RU2747988C1 - Способ получения карбида кремния - Google Patents

Способ получения карбида кремния Download PDF

Info

Publication number
RU2747988C1
RU2747988C1 RU2020107222A RU2020107222A RU2747988C1 RU 2747988 C1 RU2747988 C1 RU 2747988C1 RU 2020107222 A RU2020107222 A RU 2020107222A RU 2020107222 A RU2020107222 A RU 2020107222A RU 2747988 C1 RU2747988 C1 RU 2747988C1
Authority
RU
Russia
Prior art keywords
furnace
core
silicon carbide
charge
cores
Prior art date
Application number
RU2020107222A
Other languages
English (en)
Inventor
Константин Сергеевич Ёлкин
Original Assignee
Константин Сергеевич Ёлкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Константин Сергеевич Ёлкин filed Critical Константин Сергеевич Ёлкин
Priority to RU2020107222A priority Critical patent/RU2747988C1/ru
Application granted granted Critical
Publication of RU2747988C1 publication Critical patent/RU2747988C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение может быть использовано при получении керамики, абразивного инструмента, высокотемпературных нагревательных элементов, восстановителя при производстве черных и цветных металлов. Способ получения карбида кремния восстановлением шихты из кварцевого песка нефтяным коксом в печи сопротивления включает загрузку шихты на подину печи, формирование керна из нефтяного кокса над слоем шихты, загрузку шихты с боков от керна и над керном, ведение плавки карбида кремния. Во время загрузки печи формируют дополнительные керны в высоту и проводят загрузку шихты. Расстояние между кернами и слой шихты между ними составляет 1,1-2,2 толщины керна. Изобретение позволяет более полно использовать тепло подводимой к печи электроэнергии, получать только карбид кремния без образования промежуточных продуктов, что приводит к увеличению производительности печи. 1 з.п. ф-лы, 7 пр.

