
Статистический анализ. Статистическая обработка результатов исследования проводилась с использованием программ Microsoft® Excel® версия 14.4.6 (141106), Statistica 6.0, InStatll, SPSS. Относительный риск по конкретному признаку вычисляли как соотношение шансов (OR=odds ratio). Критический уровень значимости (Р) при проверке статистических гипотез принимался равным 0,05.
Способ осуществляется следующим образом. У каждого больного ВИЧ/ТБ забирают 3 мл крови из локтевой вены в коммерческие стерильные вакуумные одноразовые пластиковые пробирки, содержащие антикоагулянт ЭДТА-K3 (IMPROVE, China). Проводят центрифугирование при 3000 оборотов/минуту в течение 5 минут. Из клеточного осадка выделяют геномную ДНК. Генотипирование проводят по полиморфным локусам гена N-ацетилтрансферазы2 - NAT2Lys268ArgA803G rs1208, NAT2Arg197Gln G590A rs1799930 и NAT2Leu161Leu С481Т _rs1799929. При сочетании генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu С481С определяют генетическую предрасположенность пациента к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции с 10,775-кратным риском.
Результаты. В соответствии с результатами генотипирования обследованных лиц распределение частот генотипов всех тестируемых полиморфных локусов гена NAT2 соответствовало равновесию Харди-Вайнберга (табл. 1), что позволяет экстраполировать полученные данные на популяцию. Отличие от указанного равновесия по локусу NAT2G590A выявлено в когорте пациентов с МЛУ МБТ, что было обусловлено частой встречаемостью генотипа NAT2G592G. Более половины пациентов с МЛУ МБТ (66%) являлись его носителями. Соответственно, риск развития МЛУ МБТ в сравнении с ЛЧ МБТ у пациентов с ВИЧ/ТБ с генотипом NAT2G590G оказался высоким (OR=3,63, р=0,02), а риск развития ЛЧ МБТ - низким (OR=0,27, р=0,02). У гетерозигот NAT2G590A выявлен сниженный риск развития МЛУ МБТ, т.е. гетерозиготный генотип оказался протективным вариантом от МЛУ МБТ (OR=0,28, р=0,03) и располагающим к ЛЧ МБТ (OR=3,57, р=0,03).
По двум другим полиморфизмам NAT2A803G и NAT2C481T отличий в частотах носительства аллелей и генотипов между когортами пациентов с МЛУ МБТ и ЛЧ МБТ не обнаружено.
Результаты, представленные в табл. 2, показывают, что сочетание диких (нормальных) аллелей NAT2A803A × NAT2G590G в локусах NAT2A803G и NAT2G590A встречались у трети пациентов с МЛУ МБТ (33%) и всего лишь у 1 из 23 обследованных (4%) больных с ЛЧ МБТ. Выявлен 10,65-кратный риск развития МЛУ МБТ у носителей данного сочетания и, соответственно, очень низкая вероятность развития ЛЧ МБТ. Одновременное носительство дикого генотипа по третьему исследованному локусу NAT2C481T (сочетание генотипов NAT2A803A × NAT2G590G × NAT2C481C) не было обнаружено ни у одного пациента из когорты с ЛЧ МБТ. Поэтому вероятность развития МЛУ МБТ у носителей повысилась до OR=10,78.
Figure 00000001
Примечание: здесь и в последующих таблицах представлено число вариантов генотипов/аллелей в абсолютном значении (*) и в % (в круглых скобках); ** критерии соответствия равновесию Харди-Вайнберга
Figure 00000002
Figure 00000003
Figure 00000004
Таким образом, носительство сочетания генотипов NAT2A803A × NAT2G590G × NAT2C481C с высокой вероятностью предрасполагает к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции. А вероятность формирования лекарственной чувствительности Mycobacterium tuberculosis при таком носительстве крайне мала. Полученные данные позволяют предложить в клиническую практику способ прогнозирования развития туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis при ВИЧ-инфекции на основе генотипирования пациентов по трем полиморфным локусам гена NAT2.
Клинический пример №1.
Пациент Е., 1988 г.р., потребитель инъекционных наркотиков (ПИН) в течение многих лет. ВИЧ-инфекция была выявлена 7 лет назад во время пребывания в МЛС, APT ранее не принимал. ТБ ранее не болел, на учете у фтизиатра не состоял.
Заболел в течение 1 мес. до поступления, когда появились лихорадка до 38-39°С, боли в груди и кашель. Был госпитализирован в терапевтическое отделение общелечебной сети, откуда после выявления кислотоустойчивых микобактерий (КУМ) при микроскопии мазка мокроты (ММ) был направлен и госпитализирован в специализированное учреждение.
В ГКУЗ КО «Новокузнецкий клинический противотуберкулезный диспансер» был установлен диагноз диссеминированного туберкулеза (ТБ) с бактериовыделением по микроскопии ММ, а при молекулярно-генетическом исследовании мокроты (GeneXpert MTB/RIF) была выявлена ДНК Mycobacterium tuberculosis без обнаружения маркера МЛУ (т.е. без мутации в гене rpoB).
При обследовании по поводу ВИЧ-инфекции было установлено, что количество CD4-лимфоцитов составляло 683 кл./мкл, а вирусная нагрузка (ВН) - 33811 копий РНК ВИЧ в 1 мл.
Диагноз диссеминированного туберкулеза легких у больного ВИЧ-инфекцией в стадии вторичных заболеваний (4Б) был утвержден Центральной врачебной контрольной комиссией (ЦВКК) 27.11.2017 г.: диссеминированный ТБ легких, фаза распада, МБТ (+), чувствительность к рифампицину по МГМ, IA(+) диспансерного учета.
Учитывая, что по результатам молекулярно-генетического исследования мокроты не было выявлено маркер МЛУ, пациенту проводилась стандартная терапия по I режиму с применением изониазида, рифампицина, пиразинамида и этамбутола (всего были приняты 83 дозы препаратов), проводилась антимикробная терапия выявленного инфекционного эндокардита.
В период госпитализации были получены сведения о росте МБТ на плотных питательных средах из мокроты, взятой на исследование при выявлении - в 11.2017 г., а также данные об МЛУ МБТ (устойчивость к рифампицину, изониазиду, этамбутолу; чувствительность к препаратам второго ряда была сохранена).
В связи с выявлением МЛУ, врачебной комиссией (ВК) было принято решение о начале терапии по IV режиму химиотерапии (канамицн, лево-флоксацин, протионамид, циклосерин, ПАСК). На фоне проводимой терапии в стационаре состояние пациента было стабилизировано, уменьшились проявления воспалительной интоксикации, было отмечено прекращение бактериовыделения по ММ и частичное рассасывание легочной диссеминации через 4 мес. лечения по IV режиму.
В дальнейшем пациент в плановом порядке был выписан на амбулаторный этап лечения, где продолжал противотуберкулезную терапию. В дальнейшем амбулаторно лечился нерегулярно, привлечь для лечения пациента не удалось. Через 7 мес. с момента выявления ТБ (13.08.2020 г.) был констатирован летальный исход в связи с прогрессированием туберкулеза в отсутствие регулярной терапии.
Результаты генотипирования по полиморфным локусам
NAT2Lys268ArgA803G rs1208, NAT2Arg197GlnG590A rs1799930 и NAT2Leu161LeuC481T rs1799929 (посмертно): выявлено сочетание генотипов NAT2Lys268LysA803A × NAT2Arg197ArgG590G × NAT2Leu161Leu С481С указывающее на 10,775-кратный риск развития множественной лекарственной устойчивости Mycobacterium tuberculosis.
Клинический пример №2.
Пациент К., 1982 г.р., работающий. Ранее туберкулезом не болел. Туберкулез был выявлен впервые в марте 2017 г. при обращении в учреждение общелечебной сети. При обследовании были выявлены признаки туберкулеза легких, что стало основанием для направления пациента в противотуберкулезное учреждение.
В ГКУЗ КО «Новокузнецкий клинический противотуберкулезный диспансер» диагноз инфильтративного туберкулеза верхней доли справа, фаза распада, МБТ (-) у больного ВИЧ-инфекцией в стадии вторичных заболеваний (4Б) был подтвержден клинико-рентгенологически и утвержден Центральной врачебной контрольной комиссией (ЦВКК) 04.03.2017 г., пациент был взят в IA(-) диспансерного фтизиатрического учета.
В связи с исходным отсутствием бактериовыделения по мазкам мокроты и отрицательными результатами молекулярно-генетического исследования мокроты (GeneXpert MTB/RIF) (ДНК Mycobacterium tuberculosis не обнаружена) пациенту был назначен I режим химиотерапии ТБ (изониазид, ри-фампицин, пиразинамид и этамбутол). Лечение по I режиму проводилось амбулаторно.
ВИЧ-инфекция была впервые выявлена 1 год назад при плановом обследовании, APT ранее не принимал. В противотуберкулезном диспансере количество CD4-лимфоцитов - 306 клеток/мкл от 14.02.2018 г., вирусная нагрузка (ВН) - 43551 копий РНК ВИЧ в 1 мл.
Через 2 мес. лечения по I режиму были получены результаты посевов мокроты, взятой при выявлении туберкулеза в марте 2017 г. (рост МБТ 1+) и сведения о наличии МЛУ МБТ (устойчивость к рифампицину, изониазиду и стрептомицину; чувствительность к препаратам второго ряда была сохранена).
Результаты генотипирования по полиморфным локусам NAT2Lys268Arg A803G rs1208, NAT2Arg197Gln G590A rs1799930 и NAT2Leu161Leu С481Т rs1799929: выявлено сочетание генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu С481С, указывающее на 10,775-кратный риск развития множественной лекарственной устойчивости Mycobacterium tuberculosis.