Description

Область техники
Изобретение относится к неорганической химии и касается получения карбида кремния, который может быть использован для получения керамики, абразивного инструмента, высокотемпературных нагревательных элементов, в качестве восстановителя при производстве черных и цветных металлов.
Уровень техники
Карбид кремния получают карботермическим восстановлением кварцевого песка нефтяным коксом в высокотемпературных печах сопротивления. В электрическую печь сопротивления загружают шихту из кварцевого песка и нефтяного кокса в расчетном стехиометрическом соотношении (SiO2+3С) и ведут восстановительную плавку карбида кремния. По окончании выделения газов из печи, что соответствует окончанию восстановления карбида кремния, печь отключают, охлаждают, проводят извлечение продуктов плавки, отбор карбида кремния и отделение промежуточных продуктов. (Парада А.Н., Гасик М.И. «Электротермия неорганических материалов», М., Металлургия, 1990, 230 с.). Недостатком данного способа получения карбида кремния, является низкая степень использования кремнезема в процессе плавки карбида кремния.
Известен способ получения концентрированного карборунда как побочного продукта процесса графитации угольных заготовок (патент РФ №2108969, С01В 31/04, опубл. 10.04.98), включающий загрузку в электропечь угольных изделий и теплоизоляционной кремнийсодержащей шихты и термообработку при температуре выше 2000°С, в качестве теплоизоляционной кремнийсодержащей шихты используют смесь кокса или антрацита, высококремнеземистого кварцевого песка, древесных опилок и хлористого натрия, причем песок и хлористый натрий берут в количестве, не приводящем к ухудшению теплоизоляционных свойств шихты, а отработанную шихту по окончании процесса подвергают гравитационному разделению. Недостатком данного способа является то, что карбид кремния образуется с совершенной структурой, которая обладает низкой скоростью взаимодействия с оксидами металлов при применении карбида кремния в восстановительных процессах.
Из уровня техники известен способ получения карбида кремния (патент РФ 2627428, C01C 31/3, опубл. 08.08.2017) включает дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение восстановительной плавки, при этом вначале вокруг керна загружают слой шихты, содержащей кварцит фракцией 6-10 мм, затем следующим слоем загружают шихту, содержащую кварцевый песок и/или кварцит фракцией 0,3-6,0 мм, после чего в верхнюю часть печи и на периферию загружают слой шихты, содержащий кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем фракцией менее 0,22 мм, при следующем соотношении компонентов кремнеземсодержащего сырья, мас. %: кварцит фракцией 6,0-10 мм - 20-30, кварцевый песок (кварцит) фракцией 0,3-6,0 мм - 50-70, кварцевый песок фракцией менее 0,3 мм - 5-8, мелкодисперсный кремнезем фракцией менее 0,22 мм - 5-15. Кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем перед загрузкой шихты предварительно могут быть смешаны с кварцевым песком фракцией 0,3-6 мм. Недостатком данного способа получения карбида кремния является сложность приготовления композиции шихты с разным гранулометрическим составом кварцевого сырья.
Известен способ получения карбида кремния (патент SU 1699917, С01В 31/36, опубл. 23.12.1991) в виде нитевидных кристаллов и мелкодисперсного порошка, включающий термообработку продукта кислотной обработки рисовой шелухи в инертной атмосфере, а для сокращения длительности процесса в качестве исходного продукта используют гидролизный лигнин, полученный после выделения из рисовой шелухи фурфурола и кормовых дрожжей, на который перед термообработкой осаждают гидроокись железа в качестве катализатора. Недостатком данного способа является длительный синтез карбида кремния и низкая производительность установки.
Известен способ получения карбида кремния (патент RU 1730035, С01В 31/36, опубл. 30.04.1992), включающий приготовление шихты из мелкозернистого буроугольного полукокса и аморфной ультрадисперсной пыли сухой газоочистки производства ферросилиция при их массовом соотношении 0,55-0,60, гранулирование полученной шихты в присутствии 15-25 мас. % связующего, в качестве которого используют водный раствор концентрата лигносульфонатов или жидкого стекла при концентрации последних в растворе 5-50 мас. %. Гранулированную шихту подвергают термообработке в электропечах. Недостатком способа является сложное аппаратурное оформление и высокий уровень нежелательных примесей, переходящих в карбид кремния из пыли газоочисток производства ферросилиция.
Известен способ получения карбида кремния (патент RU 2163563, С01В 31/36, опубл. 27.02.2001), включающий электронагрев, со скоростью 200-300°С/ч, природной горной породы - шунгита, содержащей кремнезем и углерод, при 1600-1800°С, нагрев шунгита ведут в вакуумной печи при остаточном давлении в рабочем пространстве 0,25-1,3 кПа. Недостатком данного способа является необходимость использования сложного оборудования для создания вакуума в рабочем пространстве печи.
Известен способ получения карбида кремния восстановлением кварцевого песка нефтяным коксом при котором соблюдается следующая последовательность в выполнении операций при загрузке шихты: на подину печи загружают шихту до уровня токоведущих блоков, затем в центре печи формируется керн из нефтяного кокса, а с боков от керна и над керном загружается стехиометрическая шихта. При этом количество шихты, загружаемой в печь, вокруг керна, составляет около 1000 мм, а керн образует сечение размером 700 мм в ширину и 350 мм в высоту. По окончании плавки «…вокруг керна образуется овалообразный слой целевого продукта - карбида кремния толщиной 200-350 мм, а за ним слой частично прореагировавшей шихта… М.И. Гасик, М.М. Гасик, Электротермия кремния, Национальная металлургическая академия Украины, Днепропетровск, 2011, С. 148-150). Или слой карбида кремния вокруг керна составляет 0,57-1.0 высоты керна.
По технической сущности, по наличию общих признаков данное техническое решение принято в качестве ближайшего аналога.
Недостатком данного способа получения карбида кремния является невысокая производительность печей.
В основу изобретения положена задача, направленная на снижение расхода электроэнергии для получения карбида кремния восстановительной плавкой.
Техническим результатом является увеличение производительности печей сопротивления на выпуске карбида кремния.
Раскрытие изобретения
Поставленная цель достигается тем, что в способе получения карбида кремния восстановлением кварцевого песка нефтяным коксом при котором соблюдается следующая последовательность в выполнении операций в загрузке печи: на подину печи загружают шихту до уровня токоведущих блоков, затем в центре печи формируется керн из нефтяного кокса, а с боков от керна и над керном загружается шихта, после этого формируют дополнительный керн и проводят загрузку шихты, при этом расстояние между кернами составляет 1,1-2,2 толщины керна. Таким образом загрузку повторяют несколько раз. Увеличение количества кернов и загрузка шихты между кернами позволяет более полно использовать тепло подводимой к печи электроэнергии, получать только карбид кремния между слоями кернов, без образования промежуточных продуктов, а это приводит к увеличению производительность печи.
Осуществление способа
В лабораторной печи сопротивления проводили опытные плавки получения карбида кремния с различным количеством кернов.
Пример 1 (прототип). В печь загружали шихту из кварцевого песка и нефтяного кокса, формировали керн из нефтяного кокса, вокруг керна, с боков от керна и над керном, загружали шихту. Печь включали, проводили плавку, по окончании плавки печь охлаждали, проводили разборку продуктов плавки и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,2 кг карбида кремния в час.
Пример 2. В печь загружали шихту из кварцевого песка и нефтяного кокса, формировали керн и вокруг керна с боков от керна и над керном загружали шихту высотой 0,8 высоты керна, затем, формировали дополнительный керн такой же величины и проводили загрузку шихты над керном и по бокам керна. Печь включали, апроводили плавку, по окончании которой печь охлаждали, проводили разборку и определяли количество образовавшегося карбида кремния. Производительность печи составила, карбида кремния 9,15 кг в час.
Пример 3. В печь загружали шихту из кварцевого песка и нефтяного кокса, формировали керн и вокруг керна с боков от керна и над керном загружали шихту высотой 1,1 высоты керна, затем, формировали дополнительный керн такой же величины и проводили загрузку шихты над керном и по бокам керна. Печь включали, проводили плавку, по окончании которой печь охлаждали, проводили разборку и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,4 кг карбида кремния в час.
Пример 4. В печь загружали шихту из кварцевого песка и нефтяного кокса, формировали керн и загружали шихту. Затем, дополнительно сформировали еще два керна такой же величины и повторили загрузку шихты над керном и по бокам керна. Расстояния между кернами и величина загруженной между кернами шихты составила 1,8 толщины керна. Печь включали, проводили плавку, по окончании которой печь охлаждали, осуществляли разборку и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,6 кг карбида кремния в час.
Пример 5. Повторили загрузку печи так, как описано в примере 4 с формированием трех кернов, но расстояние между кернами и величина загруженной между кернами шихты составила 2,2 толщины керна. Проводили плавку, по окончании которой печь охлаждали, проводили разборку и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,55 кг карбида кремния в час.
Пример 6. Повторили загрузку печи так, как описано в примере 4 с формированием трех кернов, проводили загрузку шихты, но расстояние между кернами и величина загруженной между кернами шихты составила 2,4 толщины керна. Проводили плавку, печь отключали, проводили охлаждение, разборку продуктов плавки и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,22 кг карбида кремния в час.
Пример 7. В печь загружали шихту, формировали керн и вокруг керна, с боков от керна и над керном, загружали шихту и дополнительно сформировали еще три керна, повторили загрузку шихты над керном и по бокам керна. Расстояние между кернами составило 1,8 толщины керна. Печь включали, проводили плавку, по окончании плавки печь охлаждали, проводили разборку продуктов плавки и определяли количество образовавшегося карбида кремния. Производительность печи составила 9,7 кг карбида кремния в час.
Проведенные опытные плавки получения карбида показали, что при формировании во время загрузки печи нескольких кернов производительность печи повышается при расстоянии между кернами равным 1,1-2,2 толщины керна (примеры 3-5,7). Данное расстояние между кернами является оптимальным. При расстоянии между кернами менее 1,1 толщины керна производительность печи снижается из-за испарения ведущего элемента, кремния, вызванное полным расходом шихты, перегревом и испарением промежуточных продуктов восстановления (пример 2). При увеличении расстояния между кернами более 2,2 толщины кернов, производительность печи возрастает незначительно за счет неполного перехода шихты в карбид за счет образования промежуточных продуктов (пример 6). Количество кернов может быть два и более, и их количество зависит от высоты угольного блока токоподвода печи.
Ведение плавки карбида кремния в печи сопротивления с формированием при загрузке печи нескольких кернов, с загрузкой шихты между кернами, является новизной технического решения и отвечает критерию «существенное отличие».