Выявление МЛУ Mycobacterium tuberculosis стало основанием для назначения лечения по IV режиму (канамицн, левофлоксацин, протионамид, циклосерин, ПАСК) с планируемой длительностью не менее 24 мес, для чего пациент был госпитализирован. В отделении стационара врачом-инфекционистом была начата антиретровирусная терапия.
На фоне комбинированной терапии (противотуберкулезной и антирет-ровирусной) было достигнуто прекращение бактериовыделения через 1 мес, а полости распада были закрыты через 2 мес. лечения.
После 8 мес. интенсивной фазы терапии по IV режиму пациент был выписан на амбулаторный этап для проведения поддерживающей фазы с общей длительностью всего курса лечения не менее 24 мес После 24 мес.регулярного лечения курс признан эффективным с констатацией клинического излечения туберкулеза у пациента с ВИЧ-инфекцией.
Клинический пример №3.
Пациентка X., 1993 г. р., выявлена в январе 2017 г. при обращении в общелечебную сеть с жалобами на лихорадку до 38°С в течение недели. После отсутствия клинико-рентгенологического эффекта на фоне курса неспецифической антимикробной терапии по поводу предполагаемой внебольничной пневмонии была направлена в ГКУЗ КО «Новокузнецкий клинический противотуберкулезный диспансер» с связи с высоковероятным туберкулезом. Ранее туберкулезом не болела, на фтизиатрическом учете не состояла.
При поступлении в стационар НКПТД было выявлено бактериовыделение по микроскопии мазка мокроты (КУМ 1+), а при фибробронхоскопии были обнаружены признаки инфильтративного туберкулеза среднедолевого бронха с признаками стеноза.
По совокупности полученных данных было подтверждено наличие инфильтративного туберкулеза правого легкого, инфильтративного туберкулеза ср/долевого бронха, МБТ(+); диагноз был утвержден Центральной врачебной контрольной комиссией (ЦВКК) 23.01.2017 г., пациентка взята в 1А(+) группу диспансерного фтизиатрического учета.
В связи с исходным отсутствием возможности проведения молекулярно-генетического исследования мокроты (GeneXpert MTB/RIF) для экспресс-диагностики МЛУ-ТБ, больной X. проводилась терапия с применением стандартного I режима химиотерапии ТБ (изониазид, рифампицин, пиразинамид и этамбутол).
Результаты генотипирования по полиморфным локусам NAT2Lys268Arg A803G rs1208, NAT2Arg197Gln G590A rs1799930 и NAT2Leu161Leu С481Т rs1799929: выявлено сочетание генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu С481С указывающее на 10,775-кратный риск развития множественной лекарственной устойчивости Mycobacterium tuberculosis.
К моменту приема 95 доз противотуберкулезных препаратов были получены сведения о росте культуры Mycobacterium tuberculosis из мокроты, взятой при выявлении в январе 2017 г. (рост МБТ 1+). Тестирование выделенной культуры МБТ на лекарственную чувствительность показало наличие первичной МЛУ МБТ (устойчивость к рифампицину, изониазиду, этамбуто-лу и стрептомицину), чувствительность к препаратам второго ряда была сохранена.
Выявление МЛУ Mycobacterium tuberculosis стало основанием для назначения лечения по IV режиму (канамицн, левофлоксацин, протионамид, циклосерин, ПАСК) с планируемой длительностью терапии не менее 24 мес.
На фоне лечения к декабрю 2017 г. сформировались множественные туберкуломы, по поводу которых планировалось выполнение хирургическое вмешательства.
Исследование крови на антитела к ВИЧ методом ИФА было отрицательным дважды в период госпитализации (январь и апрель 2017 г.). ВИЧ-инфекция была впервые диагностирована в декабре 2017 г. (половой путь заражения в период лечения туберкулеза). При выявлении ВИЧ-инфекции количество CD4-лимфоцитов составило 957 клеток/мкл от января 2018 г., вирусная нагрузка (ВН) - 23405 копий РНК ВИЧ в 1 мл. От антиретровирсной терапии пациентка уклонялась.
В дальнейшем на фоне лечения по IV режиму лучевая картина соответствовала наличию множественных конгломератных туберкулом в ф. распада, диссеминации и частичного уплотнения. Было достигнуто прекращение бактериовыделения по ММ и посевам мокроты. Распространенность легочного поражения не позволяла провести хирургическое лечение торакального ТБ при ВИЧ-инфекции в отсутствие APT.
После 24 мес.консервативного противотуберкулезного лечения по IV режиму было констатировано завершение основного курса лечения, пациентка была переведена для наблюдения в группу хронического течения ТБ (II А(-)).