Claims (2)

1. Способ получения карбида кремния восстановлением шихты из кварцевого песка нефтяным коксом в печи сопротивления, включающий загрузку шихты на подину печи, формирование керна из нефтяного кокса над слоем шихты, загрузку шихты с боков от керна и над керном, ведение плавки карбида кремния, отличающийся тем, что во время загрузки печи формируют дополнительные керны в высоту и проводят загрузку шихты, при этом расстояние между кернами и слой шихты между ними составляет 1,1-2,2 толщины керна.
2. Способ по п. 1, отличающийся тем, что количество кернов более двух.
RU2020107222A 2020-02-17 2020-02-17 Способ получения карбида кремния RU2747988C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020107222A RU2747988C1 (ru) 2020-02-17 2020-02-17 Способ получения карбида кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020107222A RU2747988C1 (ru) 2020-02-17 2020-02-17 Способ получения карбида кремния

Publications (1)

Publication Number Publication Date
RU2747988C1 true RU2747988C1 (ru) 2021-05-18

Family

ID=75919759

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020107222A RU2747988C1 (ru) 2020-02-17 2020-02-17 Способ получения карбида кремния

Country Status (1)

Country Link
RU (1) RU2747988C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791964C1 (ru) * 2022-05-26 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ получения порошка карбида кремния

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU748104A1 (ru) * 1975-11-26 1980-07-15 За витель Электропечь сопротивлени ,преимущественно дл получени карбида кремни
CN101708847A (zh) * 2009-08-30 2010-05-19 兰州河桥硅电资源有限公司 一种冶炼绿碳化硅的方法
RU2627428C1 (ru) * 2016-10-31 2017-08-08 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ получения карбида кремния
JP6210598B2 (ja) * 2014-02-25 2017-10-11 太平洋セメント株式会社 炭化珪素粉末の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU748104A1 (ru) * 1975-11-26 1980-07-15 За витель Электропечь сопротивлени ,преимущественно дл получени карбида кремни
CN101708847A (zh) * 2009-08-30 2010-05-19 兰州河桥硅电资源有限公司 一种冶炼绿碳化硅的方法
JP6210598B2 (ja) * 2014-02-25 2017-10-11 太平洋セメント株式会社 炭化珪素粉末の製造方法
RU2627428C1 (ru) * 2016-10-31 2017-08-08 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ получения карбида кремния

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GASIK M.I., GASIK M.M. Silicon electrothermy. National Metallurgical Academy of Ukraine, Dnepropetrovsk, 2011, p. 148-150. *
ГАСИК М.И., ГАСИК М.М. Электротермия кремния. Национальная металлургическая академия Украины, Днепропетровск, 2011, с. 148-150. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791964C1 (ru) * 2022-05-26 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ получения порошка карбида кремния

Similar Documents

Publication Publication Date Title
CN103880448B (zh) 一种浇注成型大型自结合碳化硅制品
CN106431437A (zh) 一种钢包渣线镁碳砖及其制备和应用
CN107162597A (zh) 一种浇注成型氮化硅结合碳化硅制品的配方及其制作方法
CN106755724A (zh) 一种适用于3吨中频炉生产球化剂的熔炼工艺
CN106435310B (zh) 一种用摇炉硅热法精炼锰硅铝合金的工艺
RU2673821C1 (ru) Шихта для получения карбида кремния
JP6964692B2 (ja) 金属鉄の製造方法
RU2747988C1 (ru) Способ получения карбида кремния
JP5348647B2 (ja) ロータリーキルンの操業方法
RU2627428C1 (ru) Способ получения карбида кремния
CN102559996A (zh) 炼钢用新型硅铝钡钙多元脱氧合金及其制备工艺
CN107244930A (zh) 一种耐铁水侵蚀高炉炭砖及其制备方法
CN103979981A (zh) 一种大规格半石墨质碳化硅碳砖及其生产工艺
CN110371983B (zh) 用真空中频感应炉冶炼高纯工业硅的方法
JPH1053820A (ja) 鋼ダスト、スラッジ及び/又は鉱石の金属化合物類の処理方法
JPS6179744A (ja) 珪素基複合合金鉄の連続的生成法
KR101009034B1 (ko) 페로니켈의 제조 방법
KR20080112818A (ko) 제강공정 부산물로부터 유가금속을 회수하는 방법
US1428061A (en) Manufacture of iron and steel
CN1449994A (zh) 一种碳化硅晶须和微粉的工业制备方法
CN101602603A (zh) 一种抗铁水溶蚀性的高炉炭砖及其制备方法
US4171281A (en) Graphitization and reducing charge
RU2248400C1 (ru) Способ промывки доменной печи
CN116479234A (zh) 一种利用复合炉直接处理红土镍矿生产镍铁的方法
CN102502639B (zh) 利用工业废渣生产碳化硅的方法