Claims (2)

1. Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis, характеризующийся тем, что у пациентов группы риска проводят забор образцов венозной крови, выделение геномной ДНК, аллель-специфическую полимеразную цепную реакцию с целью генотипирования по полиморфным локусам гена ариламин-ацетилтрансферазы 2 NAT2 - NAT2Lys268Arg A803G rs1208, NAT2Arg197Gln G590A rs1799930 и NAT2Leu161Leu C481T rs1799929, и у носителей сочетания генотипов NAT2Lys268Lys А803А × NAT2Arg197Arg G590G × NAT2Leu161Leu С481С прогнозируют развитие туберкулеза с множественной лекарственной устойчивостью Mycobacterium tuberculosis с 10,775-кратным риском.
2. Способ по п. 1, отличающийся тем, что в группу риска входят пациенты русской национальности с диагнозом коинфекции ВИЧ и туберкулез.
RU2020142831A 2020-12-23 2020-12-23 Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции RU2750715C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020142831A RU2750715C1 (ru) 2020-12-23 2020-12-23 Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020142831A RU2750715C1 (ru) 2020-12-23 2020-12-23 Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции

Publications (1)

Publication Number Publication Date
RU2750715C1 true RU2750715C1 (ru) 2021-07-01

Family

ID=76820122

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020142831A RU2750715C1 (ru) 2020-12-23 2020-12-23 Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции

Country Status (1)

Country Link
RU (1) RU2750715C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806911C1 (ru) * 2023-03-30 2023-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ генотипирования полиморфного локуса rs6702742 (A>G) гена SERBP1 у человека методом ПЦР в режиме "реального времени" с применением аллель-специфических флуоресцентных зондов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139330A1 (en) * 2013-03-15 2014-09-18 Diagcor Bioscience Incorporation Limited Rapid genotyping analysis and kits thereof
CN106119363A (zh) * 2016-07-01 2016-11-16 中国人民解放军第三〇九医院 用于抗结核药物肝损伤易感基因型检测的snp组合、检测方法和试剂盒
RU2710266C1 (ru) * 2019-09-26 2019-12-25 Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования "Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России) Способ прогнозирования летального исхода при клиническом течении коинфекции вич и туберкулез, сопровождающемся множественной лекарственной устойчивостью mycobacterium tuberculosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139330A1 (en) * 2013-03-15 2014-09-18 Diagcor Bioscience Incorporation Limited Rapid genotyping analysis and kits thereof
CN106119363A (zh) * 2016-07-01 2016-11-16 中国人民解放军第三〇九医院 用于抗结核药物肝损伤易感基因型检测的snp组合、检测方法和试剂盒
RU2710266C1 (ru) * 2019-09-26 2019-12-25 Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования "Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России) Способ прогнозирования летального исхода при клиническом течении коинфекции вич и туберкулез, сопровождающемся множественной лекарственной устойчивостью mycobacterium tuberculosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАЛЬЦЕВА Н.В. и др. Полиморфизм NAT2Lys268Arg(A803G) и общий IgE в прогнозе клинического течения коинфекции ВИЧ-туберкулёз. Фармакогенетика и фармакогеномика. 2019. 2: 23-24. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806911C1 (ru) * 2023-03-30 2023-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ генотипирования полиморфного локуса rs6702742 (A>G) гена SERBP1 у человека методом ПЦР в режиме "реального времени" с применением аллель-специфических флуоресцентных зондов
RU2808842C1 (ru) * 2023-10-16 2023-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ генотипирования полиморфного локуса rs10104 (A>G) гена C19orf53 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов
RU2819930C1 (ru) * 2023-12-26 2024-05-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ генотипирования полиморфного локуса rs10832676 (A>G) гена C11orf58 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов

Similar Documents

Publication Publication Date Title
Liu et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study
Saravanan et al. Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia
Trépo et al. Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study
Abe et al. NRAMP1 polymorphisms, susceptibility and clinical features of tuberculosis
Simms et al. KCNN4Gene Variant Is Associated With Ileal Crohn's Disease in the Australian and New Zealand Population
Mendoza et al. High prevalence of viable Mycobacterium avium subspecies paratuberculosis in Crohn’s disease
Gawrońska-Szklarz et al. Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate of Helicobacter pylori infection by triple therapy with pantoprazole, amoxicillin, and metronidazole
Stahl et al. Collagenous colitis is associated with HLA signature and shares genetic risks with other immune-mediated diseases
Bamoulid et al. IL-6 promoter polymorphism− 174 is associated with new-onset diabetes after transplantation
CN111471758A (zh) 检测基因位点突变的产品在制备评估患者服用他克莫司后代谢情况的产品中的用途
Liu et al. Association of CYBB polymorphisms with tuberculosis susceptibility in the Chinese Han population
CN111662975A (zh) 检测基因位点突变的产品在制备预测或评估患者服用他克莫司后代谢情况的产品中的用途
MX2007008159A (es) Biomarcadores para identificar la eficacia del tegaserod en pacientes con constipacion cronica.
RU2750715C1 (ru) Способ определения генетической предрасположенности к развитию туберкулеза с множественной лекарственной устойчивостью mycobacterium tuberculosis при вич-инфекции
Liu et al. Significance of LncRNA CASC8 genetic polymorphisms on the tuberculosis susceptibility in Chinese population
Makiishi et al. C-106T polymorphism of AKR1B1 is associated with diabetic nephropathy and erythrocyte aldose reductase content in Japanese subjects with type 2 diabetes mellitus
WO2006117945A1 (en) Method for detecting lipid metabolism disorder, and diagnostic agent for use therein
CN113136387B (zh) 早发冠心病相关基因及其检测试剂与应用
Sheneef et al. Pentraxin 3 genetic variants and the risk of active pulmonary tuberculosis
Zhao et al. Contribution of CD14-159C/T polymorphism to tuberculosis susceptibility: a meta-analysis
Yu et al. Focus on FOCIS: the continuing diagnostic challenge of autosomal recessive chronic granulomatous disease
Ha et al. Detecting Donor-Derived DNA by Real-Time PCR in Recipients Suspected of Graft-Versus-Host-Diseases After Liver Transplantation: A Case Series and Literature Review
Adriaanse et al. Human leukocyte antigen typing using buccal swabs as accurate and non‐invasive substitute for venipuncture in children at risk for celiac disease
JP2007222134A (ja) 高血圧の遺伝的リスク検出法
JP5489146B2 (ja) 肥満の遺伝的リスク検出法